您所在的位置: 上海有色 > 有色金属产品库 > 碘化亚铅

碘化亚铅

抱歉!您想要的信息未找到。

碘化亚铅价格

更多
抱歉!您想要的信息未找到。

碘化亚铅厂家

更多

大连瑞源动力有限公司

天津市佰瑞得商贸有限公司

益阳市久通冶炼有限公司

优锦化工(上海)有限公司

碘化亚铅专区

更多
抱歉!您想要的信息未找到。

碘化亚铅百科

更多

碘化法回收金的原理

2019-02-14 10:39:39

I2-NaI-H2O系统。当碘溶于NaOH中时,发作下列反响:                            3I2+6Na0H ==== NaI03+5NaI+3H20    当碘过量时即构成钠--水系统。系统中过量的碘与很多的碘离子,生成安稳的多碘离子,存在下列动平衡:                                I2+I-+H20;←→I3-·H20                                    3I2+I-+H20 ←→I7-·H2O    金的溶解反响,就是根据多碘离子的氧化作用,构成Au(I)、Au(III)的络盐:                                2Au+I3-+I- ====2[AuI2]-                                2Au+I7-+I- ====2[AuI4]-    系统中的盐在金的溶蚀过程中起辅佐氧化作用。    溶于该系统中的金,可以用活性炭吸附、有机溶剂萃取、金属置换、复原剂复原、离子交换剂富集等办法提取。从简洁和经济方面考虑,运用锌、铁粉置换或饱满钠复原都能得到高的收回率,复原反响如下:                         2[AuI2]-+Zn- ==== [ZnI3]-+I-+2Au↓                          3[AuI2]-+Fe- ====[FeI4]-+2I-+3Au↓                     2[AuI2]-+SO32-+H20 ==== SO42-+ 4I-+2H++2Au↓    考虑碘的收回再利用,削减收回碘中金杂质,以运用钠复原为好。收回金今后的系统中的碘还可再生,其根据是在硫酸酸性溶液中,以氧化碘离子而分出碘:                            6I-+C103- +6H+ ==== 3I2+Cl- +3H20

碘化物法提金

2019-03-06 09:01:40

与氯和比较,对碘化物法浸出矿石中金的研讨相对较少,主要是由于碘的报价昂贵。但用于再生金资源的收回,如从含金的废电子组件中再生收回金,则是或许的潜在使用,由于碘的溶金速度比快10多倍。碘化物浸出液一般由I2-NaI、I2-KI或I2-IO3――I-系统组成,一般以为主要是I3-浸出金,金以AuI2-或AuI4-方式进入溶液,然后可用羟胺或钠等复原剂复原沉积收回金。碘的再生是在酸性溶液顶用或等氧化剂氧化碘离子而分出碘。国内曾实验用碘-钠--水系统,对废电子元器件上的金镀层进行溶蚀,以替代有毒的系统退镀液,获得较好的作用。

碘化法浸金工艺

2019-02-14 10:39:39

1)槽液配等到条件试验的挑选         ①槽液配比。参照薄膜电路出产蚀刻金导线所运用的每升含碘60g,含碘化钾200g的蚀刻液成分,换算成碘化法浸出金所运用的碘-钠--水系统的根底槽液中碘和的质量浓度:碘250g.L,50g/L,水1000 mL。         ②试验和试验成果。废镀件是在含金质量浓度25~28g/L的柠檬酸盐镀液中,电镀20min的薄膜固体电路(可代合金基)。在相同的温度,浸出同一批滚镀废金件,固定NaOH的质量浓度为50g/L,浸出5min,观察到另添加不同碘量发生的游离碘对浸出率的影响,成果表明:游离碘浓度添加,金的浸出速度和浸出率也添加,但超越100g/L时,浸出率反而有些下降,所以槽液中游离碘控制在80~100g/L为宜。        同样在固定游离碘质量浓度为80g/L时,观察到NaOH浓度直接影响到系统中的碘离子浓度。其量低时,系统中碘离子浓度也低,影响碘化金(I)溶解,也影响了金的浸出速度。其量高时,游离碘浓度也相应下降,影响金的氧化,阻碍金的溶解。归纳上述试验,选定碘240~280g/t、50~65gL为浸出液适合的浓度。        浸出时刻对浸出金的影响,一般跟着浸出时刻的延伸金的浸出率添加,本系统也不破例。但由于本系统运用于可代基镀金件收回金,浸出时刻只控制在将金镀层退净停止。金镀层除退后,假如废件在系统中停留时刻过长可代金基会遭到腐蚀,不只耗费系统中浸出剂并且会下降浸出率,也不利于可代金基体的返镀金;别的,在系统溶蚀金趋于饱满时,因退净金镀层的可代基体有复原碘金酸络合物中的Au(I)为单质金的才能,因而使可代基体表面失去光泽且粗糙,影响返镀金作用,所以浸出时刻一般在3~5 min即可。        2)浸出液中金的别离办法挑选        为了从碘-钠--水系统中,有效地提取金,选用铁、锌置换,钠复原,活性炭吸附,萃取,离子交换,复原等办法,大多到达高的收回率,从动态和静态数据分析,活性炭吸附、铁粉置换、钠复原等办法较好。其间铁粉置换与钠复原两种办法较有用,特别钠复原法,对从收回金后的系统中再生碘更有利,减少了很多铁离子对碘质量的影响。        3)碘的再生        碘化法收回金有必要考虑系统中碘的收回,由于碘的报价昂贵,每收回1 kg黄金,约用碘26 kg,价值千元。若系统中碘不再生,不只进步本钱,并且污染环境。碘的再生是在收回金今后的含碘溶液中进行的。以硫酸酸化至硫酸含量巧%,用粉状酸钾分次加入到酸化后的含碘溶液中,碘离子即被氧化而分出碘。的用量为含碘总量的20%。分出的碘,先以含硫酸的水溶液洗刷2~3次,再用清水洗至中性。所得再生碘,可从头参加配料持续运用。收回碘与新购的碘,制造的槽液作用相同。    4)碘化法收回金的运用    碘-钠--水系统可运用于可代合金基、镍基或镀镍底层上各种镀金废元器件上收回金,或上述不合格镀层的退除。此法替代现在大多数供应商仍运用的橄化钠一防染盐退镀液,还可运用在薄膜电路出产中的光刻工序进行金导带的蚀刻。运用本系统收回金的经济效益明显,其工艺流程如下图所示。[next]

