锰铁的冶炼方法
2019-01-04 11:57:16
高炉冶炼一般采用1000米3以下的高炉,设备和生产工艺大体与炼铁高炉相同。锰矿石在由炉顶下降的过程中,高价的氧化锰(MnO2,Mn2O3,Mn3O4)随温度升高,被CO逐步还原到MnO。但MnO只能在高温下通过碳直接还原成金属,所以冶炼锰铁需要较高的炉缸温度,为此炼锰铁的高炉采用较高的焦比 (1600公斤/吨左右)和风温(1000℃以上)。为降低锰损耗,炉渣应保持较高的碱度(CaO/SiO2大于1.3)。由于焦比高和间接还原率低,炼锰铁高炉的煤气产率和含CO量比炼铁高炉为高,炉顶温度也较高 (350℃以上)。富氧鼓风可提高炉缸温度,降低焦比,增加产量,且因煤气量减少可降低炉顶温度,对锰铁的冶炼有显著的改进作用。
电炉冶炼 锰铁的还原冶炼有熔剂法(又称低锰渣法)和无熔剂法(高锰渣法)两种。熔剂法原理与高炉冶炼相同,只是以电能代替加热用的焦炭。通过配加石灰形成高碱度炉渣(CaO/SiO2为1.3~1.6)以减少锰的损失。无熔剂法冶炼不加石灰,形成碱度较低(CaO/SiO2小于 1.0)、含锰较高的低铁低磷富锰渣。此法渣量少,可降低电耗,且因渣温较低可减轻锰的蒸发损失,同时副产品富锰渣(含锰25~40%)可作冶炼锰硅合金的原料,取得较高的锰的综合回收率(90%以上)。现代工业生产大多采用无熔剂法冶炼碳素锰铁,并与锰硅合金和中、低碳锰铁的冶炼组成联合生产流程见图。
现代大型锰铁还原电炉容量达40000~75000千伏安,一般为固定封闭式。熔剂法的冶炼电耗一般为2500~3500千瓦•时/吨,无熔剂法的电耗为2000~3000千瓦•时/吨。锰硅合金用封闭或半封闭还原电炉冶炼。一般采用含二氧化硅高、含磷低的锰矿或另外配加硅石为原料。富锰渣含磷低、含二氧化硅高是冶炼锰硅合金的好原料。冶炼电耗一般约3500~5000千瓦•时/吨。入炉原料先作预处理,包括整粒、预热、预还原和粉料烧结等,对电炉操作和技术经济指标起显著改善作用。
电炉精炼中、低碳锰铁一般用1500~6000千伏安电炉进行脱硅精炼,以锰硅、富锰矿和石灰为原料,其反应为:MnSi+2MnO+2CaO─→3Mn+2CaO•SiO2 采用高碱度渣可使炉渣含锰降低,减少由弃渣造成的锰损失。联合生产中采用较低的渣碱度(CaO/SiO2小于1.3)操作,所得含锰较高(20~30%)的渣用于冶炼锰硅合金。炉料预热或装入液态锰硅合金有助于缩短冶炼时间、降低电耗。精炼电耗一般在1000千瓦•时左右。中、低碳锰铁也用热兑法,通过液态锰硅合金和锰矿石、石灰熔体的相互热兑进行生产。
吹氧精炼 用纯氧吹炼液态碳素锰铁或锰硅合金可炼得中、低碳锰铁。此法经过多年试验研究,于1976年进入工业规模生产。
高炉锰铁的生产---高炉锰铁冶炼操作
2019-01-25 15:49:34
锰铁高炉冶炼操作与生铁高炉相似,但锰铁高炉具有以下不同特点: ①锰矿中MnO含量较铁矿中FeO含量低,MnO较FeO难还原。冶炼过程中渣量大,锰的回收率较低。 ②由于锰与氧的亲和力比铁强,还原MnO时需要较高的温度和较大的能量,因此高炉锰铁的冶炼焦比要比生铁冶炼高得多,焦炭负荷轻。 ③由于焦比高、焦炭负荷轻,焦炭和矿石之间粒度相差大。边缘气流易于发展,造成煤气流紊乱,易产生偏行管道。 ④锰铁高炉煤气量大,发热值高,造成炉顶温度高,煤气含尘量大,净化困难。 ⑤炉衬侵蚀快,炉底易堆积,使得炉衬寿命低于生铁高炉。 以上特点决定了锰铁高炉的操作制度有别于生铁高炉而具有自身的特点。 1.高炉锰铁冶炼的装料制度 高炉锰铁冶炼中原料、燃料及熔剂的装入方法直接影响高炉断面料层分布及上升煤气流的分布,高炉装料制度包括料线、料批、装料顺序和布料器工作制度。 (1)料线,即大钟下降后的下沿至料面距离,根据锰矿粒度小、密度大、滚动性差,焦炭粒度大、滚动性好的特点,锰铁高炉的料线选在碰焦点以下,通过反弹布料,使矿石布到边缘,焦炭布到中心,有利于中心煤气流的发展。 (2)批重,指每一批料矿石重量。小料批加重边缘,大料批发展边缘。根据锰铁高炉的冶炼特点,一般采用小料批加重边缘。 (3)装料顺序,指一批料中矿石、焦炭、熔剂装入料斗的顺序。矿石先装为正装(加重边缘),焦炭先装为倒装(发展边缘)。此外还有分装、半正装、半倒装等。 (4)布料器工作制度,采用布料器是使炉料在高炉断面分布均匀的一项措施,它还可用来纠正炉料下降和煤气上升的不均匀。