您所在的位置: 上海有色 > 有色金属产品库 > 铁粉还原机理 > 铁粉还原机理百科

铁粉还原机理百科

还原铁粉让普通铁精粉身价倍增

2018-12-13 10:31:09

日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )         北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。    据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网

炼钢炉尘提取还原用铁粉重选技改实践

2019-01-21 18:04:35

一、前言 炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。 由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。 二、原因分析 (一)原料分析 铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。 炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。 另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。 (二)原工艺流程及存在的缺陷 1、原工艺流程  原工艺流程如图1所示。2、原工艺存在的缺陷 (1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。 (2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。 (3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。 (4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。 三、解决措施 针对现有生产工艺存在的问题,对现有工艺进行了优化。 (一)新工艺流程 经改造后的新工艺流程(略) (二)改造措施 1、将一段摇床改为螺旋溜槽。 2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。 3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。 4、在新增球磨机后增加一台磁选机。 四、改进效果 经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。 五、结论 (一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。 (二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。

氧化铁皮的综合利用:可用于制取还原铁粉等

2019-02-26 11:04:26

轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。 (1)用于出产海绵铁或制取复原铁粉。 海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。 氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C 氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。 (2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。 氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。 别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。 (3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。 钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。 电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。

皮江法炼镁还原罐结渣的机理

2019-01-21 18:04:28

还原罐结渣是由于开罐后,还原渣没有及时扒出,扒渣时间过长,炉渣中的铁被氧化成Fe2O3,与炉料中残余的CaO作用生成低熔点化合物CaO·Fe2O3,使渣变软,或团矿中配入萤石过量(>4%),使炉渣变软,粘附到罐内壁上。结渣后的还原罐需认真清罐,否则导致还原罐的容积减小,降低了装料量,亦即降低还原罐的产镁量。

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

硅热还原法制取稀土硅铁合金的反应机理

2019-02-20 09:02:00

硅热复原法制取稀土硅铁合金进程,因为稀土金属及其化合物的热力学数据缺少,含稀土炉渣熔体和RE-Si-Fe系合金熔体中有关元素的活度数据缺少,然后造就了运用热力学数据核算实践冶炼进程的困难。但能够运用冶金热力学的基本原理,结合生产实践,对冶炼进程可能发作的化学反响进行揣度,然后进一步加深对反响机理的知道。  炉料熔化期的化学反响     熔化期是指从开端参加稀土质料和石灰到加硅铁之前的冶炼阶段,其使命是熔化炉料构成渣相。运用稀土富渣或稀土精矿渣作质料 [其矿藏组成有铈钙硅石、晶石、萤石和硫化钙等,稀土元素存在于铈钙硅石矿藏(3CaO·Ce2O3·SiO2)中],当冶炼温度到达1100~1200℃时,熔化的炉渣和石灰发作化学反响,并促进了石灰的熔化,这时有下列反响发作。     ①铈钙硅石分化:                   3CaO·Ce2O3·2CiO2+CaO====Ce2O3+2(2CaO·SiO2)        (1)     ②晶石分化:                              3CaO·CaF2·2SiO2+CaO====CaF2+2(2CaO·SiO2)          (2)     ③在有足够的CaO条件下:                             2CaO·SiO2+CaO====3CaO·SiO2                       (3)  复原期的化学反响     复原期为参加硅铁到合金出炉的冶炼阶段。跟着硅铁的熔化,在炉内呈现了两相,即熔融的渣相和合金相。此刻的化学反响由以下三部分组成:两相界面上进行的复原反响、渣相中的造渣反响和合金相中的合金化反响。     (1)硅复原稀土氧化物  因为溶渣中有很多的游离RE2O3呈现,硅铁中有很多的游离硅存在,在两相界面上RE2O3被硅复原[反响式(-1)]。     物相分析结果表明[13],合金中的稀土以硅化物的形状存在,渣中SiO2以硅酸盐形状存在。然后证明,被复原出来的稀土金属和硅发作合金化反响构成稀土硅化物存在于合金相中:                     [RE]+[Si]====[RESi]                     (4)                      [RESi]+[Si]====[RESi2]                   (5)     复原生成的SiO2与渣中CaO反响生成硅酸钙存在于渣中:                  (CaO)+(SiO2)====(CaO·SiO2)                (6)                  2(CaO)+(SiO2)====(2CaO·SiO2)                (7)                   3(CaO)+(SiO2)====(3CaO·SiO2)             (8)     稀土硅化物和硅酸钙的生成,大大降低了合金中稀土的活度和渣中SiO2的活度,使反响式与下式能够顺利进行。  2(RE2O3)+[Si]====4[RE]+(SiO2) 33       (2)复原稀土氧化物  为了进一步探究稀土氧化物的复原机理,研讨工作者按硅热法制取稀土硅铁合金的实践条件,配制成不含稀土的组成渣,其组成见表1。组成渣熔融后,用75硅铁复原,冶炼进程中合金含钙量和含硅量随时刻的改变如表2所示。 表1  组成渣的组成组成CaOSiO2CaF2Al2O3S含量/%48.9714.5328.143.200.82   表2  合金中钙和硅的含量改变时刻/min02.55101530405075120合金含钙量/%0.3915.93 21.5321.1522.3321.8721.3019.0515.20合金含硅量/%75.7067.5059.10 56.1056.10 55.7055.8057.00        从表1可见,用硅铁复原不含稀土的组成渣,能够获得含钙量22.33%的合金,但在相同的条件下用硅铁复原稀土炉渣,终究稀土硅铁合金的含钙量不大于5%。在冶炼稀土硅铁合金进程中,取样分析改变状况,证明被复原出来的钙或参加了稀土氧化物的复原,有下列反响存在:             (RE2O3)+[CaSi] === 2[RE]+(CaO·SiO2)                  (9)                        [RE]+[Si] === [RESi]                           (10)     因而,渣中CaO被硅复原,对稀土氧化物的复原是有利的。 辅佐反响     在冶炼稀土硅铁合金进程中,电弧炉有很多的烟气逸出,跟着温度的升高,还会发生熔体的欢腾现象,这是因为电弧炉选用碳素炉衬和石墨电极,其间的碳也能够参加复原反响,例如:                                               (FeO)+C === [Fe]+CO↑                     (11)                                            (MnO+C)=== [Mn]+CO↑                     (12)                                                 (SiO2)+C === SiO↑+CO↑                     (13)     炉渣中有很多子的CaF2存在,并与SiO2效果:                                  2(CaF2)+2(SiO2) === (2CaO·SiO2)+SiF↑          (14)     炉渣中SiO2与合金中Si反响:                        (SiO2)+[Si] === 2SiO↑                      (15)     上述反响发生的气体使熔体欢腾,起到了拌和效果,使熔融渣相和合金相的触摸条件得到改进,也有利于反响物的分散,改进了复原反响的动力学条件。     总归,依据多年的实验和生产实践,能够揣度硅热复原法制取稀土硅铁合金的反响,是在很多石灰参加反响的条件下,硅首先将石灰复原成钙构成合金,再将稀土氧化物复原成稀土金属,也不扫除硅直接将稀土氧化物复原成稀土金属的可能性。稀土金属进一步与硅合金化,以硅化物相存在于合金中。这是一个适当杂乱的氧化复原反响进程,因而,经过操控冶炼工艺条件,如炉料配比、复原温度和时刻等能够有用操控合金组成。    参 考 文 献    13、董一诚等,钢铁,1983、18(12):43