碘化法提金概述

2019-02-21 13:56:29

Davis最近的电化学研讨标明H2O2不适于现场(insitu )发生I2,碘的溶金速度比快10多倍,溶金进程特别与浸液中的氧化剂I-浓度比值和pH有关 ,关于含硫化物矿的非包体金矿石,美国研讨了用电化学氧化的办法从中提金,首要设备是一种隔阂电解槽,硫化物如FeS2的效果是调理浸出系统中的I2/I-比值以便发生较高浓度的浸出金剂I3- 。    与氯、比较,碘化法浸出金研讨不多,因为人们沉着地注意到碘的报价昂扬,碘试剂潜在商场首要是含金工业废料如废电子元器件的金再生。浸液一般由I2-KI或I2-IO3--I-组成,公认的浸出金剂是I3,金以AuI2-或AuI4-方式进入溶液,金沉积可用羟胺、盐还原剂,碘再生用C12、Na2O2等氧化剂。据3вяшнцев介绍,用每升含碘20g,碘化钾40 g的水溶液浸出金处理,然后以齐方式从含金的碘化物溶液中,将金分离出来。美国专使用碘-碘化钾-双醇系统,从含金物猜中收回金。因为该法在工艺进程中,排放毒性很大、具有催泪效果的碘代酮气体而使使用受限制。    北京市贵金属化冶厂用碘-钠--水系统,对废电子元器件上的金镀层溶蚀。这种实用性的研讨,比起工业上很难将碘试剂用于处理矿石或精矿的研讨更实践。

金属锆的碘化精炼

2019-02-11 14:05:38

碘化精粹的首要反响如下,各有关参数及其影响见图1至图7,表1。表1  碘化精粹锆时杂质的搬运系数元素AlCCrFeHfN2NiSiTi搬运系数0.64~0.730.02~0.110.020.23~0.32510.003~0.0750.0060.121注:搬运系数=晶条锆中杂质含量/原猜中杂质含量。 四碘化锆ZrI4(ρ=4.36/m3)的蒸汽压(kPa)方程为:  (548~645K)  (646~678K) 离解反响ZrI4(g)=Zr+4I(g)平衡常数K=(pI)4/pZrI4为:  (1273~1583K)图1  Zr-I2系统各物质的分压与温度和总压的联系 ( ) a-P总=10Pa;b-P总=10-3Pa;c-P总=0.1MPa图2  不同温度下碘的分化率与压力的联系 1-600℃;2-800℃;3-1000℃;4-1200℃;5-1400℃图3  四碘化锆(1,3)和碘(2,4)的分压随总压的改变 1,2-1327℃;3,4-1427℃图4  平衡常数的对数与温度的联系曲线图5  开端生成低碘化锆时四碘化锆的蒸汽压和热丝温度图6  晶条的出产速率与温度的联系 (运用直径30.5cm的容器,长160cm的单发针型热丝,恒温池温度285℃)图7  锆的成长速度与固相(粗锆)温度的联系(曲线上的温度是热丝温度) 碘化精粹的工艺条件见表2。 表2  碘化精粹工艺条件堆积尺度直径0.61,长1.76,钼隔罩直径0.57内径0.229,长0.610,海绵锆罩直径0.178热丝开始尺度/mm直径2.4,长15000共6根,每根曲折成等长的发针型丝圈直径2.54总长2030直径2炉料136kgZr 2.5~3.5kgI29.07 kgZr 0.25 kgI21kg锆配50g碘1kg锆配50g碘粗锆温度/℃350340250~300300热丝温度/℃13001300~1400碘提高前真空度/kPa1.33×10-61.33×10-6热丝电压/V65~24533.0(始) 14.6(终)热丝电流/A160075.0(始) 800(终)终了热丝直径/mm25~30反响时间/h功率小于75kW时中止反响3230~4030~40结晶锆分量/kg532.8堆积速度/kg·h-10.4晶条锆典型分析/%Al=0.003 C=0.01 Ca<0.005 Cr=0.003 Cu=0.0005 Fe=0.02 H=0.002 Hf=0.004 Mg<0.001 Mn<0.001 Mo<0.001 N=0.001 Ni=0.003 O=0.02 Pb<0.001 Si=0.003 Sn<0.001 Ti=0.001Al=0.003 C=0.01 Ca<0.005 Cr=0.003 Cu<0.005 Fe=0.02 H=0.001 Hf=0.001 Mg<0.001 Mn<0.001 Mo<0.001 N=0.001 Ni=0.001 O=0.001 Pb<0.001 Si=0.003 Sn<0.001 Ti=0.001ZrI4热离解净化锆设备暗示图见图8。图8  ZrI4热离解净化锆设备暗示 1-多孔钼屏;2-粗锆;3-电极;4-纯锆丝;5-盛碘瓶