锰铁高炉通常采用六点式布料器布料,即每批料旋转60度。 生产实践证明:锰铁高炉采用深料线、较小料批、正装或正分装为主的装料制度有利于炉况顺行。 2.送风制度 锰铁高炉的送风制度直接影响煤气的初始分布及炉况。送风制度的确定体现为鼓风动能,即风压、风量、风温及风口尺寸等参数的选择。 在原料强度好、粒度均匀且粉末少的情况下,可采用大风量及较小风速(大风口)。反之则采用小风量、较大风速(小风口)。高炉容积与鼓风动能成正比。即高炉容积越大、鼓风动能也越大。冶炼产品含Mn量越高,炉缸越易堆积,为此需要的鼓风动能也越大。 在高炉锰铁冶炼中,为保炉缸活跃,要采取措施吹透中心。除力争全风操作外,还应保持较高风速和较大的鼓风动能,以及调节风口长度和角度来实现这一目的。 3.热制度 高炉锰铁冶炼的热制度是指冶炼中炉温水平及维持手段。炉温水平的确定应建立在保证锰的还原率及有利于降低焦比的基础上。 炉温的高低主要取决于焦炭负荷、风温、煤气热能和化学能的利用情况。 焦炭负荷与矿石中的锰、铁含量,冶炼中的渣量,熔剂消耗量以及风温、高炉容积和工作状态有关。在以上条件较稳定的前提下,应保持较合适而稳定的焦炭负荷。当以上条件变化时应根据变化相应调整焦炭负荷,以保证炉温的稳定。 在高炉锰铁冶炼中,热风带入的热量是高炉热量的主要来源之一。提高风温可降低焦比,减少煤气生成量,有利炉况顺行。因此在设备条件许可下应尽量提高风温。 4.造渣制度 高炉锰铁造渣制度与原料条件有关。当锰矿品位高,Mn,Fe质量比高时,可采用无熔剂或少熔剂法生产高碳锰铁,此时炉渣为低磷、低铁富锰渣,可作为硅锰合金的原料。我国锰矿石含锰品位低,国内以熔剂法生产高碳锰铁,以碱性渣操作为主。炉渣碱度一般控制在生产实践表明:渣中MgO含量由5%提高到8%时,渣中MnO由8%降至5%。为此,在高炉锰铁冶炼中合适的炉渣成分为:CaO为30%~44%;SiO2为25%~30%;MgO为8%~12%;Al2O3为10%~15%,MnO为3%~7%。
高炉锰铁的生产---高炉锰铁冶炼原理
2019-01-25 15:49:34
高炉锰铁冶炼以炭作发热剂和还原剂,在高炉中将锰和铁的氧化物还原,生成锰铁合金及炉渣、煤气,是一系列复杂的物理化学过程。 1.锰在高炉内的还原过程 在高炉上部的较低温度区域,锰的高价氧化物易分解,逐级还原为MnO,但由于锰矿石中含有SiO2,MnO在未达到还原温度以前,即与脉石中(或燃料熔剂中)的SiO2结合生成硅酸锰进入渣中,锰的还原实际上是在液态炉渣中进行的。炉渣中的硅酸锰比自由状态的MnO更稳定,使锰的还原更加困难,需要的温度更高。 2.锰铁炉渣的形成及其对冶炼的影响 在冶炼锰铁高炉不同高度取样进行岩相分析,并测定炉渣粘度、温度,将测定结果编制锰铁高炉造渣过程示意图(图1)。图中表明,在温度600~700℃区间内,炉料以固相存在,这里MnO2还原为Mn3O4,吸附水和结晶水蒸发。到750~900℃区间锰矿石局部进入到塑性状态——矿石熔结,新的矿相如3CaO·SiO2,2CaO·SiO2及3CaO·2SiO2开始出现。800~1000℃温度范围内,除塑性体外还出现了液相。由于在该区域内存在着钙锰橄榄石(2CaO·SiO2,2MnO·SiO2)而生成液相,使得该区域透气性变差。在此温度区间矿石已经软化并转变成为塑性状态并生成含锰的液相初渣。当温度高于1100℃以后,除塑性体外主要的是液相,其成分基本上与上区域相似,大部分石灰仍为固相。在炉腹区域,由于大量锰从炉渣中由碳进行直接还原,渣中CaO含量急剧增加,MnO含量相应降低。在炉缸中,熔渣最终吸收焦炭中的灰分及熔剂中的CaO,MgO等,形成终渣。[next] 在高炉锰铁炉渣的形成过程中,炉渣中各组分对冶炼有不同程度的影响。表1 CaO含量与炉渣、铁水温度的关系CaO含量/%铁水温度/℃炉渣温度/℃281295135035144514803915151587