鄂西鲕状赤铁矿还原焙烧机理及分选有效途径探析

2019-01-21 18:04:47

鲕状赤铁矿是铁矿石赋存的一种重要形式,资料表明欧洲的鲕状赤铁矿储量达到140亿t之多,而中国境内则有40~50亿t。人类对该矿石的利用研究持续了近百年,但终因矿石性质复杂而未取得重大的技术进展。 国际铁矿石价格的不断上涨以及我国境内的鲕状赤铁矿品位相对较高,且有用矿物和脉石矿物在结构上存在一定差异等特点,使我国对鲕状赤铁矿的利用研究变得十分活跃。研究认为磁化焙烧-磁选-浮选是利用鄂西鲕状赤铁矿的有效选矿方法,而余永富院士带领的科研团队研发的闪速焙烧技术具有工艺流程短、能耗低的特点,因而具有更好的前景。目前,这一研究不但在实验室,而且在工业试验中也取得了良好的成绩,使鄂西鲕状赤铁矿的利用成为可能。 在闪速磁化焙烧的研究中发现,在相同的条件下,鄂西鲕状赤铁矿与赤铁矿、褐铁矿、菱铁矿的磁化焙烧在时间上存在较大的差异,本研究对鲕状赤铁矿还原焙烧机理及有效分选途径进行了探讨、分析。 一、鄂西鲕状赤铁矿矿石性质 原矿(综合样)化学多元素分析结果、铁物相分析结果分别列于表1和表2,矿石中主要矿物含量见表3,鲕状赤铁矿颗粒的表面及Si,P,Al,Fe的扫描电镜图像见图1。 表1  原矿化学多元素分析结果    %表2  矿石铁物相分析结果    %表3  矿石中主要矿物含量    %图1  鲕状赤铁矿颗粒的表面及Si,P,Al,Fe的扫描电镜图像 从表1~表3可看出,矿石中主要回收组份为铁,TFe与FeO含量的比值为18.86;矿石的酸碱性系数为0.17,表明矿石为酸性氧化矿;矿石含硫低,但含磷高。 由扫描电镜的图像可以看出,在鲕粒范围内,Fe,P,Si,Al元素组成的矿物成同心环带状相互包裹,铁呈微细粒赤褐铁矿环带状广泛分布在鲕粒中外环,胶磷矿主要紧靠鲕核环带分布,石英及硅酸盐主要集中在鲕核及中层环带。 二、试验装置 鄂西鲕状赤铁矿的还原焙烧在闪速磁化焙烧炉中完成,闪速磁化焙烧炉见图2。试验管安装在电加热器中,当试验管内温度达到试验需求时,矿石从试验管的上部给入,通过调节上升的还原气流速度,就可以使矿石在试验管内处于悬浮状态,在不同时间条件下,可以得到不同磁化程度的铁矿物。再通过磁选试验就可以得知铁矿物在各试验条件下的磁化程度。图2  闪速磁化焙烧小型试验炉示意 1-空气风机;2-煤气发生炉;3-加煤口;4-气体分布板; 5-电炉丝;6-还原炉开关阀;7-旁路开关阀;8-还原炉调节阀; 9-保温层;10-水封接料斗;11-尾气烟囱;12-卸料管;13-加料斗; 14-还原炉;15-硅碳棒;16-耐火砖;17-过滤网; 18-测温口;19-气体分布板压差测点 三、试验及结果 将矿石磨到0.2~0mm干燥成散粉状,确定焙烧温度800~900℃、CO浓度3%~12%、流化速度0.4m/s时将矿石给人试验管并计时。然后对焙烧产物进行磁选,得出对应的选别结果。 (一)国内典型难选铁矿石试验研究 首先对国内几种典型的难选铁矿石进行了流态化焙烧(70g/次)1次磁选试验研究,其结果见表4。 表4  典型难选铁矿石的流态化磁选试验结果从表4可以看出,这些典型难选铁矿石分别代表了以赤铁矿、菱铁矿、褐铁矿为主的矿石类型,磁化焙烧效果都较好,经1次粗磁选即可获得铁品位在57%~61%、作业回收率达90%以上的精矿。 (二)鄂西鲕状赤铁矿选矿试验研究 试验研究了不同粒度、不同焙烧时间鄂西鲕状赤铁矿的磁选指标,试验结果见表5。 表5  鄂西鲕状赤铁矿焙烧-磁选试验结果表5对照表4可以看出,鲕状赤铁矿虽然磁化焙烧时间延长,其磁化焙烧-磁选效果仍不如表4中的其它铁矿石,精矿铁品位在54.22%~57.00%之间、回收率在74.21%~83.79%之间。但较细的焙烧粒度、较长的焙烧时间均有利于提高精矿品位和回收率。 四、磁化焙烧机理 (一)赤铁矿还原热力学 热力学的理论分析指出,氧化铁的还原是逐级进行的,即Fe2O3还原生成Fe是逐级反应,本研究主要讨论Fe2O3还原生成Fe3O4的过程。图3是不同的CO浓度与温度条件下铁的各种价态的平衡关系。图3  CO还原氧化铁的平衡示意 图3的反应曲线(1)反映的是Fe2O3还原生成Fe3O4的过程,该曲线与横轴很接近,表明在任何温度下浓度很低的CO就能使Fe2O3还原成Fe3O4(见表6),所以该反应实际上是不可逆的。同时,从图3也可看出,限制CO浓度可防止Fe3O4进一步被还原至关重要。 表6  反应(1)的Kp(CO2/CO)及CO平衡浓度上述分析表明,氧化铁(Fe2O3)经还原焙烧转化成Fe3O4是较容易实现的。 (二)赤铁矿还原动力学 赤铁矿石还原焙烧生成磁铁矿的反应也是按照未反应核心模型(收缩模型)进行的。磁化焙烧反应过程如图4所示。参考文献,可以认为赤铁矿还原焙烧生成磁铁矿的反应主要经历以下环节: 1、矿物颗粒在热的还原气流中加热。 2、达到反应温度时,CO向赤铁矿表面扩散、吸附,与表面赤铁矿反应,生成磁铁矿Fe3O4及CO2。 3、CO在表面继续吸附,外层的Fe2+和电子通过晶格的空位向内层Fe2O3扩散,经过晶格重建,转变为磁铁矿Fe3O4;而内层O2-向外层扩散,与CO作用生成CO2而不断脱去。 4、前一过程深入进行,反应不断向内层推展,最终颗粒完全被还原,生成磁铁矿颗粒。T0-磁化初始时刻;TE-磁化完成时刻;T-磁化时间 Fe2O3还原为磁铁矿Fe3O4时,Fe2O3表面吸附的CO稍有变形,这样活化了的CO分子以不同方向转向Fe2O3晶格表面,夺去O2-生成CO2,带走O2-留下2个电子,2个电子仍留在晶格内促使Fe3+还原成Fe2+:Fe2O3晶格出现畸形,经过晶格重建,生成磁铁矿Fe3O4:上述反应表明,氧化铁矿物的还原是CO与氧化铁矿物表面发生还原反应,并通过Fe2+(包括电子)和O2-在还原产物的晶体内的扩散迁移进行的。这个过程是在磁铁矿与赤铁矿紧密连着的矿物层由外向内进行的。 五、鄂西鲕状赤铁矿难以磁化焙烧的原因及改善措施 (一)鄂西鲕状赤铁矿难以磁化焙烧原因分析 鄂西鲕状赤铁矿石是以石英硅酸盐矿物为核心,以胶磷矿、微细粒粘土和赤褐铁矿为环带的鲕状铁矿物,而且这种层状环带互相包裹。可以这样设想,在CO由外向内还原赤铁矿的进程中,在完成第一层(最外层)赤铁矿的还原后,CO将面临第二层(次外层)石英硅酸盐矿物环带层的阻隔,起到了Fe2+离子、电子和氧离子的正常扩散和迁移的屏障作用,第三层及以内的赤铁矿就难以被CO还原,所以鲕状赤铁矿的还原效果不好。 (二)改善磁化焙烧效果的措施 研究表明,降低鲕状赤铁矿磁化焙烧的粒度、延长磁化焙烧的时间能提高矿石的还原焙烧效果。 目前正在研究的循环预热流态化磁化焙烧(闪速磁化焙烧)工艺,给料粒度降至0.2mm以下,比竖炉磁化焙烧工艺入料粒度( 六、结论 (一)赤铁矿物的还原是CO与矿物表面发生还原反应,内部的还原则是Fe2+离子、电子和O2-在磁铁矿物层晶格内的扩散、迁移和化学反应的过程。 (二)流态化还原焙烧,入料颗粒小于0.2mm,可看成是均质的颗粒,或者部分是均质的,传热、传质快速,所以对于赤铁矿、褐铁矿、菱铁矿反应快,一般30~60s即可转化为磁铁矿。 (三)鄂西鲕状赤铁矿由于矿物内部有其它矿物的环带状包裹,采用一般磁化焙烧方法(竖炉、回转窑),即使达到磁化焙烧的温度,但由于其它矿物(如SiO2、粘土矿物、胶磷矿物)的环带层存在,阻碍了铁矿物与CO气体的接触,以及Fe2+离子、电子和O2-在矿物内层的扩散、迁移,因而使该类矿石的磁化焙烧的效果变差,速度变慢。 (四)鄂西鲕状高磷赤铁矿采用闪速磁化焙烧方法,将矿石粉碎至0.2 mm以下,可使鲕状铁矿石中的赤铁矿大部分表面暴露在外面,容易与还原气体CO等发生反应,改善还原焙烧-磁选的效果,是鄂西鲕状赤铁矿选矿的一个比较有前途的方向和途径。

电镀的反应机理

2018-12-19 09:49:46

A、电极电位 当金属电极浸入含有该金属离子的溶液中时,存在如下的平衡,即金属失电子而溶解于溶液的反应和金属离子得电子而析出金属的逆反应应同时存在:Mn++ne = M 平衡电位与金属的本性和溶液的温度,浓度有关。为了精确比较物质本性对平衡电位的影响,人们规定当溶液温度为250℃,金属离子的浓度为1mol/L时,测得的电位叫标准电极电位。标准电极电位负值较大的金属都易失掉电子被氧化,而标准电极电位正值较大的金属都易得到电子被还原。 B、极化 所谓极化就是指有电流通过电极时,电极电位偏离平衡电极电位的现象。所以,又把电流-电位曲线称为极化曲线。产生极化作用的原因主要是电化学极化和浓差极化。 1、电化学极化 由于阴极上电化学反应速度小于外电源供给电子的速度,从而使电极电位向负的方向移动而引起的极化作用。 2、浓差极化 由于邻近电极表液层的浓度与溶液主体的浓度发生差异而产生的极化称浓差极化,这是由于溶液中离子扩散速度小于电子运动造成的。 电镀过程是镀液中的金属离子在外电场的作用下,经电极反应还原成金属原子并在阴极上进行金属沉积的过程。 电镀原理简单而言,就是在含有欲镀金属的盐类溶液中,以被镀基体金属为阴极,通过电解作用,使镀液中欲镀金属的阳离子在基体金属表面沉积出来,形成镀层。 电镀的要素: 1.阴极:被镀物,指各种接插件端子。 2.阳极:若是可溶性阳极,则为欲镀金属。若是不可溶性阳极,大部分为贵金属(白金,氧化铱)。 3.电镀药水:含有欲镀金属离子的电镀药水。 4.电镀槽:可承受,储存电镀药水的槽体,一般考虑强度,耐蚀,耐温等因素。 5.整流器:提供直流电源的设备。 (磨光→抛光)→上挂→脱脂除油→水洗→(电解抛光或化学抛光)→酸洗活化→(预浸)→电镀→水洗→(后处理)→水洗→干燥→下挂→检验包装 电镀工作条件是指电镀时的操作变化因素,包括:电流密度、温度、搅拌和电源的波形等。