碘化提金方法及实验研究

2019-02-22 09:16:34

一、国外碘化提金研讨现状 (一)理论研讨  碘是一种氧化性很强的氧化剂。用碘作浸出剂和用作浸出剂的浸金进程应该是相同的,但碘化浸金的报道很少,更没有工业使用的实例。但据俄罗斯贵金属勘探研讨院对金的阴离子络合物[AX2](X为阴离子)的安稳性比较标明:CN->I->Br->Cl->NCS->NCO-,金的碘络合物强度比金-络合物差,但比、氯、硫、类酸盐的要强。而且同比较,碘是无剂,因而,研讨用碘一碘化物溶液从矿石中浸金是适宜的。 在卤素元素中,AuI2-络离子在水溶液中最安稳。碘能以较低的浓度从矿石中浸出金。 Marun等人使用Davis、Pourbaix和Latimer等人的热力学数据制作了Au-I-H20系统的Eh-pH联系图,提出在水的安稳性极限内金构成了2种安稳的络合物:AuI4-和AuI2-。其间AuI4-是最安稳的,2种络合物在整个pH范围内安稳,且碘浓度的改变影响不大,而当碘浓度下降,pH值较高时呈现金的氧化物种,金,碘络和区域变小。一起,与Au-Cl-H20系统、Au-Br-H20系统的Eh-pH联系图进行比较发现,无论是AuCl4-仍是AuBr4-在水安稳极限内仅仅很小的区域内安稳。由此可以说,AuI4-和AuI2-是进行热力学条件分析的最适合的卤化物。 Marun等人还依据Angelidis和Davis等人的研讨,核算了Au-I-I--H20系统首要反响的平衡常数,Davis等人经过对平衡系统的解说,发现了在不同碘、碘化物浓度下的最安稳物种。在pH<8,I2与I-的摩尔比为0.1或0.35时,最安稳的是I3-、AuI2和I-;在pH>10时,最安稳的是IO3-。假如I2与I-的摩尔比为0.5时,在pH<8时会构成不溶的碘化金,它会钝化金的表面、阻挠AuI2-的生成。因而,实践工作中应使I2与I-的摩尔比小于0.5。 (二)实验研讨  Marun等人进行了2个试样的碘化浸金实验研讨,他们的目标矿样分别为:A试样含Au为8.29g/t、Ag为5.0g/t、Cu为0.01%,首要缔合矿藏金、明矾石、赤铁矿、金、赤铁矿、黄铜矿-重晶石、金-硅、硫砷铜矿和金-硅-重晶石,在15nln时存在单体金;B试样为浮选精矿,含Au为57.69g/t、Ag为39.49g/t、Cu为0.15%,首要矿藏为黄铁矿、闪锌矿、方铅矿和黄铜矿,金与石英缔合,石墨为脉石。2个试样都磨到-0.074l砌粒级占95%。用碘和碘化钾试剂浸金。实验条件确定为:初始碘、碘化物摩尔比低于0.3,pH值3~5,标准反响时刻定为4h。文献没有给出金的浸出率数据,仅仅在和化浸出作比照时得出了化浸出的金浸出率高,浸出时刻长的定论。一起对浸出富液进行了金的电解堆积实验,金的堆积率90%以上,电流效率为0.12%~0.13%,并与碘和碘化物初始浓度根本无关。 Ce,Xenbnnxos F B等人用碘化物对乌拉尔一个矿山的含金氧化矿石进行了浸出研讨。矿石的化学组成如下(%):50.4 SiO2、15.8 Al2O3、16.4 Fe2O3、0.75 MnO、2.46 MgO、1.5 CaO、0.63 Na20、2.73 K20、0.21 C、0.03 S、0.08 As、3.5g/t Au、9.0其他,金根本上处于天然状况但粒度微细(0.01~0.03mill);用I2与I-的摩尔比为0.1的碘溶液溶金,pH在5.5~7.5之间,固液比1∶5最佳。反响平衡时金的回收率达95%,平衡速度比溶液浸金慢;电解堆积时,金的浓度越高,电解速度越快,金的最大堆积率可达95%(电解槽金浓度大于40mg/L时)。 二、作者对碘化提金的研讨 碘化浸金的研讨起步较晚,无论是理论研讨仍是浸金工艺研讨,都很不完善、很不系统。针对存在的问题,作者对碘化浸金理论与工艺进行了比较系统的研讨。  (一)理论研讨  作者经过热力学核算画出了实践浸金系统(有助氧化剂参加)Au-I-H2O的Eh-pH图,比国外文献中报道的Au-I-H2O系统Eh-pH图更完善、更具实用价值。一起画出了旨在调查是否有AuI沉积为意图的Au-I-H2O系统的Eh-pH图,研讨标明,碘、碘离子浓度很高时溶液中会呈现AuI沉积,但在正常浸金进程中,因为金的含量较低、碘离子和碘的浓度较低,溶液中不会呈现AuI沉积。 对碘化浸金动力学研讨时,推导出碘化浸金进程中金溶解的动力学公式,公式中反映出了金的溶解速度与I-、I3-、氧化剂浓度及拌和强度之间的联系,对碘化浸金实践有理论指导含义。 经过热力学核算对碘化浸金机理进行了分析,提出了碘化浸金进程中,I-和I3-有必要一起与金效果的观念,而且生成的金碘络离子的类型为AuI,一致了碘化浸金化学反响式和反响生成物。 对碘化浸金系统中杂质的反响行为进行了分析,指出,对化法浸出损害大的硫化矿藏、铜矿藏、锑矿藏和碳质矿藏,在碘化进程中,它们的损害要小得多,碘化法对矿藏品种的适应性强。 碘化进程中,只需氧化剂的氧化电位大于0.58V,就可以在金的碘化进程中,进步浸出速度和浸出率;推导出了反响能否顺利进行的平衡常数判据和反响自由能判据公式,并据此判别出作为碘化浸金进程的氧化剂,可以使反响顺利进行;分析了促进金溶解反响进行的原因是涣散均匀、涣散快,而且可以氧化其他矿藏,按捺耗试剂反响的进行。 (二)实验研讨  作者对贵州戈塘金矿碳质氧化矿样和碳质原生矿样进行了分选和碘化浸出工艺条件实验。该矿样中载金矿藏涣散,既有硫化物、氧化物、有机物载金,又有脉石矿藏载金,金的嵌布粒度极细。经过浮选实验证明,浮选精矿的金档次不能得到有用富集,尾矿档次没有显着下降,只能选用原矿宜接浸出或焙烧浸出。化直接浸出金的浸出率缺乏80%,用碘和碘化物(碘化钾、和碘化)溶液浸出,氧化矿样金的直接浸出率最高可达95%,均匀可达91%左右,高于化浸出时的75.70%。浸出时刻4h,液固比3∶l~5∶1,在常温条件下、中性和酸性矿浆中浸出。