炉渣中的CaO可以改善硅酸锰的还原条件,将硅酸锰中的MnO置换出来,增加渣中自由MnO的浓度,利于MnO的还原。炉渣中CaO含量与MnO含量的关系见图2。炉渣中的CaO可以提高炉渣及铁水温度,对MnO还原有利。表1说明了CaO含量与炉渣、铁水温度的关系。在生产中,渣中CaO含量不应超过高炉工作条件允许范围,还和炉料中SiO2的含量有一定关系,n(CaO)/n(SiO2)之比为炉渣碱度,CaO含量过高使炉渣碱度过高,会使炉缸阻塞,炉况不顺。 炉渣中合适的MgO既可调节炉渣碱度,又可改善渣的流动性,为MnO的还原创造有利条件,从而促使高炉各项指标的改善。根据国内生产实践,n(CaO)/n(SiO2)=1.40~1.55时,渣中MgO含量增加1%,渣中MnO含量可降低0.5%~1%。 渣中的A12O3对MnO的还原也有影响,如图3所示。在相同碱度下,渣中MnO含量随其中Al2O3的增加而降低。这是因为A12O3含量的增加,提高了炉渣的熔点.初渣在高炉中形成的位置降低,炉料预热充分,带入炉缸的热量增加,MnO的还原速度加快创造了条件。但A12O3含量过高,会使炉渣粘度增高,反而恶化MnO的还原条件。高炉生产实践证明:炉渣中A12O3的含量应控制在10%~15%为宜,最高不要超过20%。[next] 3.煤气流在高炉内的形成及运动规律 高炉内煤气产生于风口区的焦炭燃烧(2C+O2===2CO).风口前生成的煤气分布称煤气初始分布。其分布情况决定于风口布置、风口个数、风口直径、风口角度及伸入炉内的长度、风量大小和风温高低。以上因素综合体现为鼓风功能。鼓风动能高,煤气流向中心集中,中心气流发展,反之边缘气流发展。 煤气的第二次分布发生在高炉中部的软融带。软融带的形状大体可分为V型、倒V型和W型。软融带形状与高炉上下部调节、炉内温度分布、炉料性质等有关。软融带形状不同,煤气通过后流向也不同。根据对炉喉CO2曲线的检测分析,高炉内煤气流的分布主要有四种类型。 (1)边缘发展型——煤气主要沿炉墙附近的边缘通过。 (2)双峰型——煤气主要由边缘与中心两条通路经过。 (3)中心发展型——也称双峰漏斗型、煤气主要由中心区通过。 (4)平坦型——煤气沿高炉截面均匀通过。 以上四种类型煤气分布对高炉冶炼过程影的响如表2.所示。 生产实践表明,锰铁高炉炉喉煤气CO2径向分布采用双峰漏斗型曲线控制较为理想,如图4所示。采用此种曲线操作,其软融带为倒V型,“气窗”面积大,煤气易于通过,使高炉操作顺行。
高炉锰铁的生产---高炉锰铁冶炼用原料
2019-01-25 15:49:34
高炉锰铁冶炼用原料主要有锰矿、焦炭和熔剂。 1.锰 矿 高炉冶炼用的锰矿有氧化矿、碳酸盐矿、焙烧矿和烧结矿。 矿石中的锰是高炉锰铁冶炼中的主要回收元素。锰矿石含锰量的高低直接影响锰铁冶炼技术经济指标。高炉生产实践表明,锰矿中含锰量波动1%,焦比波动50~80kg,产量波动3%~5%,因此对入炉矿中含锰量要求越高越好。 锰矿中SiO2的含量是影响渣量的主要因素。据分析,入炉锰矿中的m(SiO2)/m(Mn)波动10%,相当于含锰量波动1%,应当尽量选用m(SiO2)/m(Mn)低的矿石入炉。我国各厂家入炉混合矿的m(SiO )/m(Mn)一般控制在0.3~0.8。 锰矿中的m(Mn)/m(Fe)决定产品的含锰量,生产不同牌号的锰铁,需用不同m(Mn)/m(Fe)比值的锰矿。 锰矿中的磷是高炉锰铁生产中的控制元素,希望越低越好。磷在钢铁产品中大都属有害元素。磷在高炉冶炼中理论上百分之百还原。因此锰铁产品中的磷含量取决于矿石、焦炭中的含磷量。但在高炉冶炼中,Mn的回收率和锰矿石的品位会在较大范围内变化,因此产品中的含磷量也随之变化。 锰矿石中允许的含磷量按下式计算: w(P矿)={[P]/np-(w′pK+w″pФ+w″pD)}÷H 式中 w(P矿)——入炉锰矿石的含磷量,%; [P]——产品中允许含磷量上限,%; np——磷在高炉中的还原率(理论上100%,实际上80%左右); w′p,w″p,w″p——分别为焦炭,熔剂 和其他附加物的含磷量,%; H,K,Ф,D——分别为冶炼每吨锰铁所需矿石、焦炭、熔剂和其他附加物单耗,kg/t. 某厂高炉锰铁冶炼对入炉锰矿的m(Mn)/m(Fe)及m(P)/m(Mn)要求下见表。 各牌号高炉锰铁对锰矿m(Mn)/m(Fe)、m(P)/m(Mn)的要求牌号锰铁成分 (%)对入炉锰矿要求MnPm(Mn)m(P)/m(Mn)Ⅰ组Ⅱ组m(Fe)Ⅰ组Ⅱ组≥≤≥≤FeMn78780.330.56.220.003750.00493FeMn74740.380.54.680.003960.00521FeMn68680.40.63.590.004410.00662FeMn64640.40.62.90.004690.00703FeMn58580.50.62.380.006250.0075