金属镁还原炉———传统还原炉

2019-01-07 07:51:16

金属镁还原炉是镁生产的核心设备,国内外普遍采用的是外加热卧式还原罐还原炉。目前,国内应用的金属镁还原炉的炉型较多,根据所用燃料的不同,大体上可分为两类:用煤气或重油加热的还原炉与以煤为燃料的还原炉。   用煤气或者重油为燃料的还原炉用煤气或者重油作为燃料的还原炉,通常是16个横罐的还原炉,其规格为10.54×3.59×2.94(m)。这种还原炉为矩形炉膛,还原罐间中心距约为600mm,罐呈单面单排排列,炉子背面一般分布有多支低压烧嘴。火焰从燃烧室进入炉膛空间,绕过还原罐周边,靠烟囱抽力将燃烧后的烟气抽入炉底部支烟道,经烟道与烟道闸门后进入烟囱。二次风由二次风管再通过炉底第二层二次风道送入炉内。   还原炉底部两个还原罐中间设有燃烧室或烟室。还原炉既是一个倒焰炉又是一个贮热炉。炉膛内一般装有16支镍铬合金钢制的还原罐。16个还原罐分成四组,即4个还原罐组成一组,与一个真空机组相连接(真空机组由滑阀泵和罗茨泵组成),每台还原炉还设有一个备用真空机组,因此一台还原炉一般有5个真空机组,每台还原炉设有一个水环泵作为预抽泵。   以煤为燃料的还原炉在我国,金属镁还原炉以燃煤为主,随着镁冶炼工艺的不断发展与进步,出现过多种燃煤还原炉,典型的有下面几种。   1.单火室单面单排罐还原炉该炉型与燃煤气、重油还原炉炉型相似,单面单排布置还原罐。燃烧室设置在后面,炉内装有14~16支还原罐,在两支还原罐中间设置一过火孔。该炉型由于只有单排罐,又是单面布置,故操作十分方便,车间布置便于机械化,但其产量和热效率都低。该炉型属于矩形倒焰窑,火焰从燃烧室通过挡火板反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经过火孔,支烟道至主烟道排出。   2.双火室双面双排还原罐该炉型也是矩形倒焰窑,装有10支还原罐,在长度方向分两端各装5支上、下排列。炉型设置了四个对称分布在两侧面的燃烧室(每面两个),燃烧室内有倾斜15°的梁式炉栅,火焰从窑两侧燃烧室翻过挡火墙,流向炉膛中心窑顶,然后火焰倒流向炉底吸火孔、支烟道再由一端的主烟道排入烟囱。该炉的优点是炉子结构简单,罐子排列较紧凑,炉膛空间利用率较高,其缺点在于炉子四面均为操作面,加煤烧火与还原出镁、扒渣、装料互有干扰,操作条件差,车间布置困难。该炉型也有炉膛空间扩大而布置14~22支罐的。   3.单火室双面双排罐还原炉该炉型是两端面双排布罐,单火室烧火的还原炉。在两个端面各分上、下排装6支罐,共布罐12支,在一个侧面设多个燃烧室,这样燃煤操作比较方便,空间利用率也较高,但还原罐数量有限,产量小。   4.国内应用最为广泛的单火室单面双排罐还原炉该炉型也属于外加热火焰反射炉(俗称倒焰炉)。炉内还原罐上下错开上牌布置,空间利用率较高;炉长方向没有限制,故可以布置较多的还原罐,一般有30~40支;还原罐单面开口,与真空机组的连接较方便;燃烧室设置在炉膛后面,由挡火墙隔开,火焰从燃烧室通过挡火墙反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经炉底过火孔、支烟道至主烟道排出。相对于上述其他炉型,该炉型产量大、空间利用率较高、能源消耗较低、经济性好,因此在国内得到了广泛的应用。

还原铅价

2017-06-06 17:49:51

经了解,山东地区还原铅价近日上涨较快,有厂家表示昨天14400的成交价,今日已经14550成交了,几乎每天都有150-200元的涨幅,而且现在市场成交情况也很好,很多临沂地区的小厂每天都是全负荷生产,不过这有可能是安徽地区多数厂家停产整改,而增加了山东还原铅厂家的客户群;今日安徽地区还原铅市场交易情况有所好转,因界首停产导致当地还原铅产量有所削弱,另外受废电瓶的高价推动,还原铅厂家报价都比较坚持。此外还原铅的生产企业以中小型企业居多,还原铅价格较低企业亏损时,更多是惜售保价,避免亏损,除非企业面临非常大的资金压力,否则很难让其赔本销售,这种心理在一定程度上维持还原铅价格不跌反涨。 还原铅价由于受到经济危机的影响,汽车、电动自行车蓄电池更换的频率下降,也导致了还原铅的原料废电瓶供应减少,广东、广西地区海关在09年开始严格检查,国外进口的废电瓶数量大幅下降,尽管目前有很多私人手中仍存有大量的高价废电瓶(相关调查数据见表-2),但以目前价格其很难进入市场流通环节,所以废电瓶的价格出现上涨,原料价的格高启使得还原铅生产成本也居高不下。  

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

含铁粉矿球团化制备工艺研究

2019-01-24 09:36:35

近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。 在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。 本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。 一、试验条件与方法 (一)原材料 1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。 2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程 每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。 (三)抗压力测试 试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。 (四)所用仪器与设备 加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析 (一)加热固化制度对球团抗压力的影响 所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。 试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。 从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。 (二)粘结剂加入量对抗压力的影响 在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。 (三)不同粉矿条件下的抗压力 为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。 按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。 通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。 三、结论 (一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。 (二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。 (三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。 参考文献 [1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64. [2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36. [3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98. [4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50. [5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20. [6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.

今日还原铅价

2017-06-06 17:49:51

今日还原铅价在电解铅价格持续调整的同时,还原铅价格却不受影响,反而逆市上涨,还原铅价格从6月中旬的11350涨至目前的11900元/吨,涨幅在5%左右,而同期铅价的跌幅是2%,为什么再生铅的价格和电解铅价格会有如此大的反差?我们需要深入分析。第一,从09年初开始,由于铅价较低,国内很多中小型的铅矿山纷纷停产、减产,导致铅精矿的供应紧张,但是大中型冶炼厂并没有因为原料紧张和下游蓄电池企业销售不好就压缩电解铅产量,而是积极拓宽原料的供应途径,很多冶炼厂纷纷采购还原铅作为原料来生产电解铅,因此还原铅的价格没有因为电解铅价格下跌而有所调整。 第二,由于经济危机的影响,汽车、电动自行车蓄电池更换的频率下降,也导致了还原铅的原料废电瓶供应减少,广东、广西地区海关在09年开始严格检查,国外进口的废电瓶数量大幅下降。第三,还原铅的生产企业以中小型企业居多,其在价格较低企业亏损时,更多是惜售保价,避免亏损,除非企业面临非常大的资金压力,否则很难让其赔本销售,这种心理在一定程度上维持还原铅价格不跌反涨。所以通过以上3点原因我们就知道为什么今日还原铅价在电解铅价持续调整的同时却不受到重大影响。更多关于今日还原铅价的信息您可以登录上海有色网进行查看。

氧化铜还原

2017-06-06 17:50:01

氧化铜还原后就会变成金属铜,颜色也会发生变化,由原本的黑色变成红色。在氧化铜还原的反应中,氧化铜做氧化剂,同时我们需要加入一种还原剂,这样才能使氧化铜还原的反应得以进行。可以还原氧化铜的常见的还原剂有:氢气H2、一氧化碳CO、碳C等。氢气还原氧化铜:H2+CuO=Cu+H2O一氧化碳还原氧化铜:CO+CuO=Cu+CO2碳还原氧化铜:C+2CuO=2Cu+CO2氧化铜还原的实验现象,我们会看到氧化铜由原本的黑色变成红色,说明生成单质铜,将生成的气体通入澄清石灰水,会看到澄清石灰水变浑浊说明生成的气体是二氧化碳。氧化铜的稳定性好,所以氧化铜还原的反应需要在加热的条件下进行。

还原氧化铜

2017-06-06 17:50:01

还原氧化铜是指把具有还原性的化学物质与氧化铜一起反应,将氧化铜还原成单质铜。可以还原氧化铜的常见的还原剂有:氢气H2、一氧化碳CO、碳C等。氢气还原氧化铜:H2+CuO=Cu+H2O一氧化碳还原氧化铜:CO+CuO=Cu+CO2碳还原氧化铜:C+2CuO=2Cu+CO2还原氧化铜的实验现象,我们会看到氧化铜由原本的黑色变成红色,将生成的气体通入澄清石灰水,会看到澄清石灰水变浑浊说明生成的气体是二氧化碳。氧化铜的稳定性好,所以还原氧化铜的反应需要在加热的条件下进行。

乙醚萃取3价金的机理

2019-02-20 15:16:12

(C2H5OC2H5)萃取金,是鉴于在高浓度的溶液中能与酸构成群阳离子,与3价金的络阴离子结合构成中性羊盐。其反响进程为:以R代表C2H5,上式可简化为(R2O-H)+Cl-。 Au3++3Cl- AuCl3- (R2O-H)+Cl-+AuCl3(R2O-H)+AuCl4- 因为羊盐组成中有疏水性的烃基R=C2H5,此羊盐可溶于过量的中而进入有机相,而与水相中的杂质元素别离。这一进程称为羊盐的萃取。 从上述生成羊盐的萃取进程可知,构成羊阳离子需求溶液中含有满足浓度的酸    (H+),不然不能构成羊盐。在酸浓度较低时,既使能构成羊盐也不稳定,且被萃取的金属有必要可以生成络阴离子存在于溶液中。这种络阴离子还有必要具有必定的疏水性质,才干进入有机相而被萃取。故多选用F-、Cl-、Br-、I-或CNS-等系统的金属离子羊盐而NO3-、SO42-等含氧酸因为阳离子亲水性强,运用较少。 因为羊盐只能存在于高浓度的强酸溶液中,在低酸度或中性溶液中不稳定,因此选用水进行羊盐的反萃取。加水反萃羊盐,从本质上来说,是因为多量水分子夺去了羊阳离子中的     H+,而使羊盐遭到损坏。此刻,被替代出来,Au3+即被反萃进入水相:

铋矿浆电解阳极反应机理

2019-01-31 11:06:04

王成彦、邱定蕃等对辉铋矿在矿浆电解进程的阳极反响进行了比较深化的研讨。经过很多的实验研讨,以为辉铋矿的阳极浸出进程是一个杂乱的反响进程,辉铋矿在酸性氯化钠介质中呈悬浮状所发作的阳极浸出进程,能够经过下列几种途径来完结: (1)石墨相当于一个导体,辉铋矿相当于一个可溶阳极,当辉铋矿和石墨阳极发作磕碰而触摸时,将经过下面的反响被氧化:(2)石墨电极上或许发作其他氧化反响,如发作Cl2、O2气体分出,这样一些气体再氧化辉铋矿。(3)有关实验标明,在浸出渡中参加铁离子,辉铋矿的浸出反响速率显着进步,槽电压显着下降,阐明铁离子也参加了辉铋矿的阳极浸出进程。 为查明辉铋矿在矿浆电解阳极浸出进程的反响机理,实验测定了溶液中有辉铋矿和无辉铋矿时的i-E曲线以及在上列溶渣中参加4g∕L的Fe2+后有和无辉铋矿存鄙人的i-E曲线,见图1。图1  不同条件下的i-E曲线 1-HCl 1mol∕L+NaCl 200g∕L; 2-HCl (1mol∕L)+NaCl (200g∕L)+辉铋矿(-0.074mm、L∶S=10∶1); 3-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L); 4-HCl(1mol∕L)+NaCl(200g∕L)+Fe2+(4g∕L) +辉铋矿(-0.074mm、L∶S=10∶1)。 HCl-NaCl溶液中没有辉铋矿和铁离子存在的状况下,石墨阳极只或许存鄙人列反响:    (1) E333(1)=1.177-0.066pH+0.0165lgPO2                (2) E333(2)=1.306=0.066lg[Cl-]+0.0333lg[Cl2] 矿浆电解条件下,pH=0、pO2=0.2×105Pa、[Cl-]=3mol∕L,代入以上两个方程得E333(1)=1.248V,E333(2)=1.255+0.0333lg[Cl2],因为溶液中[Cl2]很小,因而,E333(1)和E333(2)的不同不大,上述两种反响均有或许在阳极上发作。Arslan、Duby研讨了黄铁矿在溶液中的阳极氧化状况,在阳极电位1.4~1.5V(SCE),t=35~40℃下,阳极液中HClO的浓度可达0.15smol∕L,并以为HClO是由阳极上分出的Cl2发作的,阳极上水的氧化反响也一起发作并分管了部分电荷传输。Arslan在用石墨阳极研讨黄铁矿的阳极氧化时,发现阳极上有CO2生成并发作阳极蚀变现象。王成彦、邱定蕃在矿浆电解扩展实验中也发现石墨阳极存在蚀变现象。这些也能够证明,在矿浆电解进程中,当阳极电位较高时,阳极上能够发作Cl2和O2的一起分出。 关于反响考虑到铁离子在溶液中能够构成铁氯络合物,其实践电位会更低(如图2线23所示),因而,当件系中存在铁离子时,上述反响有或许是阳极的首要反响。图2  Bi2S3-Cl--H2O系E-lg[Cl-]图图1中,线1是无辉铋矿、无铁离子潜液中测得的i-E曲线,其电流只能是因为反响式(1)和式(2)发作,且电流巨细应表明该反响的速度。从图中看到,当阳极电位高于~1.10V(SCE)时,电流便急剧上升,而低于该电位时,阳极电流极低且动摇很小。因而能够以为在实验用溶液中,当阳极电位高于-1.10V(SCE),石器阳极上开端很多分出气体,此电位正处于和氧气的理论分出电位邻近。 线2是有辉铋矿、无铁离子溶被中测得的i-E曲线,此刻阳极上的电流应是辉铋矿直接与电极磕碰的氧化反响、和氧气分出反响一起发作的,比较线1和线2,在电位低于-1.10V(SCE)的规模之内,电流能够以为是因为辉铋矿在石墨阳极上直接电氧化发作的,这个电流较线1升高了许多,阐明辉铋矿的直接电氧化是能够发作的;电位大于-1.10V(SCE)二线根本重合,析氯析氧反响起了主导作用。 线3是无辉铋矿、有二价铁离子的溶液中测得的i-E曲线,从图中能够看到,当阳极电位高于0.5V(SCE),电流便显着增大,该电位正处于反响的标准电位邻近,因而能够以为此电流是因为二价铁离子的阳极氧化发作的。在固定电流密度小于300A∕m2的条件下,阳极不会发作析氯析氧反响,只要在电解后期,二价铁的氧化挨近结束,才或许发作析氯析氧反响,此刻槽电压将显着上升。 线4是在有辉铋矿、有二价铁离子的溶液中测得的i-E曲线,它较线3的电流大。此电流的发作能够以为是二价铁离子的阳极氧化和辉铋矿与阳极磕碰的触摸氧化一起发作的。但线4并不是线2和线3的简略加合,它仅仅略高于线3并类似于线3,因而能够以为此刻的首要反响仍旧足二价铁离子的阳极氧化反响、而辉铋矿的直接电氧化则是非必须的。因为有辉铋矿存在,在阳极上生成的三价铁将Bi2S3氧化后自身还原为二价,二价铁又在阳极氧化为三价。如此重复,直至辉铋矿的氧化浸出挨近彻底。 如果在固定电流密度200A/m2的条件下,由图1能够比较看出,线2和线4的阳极电位相差0.7V左右,也就是说,要取得相同的浸出反响速度,在有铁离子存存的溶液中,其阳极电位要比无铁离子溶液的阳极电位低0.7V,相应的槽电压也要下降0.7V左右,然后下降了电解进程的电耗。 图3是在固定电流密度200A∕m2、Fe2+为4.0g∕L、Cl-为150g∕L、H+为1.0g∕L、Bi3+为10g∕L、100g辉铋矿、粒度<0.038mm为96%、L∶S=3∶1的状况下测得的石墨阳极电位(SCE)和槽电压随时刻的改变曲线。图3  恒电位电解槽电压和阳极电位随时刻的改变 图3阐明,在辉铋矿的理论浸出电解时刻内,槽电压被迫在0.8~0.9V的规模之内,阳极电位动摇在-0.5~-0.6V(SCE)的规模之内,正处于二价铁离子的标准氧化电位邻近。能够以为,在此刻间内的阳极反响首要是二价铁离子的氧化反响,铋精矿的浸出首要是因为三价铁的氧化作用。 在铋的理论浸出电解时刻今后,槽电压和阳极电位都急剧上升,槽电压升至1.6~1.8V,阳极电位动摇在-1.2V(SCE)左右,此刻,辉铋矿的浸出巳挨近彻底,二价铁也简直悉数氧化为三价铁,阳极开端发作析氯反响,槽电压也跟着阳极电位的进步和阴极的极化而升高。 由以上的分析,能够得出以下的定论: (1)在实验选用的条件下,溶液中无铁离子存在时,在阳极电位为-0.2V到-1.0V的规模内,阳极反响首要是辉铋矿在石墨阳极上直接电氧化,当阳极电位大于-1.10V时,析氯析氧反响起主导作用。 (2)在有铁离子存在的状况下,阳极上发作的首要反响是二价铁离子的氧化反响,辉铋矿的氧化能够以为是由三价铁离子完结的,三价铁被坯原为二价,二价铁又在石墨阳极上氧化,如此重复循环。当然,在浸出进程中从头到尾也存在着辉铋矿与阳极的磕碰触摸氧化。 (3)在有铁离子存在的状况下,阳极电位可较无铁离子的阳极电位下降0.7V左右,过对下降电耗是有利的。

利用磁选机提取河沙铁粉的工艺介绍

2019-01-16 17:42:18

由于近几年我国钢铁原料----铁精粉价格的攀升,河沙选铁的利润大幅度提高,专用机械----河沙选铁船、磁选机等系列选矿设备得以在全国范围内大面积推广。 中科公司生产的河沙铁粉提取磁选机有实际的应用效果。 这些选矿设备大致的工作原理为:通过磁选机将河沙中的磁性铁选出来。下面就具有代表性的设备--挖沙选铁船的构造、原理以及操作规程简介如下: 挖沙选铁船由浮体、链斗挖沙系统、筛分系统、磁选系统、尾沙排除系统、动力系统组成。 首先,河道里有水,我们的选矿设备必须要浮在水面上工作,因此我们用3.5-4毫米的钢板做成了浮体,根据挖沙深度的不同,浮体的宽度和长度都有相应的尺寸要求,一般宽度在1.5-2米之间,长度在16-32米之间。 另外,我们为了增加船的稳定性,两个浮体之间间隔了一定的距离,一般为1.5米左右。顾名思义,这套选矿设备的上料系统是链斗式的挖沙系统,河沙由链斗提上来以后,因为有大小不一的石子,为了保护磁选机的安全,必须经过筛分系统。根据河道的环境不同,一般来说,石子比较少、直径比较小的河道用自震式比较好,维修方便,节省动力(约3KW)。而石子很多,直径又比较大的河道就要用滚筒式的筛子了。经过筛分后的石子一般直接流入河道,如果有经济价值也可由传送带输送到岸上出售;河沙转入磁选系统。磁选系统主要是磁选机和水洗精选系统。 磁选机的磁表强度一般要达到3800-4500高斯,规格为750*2200-2400,这样配套才能达到90%的净选率。水洗的作用是提高毛铁粉的品位,一般可在30-45之间自由调节。尾沙排除系统的作用是将选去铁粉的尾沙排到远离本机械的地方,以保证本机械能正常的工作。一般有自流式、传送带式、抽沙泵式三种形式当然这也是根据河道的具体环境来定的。