碘化铝一次电池和染料敏化太阳能电池研制成功

2019-01-16 11:51:35

较近,中国科学院物理研究所纳米物理与器件实验室的孟庆波研究员、李泓副研究员与复旦大学傅正文教授合作,将碘化铝电解质应用于一次电池和染料敏化太阳能电池,取得了良好效果。他们发现,铝碘接触可以形成一种新型的原电池—铝碘电池。采用他们研究的单碘离子固体电解质证明,这种铝碘电池的工作原理基于碘离子传导。通常的Al基电池以及Li/I2电池均是基于阳离子的输运,这是靠前次单纯基于阴离子输运的电池体系被发现。Al基电池由于Al离子在表面膜的扩散较慢存在Al电极活性较低的缺点,传统的锂碘电池放电电流较小。新的基于碘离子固体电解质的铝碘电池放电速率高,而且具有成本低廉、环境友好的优点。该研究对于开发其它的基于阴离子传导的电池体系具有较好的启示作用。染料敏化太阳能电池中的电解质一般使用LiI等对水敏感的物质,因此无水条件的要求增加了电池制造的成本。另外,电解质中采用的腈类有机溶剂为有毒溶剂。如果长期使用,这些溶剂对环境和人类的健康都会产生不良影响,不利于这种太阳能电池的推广应用。在他们原有工作的基础上,以乙醇为溶剂,在大气环境下,通过在溶液中加入铝和碘原位反应制备了碘化铝电解质,将其直接应用于染料敏化太阳能电池,取得了5.9%的高光电转化效率。这种新型的碘化铝电解质具有成本低廉、制备容易、性能优良、环境友好等四大优点,为染料敏化太阳能电池电解质的研究开辟了新的途径。     电化学能量存储与转化器件的研究与开发,包括一次电池、二次电池、超级电容器、染料敏化太阳能电池、及燃料电池等,对缓解能源与环境危机、提高人类生活水平有着重要影响。环境友好、成本低廉、安全高效的电解质对电化学能量存储与能量转化器件的实际应用起着重要的推进作用。上述结果已申请三项国家发明专利,相关文章发表在较近出版的J. Am. Chem. Soc. (128, 8720-8721, 2006)期刊上。该项工作得到了“863”计划和中科院“百人计划”的支持。