锰矿中的铅在冶炼时易还原也易挥发,还原后沉积在炉底,严重时会破坏炉底,炉温高时易挥发,在高炉上部结瘤。一般为要求锰矿中Pb含量<0.1%。锰矿中的锌易挥发在高炉上部沉积,对炉墙砖衬和炉壳有破坏作用,也可能和炉衬混合形成炉瘤。通常要求锰矿中Zn含量<0.2%。 锰矿石入炉粒度一般为5~60mm,含粉率要求小于5%。 2.焦 炭 焦炭在高炉冶炼中不但是还原剂和发热剂,而且是整个高炉料柱的骨架。焦炭质量的好坏一方面要看其化学成分,另一方面要看其物理性能——粒度和强度。锰铁高炉冶炼用焦炭主要有冶金焦、气煤焦和土焦。不同焦炭质量差别较大,使用时应综合考虑。 对焦炭的基本技术要求: (l)高而稳定的固定碳含量。固定碳含量越高,作为还原剂和发热剂的能力越大,对降低焦比,改善技术经济指标有利。 (2)较低的灰分可以减少渣量及灰分带入的磷含量。 (3)较高的机械强度,可防止和减轻焦炭在炉内下降过程中产生粉末、恶化料柱透气性。挥发分低的焦炭机械强度比较好。 焦炭中的水分虽然对高炉冶炼过程无影响,但水分波动会影响配料的准确性。因此,希望焦炭水分稳定为好。焦炭入炉粒度一般为20~60mm。 3.熔 剂 高炉锰铁冶炼所用熔剂为石灰石、生石灰、白云石等。 对石灰石和生石灰要求CaO含量越高越好。CaO含量高,带入的渣量相对减少。使用白云石调节渣时,要求白云石的MgO含量尽量高。 熔剂入炉粒度要求:石灰石和白云石15~75mm,生石灰为20~l00mm,小高炉偏下限,中型高炉偏上限。
低硅高炉锰铁冶炼实践
2019-01-04 11:57:16
高炉冶炼低硅锰铁是高炉锰铁生产的一项重要技术进步。本文就这一技术,从理论和实践两方面进行了阐述。还原机理。据近年有关研究,高炉内硅的还原是按照SiO2→SiO→Si的顺序逐级进行的。高炉中硅还原进入生铁的过程主要是在滴落带进行,并以SiO气体为中介还原转入铁水中,风口前焦炭燃烧后释放出的灰分中的SiO2虽进入炉渣,但基本上呈自由状态,活度大,与焦炭接触良好,所以反应(容易进行,使(SiO2)极易转变为气态SiO。气态SiO在滴落带挥发上升过程中与下降的铁水接触,被铁水中的[C]还原而进入生铁。因此,在风口高温区和滴落带,热力学条件和动力学条件都是有利的,即在风口平面上是增硅的过程。风口平面以下的进行而使已还原进入生铁的[Si]发生再氧化而呈现降硅过程。这一系列还原过程已为国内外高炉解剖及生产实践所证实。
中低碳锰铁生产方法及其冶炼原理
2019-02-14 10:39:39
中低碳锰铁出产办法首要有电硅热法、摇炉法和吹氧法三种,均选用连续式操作。 1.电硅热法 电硅热法冶炼中低碳锰铁的本质是用矿热炉出产的锰硅合金中的硅作为复原剂,在精炼炉内复原矿石中的氧化锰,待合金中的硅降到规则极限后,其产品即为中低碳锰铁。 配入炉料的锰矿石在受热进程中,锰的高价氧化物跟着温度的升高逐渐分化,变成贱价氧化物。 锰矿受热分化生成Mn3O4今后,在持续升温的一起,部分高价氧化物直接与硅反响生成贱价氧化物和锰金属,其反响为 2Mn3O4+Si===6MnO+SiO2 (1) Mn3O4+2Si===3Mn+2SiO2 (2) 没有复原的Mn3O4,热分化生成MnO,熔化进入炉渣中。持续被合金熔液中的硅复原。其反响式为 2MnO+Si===2Mn+SiO2 (3) 因为反庆生成物SiO2与MnO结合生成(MnO•SiO2),形成反响物MnO的活度下降,正向反响变得困难,为国进步MnO的复原作用,进步锰的回收率,需求在炉中配入一定量的石灰,将MnO从硅酸盐中置换出来,其反响式为 CaO+MnO•SiO2===MnO+CaO•SiO2 (4) 2CaO+MnO•SiO2===MnO+2CaO•SiO2 (5) 炉渣碱度与MnO活度系数的联系如下表所示。 炉渣碱度与MnO活度系数的联系表n(CaO)/n(SiO2)11.11.21.3γMnO0.30.430.60.81