纳米钛白粉抗菌机理

2019-02-15 16:44:47

纳米钛产品抗菌效果耐久,机理不同于一般的无机和有机抗菌剂,并非靠药物的渗出和游离而发生抗菌效果,而在于光催化效果。粒子在吸收光能后生成电子一空穴对,发生的电子一空穴对搬迁速度极快,敏捷抵达纳米粒子表面,和表面吸附的水、空气反响,如O2+e→.O-2和H2O+e-→.OH+H-等,生成化学生动性很强的氢氧自由基(·OH)和超氧化物阴离子自由基(·O2-) ,进犯有机物。当遇到细菌时,直接进犯细菌的细胞,致使细菌细胞内的有机物降解,以此灭细菌,并使之分化。    一般的纳米钛产品必须有紫外光照才干激起电子发生电子一空穴对,起到抗菌、分化有机污染物的效果。激起光源只是限制在紫外光光源,会使产品的使用限制性很大,难以获得很好的光催化氧化效果。现在已有采纳无机、有机等多层表面包覆技能,开宣布抗菌谱宽、抗菌力强、不变色、成本低的纳米钛粉体系列产品。本产品的特色在于只需有天然光源存在,无论是长波光源仍是短波光源,都可以作为纳米钛光催化剂的激起光源,使材料起到抗菌和降解有机污染物的效果。具有高安全性的纳米钛进行灭菌时,靠别离电子一空穴对激活表面吸附物质,发生强氧化剂和强还原剂,进犯细菌有机体,起到灭菌效果。一般常用的灭菌剂如银、铜等能使细菌细胞失掉活性,但细菌身后,尸身可释澎执七有害的组分,如内毒素等,纳米钛不仅能影响细菌繁殖力,而且能进犯细菌细胞的外层,穿透细胞膜,损坏细菌的细胞膜结构,到达完全降解细菌,而且进一步避免内毒素引起二次污染的意图。    纳米钛的毒性试验经我国防备医学科学院消毒检测中心进行检测其成果如下:

什么是还原铅

2018-12-19 09:49:38

还原铅是以废铅做原料,重新回炉冶炼而得,Pb含量通常在96%-98%左右,也可做为生产电解铅的原料。

还原铅价格

2017-06-06 17:49:54

最近上海有色网发现有很多用户提出了一个问题,那就是还原铅价格与什么有关?针对用户提出的此问题,上海有色网天南地北地搜索各方面关于还原铅价格方面的信息,为您解决心中的疑问。简单来说,还原铅价格主要是政策上和技术上的作用,主要是出口退税率的提高,拉动了还原铅出口,造成国内资源紧缺,促使还原铅价格走高。国际市场转暖与国内扩大内需,推动还原铅消费。今年国际铅消费市场增势平稳,国内铅出口量一直较大,耗铅量占60%。以上的铅酸蓄电池出口量大幅增加。据统计,今年前9个月,我国铅酸蓄电池净出口量达1289.47万只,同比提高49.39%。另外,我国电动自行车今年预计销售将突破10万辆,电动自行车蓄电池耗铅量增加,也促使国内一些大的氧化铅企业纷纷采用还原铅作为原料。据预测,2010年还原铅价格不会再明显上涨,可能出现一定的回落,但回落幅度不会太大。利用废铅再生而成的还原铅,自今年下半年以来,价格一路攀高,由年初的平均每吨3500元飙升至目前的平均每吨3750元。因国际精铅市场价格走势平稳,国内还原铅价格达到目前水准后,其价格上升空间已经很小。 

石灰抑制黄铁矿机理

2019-01-21 10:39:06

(1)石灰起抑制作用主要是OH-引起的 石灰能有效地抑制黄铁矿,主要由于石灰水解产生的OH-和Ca+起抑制作用,OH-与黄铁矿表面的Fe2+作用形成难溶而亲水的氢氧化亚铁[Fe(OH)2]和氢氧化铁[Fe(OH)3]薄膜,使黄铁矿受抑制。当黄铁矿被黄药作用后,黄铁矿表面 已形成的黄原酸铁的疏水膜时,OH-也能取代黄原酸离子在其表面形成亲水的氢氧化亚铁薄膜,使其受抑制。反应如下: FeS2]Fe(ROCSS)2+2OH-====FeS2]Fe(OH)2+2ROCSS-由于Fe(OH)2的溶度积为4.8×10—16, Fe(OH)3的溶度积为3.8×10—33都比Fe(ROCSS)2的溶度积为8×10—8小很多,所以在髙碱性矿浆中。OH-有排挤黄药阴离子的能力,容易在黄铁矿的表面生成亲水的氢氧化铁薄膜。 (2)起抑制作用除OH-引起外,Ca2+ 也有影响     以亲水的Ca(OH)2胶粒存在,阻碍捕收剂与黄铁矿表面接触,同时其本身又有亲水性。

铝型材电解着色的机理

2018-12-29 09:43:01

要想弄清钛金色的褪色原因,我们必须首先对铝型材电解着色的机理有一定了解。关于铝型材电解着色机理的论述较多,目前大家普遍倾向于这种说法:在阳极氧化多孔性膜的底部, 都存在一层0.01 ~ 0.05?m的阻挡层, 此阻挡层是电阻很大的离子导体和电子导体。在进行电解着色时, 金属离子由溶液中向多孔膜的底部移动, 其推动力是电场的电泳力和化学位的扩散力。着色时的电压一般低于阳极氧化时的电压, 着色电压的大部分消耗于阻挡层的欧姆电压降, 所以在多孔膜孔的两端几乎没有电位差, 因此金属离子主要靠扩散进入微孔内,阻挡层上电子的传导引起了金属离子或金属含氧酸根离子的还原。还原析出物在孔底以胶粒或微晶的状态析出, 当这些微粒的大小与可见光的波长相近时将发生光的选择性吸收或散射, 因而显现出独特的色彩。