非氰化浸出是黄金提取技术

2019-02-22 09:16:34

碘化提金化法呈现的100多年来,得到了极大的开展,在黄金工业中占控制位置。化提金工艺简略,适应性好,金收回率高,是这种办法长生不衰的首要原因。但下列的首要缺点一直伴随着化工艺:①浸金速度慢,浸出进程易受铜、铁、铅、锌、锑、碲、砷和硫等杂质的搅扰;②剧毒性,矿山环保费用大,对生态环境有害;③对细粒包裹金、高砷、高硫、含有机炭的难处理金矿石直接浸出效果很差,须经杂乱的预处理工序再选用化法或选用杂乱的强化浸出手法,有时提金效果仍不行满足。因而,研讨者们不断研讨非工艺和非浸出剂。非无毒无污染提金技能开发及运用,将成为今后攻关的要点。 一、非化提金技能的研讨进展 (一)浸金 20世纪40年代前苏联开端对浸金研讨以来,浸金成为最有期望代替化法的一种办法。(HzNCSNH2)是一种有机化合物,在酸性和有氧化剂存在的条件下,与金构成阳离子络和物,反响为:作为一种配位体和金属以离子键结合,可以经过其间氮原子的孤电子对或硫原子与金属离子挑选结合。在浸金进程中,可氧化成多种产品,先生成的是二硫甲脒,它可作为金银的挑选性氧化剂。假如溶液电位过高,二硫甲脒将会被进一步氧化成基、硫化和元素硫,所以运用浸金有必要严厉控制浸出液的电位。 据文献报道法国从1977年开端用法从锌焙砂中提取金银;墨西哥科罗拉多矿从1982年起选用法处理含金尾矿;澳大利亚新英格兰锑矿从1984年开端用法处理含金锑精矿;俄罗斯等国近年来也开端将法用于黄金出产中。我国研发的铁板置换工艺经屡次工业实验后,已在广西某矿经过国家判定转入工业出产。因而可以以为,提金新工艺已开端由研讨阶段进入工业出产阶段,其工艺进程也在日臻完善。 的特点是:①无毒性;②挑选性比好,对铜锌砷锑等元素的灵敏程度显着低于化法;③溶金速度快,比化浸出快4-5倍以上;④溶金在酸性介质中进行,它适用于已经过可发作酸的预处理的难浸矿藏浸出;⑤溶液中生成的金合作物在本质上是阳离子,适宜于用溶剂萃取法和离子交换法来。收回金。但报价昂贵,耗费量大(本身被氧化20%,80%被矿石吸附耗费),不如安稳,且因为在酸性介质中浸金,简单腐蚀设备。而且近年来有些材料将列为可疑的致癌物。因而可以肯定地说,法近期内还很难代替化法。 (二)卤素及其化合物法浸金 19世纪中叶,人们就开端用浸黄金,后因化法呈现后而停止运用。这种工艺自20世纪70年代始从头被人们注重起来,并开展了高温氯化蒸发焙烧法、电氯化浸出法等。氯化法提金的化学反响为:因为氯的活性很高,不存在金粒表面被钝化的问题,因而在给定的条件下,金的浸出速度很快,一般只需1~2 h。这种办法更适于处理碳质金矿、经酸洗过的含金矿石、含砷精矿等。 美国Freerport矿业公司的Jerrit Canyon选金厂选用空气氧化,氯化浸金法处理含砷的碳质金矿石,氯化时刻18 h,矿浆浓度55%左右,温度49~54℃,均匀耗量为17.5 kg/t,金浸出率达94%。 Newmont公司1988年改构成闪速氯化系统,进步6%的金提取率,并下降25%的耗费。 最近,秘鲁和法国报道了一种金的盐水浸出法新工艺,即用高浓度的NaCl作氧化剂,在溶液中发作元素氯。在水溶液的效果下后者就能很快溶解金。 美国研讨的名为炭氯浸的办法是将粗粒活性炭与碳质难浸金矿一同拌和。在酸性条件下与矿浆效果。金溶解为金氯合作物,然后在炭粒表面还原成金属金。浸出完成后,载金炭从细磨矿浆中筛出,进行金收回处理。该法的特点是:难浸矿石的预处理、浸出与收回金在同一系统中进行。美国还创造晰一种与之附近的办法,选用氯化物浸出、离子交换树脂提金,适用于处理碳质矿石或碳质矿与氧化矿的混合矿石。 南非投产了一座大型水氯化法处理重选金精矿实验厂,精矿在800℃下氧化焙烧脱硫,焙砂在通气的溶液中浸出,金的浸出率高达99%。 北京矿冶研讨总院对从贵州苗龙砷、锑、硫、碳含量较高的细粒嵌布金矿石中所得的含Au为65g/t的浮选金精矿,焙烧脱除杂质后的焙砂选用水氯化法浸出,金浸出率达91.48%,浸出时刻仅为化浸出时的5%。 用及其化合物作为浸金试剂同用氯相同,因为卤素变为卤离子时氧化电位高,足以溶解金,而且卤离子(x-)是Au+和Au3+的强配位体,从热力学上来说,有利于浸金反响的发作。 早在1881年Shaff就宣布了用提金工艺的专利,但直到近10年因为环保和矿石性质改变等原因,才开端从头进行仔细的研讨。 1990年前后,加拿大和澳大利亚等国相继宣布了许多文章,声称要以生物浸出-D法和K-法等化浸出法与化浸出法相抗衡,着重这些新办法具有不污染环境的长处。 在生物浸出-D法中,选用了一种称之为Bio-D的浸出剂,它是一种由化钠与氧化剂装备的浸出剂,可用来浸出贵金属,对密度较大金属的亲和力大于对密度较小的金属,可用于弱酸性至中性溶液中,其稀溶液无毒,试剂易再生,并具有生物降解效果,大都矿石浸出2.5 h浸出率就可到达90%。但因在反响进程中会有相当多的蒸汽由溶液中逸出,这样不只增加了试剂耗费,而且还会构成严峻的腐蚀和健康问题,故现在仍处于实验室与半工业实验阶段。 K-浸出法是由澳大利亚Kalias公司创造的,本质是运用一种选用化物作浸出剂的新工艺,可在中性条件下从矿石中浸金,但现在仍处于开发实验阶段,工业上推行运用尚有必定困难。 