2.摇炉法 摇炉法冶炼中低碳锰铁是20世纪70年代后才发展起来的一种节能冶炼新技术,其间摇炉用于中低碳锰铁预炼的办法称为摇炉电炉法,摇炉用于直接产出中低碳锰铁的办法作摇炉硅热法。 (1)摇炉电炉法 摇炉电炉法是摇炉冶炼运用的首要办法,实施摇炉电炉法的基本前提是三炉联动,出产流程如图1所示。 首先将精炼炉副产品中锰渣兑入摇炉,再将矿热炉出产的液态锰硅合金兑入摇炉。 以55~60r/min的转速晃不坚定炉,在杰出的动力学条件下,运用锰硅合金中的硅复原锰渣中MnO,反庆切换开释的化学热确保冶炼正常进行,其化学反响方程式见反响(3).待渣中MnO贫化到规则要求后倾炉,倒出的废渣经水淬后用于出产建材,液态合金对入精炼炉直至炼出合格的中碳锰铁;精炼炉内的化学反响与电硅热法相同。[next] (2)摇炉硅热法 摇炉硅热法出产中低碳锰铁由日本水岛铁合金创始并投入正规化出产,我国也有两家铁合金厂进行实验并获得成功。它是先将在竖炉内预热到600~800℃的锰矿石和石灰放入摇炉,然后兑入矿热炉出产的液态锰硅合金,开端摇炉,摇速为1~65r/min,操作时视炉内化学反响的剧烈程度 而逐渐进步摇速,锰氧化物的首要复原反响式为 2Mn2O3+Si===4MnO+SiO2 2MnO+Si===2MnO+SiO2 脱硅反响中大部分夺是在热兑锰硅合金的进程中完结,小部分是靠摇炉的充沛搅动持续完结。待合金中的硅基本上氧化结束,反响趋于安静时倾炉,倒出的渣液冷凝后破碎供矿热炉冶炼锰硅合金运用。液态合金浇铸后分牌号精整堆存。 3.吹氧法 (1)吹氧脱碳法 吹氧脱碳法出产中低碳锰铁以高炉或矿热电炉冶炼的液态高碳锰铁为质料,热兑到转炉中,通过氧吹入氧气,氧化高碳锰铁中的碳的冶炼进程。1975~1978年在国内进行了工业实验获得成功。 当环境温度低于1300℃时,高碳锰铁各元素的氧化物稳定性依Si,Mn,C,P,Fe次序摆放,跟着温度升高,摆放次序发作改动;吹氧脱碳法就是运用温度高于1670℃以上时CO的稳定性大于Si,Mn,Fe的氧化物这一原理,在按捺Mn元素过量氧化的基础上脱碳保锰,出产中低碳锰铁。 吹氧脱碳法的首要化学反响式为 各元素氧化反响自由能改变与温度的联系如图2所示。 在吹炼进程中合理的温度操控是要害,熔池温度低于1550℃时首要是碳和锰元素氧化入渣;溶池温度高于1850℃时锰元素蒸发在4%以上,特别是在中心氧焰区液面温度高达2200~2700℃,形成锰元素很多蒸发。实践出产要求熔池温度操控在1650~1850℃范围内,温度过高时应加冷却剂(中碳锰铁)。吹炼结束时,锰元素氧化入渣量约占高碳锰铁带入锰量的30%左右,需增加锰硅合金进行后期处理,出炉的合金待冷静冷却后浇铸,渣液待冷却后破碎返至锰硅合金冶炼车间运用。 (2)吹氧脱硅法 吹氧脱硅法是以矿热电炉出产的液态锰硅合金为质料热兑入转炉,通过氧吹入氧气氧化锰硅合金中的硅,制取中低碳锰铁。其操作工艺与吹氧脱碳法类似。1978年国内进行液态锰硅合金吹氧脱硅炼制中低碳锰铁实验获得成功。吹炼进程中炉温需操控在1500~1600℃。渣液碱度在1.5~1.6,为此需求不断参加枯燥锰矿石、煅烧石灰和萤石等合作料造渣控温,待吹至样品含硅量合格后出炉浇铸,高碱度中锰渣排弃。
高炉冶炼锰铁提高锰回收率的措施
2019-01-21 18:04:49
高炉冶炼锰铁尽管与冶炼生铁有许多共同点.但更有其自身的特点。最大的不同点是锰比铁难还原。锰的回收率可以在60~90%的范围波动,而不象生铁冶炼时,铁几乎全部还原到产品中去。根据这一特点,决定了冶炼锰铁时提高锰的回收率对产量、质量、消耗和成本都有重要的多用。因此,提高锰的回收率是锰铁生产的一项重要的技术政策。
一、提高锰回收率的重要意义
(一)降低锰矿消耗
提高锰的回收率,可以大幅度地降低锰矿消耗,节约贵重的锰矿资源,这是高炉冶炼锰铁的一大特点。在不用金属附加物的情况下,高炉冶炼生铁的矿比取决于入炉锰矿的平均品位,而锰铁的矿比则取决于入炉的平均含锰量和锰的回收率。计算公式如下: (1)
式中Q矿-矿比,kg/t
650-标准锰铁的锰量,kg/t
Mn-炉矿平均含锰量,%
ηMn-锰的回收率,%
1990年新余钢铁厂入炉平均古锰26.92%.锰的回收率平均为85.53%.而60年代初平均回收率为65%。按(1)式计算,由于锰回收率的提高,单位产品可降低锰矿消耗892kg/t,相当于每提高锰回收率1%.可降低锰矿消耗44.6kg/t;按年产17万t产量计,则可节约锰矿15.16万t。
(二)降低焦比