直接还原铁技术

2019-03-08 11:19:22

直接复原铁是铁矿在固态条件下直接复原为铁,能够用来作为冶炼优质钢、特殊钢的纯洁质料,也可作为铸造、铁合金、粉末冶金等工艺的含铁质料。这种工艺是不必焦碳炼铁,质料也是运用冷压球团不必烧结矿,所以是一种优质、低耗、低污染的炼铁新工艺,也是全国际钢铁冶金的前沿技能之一。 直接复原炼铁工艺有气基法和煤基法两种,按主体设备可分为竖炉法、回转窑法、转底炉法、反响罐法、罐式炉法和流化床法等。现在,国际上90%以上的直接复原铁产值是用气基法出产出来的。可是天然气资源有限、价高,使出产值添加不快。用煤作复原剂在技能上也已过关,能够用块矿,球团矿或粉矿作铁质料(如竖炉、流化床、转底炉和回转窑等)。可是,由于要求原燃料条件高(矿石档次要大于66%,含SiO2+Al2O3杂质要小于3%,煤中灰分要低一级),规划小,设备寿数低,出产本钱高和某些技能问题等原因,致使直接复原铁出产在全国际没有得到迅速开展。因而,高炉炼铁出产工艺将在较长时刻内仍将占有主导地位。 1. 直接复原铁的质量要求 直接复原铁是电炉冶炼优质钢种的好质料,所以要求的质量要高(包含化学成份和物理功能),且期望其产品质量要均匀、安稳。 1.1 化学成份 直接复原铁的含铁量应大于90%,金属化率要>90%。含SiO2每升高1%,要多加2%的石灰,渣量添加30Kg/t,电炉多耗电18.5kwh。所以,要求直接复原铁所用质料含铁档次要高:赤铁矿应>66.5%,磁铁矿>67.5%,脉石(SiO2+Al2O3)量 1.2 物理功能 回转窑、竖炉、旋转床等工艺出产的直接复原铁是以球团矿为质料,要求粒度在5~30mm。隧道窑工艺出产的复原铁大大都是瓦片状或棒状,长度为250~380mm,堆密度在1.7~2.0t/m³。 出产进程中发生的3~5mm磁性粉料,有必要进行压块,才干用于炼钢。强度:取决于出产工艺办法、质料功能和复原温度。改进质料功能和进步温度有利于进步产品强度。产品强度一般>500N/cm²。 2. 直接复原铁发生工艺技能介绍 2.1 竖炉法 气基竖炉法MIDREX、HYL法直接复原铁发生中占有绝对优势,该工艺技能老练、设备牢靠,单位出资少,出产率高(容积运用系数可达8~12t/m³·d),单炉产值大(最高达180万t/年)等长处。通过不断改进,其出产技能不断完善,完结规划化出产。 (1)MIDREX技能 Midrex法标准流程由复原气制备和复原竖炉两部分组成。 复原气制备:将净化后含CO与H2约70%的炉顶气加压送入混合室,与当量天然气混合送入换热器预热,后进入1100℃左右有镍基催化剂的反响管进行催化裂化反响,转化成CO24%~36%、H260%~70%、CH43%~6%和870℃的复原气。后从风口区吹入竖炉。 竖炉断面呈圆形,分为预热段、复原段和冷却段。选用块矿和球团矿质料,从炉顶加料管装入,被上升的热复原气枯燥、预热、复原。跟着温度升高,复原反映加快,炉料在800℃以上的复原段逗留4~6小时。新海绵铁进入冷却段完结终复原和渗碳反响,一起被自下而上通入的冷却气冷却至 工艺多用球团和块矿混合炉料。球团粒度9-16mm占95%,球团冷压强度>2450N/球,块矿粒度10~35mm占85%;要有高软化温度和中等复原性;化学成分铁量要高,酸性脉石低(≯3%-5%),CaO 如今Midrex法作业目标为:产品金属化率86%~96%,有用容积运用系数10t/m³·d,能耗10.47GJ/t,电114kWh/t,水1.64m³/t。 Arex法是Midrex法的新改进,天然气被氧气(或空气)部分氧化后送入竖炉,运用新生热海绵铁催化裂化,省去了复原气重整炉。改进后吨铁电耗可下降50Kwh。 (2) HYL(罐式)法与HYL-Ⅲ(竖炉)法。 HYL法由4座罐式反响炉和1座复原气重整炉构成。该工艺作业安稳、设备牢靠。产品含碳2%左右,不易再氧化,不发生炉料粘结;只因复原气要重复冷却、加热,体系热功率低,能耗偏高,气体耗费为20.93GJ/t;1975年后再没建新厂。 对HYL罐式法作出变革,保存原复原制备工艺,但将复原气重整转化与气体加热合一;4个罐式反响炉改为接连式竖炉,称HYL-Ⅲ竖炉法。 该工艺选用高氢复原气,高复原温度(900-960℃)和0.4-0.6MPa高压作业。改进复原动力学,加快复原发应;含硫气不通过重整炉,延长了催化剂和催化管运用寿数;复原和冷却作业别离操控,能对产品金属化率和含碳量进行大范围调理,产品均匀金属化率90.9%、操控碳量1.5%-3.0%,质量安稳;装备CO2吸收塔,挑选性地脱除复原气中H2O和CO2,进步复原气运用率;重整炉发生高压蒸汽发电。最低出产能耗为10.43-11.2GJ/t,电耗90kWh/t。HYL(罐式)法已逐步被HYL-Ⅲ(竖炉)法替代,算计产值占国际总产值的25%左右。 该法的新改进是天然气进入反响器直接裂解,出产高碳(3.8%)DRI产品。最近又推出HYL-Hytemp出产体系。将热复原铁(650℃)力量输送到电炉车间,喷入电炉。冶炼时刻缩短,电极和耐火材料耗费下降,金属收率进步。吨钢电耗下降112kW·h,电极耗费下降0.55kg,冶炼时刻缩短16min,产率进步16%,吨钢本钱可下降4.6美元。 2.2 气基流化工艺 (1)F1NMEF工艺 该工艺运用 (1) Circored和Circofer工艺 两种工艺中心设备都包含一座循环液化床和一座普通流休床。Circored是用天然气为动力,Circofer以煤为动力。铁精矿粉是通过预热后(约900℃)进入循环流化床参加反响,使动力学条件得到改进,在4个大气压条件下,铁矿与氢在630℃时可被复原(在气体环路中参加部分氢)。 2.3 转底炉法 将铁矿粉、钢铁厂含铁粉尘、煤粉和粘结剂按必定份额混合,压制成含碳球团矿,送入烘干机内进行烘干,脱除水份。将枯燥的含碳球团均匀地铺在转底炉上(只铺一层),在高温1200~1400℃下球团矿内氧化铁与碳反响,放出CO,在炉膛内焚烧成CO2,并构成高温废气(在1000℃以上)。一般反响只需20分钟左右。 将废气收引出预热煤气(400℃)和助燃空气(900℃),低温废气从蓄热室和换热器引出,再去烘干生球团。这时废气温度在100℃左右。从节能视点看,动力运用功率较高。转底炉的高温气体由焚烧器来供给(运用煤气加热)。转底炉能够处理含Zn、Pb高粉尘,能够防止配入烧结矿中后,在高炉冶炼进程中Zn、Pb的富集形成的负面影响。现在的山西翼城,河南巩义已有外径为16.3米的转底炉,年产值在7万吨,金属化率达85%,每吨铁出资为182元。 2.4开发运用焦炉煤气,对含碳球团在竖炉内进行直接复原。焦炉煤气含55%左右的氢。在化学反响中,氢对氧化铁的复原率是最高的。现在,首钢预备展开这方面的作业。焦炉煤气要进行裂解,进步H2的含量,并要预热到930~950℃,在参加复原反响,反响后气体要脱除CO2,再循环运用。 用氢作复原剂存在的首要技能问题: ▪ H2复原铁的其它氧化物都是吸热反响,需求足够的热。在满意复原和供热的煤气的最佳H2含量为32.05%。 ▪ 富氢预复原会导致物料的粉结。采纳分段直销富氢和非富氢供气准则。 3.直接复原铁开展现状 3.1全国际直接复原铁开展比较快,2003年产值为4960万吨,2004年为5460万吨,2005年约为6000万吨。年添加率在10%以上。在直接复原铁出产工艺中,气基直接复原占92%。 3.2 我国状况 2005年我国出产直接复原铁为约50吨,而出产能为比产值要高出20%。首要是技能、质料、本钱等要素影响。 全国现有30多个直接复原铁厂商,其总出产才能约60万吨。总体上讲,规划小,出产本钱高,短少高品质的质料。大都厂商用隧道窑反响罐法,出产工艺落后,能耗高,环境污染严峻。 (1) 天津直按复原铁厂出产实践 2004年产直接复原铁33.2万吨,2005年约产34万吨,设备作业率在98%以上。 该厂是选用DRC法煤基直接复原出产工艺:两条φ5X80m回转窑----冷却筒----产品分选----制品。运用巴西球团矿(含铁档次68%,SiO2+Al2O3约为2%)适合配入煤和石灰石,进行混均,从回转窑给料端参加。窑体是歪斜装置,慢速旋转,使炉料朝卸料端运动,一起,矿石被加热和复原(留意温度操控在不要使脉石熔融,避免结圈)。煤作为热源和复原剂,一部分随铁矿石一起参加,另一部分从窑的卸料端喷入窑内。供煤所焚烧的空气,通过沿窑长度方向装置在窑壳上不同方位的风机由轴向吹入窑内。热的复原产品通过冷却筒冷却,然后筛分、磁选及风选,别离出非磁性物,得到制品。来自窑内的烟气经余热锅炉收回余热(发生蒸汽),废气经布袋除尘,用废气风机送入烟囱。 操作的技能要害: ▪ 确保窑内复原气氛,操控好风量 ▪ 操控好窑体内各部分的适合温度,不让脉石熔融 ▪ 窑的卸料端坚持微正压,20~30Pa 操控直接复原铁金属化率在91.1%~94.6%,质量合格率在94%,是最经济的目标。金属化率高和低,均会形成回转窑和电炉炼钢目标的恶化。(炼钢进程参加直接复原铁份额最好操控在15%~35%,并要操控好料流参加速度32~34Kg/兆瓦▪分,避免呈现钢水的欢腾现象以及喷溅)。 影响产品金属化率的要素是:频频停窑、非正常条件下出产(难以调控),窑和冷却筒密封性不良、煤的成份动摇和质量操控点挑选不妥。 (2)首钢密云冶金矿山公司煤基链篦机─ 回转窑 ─ 一步法 该公司直按复原铁年出产才能6.20万吨, ▪ 出产工艺:配料 ─ 造球 ─ 枯燥(链篦机)─ 回转窑(复原)─ 冷却 ─ 制品。 ▪ 铁精矿水份严厉操控在5.5%~6.5%。 ▪ 造球配皂土(粘结剂)0.8%~1.0%,台时产值20±2吨。 ▪ 链篦机带速为0.5m/min,布料厚度100~120mm。 生球抗压强度≧1.2Kg/个,落下强度≧5次/0.5m,水份操控在7.5%左右,粒度6~16mm占85%以上。 ▪ 回转窑及热工体系操作 窑头喷煤总量在7.0±0.5吨/小时,精煤压力操控在60KPa,细煤压力操控10~14KPa。 窑尾加煤操控在800±50Kg/h,禁止窑尾煤量过值。 窑温操控:窑头箱 回转窑电机转速操控在400~440转/分,主风机的回热风阀门开度45%~50%,转速800~850转/分,回热风机进口负压780±20KPa,温度310~350℃。枯燥风机阀门开度65%~70%,转速800~850转/分。产品质量标准的厂标是:铁档次≧88%,S≦0.04%,金属化率>90%。 (3)山东莱芜鲁中冶金矿山公司直接复原铁厂用冷固球团----回转窑工艺出产直接复原铁,年出产才能5万吨。后改为块矿回转窑法。 ▪ 福建大田海绵铁公司用sic反响罐----隧道窑法出产直才能5万吨/年。 ▪ 喀左海绵铁厂、哈尔滨市海绵铁厂、吉林复森海绵铁公司、吉林桦甸海绵铁厂等也具有了年出产才能2.5万吨。

碳热还原法与硅热还原法的比较

2019-01-29 10:09:41

碳热还原法的主要优点是可以一步直接还原出金属,还原剂便宜,能源利用合理。可以大批量连续生产。     硅热还原法反应速度快,产品易于调整控制,适于多品种小批量生产。     碳热法达到无渣操作时,稀土回收率在90%以上。硅热法增加二次回收工艺,其回收率也才能达到80%。硅热法生产稀土中间合金,其原料和电能的消耗超过用碳热法相应消耗的30%。