另据报道,美国亚利桑那州的Bahamian精粹公司于1987年开发了一种浸出金银矿石的新办法,用于代替化法。运用的浸出剂本质上就是化钠和卤素。它除了具有浸出速度快的长处外,还能在较低的温度下浸出。 化法提金工艺的长处可概括为:浸出速度快、无毒、对pH改变的适应性强、环保设备费用低。对难浸金矿处理时,因为能在酸性介质中溶解金,所以在加压氧化后可将直接加人矿浆中,省去了预先中和处理工序。 (三)硫代硫酸盐提金 硫代硫酸盐一般为硫代硫酸的钠盐和铵盐,它们报价便宜,浸金速度快,无毒,对杂质不灵敏,浸金目标高。 巴格达萨良等人对硫代硫酸钠溶液溶金动力学研讨标明,温度在45~85℃范围内,金的溶解速度与温度呈直线联系,但为了防止硫代硫酸盐剧烈分化,浸出温度应控制在65.75℃。罗杰日科夫等人用含和氧化剂的硫代硫酸盐溶液从矿石中浸金的动力学研讨中得出另一种定论,即只需在热压浸出器中较高的温度条件下(130~140℃),才干到达满足的速度和收回率。卡科夫斯基等人还发现,铜离子对硫代硫酸盐溶金有催化效果,可使金的溶解速度进步17~19倍。我国的姜涛、曹昌琳等人对硫代硫酸盐提金的机理进行了较为具体的研讨。 但因为硫代硫酸盐法要求得太高,且硫代硫酸盐化学上不安稳,此法至今未得到推行运用。 (四)多硫化物法浸金 多流螯合离子对金离子有很强的络合才能,在适宜氧化剂的合作下,或许借助于多硫离子本身的岐化,多硫化合物能有用地溶解金。假如浸出进程能发作元素硫,硫化物也能浸金,因为硫化物和元素硫很简单转化为多硫化物。多硫化物一般有多、多硫化钙、多硫化铵等,它们适用于含砷、锑的含金硫化精矿的处理。多硫化物的特点是挑选性强,浸出速度快,几个小时为一个浸出周期,浸出率高,也适用于低档次金矿石。 多硫化物浸金进程(以多硫化铵为例),是将40%的,在常温下浸出1~24h,金以NH4AuS的办法进入溶液,锑以(NH4)2SbS3的办法进入溶液,砷固定在渣中,然后用活性炭从溶液中收回金。溶液热分化生成Sb2S3和硫,放出气和气体,并与进步硫一道再生为多硫化铵。此法金的浸出率达80%~99%,得到的含砷只需0.07%。 我国龙炳清等人进行过用多硫化物浸金的研讨。张箭等人研讨了石硫合剂,本质就是多硫化物和硫代硫酸盐的混合体,他们以为,运用石硫合剂,金银浸出率可别离到达96%、80%以上,金浸出周期为惯例化法的1/8~1/2。 多硫化物法的首要缺点是本身的热安稳性差,分化发作和气,恶化出产环境,工业出产时对设备的密闭功能要求严厉。 (五)其它非试剂浸金 其它非浸金试剂首要有基酸类、类化合物和腐植酸类等。 基酸类分子的特点是分子中含有氮氧两个配位原子,从热力学上看,它们可以与金构成有利的可溶螯合络合物,因而可以作为浸金试剂。基酸浸金也有必要在适宜的氧化剂存在的条件下进行。一般情况下基酸浸金的最好氧化剂是,它可以使基酸部分氧化为胺类化合物,而且损坏阻挠金溶解的碳水化合物。基酸浸金的浓度有必要高于5g/L,的最佳浓度为2~4g/L,最佳的pH值、温度、矿浆浓度别离为9~10.5、90~95℃、20%~25%。 类化合物药剂有、、硫、基酸钙等。这些药剂的毒性比要小,虽如此,人们对这类药剂研讨得不多,在我国根本无人研讨。 腐植酸类浸金试剂来历广泛,报价便宜,一般在pH值为10以上的碱性条件,在有氧化剂存在的条件下,浸金液中金浓度可达10mg/L。经磺化或硝化后的改性腐植酸比天然腐植酸的浸金容量高15~16倍,金浸出率可达87%。此法研讨的人尽管不多,但不失为一种经济的浸金办法之一。 二、碘化提金办法及实验研讨 (一)国外碘化提金研讨现状 1、理论研讨  碘是一种氧化性很强的氧化剂。用碘作浸出剂和用作浸出剂的浸金进程应该是相同的,但碘化浸金的报道很少,更没有工业运用的实例。但据俄罗斯贵金属勘探研讨院对金的阴离子络合物[AX2](X为阴离子)的安稳性比较标明:CN->I->Br->Cl->NCS->NCO-,金的碘络合物强度比金-络合物差,但比、氯、硫、类酸盐的要强。而且同比较,碘是无剂,因而,研讨用碘一碘化物溶液从矿石中浸金是适宜的。 在卤素元素中,AuI2-络离子在水溶液中最安稳。碘能以较低的浓度从矿石中浸出金。 Marun等人运用Davis、Pourbaix和Latimer等人的热力学数据制作了Au-I-H20系统的Eh-pH联系图,提出在水的安稳性极限内金构成了2种安稳的络合物:AuI4-和AuI2-。其间AuI4-是最安稳的,2种络合物在整个pH范围内安稳,且碘浓度的改变影响不大,而当碘浓度下降,pH值较高时呈现金的氧化物种,金,碘络和区域变小。一起,与Au-Cl-H20系统、Au-Br-H20系统的Eh-pH联系图进行比较发现,无论是AuCl4-仍是AuBr4-在水安稳极限内仅仅很小的区域内安稳。由此可以说,AuI4-和AuI2-是进行热力学条件分析的最适宜的卤化物。Marun等人还依据Angelidis和Davis等人的研讨,核算了Au-I-I--H20系统首要反响的平衡常数 Davis等人经过对平衡系统的解说,发现了在不同碘、碘化物浓度下的最安稳物种。在pH<8,I2与I-的摩尔比为0.1或0.35时,最安稳的是I3-、AuI2和I-;在pH>10时,最安稳的是IO3-。