生铁的分类
2018-05-11 20:12:17
钢铁材料通常是指铁碳合金,按含碳量的大小分类,含碳量(质量分数)大于2%的为生铁,小于2%的为钢,含碳量(质量分数)小于0.04%的为工业纯铁。1.生铁的分类(见表1.1)表1-1生铁的分类分类方法 分类名称 说 明1.按用途分 (1)炼钢生铁 炼钢生铁是指用于平炉、转炉炼钢的生铁,一般含硅量较低(不大于1.75%),含硫量较高(不大于0.07%),质硬而脆,断口呈白色,也称白口铁(2)铸造生铁 铸造生铁是指用于铸造各种生铁铸件的生铁,一般含硅量较高(达3.75%),含硫量稍低(不大于0.06%),断口呈灰色,也称灰口铁2.按化学成分分 (1)普通生铁 普通生铁是指不含其他合金元素的生铁,如炼钢生铁、铸造生铁均属此类(2)特种生铁 1)天然合金生铁——用含有共生金属的铁矿石或精矿、用还原剂还原而制成的一种特殊生铁,可用来炼钢及铸造2)铁合金——在炼铁时特意加入其他成分的元素,炼成含有多种合金元素的特种生铁,其品种较多,如锰铁、硅铁、铬铁等,是炼钢的原料之一,也可用于铸造 注:成分含量皆指质量分数。
炼钢工艺过程
2019-01-08 09:52:30
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣-金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
转炉炼钢新技术
2019-03-04 16:12:50
一、顶底复合吹炼技能
(一)顶底复合吹炼法可分为三类
顶吹氧、底吹惰性气体法,全世界广泛选用此法。
顶底复合吹氧法,日本和欧洲多为选用。
顶底吹氧、喷吹法燃料法,适宜100%废钢。
(二)工艺特色
1、反响速度快、热效率高,可完成炉内二次焚烧。
2、碳氧反响更趋平稳:当吹炼结尾[C]=0.04%时,无复吹的结尾[O]约为900×10-6左右。阐明钢渣的氧化性大为下降,吹炼残Mn明显进步,合金收得率明显进步。
3、吹炼后期强化熔池拌和,使钢-渣反响挨衡,利于脱磷脱硫反响的进行。
4、坚持顶吹转炉成渣速度快和底吹转炉吹炼平稳的两层长处。
5、冶炼低碳钢(C=0.01%~0.02%)时,避免了钢渣过氧化。
(三)复吹转炉的经济效益
1、渣中含铁量下降2.5%~5.0%。
2、金属收得率进步0.5%~1.5%,残Mn进步0.02%~0.06%。
3、磷含量下降0.002%。
4、石灰耗费下降3kg/t~10 kg/t,氧气耗费削减4Nm3/t~6 Nm3/t。
5、进步炉龄,削减耐火材料耗费,归纳经济效益约为6~15元/吨。
二、溅渣护炉技能
溅渣护炉技能是使用高MgO含量的炉渣,用高压氮气将炉渣喷吹到转炉炉衬上,进而凝结到炉衬上,减缓炉衬砖的腐蚀速度,然后进步转炉的炉龄。
(一)技能关键
1、炉内合理的留渣量,一般操控在80~120 kg/t较适宜。
2、炉渣特性操控:
终渣MgO≥8%为宜(特别对镁碳砖转炉)。
FeO取12%~18%为宜。
适宜的炉渣粘度:易溅起、挂渣、均匀又避免炉底上涨、炉膛变形。
3、溅渣操作参数操控
N2气压力与流量与氧气压力、流量相挨近时,作用较好。位高度要根据厂商实践探索,可在1~2.5m之间改变。
溅渣时刻一般为2.5~4min。位夹角大都厂商的实践证明12°比较抱负。
(二)溅渣护炉的经济效益
1、进步炉龄3~4倍以上。
2、进步转炉使用系数2%~4%。
3、下降炉衬砖耗费0.2~1.0kg/t,下降补炉料耗费0.5~1.0 kg/t。
4、减轻工人劳动强度。
5、出资回报率高。我国62座转炉测算出资回收期为1.3年。溅渣护炉的归纳经济效益大约为2~10元/t钢。
(三)溅渣护炉与复吹转炉的联系
关于选用溅渣护炉与复吹冶炼并存的转炉,跟着溅渣后炉龄的进步,炉底相应上涨,影响了底吹透气砖的作业,此刻,底吹透气砖的寿数约为3000炉,这意味着从3000炉今后,复吹作用大大削弱,乃至消失。而溅渣护炉的炉龄远远大于3000炉(现在达2万多炉)。这就是一向重视高纯洁钢,遍及选用复吹技能的日本不愿意选用溅渣护炉技能的原因。现在,炼钢作业者正尽力开发底吹喷嘴长命技能,关键如下:
1、使用底吹喷嘴前蘑菇头的成长和操控技能,完成喷嘴长命化。
2、炉役前期,使用粘渣、挂渣和溅渣敏捷在喷嘴前端生成透气蘑菇头,避免喷嘴烧损。
3、炉役中后期留意操控蘑菇头高度,避免阻塞。
4、对阻塞喷嘴选用复通技能。
铝用磷生铁脱硫方法
2019-02-28 10:19:46
项目研讨磷生铁脱硫机理,研讨适用于阳极浇注用磷生铁脱硫的脱硫剂和脱硫工艺技术条件,以到达既可防止脱硫剂对炉衬的较大危害,又可确保取得较好的脱硫作用的意图。本项目首要经过对磷生铁增加纯铁粉、CaO、对脱硫的影响研讨,开发创新出感应炉熔炼磷生铁的脱硫剂及脱硫工艺,使高硫回炉铁得到循环运用。研讨结果表明: 1、铝用磷生铁脱硫,可运用脱硫; 2、硫的脱除率达60%以上,磷生铁中硫含量可由0。25%下降至0。15%以下; 3、可削减磷生铁中硫含量,改进磷生铁的活动功能和浇注作用,降低了阳极铁碳压降,节省电耗; 4、可减小脱硫剂对感应炉内衬的损伤,较好地将脱硅和维护内衬结合起来。 该效果已在本公司得到使用,年节省原材料费用达17万元,降低了厂商生产成本,产生了杰出的经济效益。
生铁中硅的快速分析
2019-02-15 16:44:47
1 前 言 硅在生铁中首要以固溶体存在,其方式为FeSi、Fe2Si或FeMnSi。它是断定生铁规格牌号的首要目标,也是断定高炉炉温情况的首要依据。硅的精确测定,对及时精确地辅导高炉出产和产品规格的精确断定都具有重要的含义。 生铁中硅的测定办法首要有分量法、容量法和光度法,前两种因其操作烦琐,出产分析中运用的较少。光度法中,具有代表性的分析法有硅钼黄和硅钼蓝两种光度法[1~3]。 其间硅钼黄法因其灵敏度和选择性较差等原因很少运用,硅钼蓝光度法实践使用中亦有差异,首要在于低硅选用稀硝酸分化试样,高硅(Si≥1.5%)选用非氧化性酸(稀硫酸)分化试样。该法的缺陷是,在不知硅含量在何规模时无法正确选取溶解酸来进行测定。 经过很多实验对生铁中硅的测定办法进行改善,选用稀H2SO4—HNO3的混合酸对低硅和高硅选用相同的办法进行测定,克服了上述缺陷,办法的灵敏度(摩尔吸光系数)ε720到达1.31×103L/mol•cm,精确度、精密度均杰出。2 实验部分2.1 原理 试样经稀酸(硫酸—硝酸混合酸)溶解,用氧化偏硅酸为正硅酸,并损坏碳化物,然后在恰当的酸度下参加钼酸铵,与硅酸生成硅钼杂多酸,并用草酸配位铁,使溶液通明并损坏磷、砷等与钼酸铵生成的杂多酸,消除其搅扰,用硫酸亚铁铵还原为钼蓝。用光度计测定。2.2 仪器和试剂 721分光光度计 溶解酸(硫、硝混酸):将硫酸(比重1.84g/mL)50mL缓缓注入950mL水中,冷却后加硝酸(比重1.42)8mL。 :饱合。 亚:3%。 钼酸铵:5%,称5g钼酸铵溶于100mL水中加浓2~3滴。 草酸:5%。 硫酸亚铁铵:6%,称6g硫酸亚铁铵溶于100mL水中,加浓硫酸1mL。2.3 操作过程 称取试样0.0800g于100mL钢铁量瓶中加溶解酸20mL,低温加热溶解后(溶解试样时温度不宜过高,时刻不宜过长,必要时可增加少数水,以防止硅酸脱水。),滴加至安稳的赤色,煮沸30s,滴加亚至溶液清亮,微沸1min,取下,流水冷却至室温,用水稀至刻度,摇匀。 汲取上部清液10mL于250mL的锥形瓶中,由滴定管精确参加钼酸铵5mL摇匀后,水浴加热30s,当即参加草酸10mL,水60mL(二者可在操作前混合一同参加)待溶液清亮后,当即参加硫酸亚铁铵4mL摇匀静置1min后,用1cm比色皿(吸光度大于0.8时用0.5cm比色皿),用水为参比,在720nm波长下测其吸光度,从作业曲线上查得其含量。2.4 作业曲线的制作 低硅和高硅别离取4~5个不同含硅量的生铁标样以相同操作过程显色制作。3 成果评论3.1 搅扰元素的消除 磷、砷为首要搅扰元素,硅钼酸在较低的酸度下构成后具有较高的安稳性,在其生成硅钼杂多酸后,参加络合剂草酸,因为磷、砷络离子系五价络离子,比较不安稳,敏捷分化,借以消除搅扰。虽然硅系4价络合比较安稳,但草酸仍能缓慢分化硅钼黄。因而,在实践操作中,在溶液清亮后当即参加亚铁防止分化。3.2 精确度实验 精确度实验成果如表1所示。 