什么是熔融还原炼铁

2019-03-07 09:03:45

COREX是现在仅有已投入实践运用的高炉以外的炼铁技能(南非伊斯科钢铁公司:日产1000t;韩国浦项钢铁公司和印度京德勒钢铁公司等,日产2000t),它运用的是普通煤。其工艺流程是先把普通煤装入熔融气化炉,然后吹入氧使煤焚烧、分化,将发作的煤气作为复原煤气导入复原竖炉,接着在复原竖炉内将块矿石和矿石颗粒复原到金消融率为95%左右。浦项公司在将日产从1000t进步到2000t的规划扩展阶段中,为安稳熔融气化炉的操作,除了运用粉煤外,还运用了大约10%的焦炭,别的为保证复原煤气量,发现煤的挥发份存在着最佳值等,它受煤档次的约束。现在因为对煤种的挑选和复原竖炉中金属化率的安稳化等采取了办法,焦炭的运用量能够削减到大约3%~5%。因为矿石几乎是在竖炉内完结复原,因而复原所需的煤气量大,熔融气化炉的煤单耗也高。成果用于体系外的能量也必定增大。印度京德勒钢铁公司Vijayanagar厂运用日产2000t的2座COREX设备发作的煤气来带动2台13MW的发电设备。         别的,在南非的Saldanha钢铁公司还一起设置了直接复原铁出产法(MIDREX),能日产大约2500t的直接复原铁(DRI)。为处理铁矿石粒度约束的问题,浦项公司开发了运用3段气泡流化床的FINEX来替代复原竖炉,现在日产2000t的COREX所发作的煤气以分流的方式用于日产150t规划实验流化床炉的实验。计划在2003年之前与COREX本体衔接,到达年产60万t规划,其后到2010年浦项公司的1号和2号高炉就要开端大修,到时除了将这两座高炉更换成FINEX外,还预备向海外推行这一技能。          我国钢铁工业的快速开展对焦炭需求日趋添加。我国焦炭资源有限,炼焦厂商出于环保要求又被约束开展,焦炭求过于供已成为必定趋势,非焦炼铁也将势在必行。熔融复原炼铁工艺是前沿炼铁技能,它运用非焦煤出产液态铁,流程短,本钱低,污染小,铁水质量好。熔融复原炼铁附产很多煤气,可运用化工进程将之转化为甲醇或清洁燃料。工艺概算标明,联合工艺可使动力运用功率进步一倍,产品能耗下降60%,吨钢本钱下降50%。关于传统的炼焦—钢铁联合厂商,运用很多剩下焦炉煤气作为质料出产化工产品亦是进步资源运用功率,减轻环境污染的可行途径。在新技能基础上构建新式钢铁—煤化工联合厂商或生态工业园区,对未来的冶金、化工环保和动力的开展具有重要意义。

钴渣的还原浸出

2019-01-24 09:37:04

镍电解系统净化产出的钴渣,主要元素组成列于表1。 表1  钴渣的主要金属元素的含量Co、Ni、Cu、Fe等金属在钴渣中主要以氧氧化物形式存在,在液固比为(3~4)∶1及机械或鼓风搅拌条件下,用硫酸调pH=1.5~1.7,通入SO2还原溶解。但在初期未通入SO2之前,因Cl-被氧化而放出氧气,还原浸出期间Ni、Co和Cu呈二价离于进入溶液,在鼓空气搅拌浸出时部分Fe氧化成三价。主要化学反应可表示为:在鼓空气搅拌情况下,可发生亚铁离子的部分氧化,如:还原浸出液的成分列于表2。 表2  钴渣还原浸出液主要成分

白钨矿捕收剂作用机理

2019-02-22 11:02:45

白钨矿常用的捕收剂分为4类:阴离子捕收剂、阳离子捕收剂、捕收剂和非极性捕收剂。阴离子捕收剂是最常用的捕收剂,研讨方向从油酸、油酸钠、塔尔油、731、733等脂肪酸类捕收剂向磺酸类、类和螯合类捕收剂开展,由难溶于水捕收剂的向易溶、高挑选性、高捕收性捕收剂开展。阳离子捕收剂首要是指胺类捕收剂,捕收剂即基酸类捕收剂。非极性捕收剂首要是用来做其它捕收剂辅佐药剂,首要效果是调整泡沫功能,促进疏水聚会,进步捕收性。 张庆鹏等研讨了不同结构脂肪酸类捕收剂对白钨矿的捕收功能。研讨标明:不饱满脂肪酸不饱满程度越大,浮选效果越好;脂肪酸碳链碳原子数目在必定规模内时,其浮选白钨矿的效果跟着碳原子数目的添加而加强;碳链异构的烃链不饱满脂肪酸比正构烃链的不饱满脂肪酸浮选白钨矿的效果要好些;当脂肪酸分子引进羟基时,浮选效果反而不如没有羟基的脂肪酸。不同碳原子数的饱满脂肪酸在白钨矿表面的吸附量由小到大顺次:月桂酸、肉豆蔻酸、棕榈酸、硬脂酸;不同双键数目的不饱满脂肪酸在白钨矿表面的吸附量由小到大顺次为:亚油酸、油酸、亚麻酸;碳链正构的脂肪酸一硬脂酸在白钨矿表面的吸附量比碳链异构的异硬脂酸的要小;但相同不含烃基的硬脂酸比含有羟基的脂肪酸蓖麻油酸在白钨矿表面的吸附量要大。 江庆梅研讨了油酸钠、不同烃基的脂肪酸、油酸钠与不同烃基脂肪酸组合药剂对白钨矿、萤石、方解石的捕收功能,并经过添加水玻璃,提醒按捺剂存在时,组合药剂对矿藏捕收才能的差异。研讨结果标明:油酸钠与不同烃基脂肪酸组合运用比独自运用效果好,捕收才能强。添加水玻璃按捺剂后,组合药剂对白钨矿与萤石、方解石的可浮性差异显着。经过接触角测验结标明:不同烃基脂肪酸钠对矿藏的接触角添加量不同,混合运用后白钨矿、萤石接触角添加量更大,添加水玻璃后,白钨矿的接触角改变不大,而萤石、方解石的接触角显着下降,增大了白钨矿与萤石、方解石的接触角差值。动电位测验结果标明,添加水玻璃后,组合捕收剂挑选性的吸附在白钨矿表面而在萤石、方解石表面吸附较少。表面张力实验结果标明,平等pH值条件下,假如到达相同的回收率,组合药剂的用量比单一药剂的用量低。浮选溶液化学与热力学核算结果标明:油酸钠与白钨矿、萤石、方解石的效果机理相同,导致矿藏之间难以别离;不同烃基脂肪酸钠与矿藏晶格阳离子Ca2+离子发作反响的标准自由能存在差异,对矿藏捕收才能存在差异。 杨耀辉研讨了白钨矿浮选过程中脂肪酸类捕收剂的混合效应。电位滴定法测验吸附量结果标明:饱满脂肪酸在白钨矿表面吸附量的巨细为:硬脂酸>棕榈酸>肉豆蔻酸>月桂酸;不饱满脂肪酸在白钨矿表面吸附量的巨细为:亚麻酸>油酸>亚油酸;支链脂肪酸-异硬脂酸在白钨矿表面的吸附量较硬脂酸要大些;羟基脂肪酸在白钨矿表面的吸附量较硬脂酸的要小些。热力学与浮选溶液化学核算结果标明:不同结构的脂肪酸与含钙矿藏晶格阳离子Ca2+离子发作反响的△G0(标准自由能)存在差异,这可能是其对矿藏捕收才能存在差异的原因;不同结构的脂肪酸在中性或弱碱性介质中与白钨矿、萤石、方解石的效果机理根本相同;参加钙离子后,不同结构的脂肪酸生成脂肪酸钙的浓度存在着差异,这可能是其对矿藏捕收才能存在差异的原因。 FengBo研讨了选用油酸钠作为捕收剂、硅酸钠作为按捺剂从方解石中浮选别离白钨矿的浮选行为。结果标明油酸钠对白钨矿和方解石均有捕收才能,只是选用油酸钠不能完成白钨矿与方解石的浮选别离。按捺剂硅酸钠有挑选性地效果在方解石表面,硅酸钠与草酸的最佳份额是3:1。硅酸钠作为按捺剂的运用能够完成白钨矿与方解石的别离。红外测验和动电位丈量显现硅酸钠的预先吸附会搅扰油酸钠在方解石表面的吸附而不会搅扰其在白钨矿表面的吸附。 金婷婷系统研讨了单一和组合捕收剂对白钨矿、萤石和方解石的捕收才能,结果标明:在没有添加调整剂的情况下,油酸钠、731氧化白腊皂和GYW对白钨矿、萤石、方解石的捕收才能附近,无法别离;油酸钠与731组合运用时对白钨矿、方解石的捕收才能强,对萤石捕收才能削弱;油酸钠与GYW组合对白钨矿、萤石、方解石捕收才能的差异不大;731和GYW组合的捕收次序为萤石>方解石>白钨矿>石英;组合捕收剂对白钨矿的捕收才能强弱次序为:油酸钠+731>油酸钠+GYW>731+GYW;组合捕收对萤石的捕收才能强弱次序为:731+GYW>油酸钠+GYW>油酸钠+731;组合捕收剂对方解石的捕收才能强弱次序为:油酸钠+731>油酸钠+GYW>731+GYW。单用和组合三种捕收剂对石英的捕收功能均较弱,阐明石英与白钨矿浮选别离较简单。 胡红喜经过单矿藏实验别离调查了油酸钠、731、733、TAB-3、TA-3五种脂肪酸类捕收剂对白钨与萤石、方解石及石英浮选行为的影响,捕收剂用量相一起,四种单矿藏的可浮性从高到低的次序是:萤石>方解石>白钨矿>石英。在高碱(pH=11.0)、高水玻璃用量系统中,选用新式白钨矿捕收剂TAB-3时,白钨矿与萤石,白钨矿与方解石的可浮性差异显着,TAB-3显现出较好的挑选性捕收才能,有利于对白钨矿-萤石-方解石型白钨矿完成有用别离;低碱(pH=8.5)、低水玻璃用量系统中选用TAB-3时石英与白钨矿的可浮性差异较大,TAB-3显现出较好的挑选性捕收才能,有利于对白钨矿-石英型的白钨矿完成有用别离。动电位和红外光谱结果标明:在白钨矿表面水玻璃以缔合烃基的方式吸附,TAB-3在白钨矿表面仍有较强的化学吸附;水玻璃在萤石表面以SiO32-和SiO32-方式、方解石以SiO32-的方式激烈吸附,TAB-3在萤石和方解石的吸附较弱,水玻璃在白钨矿、萤石和方解石表面吸附方式和吸附强度的不同使矿藏之间的可浮性差异增大。 ZhiyongGao研讨用733和MES(脂肪酸钠酸甲酯磺酸盐)混合捕收剂从方解石、萤石中别离浮选白钨矿,733:MES的质量比为4:1时,具有更好的挑选性。在给矿WO3档次仅为0.57%的条件下,获得了精矿中WO3档次65.76%,回收率66.04%的目标。Ca2+或许Mg2+的存在对混合捕收剂在白钨矿表面的吸附简直没有影响,添加水玻璃按捺方解石和萤石,对混合捕收剂在白钨矿表面的吸附没有显着的效果。 ZL捕收剂是一种长碳羟酸皂化物的混合物,倪章元等人经过单矿藏实验、动电位和红外光谱分析,研讨了ZL捕收剂效果下白钨矿、萤石和方解石的浮选行为及ZL捕收剂与含钙矿藏的效果机理,当硅酸钠用量较高时,ZL捕收剂可在pH=11.0的碱性条件下完成白钨矿与萤石、方解石的有用别离。动电位和红外光谱分析标明,ZL捕收剂化学吸附于白钨矿和方解石表面,而物理吸附于萤石表面。 李仕亮研讨了阳离子捕收剂浮选别离白钨矿与含钙脉石矿藏,研讨标明:在碱性条件下,随烃链长度的添加,烷基伯胺盐对白钨矿、方解石和萤石三种含钙矿藏的捕收才能削弱,即十二胺>十四胺>十八胺。在酸性条件下,白钨矿与方解石和萤石的可浮性差异较大,选用烷基伯胺盐作捕收剂,存在白钨矿与方解石和萤石别离的可能性,但药剂浓度不能太大。溶液化学分析标明,烷基伯胺盐在水溶液中存在离子分子解离平衡,当pH值升高到必定值后将发生胺分子沉积;在必定浓度下,不同碳链烷基生成胺分子沉积的pH值不同较大,跟着烷基链碳原子数的添加,生成胺分子沉积的pH值下降;胺离子和胺分子能构成离子分子缔合物,而且胺离子之间也能构成缔合物。季铵盐在整个pH条件下彻底电离。矿藏表面Zeta电位分析和吸附量测定标明,季铵盐与矿藏表面的效果首要是静电效果,别的还有一些色散力、疏水及氢键效果所引起的吸附等。HLB值和CMC值核算结果标明,同系物中,随碳链长度的添加,CMC值和HLB值下降,药剂的疏水性增大,但溶解度下降,也影响其溶解涣散功能。 杨帆等研讨了二辛基二甲基化铵(DDAB)对白钨矿、方解石的浮选别离,实验标明,DDAB对白钨矿的回收率在pH值>6时简直维持在100%,而对方解石的回收率则呈缓慢上升趋势。DDAB在pH=8~10能够完成白钨矿、方解石的有用别离。一起,与油酸的比照实验标明,DDAB对白钨矿的捕收才能及挑选性均优于油酸。单矿藏的红外光谱分析标明,DDAB与矿藏之间首要存在物理效果。经过对DDAB分子结构的分析以及结合白钨矿、方解石在纯水中动电位与pH值联系和DDAB对白钨矿、方解石浮选别离的pH值规模,揣度DDAB首要经过静电力与白钨矿表面效果。对DDAB与白钨矿的量子化学核算也直接证明这一揣度。 ZhiyongGao经过分子动力学模仿、动电位丈量、原子力显微镜观测、接触角丈量和浮选实验,研讨了十二胺在白钨矿、方解石矿藏表面的吸附行为。结果标明,十二胺在白钨矿和方解石表面的不同吸附行为首要归因于十二胺水溶液中的阳离子RNH3+,中性物质RNH2和由RNH3+与两种矿藏表面释放出来的阴离子反响发生的杂乱沉积物也发挥着重要效果。在十二胺溶液中(1×10-4mol/L,pH7.5-8.0),很多十二胺中的RNH2经过N-Ca键和-NH2基团与矿藏表面氧之间构成的氢键吸附在白钨矿和方解石表面。在正电荷的方解石表面,RNH3+经过静电吸赞同氢键效果很多吸附在CO32-区域,这导致了方解石表面动电位的添加。在负电荷的白钨矿表面,很多的阳离子RNH3+能够很简单吸附在很多的WO42-区域,这导致了白钨矿表面动电位的显着添加。这些不同的吸附行为导致了十二胺在白钨矿表面构成单层掩盖,使白钨矿更好的疏水表面以及更高的浮选回收率。