提高锰的回收率,可以大幅度地降低入炉焦比,这是锰铁高炉区别于生铁高炉的又一特点。在不用金属附加物时,生铁焦比仅取决于焦炭负荷和矿石品位;而锰铁焦比则要取决于焦炭负荷、矿石品位和锰的回收率。其计算公式如下: (2)
式中k-入炉焦比,kg/t
Q-焦炭负荷,t/t
1990年新余钢厂高炉平均负荷为1.607t/t,其它条件同前,按(2)式计算.1990年入炉焦比为1758kg/t;如按60年代初平均锰回收率为65%计算,其焦比为2312kg/t,仅回收率提高一项就使焦比降低了554kg/t,相当于在现有原料条件下,每提高回收率1%.降低焦比27.7kg/t。
(三)提高产量
高炉产量的计算公式如下: (3)
将(2)式代入可得锰铁高炉产量计算式: (4)
式中Qy-年产量,t/y
365-日历作业天数,d/y
V-高炉有效容积,m3
I-冶炼强度,t/m3·d
η-休风率,%
1990年高炉休风率为1.72%.冶炼强度为1.085t/ m3·d其它条件同前,按(3)计算,由于回收率提高比60年代初增产41294t/d,增产率31.51%。相当于每提高回收率1%,高炉增产1. 57%。
(四)提高锰铁质量
提高锰的回收率,即在相同原料条件下,提高锰铁古锰量,降低音磷量,从而提高了锰铁质量。1990年本厂锰铁平均含[Mn]=67.28%,[P]=0.454%,如果以60年代初65%的回收率计算,锰铁成分将变为[Mn]=62.35%,[P]=0.570%。
(五)增加效益
按前所述计算结果,由于回收率提高,
1990年和60年代初比较,以年产17万t锰铁计,现行锰矿平均价格为421元/t(含进口锰矿),焦斑为244元/t。其效益为:
a 年节焦降低成本总额: 17×0.654×244=2298万元
b 年节约锰矿降低成本总辆: 15.16×421=6382万元
两项合计,降低消耗共计降低成本8682万元/a,相当于每提高1%的回收率,降低成本25.53元/t,由于回收率的提高,克服了原材料提价因素对企业经营效益的影响,使企业站稳了脚跟。
我国锰矿资源中,贫杂锰矿多,富矿少,随着钢铁工业的发展,锰矿供需矛盾突出,高炉用矿逐年贫化。提高锰的回收率,可以大幅度地节约锰矿消耗,可在一定程度上和锰矿供需矛盾。
二、提高锰回收率的主要措施
为了提高锰的回收率,必须弄清高炉冶炼锰铁时,锰在铁、渣和炉尘中的分配情况,查明锰在高炉生产过程中流失的去向,以便采取技术对策(表1)。
表1 1964年8月21-31日1#炉锰的平衡收入量铁中量渣中量炉顶损失其他合计化学损失机械损失823.115t593.691138.0966.39154.24830.689823.115100%72.12416.800.7766.593.71100
表l说明,以Mn形式流失于渣中的化学损失占入炉总锰量的16.80%,占流失总量的60.27%,其次为炉顶损失。这为制定提高锰回收率的措施指明了方向。
(一)降低渣中MnO
锰在渣中的化学损失可用下式计算: (5)
式中Mn失-锰在渣中的化学损失,kg/t
O渣-渣量,kg/t
55和71-分别为Mn和MnO的分子量
从上式可以看出,锰在渣中的化学损失与渣量和渣中MnO均成正比。矿石越贫、渣量越大,越要降低渣中MnO。主要措施:
1、改进选渣制度。目前本厂渣中MnO降到4~5%的水平,在国内外属领先地位。各个时期炉渣CaO/SiO2、MgO、MnO变化见表2。
表2 炉渣CaO/SiO2、MgO、MnO变化时 期CaO/SiO2MgO(%)MnO(%)1960-1969年1.18~1.341.91~5.4612.31~17.831969-1979年1.34~1.416.24~7.128.20~9.761980-1990年1.40~1.528.56~9.974.04~5.31
2、改进炉料结构。采用生石灰作溶剂(1973年起),生产高CaO/SiO2、高MgO锰烧结矿(1980年起)。
以上措施的主要作用在于改善炉况顺行和改善炉内成渣条件,以促进锰的还原。
3、提高炉缸温度。锰在高炉内全部靠直接还原,消耗热量大,需要维持充足的炉温和充沛的热量。
提高炉渣CaO/SiO2和MgO,可以提高炉渣溶化温度,有利于提高炉缸温度。
提高风温。60年代初厂风温为745~931℃,1965年起,风温提高到年平均1000℃。
采用富氧鼓风。富氧鼓风能有效地提高炉缸温度.降低炉顶温度,1982年起利用转炉余气补充少量富氧。