假如I2与I-的摩尔比为0.5时,在pH<8时会构成不溶的碘化金,它会钝化金的表面、阻挠AuI2-的生成。因而,实践工作中应使I2与I-的摩尔比小于0.5。 2、实验研讨  Marun等人进行了2个试样的碘化浸金实验研讨,他们的目标矿样别离为:A试样含Au为8.29g/t、Ag为5.0g/t、Cu为0.01%,首要缔合矿藏金、明矾石、赤铁矿、金、赤铁矿、黄铜矿-重晶石、金-硅、硫砷铜矿和金-硅-重晶石,在15nln时存在单体金;B试样为浮选精矿,含Au为57.69g/t、Ag为39.49g/t、Cu为0.15%,首要矿藏为黄铁矿、闪锌矿、方铅矿和黄铜矿,金与石英缔合,石墨为脉石。2个试样都磨到-0.074l砌粒级占95%。用碘和碘化钾试剂浸金。实验条件断定为:初始碘、碘化物摩尔比低于0.3,pH值3~5,标准反响时刻定为4h。文献没有给出金的浸出率数据,仅仅在和化浸出作比照时得出了化浸出的金浸出率高,浸出时刻长的定论。一起对浸出富液进行了金的电解堆积实验,金的堆积率90%以上,电流效率为0.12%~0.13%,并与碘和碘化物初始浓度根本无关。 Ce,Xenbnnxos F B等人用碘化物对乌拉尔一个矿山的含金氧化矿石进行了浸出研讨。矿石的化学组成如下(%):50.4 SiO2、15.8 Al2O3、16.4 Fe2O3、0.75 MnO、2.46 MgO、1.5 CaO、0.63 Na20、2.73 K20、0.21 C、0.03 S、0.08 As、3.5g/t Au、9.0其他,金根本上处于天然状况但粒度微细(0.01~0.03mill);用I2与I-的摩尔比为0.1的碘溶液溶金,pH在5.5~7.5之间,固液比1∶5最佳。反响平衡时金的收回率达95%,平衡速度比溶液浸金慢;电解堆积时,金的浓度越高,电解速度越快,金的最大堆积率可达95%(电解槽金浓度大于40mg/L时)。 (二)作者对碘化提金的研讨 碘化浸金的研讨起步较晚,无论是理论研讨仍是浸金工艺研讨,都很不完善、很不系统。针对存在的问题,作者对碘化浸金理论与工艺进行了比较系统的研讨。1、理论研讨  作者经过热力学核算画出了实践浸金系统(有助氧化剂参加)Au-I-H2O的Eh-pH图,比国外文献中报道的Au-I-H2O系统Eh-pH图更完善、更具实用价值。一起画出了旨在调查是否有AuI堆积为意图的Au-I-H2O系统的Eh-pH图,研讨标明,碘、碘离子浓度很高时溶液中会呈现AuI堆积,但在正常浸金进程中,因为金的含量较低、碘离子和碘的浓度较低,溶液中不会呈现AuI堆积。 对碘化浸金动力学研讨时,推导出碘化浸金进程中金溶解的动力学公式,公式中反映出了金的溶解速度与I-、I3-、氧化剂浓度及拌和强度之间的联系,对碘化浸金实践有理论指导含义。经过热力学核算对碘化浸金机理进行了分析,提出了碘化浸金进程中,I-和I3-有必要一起与金效果的观念,而且生成的金碘络离子的类型为AuI,一致了碘化浸金化学反响式和反响生成物。 对碘化浸金系统中杂质的反响行为进行了分析,指出,对化法浸出损害大的硫化矿藏、铜矿藏、锑矿藏和碳质矿藏,在碘化进程中,它们的损害要小得多,碘化法对矿藏品种的适应性强。 碘化进程中,只需氧化剂的氧化电位大于0.58V,就可以在金的碘化进程中,进步浸出速度和浸出率;推导出了反响能否顺利进行的平衡常数判据和反响自由能判据公式,并据此判别出作为碘化浸金进程的氧化剂,可以使反响顺利进行;分析了促进金溶解反响进行的原因是涣散均匀、涣散快,而且可以氧化其他矿藏,按捺耗试剂反响的进行。 2、实验研讨  作者对贵州戈塘金矿碳质氧化矿样和碳质原生矿样进行了分选和碘化浸出工艺条件实验。该矿样中载金矿藏涣散,既有硫化物、氧化物、有机物载金,又有脉石矿藏载金,金的嵌布粒度极细。经过浮选实验证明,浮选精矿的金档次不能得到有用富集,尾矿档次没有显着下降,只能选用原矿宜接浸出或焙烧浸出。化直接浸出金的浸出率缺乏80%,用碘和碘化物(碘化钾、和碘化)溶液浸出,氧化矿样金的直接浸出率最高可达95%,均匀可达91%左右,高于化浸出时的75.70%。浸出时刻4h,液固比3∶l~5∶1,在常温条件下、中性和酸性矿浆中浸出。 含碳原生矿直接浸出时金的浸出率78%左右,目标不能满足要求。经过实验和核算,断定了650℃的焙烧温度,焙烧后浸出,浸出率到达92%以上,比原矿直接浸出时高出近15%,到达了焙烧处理的意图。相同温度焙烧用化法浸出,浸出率为89.16%。最佳浸出时刻4h,在常温条件下的酸性、弱酸性矿浆中浸出。 经理论分析和实验研讨标明,从碘化浸出贵液中收回金,锌置换法理论上是可行的,但锌的耗量要大于化系统耗锌。用椰壳碳吸附的办法,金的吸附收回率可达93%以上。金的初始浓度应大于40mg/L,金的电解堆积收回率可以到达95%以上,但金浓度低时(<40mg/L),一步电解金的收回率较低。用SO2、NaI-ISO3、Na2SO5等酸性还原剂可以把溶液中的金碘络合物还原成单体金。碘化浸金抱负的金收回办法为:活性炭吸附一解吸液电解。 三、结语 金的非化浸出是黄金提取技能的开展趋势,世界上许多学者都在积极探究金的非浸出剂。现在,比较有出路的浸出剂有、和碘等,但还有待于进一步完善,尤其是进行工业实验研讨。经不断研讨、探究,必定可以找出环保型的黄金浸出剂和适于工业运用的非提金办法。