活性炭吸附金机理(四)

2019-01-25 15:49:17

表5  现场生产各阶段活性炭强度与活性之间的关系活性炭强度/%吸附容量/(kg·t-1)吸附速度新炭98.41.05345.32解吸炭98.791.03238.69再生炭97.691.05844.22     活性炭在炭浆工艺流程中经过长期剧烈的磨损后洗提出来,炭的抗磨损能力明显增加,而活性则显著降低。经过再生后活性得到明显恢复,而抗磨损能力却降低了。产生上述现象的原因在于:不同活性炭强度与活性之间的差异是由于炭的微孔结构及表面活性中心发育程度不同的缘故,而同种活性炭强度和活性随着炭在工艺流程中的移动而变化则主要是由于炭的微孔结构因磨损而发生变化所致。活性炭因其结构的非均匀性,在使用过程中其活性较高的组分首先损失掉。炭的活性因物理损失而降低(不包括污染因素造成的活性降低)。这种活性炭经再生后又产生了新的微孔结构,活性得到明显恢复。因此活性炭的使用——磨损——再生——再磨损是炭浆提金工艺流程中主要矛盾。新活性炭研磨前后的活性变化见表6。表6  新活性炭研磨前后的活性变化活性炭研磨前研磨后吸附容量/(kg·t-1)吸附速度/%吸附容量/(kg·t-1)吸附速度/%A23.270.919.954.6B23.368.821.449.6C24.267.521.342.4D24.965.423.251.3E22.164.220.547.8F25.760.82349.4G25.160.524.553.5[next]     活性炭的密度与强度、活性之间有着非常密切的关系。密度小的炭(轻炭)微孔发达,吸附速度比较高,但强度却较低。密度大的炭则相反。然而,重炭和轻炭的吸附容量却相差不大。图10是不同密度的两种活性炭吸附速度和吸附容量曲线。    同一批活性炭不同密度级别的性能也有上述关系。对同一批炭中的轻重级别进行研磨对比试验,结果表明,随着研磨时间的延长,炭的磨损损失差异增大(见图11)。

型材挤压的稳定成形机理分析

2019-01-14 11:15:51

1.引言    铝合金在挤压成形过程中,由于受到挤压筒壁、模具端面、分流孔、焊合腔、工作带表面等部位的剧烈摩擦,各位置的流速是极不均匀的。当挤压形状不对称,各部分尺寸,形状相差很大的制品时,这种流动不均匀性更会显著增加。而且,在模具设计制造中,各部位流动速度的差异不可能完全的消除或调整。因此,挤压成形中,不能避免的会产生各种成形缺陷,如扭拧、弯曲、波浪、裂纹等。挤压模具在使用中,型材不成形、波浪、弯曲等由于金属挤出模孔速度不均匀引起的试模不合格,是造成试模不合格的主要原因之一。为了消除以上这些缺陷,较理想的结果就是金属在挤出模孔时,各个部位各个质点的金属流动速度均保持一致。而实际的情况是,金属在挤出模孔时,即使较简单的型材也不可能各个质点都获得相同的流动速度。因此,必然存在一个速度差异范围,当金属挤出模孔时,当各个质点的挤出速度差异在这一个范围之内时,挤出的型材能够稳定成形。    2.稳定成形机理分析    根据较基本的金属塑性成形原理,金属在塑性变形时,总是向着变形阻力较小的方向流动。因此,金属的应力状态是影响金属流动变形的根本因素。在挤压成形出材的过程中,常见的一些成形缺陷,如波浪、扭拧、侧弯等,形成的根本原因是挤出的金属的应力负载超过了保持其原来稳定状态的临界应力,从而使挤出金属发生弯曲、皱曲、扭转等变形。    对于挤出模孔的金属,一般情况下,只受到模孔出口截面的约束作用,在其它方向、位置上均处于自由状态。而在离模孔出口足够远的位置,金属的塑性成形已经完成,因此,考察挤压成形出材的稳定性,只需对从模孔出口以外的一小段进行考察。    以简单的扁条型材为例,对挤出模孔的金属进行受力分析。对于挤压成形的铝型材而言,型材的壁厚相比各型材壁面一般较小,可看作为薄板。    若金属挤出模孔各位置的轴向速度完全一致,则挤出部分的金属各部位的流动应力相等,金属不发生变形。    若金属挤出模孔各位置的速度不完全相等。    3.结论    (1)结构中的压应力是影响构件稳定性的主要因素,构件中的拉应力往往不会引起系统的失稳、皱曲。    (2)型材薄板的屈曲与型材的壁厚t、型材壁面的宽度L有密切的关系。型材的壁厚t越大,型材壁面的宽度L越小时,对应壁面的稳定临界载荷越大。