从整个措施来看,提高CaO/SiO2和MgO,需要增加一定的渣量,但降低渣中MnO又臧少渣量,同时,由于锰回收率的提高又可降低渣铁比。倒如1979年4季度开始采取低MnO操作,其入炉矿的含Mn量与1979年和1982年大致相当,其渣量比较如表3。
可见降低渣中MnO,起到了减步渣量和降低炉渣中含锰量的双重作用。目前,通过降低MnO,使锰在渣中的化学损失降低到了10%左右。
表3 不周氧化锰时的渣量比较年份矿石含Mn(%)CaO/SiO2MgO(%)MnO(%)渣铁比(Kg/t)197822.531.416.428.202389198225.901.489.414.651965
(二)降低炉顶损失
锰在炉顶的损失,主要表现为机械吹损。降低炉顶损失的措施主要是:
1、锰矿水洗过筛,减少入炉粉末;
2、锰烧结矿槽下过筛,减少入炉料的含粉率。
通过这些措施,1984年.炉尘灰出量降到150kg/t,使炉顶损失降到4%以下。
(三)减少渣中机械损失
渣中机械损失,是将已还原出来的锰与铁一起混夹在炉渣中的损失。减步这部分损失的主要措施如下:
1、在铁口渣沟中设回收坑,创造渣中锰铁的沉降条件;
2、在渣场设置回收坑,回收渣缸中的锰铁;
3、人工手检炉前干渣的锰铁。
通过这些措施,使渣中机械损失降到了0.4%的水平。
三、结束语
(一)提高锰的回收率,是高炉冶炼锰铁的核心问题。回收率每提高l%,可以降低焦比27.7kg/t,降低矿比44.6kg/t,增产1.57%,降低成本25.53元/t。并可提高产品质量。
(二)锰的损失主要是以MnO形式进入渣中的化学损失,其次是炉顶损失和渣中机械损失。
(三)降低渣中Mn0是提高回收率的主攻方向,采用高CaO/SiO2、MgO渣操作,是降低渣中Mn0的有效措施。新余钢厂渣中Mn0降至4~5%的水平,在国内外属领先地位。
(四)在锰矿贫化,渣量大的情况下,新余钢厂回收率达到85%,在国内领先。渣量越大,越要降低渣中Mn0。下一步的努力方向应将MnO控制在3.5~4.5%,使其平均值控制在4%左右,使该项损失控制在10%以内。
锰铁的用途
2017-06-06 17:50:07
锰铁的用途 1、微碳锰铁的用途及特点 该产品不但适用于低碳合金结构钢,尤其适用于高质量的品种钢,而且不用改变原有的炼钢工艺,能优化合金,改善钢的内在质量,降低炼钢合金成本,具有明显的经济效益。 2、低碳锰铁、中碳锰铁的用途:该产品是生产不锈钢、高温耐热钢、结构钢、工具钢等特种钢和电焊条的主要原料。低碳锰铁(粉)性状及用途:灰黑色不规则粉末或块状,主要应用于焊材
行业牌号化学成份%备注:粒度为-60、-80、-200目等规格MnCSiPSⅠⅡⅠⅡ大于不大于FeMn85aC1.085.01.01.00.100.02FeMn80aC1.580.01.50.71.50.200.300.02FeMn78aC1.578.01.51.52.50.200.330.03FeMn75aC1.575.01.51.52.50.200.330.03锰铁黑可用于卷钢涂料、高性能的工业用漆以及耐热的工程塑料。它是一种优良的太阳能吸收剂,可用于制作太阳能收集器用的涂层。因含有锰,对橡胶有损害,故不能用于橡胶。同时因含锰和铁,对某些塑料有脆化作用。物化性质: 是铁和锰的氧化物,其实际组成随配比的不同而异。颜料的密度5.9~6.0g/cm3,吸油量46%,有遮盖力,其着色力是这类颜料中较高的,有优越的耐候性、耐高温性和耐化学品性。 更多有关锰铁的用途信息请详见上海
有色
网
锰铁矿价格
2017-06-06 17:49:50
锰铁矿价格,上海有色网资讯:铁矿石价格上涨65%已成定局。据国内铁矿石谈判发来消息:CVRD(巴西淡水河谷公司)已于北京时间2月18日20时正式宣布与新日铁和浦项达成2008财年铁矿石协议:南部铁精粉上涨65%,卡拉加斯粉上涨71%。2008财年淡水河谷南部粉矿价格(离岸价)将由2007财年的72.11美分/干公吨度上涨65%至118.98美分/干公吨度;而品质较好的Carajas粉矿价格将由125.17美分/干公吨度上涨71%至125.17美分/干公吨度。2005年至2007年,国际铁矿石基准价格涨幅分别为71.5%、19%和9.5%价格500-800元/吨更多关于锰铁矿价格资讯,请浏览SMM网
锰
频道!