铷和铯金属及其化合物的用途

2019-02-18 15:19:33

1926年还没有实质性的工业用处。在此之后,被用作电子管的吸气剂,后来首要用于制作光电池和其他光敏元件。直到上世纪七十年代末,的有限产值中的大部分是用于热离子功率转化,磁流体动力和离子发动机推动器的研讨,盐在化学工业、石油化工和生物工程中的用处正在添加。 和的优异光电特性及其化学生动性,在各技能范畴里有着共同的用处,非其他金属元素所能替代。现在,和绝大部分被用于开发研讨范畴。和共同的光电特性被用作制作光电管和光电倍增管的光电阴极材料。广泛用于光电仪器和电子射线仪器中,用于出产过程的自动控制、光度学、光谱测量、电影、电视、雷达及无线电传真技能、激光技能等方面,具有光波规模广,灵敏度高且安稳等特色。如电视技能中的低压电子束摄像管,都选用阴极。和又是红外技能的必需材料,可制作红外线滤光器、辐射能接受器、电子-光学变换器等,是瞄准望远镜,侦查望远镜、夜视仪、红外检测仪、红外通讯、红外照相和防火防盗等电子仪器的重要组件。辐射能的振动频率具有长期的安稳性,可用作频率和时刻的标准。其误差可小于每300年5秒,现在,原子钟已广泛用于通讯、运送,军事和宇航上。和还能够用于电光源、激光技能、荧光物质和电源等方面。 、的氧化物用作催化剂,氯化物和化物用于出产金属,化物和碘化物用作光学晶体,氢氧化物用于碱性蓄电池电解质和重油脱硫,硝酸盐用干微波发射器,碳酸盐用于开环磁流发电,碘化物用作荧光物质,氯化物还作为密度梯度介质在超速离心机中,别离过滤病毒、核糖核酸和其他大分子物质。在催化剂方面,和的化学活性高,电离电位低,能改动主催化剂的表面性质,使催化剂具有更好的活性、选择性、安稳性,并能延伸使用寿命,避免催化剂中毒。现在,已广泛使用于组成、硫酸组成、氢化、氧化、聚合等催化组成反响中。如组成顶用含钾、的催化剂、出产甲基酸树脂时用作催化剂。 在医药上,、盐类可用来出产安眠药、镇静剂及治疗癫痫病等药剂。用、放射性同位素符号体系来确诊肿瘤,尤其是对脑和其他部位安排的作用非常好。放射性在医药实验中可作为“符号”元从来盯梢血液活动。 此外,在光学纤维和纤维质透镜用的多成分玻璃中,用作光折射调整剂;碘化物作固体电解质,具有程大的离子导电率,用它可作成大容量、大电流放电的固体电解质电池组,变现电子组件的小型化与薄膜化;和及其混合金属或合金,在有色和黑色冶金或合金冶炼中作脱气剌和精粹剂;和的磷酸盐、盐单晶,可作为铣电体,压电体材料;和的盐、硼氢化物,可用作高能固体燃料;和钠、锂合金,可用作运载核动力体系的作业流体;碘化或参加硫化锌基底中作成的荧光屏,能够增强光亮度:激活的碘化晶体已用于制作闪耀计数器;钠激活的碘化具有比其他卤化物更大的X射线阻挠才能,已用于制作X射线印象增强管,用于医用X射线机,具有很高的分辨率、强度和安稳性,且折光率很低。现在,正在研讨它们在磁流体发电、热电转化器和离子火箭推动引擎等新的能量转化范畴中的使用。

非氰提金方法有哪些

2019-03-07 09:03:45

法是提取金银矿石和物料的最常见和最安稳的办法,可是,也存在着浸出时刻(浸出周期)长(堆浸一周至一年、拌和浸出为24~72小时),对有机碳、锑、砷、铜、锌等有害元素适当灵敏,然后引起金、银浸出率的明显下降、生产成本大幅度进步的缺陷,特别是该法有剧毒,对环境危害适当大。因而,怎么进步金、银浸出率,下降成本,找到替代剧毒的无毒或毒性较小的新技术和新工艺是一个重要的研讨课题。 非化法浸出剂有、氧气、、碘、、硫代酸盐、石硫合剂等。 (1)法该法在酸性条件下溶金速度快、无毒性、挑选性比好,对贱金属杂质不灵敏,在处理一些含金物料,例如阳极泥、含金铀矿酸浸和硫酸烧渣等有必定的优越性,但药剂耗量高,浸出设备易腐蚀、缺少从溶液中收回金的有用办法。 1997年,有人发现钠可以在必定程度上按捺碱性的不可逆分化,促进金的溶解,可以实现从含金废料中挑选行溶金;以为硅酸钠是碱性提金的高效安稳剂。 (2)卤素及其卤盐法该法所选用的试剂主要是氯、、碘、氯盐、碘化物、化物等,例如,、次氯酸盐、氯盐法、K试剂、Geobrom3400、Bio-D试剂等氧化剂。氯在浸出过程中既作为氧化剂,又作为络合剂生成AuCl32-,卤离子(X-)是Au+和Au2+的强配位体,氯化浸出法适合于处理含砷碳物质金矿石、锑烧渣、重选金精矿、含砷黄铁矿金矿石等。 化法是替代化法提金最有出路的浸出工艺之一,其长处是报价便宜,浸出率高,浸出速度快,无毒,无腐蚀,药剂可循环运用,从贵液中收回金便利等。国外研讨碘化物法较多,运用碘-碘化物溶液浸出可以获得比法跟高的金浸出率,从碘-碘化物中直接电积金也是或许的。 (3)腈化物法该法选用(又称酰基腈)、基乙酰胺和三种腈化物提取金。在处理碳质金矿石时,腈化物金浸出率远高于化法。在处理氧化矿石和硫化矿石时,其金浸出率与浸出相同有用,可是其报价较高。 (4)生物制剂法即微生物可以浸出金,它与微生物细胞成分蛋白质、微生物的代谢产品基酸(甘酸、组酸、天冬酸等)有关。蛋白质和金构成带负电的复合物,这种复合物通过基酸基团的氮原子衔接,生成安稳的金络合物。 (5)煤金聚会法该法是运用浮选药剂改进金颗粒表面的疏水性特征,通过拌和过程中的磕碰效果,使疏水的金粒进入聚会体中。载金聚会体通过次循环、富集和灰化,所得焙灰通过熔炼或许其他办法处理得到制品金。 (6)多硫化物法和石硫合剂法该法选用和石灰反响生成的试剂浸出金银,多硫螯合离子有S22-、S32-、S42-、S52-等,它们对金离子有很强的络合才能,在适宜的氧化剂(例如等)合作下,或许借助于多硫离子的歧化,可以有用地溶解金银。 (7)其他办法 其他办法有腐殖酸法、FM复原试剂法、硫代硫酸盐法等。  (8)目前市场上有一些无毒类的新式浸出药剂,未来将是发展方向。