高碳锰铁
2017-06-06 17:50:07
高碳锰铁是什么?锰铁:锰和铁组成的铁合金。主要分类:高碳锰铁(含碳为7%)、中碳锰铁(含碳1.0~1.5%)、低碳锰铁(含碳0.5%)、
金属
锰、镜铁、硅锰合金。技术情况 现代大型锰铁还原电炉容量达40000~75000千伏安,一般为固定封闭式。熔剂法的冶炼电耗一般为2500~3500千瓦?时/吨,无熔剂法的电耗为2000~3000千瓦?时/吨。锰硅合金用封闭或半封闭还原电炉冶炼。一般采用含二氧化硅高、含磷低的锰矿或另外配加硅石为原料。富锰渣含磷低、含二氧化硅高是冶炼锰硅合金的好原料。冶炼电耗一般约3500~5000千瓦?时/吨。入炉原料先作预处理,包括整粒、预热、预还原和粉料烧结等,对电炉操作和技术经济指标起显著改善作用。电炉精炼 中、低碳锰铁一般用1500~6000千伏安电炉进行脱硅精炼,以锰硅、富锰矿和石灰为原料,其反应为:MnSi+2MnO+2CaO─→3Mn+2CaO?SiO2 采用高碱度渣可使炉渣含锰降低,减少由弃渣造成的锰损失。联合生产中采用较低的渣碱度(CaO/SiO2小于1.3)操作,所得含锰较高(20~30%)的渣用于冶炼锰硅合金。炉料预热或装入液态锰硅合金有助于缩短冶炼时间、降低电耗。精炼电耗一般在1000千瓦?时左右。中、低碳锰铁也用热兑法,通过液态锰硅合金和锰矿石、石灰熔体的相互热兑进行生产。 吹氧精炼 用纯氧吹炼液态碳素锰铁或锰硅合金可炼得中、低碳锰铁。此法经过多年试验研究,于1976年进入工业规模生产。高碳锰铁配料计算、计算依据:1.1 入炉锰矿平均成分:%Mn Fe P S Cao SiO2 MgO Al2O343 6 0.07 0.05 3 9 1 41.2 锰矿元素分配:%元素 入合金 入渣 挥发Mn 62 28 10Fe 95 5 P 90 8 2Si 4 961.3 焦碳成分:固定碳:82%、灰分:15%、挥发分:3%、焦碳利用率:90%、炉口烧损:10%、水分:10%、焦碳灰分中含SiO2:50%、Cao:3%、MgO:2%1.4 以100Kg干基锰矿做为计算基础。2、合金成分的预算每100Kg锰矿可得:Mn=43×0.62=26.66KgFe=6×0.95=5.7KgP=0.07×0.90=0.063KgMn+ Fe+ P=26.66+5.7+0.063=32.423Kg(Mn+ Fe+ P)合金名的百分比为:[100 -(6.5+1.5+1.0)]% =91.0%所以合金总量 =32.423/0.91=35.63Kg预计合金成份:Mn = 26.66/35.63 = 74.8%Fe = 5.7/35.63 = 16%P = 0.063/35.63 = 0.18%C = 6.5%Si = 1.5%其它 = 1%3、焦碳配入量计算:3.1 锰矿中锰的高价氧化物受热分解成Mn3O4 ,Mn3O4还原成MnO需碳量:Mn3O4 + C = 3MnO + CO43 × 12 / 165 = 3.12kg3.2 还原进入高碳锰铁和挥发的锰需碳量: MnO + C = Mn + CO43×(0.62+0.1) ×12/55 = 6.75kg3.3 氧化铁还原需碳量:FeO + C = Fe + CO6 × 0.95×12 / 56 = 1.22kg3.4 五氧化二磷还原需碳量:P2O5 + 5C = 2P + 5CO0.07×(0.9+0.02) ×5×12/(2×31)= 0.062kg3.5 二氧化硅还原需碳量:SiO2 + 2C = Si + 2CO9 × 28/60× 4% × 2 × 12/28 = 0.144kg3.6 高碳锰铁渗碳量:35.63×0.065 = 2.316kg3.7 总需碳量:3.12+6.75+1.22+0.062+0.144+2.316=13.612 kg焦碳的固定碳为82%,利用率为90%,需干焦碳为:13.612/(0.82×0.90)= 18.44kg4、配料比:锰矿:100kg(干),焦碳18.44kg(干,固定碳82%)。5、富锰渣成分计算:%5.1. 100kg锰矿产渣量:MnO:100×43%×28%×[(55+16)/55] = 15.54kgFeO:100×6%×5%×72/56] = 0.4kg锰矿中SiO2有96%进入炉渣中,MgO、Al2O3、CaO全部进入渣中:9×96% + 1 + 4 +3 = 16.64kg焦碳灰分全部进入渣中:18.44×15% = 2.77kg100kg锰矿产渣量:15.54+ 0.4+ 16.64+ 2.77= 35.35kg5.2 富锰渣成分:%Mn SiO2 FeO Cao MgO Al2O3 P34 28 1 8 3 11 0.015 5.3 炉渣三元碱度(8 + 3)/28 = 0.4注:炉渣流动性不好时可用白云石调整。5.4 渣铁比:100Kg锰矿生产35.63Kg高碳锰铁 (实重)和35.35Kg低磷富锰渣渣/铁 = 35.35/35.63≈16、生产1吨高碳锰铁消耗的原料:锰矿 - (100/35.63×74.8/65)×1000 = 2439Kg焦碳 - (18.44/35.63)×1000 = 517Kg (干基)高碳锰铁是什么如上述,更多信息请详见上海
有色
网