由表1可知,该办法测定成果相对差错的绝对值均小于1.00%,其绝对差错均大大小于国标GB223—81规则的答应差错规模,成果牢靠。3.3 精密度实验精密度实验如表2所示。 由表2可知,该办法测定的标准偏差均小于0.014%,变异系数小于1.2%,精密度杰出。3.4 安稳性实验 安稳性实验如表3所示。 由表3可知,该办法测定的成果均可安稳在10min以内不改变,成果安稳性杰出。4 结束语 综上所述,所提出的生铁中硅的分析办法,其精确度、精密度均杰出,更重要的是处理了原办法中对高硅和低硅需选用不同办法的对立,完成了低硅和高硅测定办法的共同。
稀土在炼钢中的应用
2019-01-04 15:16:46
稀土在钢中的应用有近30年的历史,经过对稀土金属在钢中作用规律和机理的研究,搞清楚了稀土在钢中的作用;通过添加工艺方法的实验研究,掌握了稀土加入的工艺条件、添加稀土金属的品种和加入量。至八十年代末期,稀土在钢中的应用已没有技术方面的障碍。我国稀土钢产量从1985年的11万吨增长到1997年的近60万吨,品种80多个。仅武钢一家,“八五”期间就生产了160万吨稀土钢,创造经济效益3.2亿元,社会效益18.3亿元,节约外汇5000万美元。
稀土加入钢中,可起到脱氧、脱硫、改变夹杂物形态等净化和变质作用,在某些钢中还能有微合金化的作用,稀土能够提高钢的抗氧化能力,高温强度和塑性、疲劳寿命、耐腐蚀性及抗裂性等。
稀土加入钢中的主要作用:
净化作用:钢中加入稀土,可以置换钢中可能生成的硫化锰、氧化铝和硅铝酸盐夹杂物中的氧与硫,形成稀土化合物。这些化合物中有部分从钢液中上浮进入渣中,从而使钢液中的夹杂物减少,钢液得到净化,这就是稀土对钢的净化作用。
细化组织:由于稀土在钢中同夹杂物反应生成的稀土化合物熔点较高,在钢液凝固前析出,这些细小的质点,可作为非均质形核中心,降低结晶过程的过冷度,因此,不但可以减少偏析还可细化钢的凝固组织。
对夹杂物的形态控制:钢中加入稀土后,硫化锰将被在高温塑性变形能力较小的稀土氧化物或硫化物取代,这些化合物在轧制过程中不随钢一起变形,仍保持为球状,它们对钢的机械性能影响较小,所以钢中加入稀土可以提高钢的韧性,改善钢的抗疲劳性能。
在耐大气腐蚀钢中加入稀土,使钢的内锈层致密,而且与基体的结合力变强,不易脱离,可以阻止大气中O2和H2O的扩散,从而降低了腐蚀速度,加稀土的钢的耐腐蚀性比不加稀土的钢提高0.3~2.4倍。在MnNb系低合金高强度钢中加入稀土可以显著改善钢的冷弯性能、冲击性能、低温冲击性和耐磨性,大大改善了钢的加工性能并提高其使用寿命。在铁路钢轨中加入稀土,可显著提高钢轨的耐磨性、抗剥离性,经多年使用证明钢轨寿命提高1.5倍。
生铁的化学成分
2018-12-11 14:37:18
生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。
典型矿区——云南惠民铁矿
2018-12-11 16:09:25
矿区位于思茅专区澜沧县。矿床属于海相火山-沉积型铁矿床。 矿床产于新元古界澜沧群惠民组。惠民组以中-基性火山岩和铁矿层为主,其次有少量石英片岩、方解石片岩、大理岩等,地层厚600~800m。上覆西定组碎屑岩,下伏地层为勐满组。矿区总体为一北西—南东向长条状复式向斜构造。区内共有铁矿体34个,其中Ⅳ、Ⅱ2、Ⅱ1为主要矿体,占总储量73.3%。Ⅳ号矿体长7000m,宽1100m,厚30.3m;Ⅱ2矿体长4000m,宽1900m,厚31.5m;Ⅱ1矿体长6000m,宽2000m,厚36m。矿体呈似层状、层状。 矿石物质成分复杂,含铁矿物有菱铁矿、褐铁矿、磁铁矿、鳞绿泥石、黑硬绿泥石、铁蛇纹石和黄铁矿等。还有少量锰铝榴石、钛铁矿、赤铁矿和白铁矿,共生矿物有石英(玉髓)、胶磷矿、磷灰石、方解石和长石等。 矿石主要构造有条纹条带状、块状、角砾状、浸染状和流纹状等。 矿石自然类型可分为:褐铁矿矿石、菱铁矿矿石、菱铁矿磁铁矿混合矿矿石、绿泥菱铁矿矿石、硅质菱铁矿矿石和铁蛇纹菱铁矿矿石。 该矿床累计探明铁矿石储量(D级)112681万t,其中,褐铁矿石22671万t,菱铁矿石49297万t,混合矿石40713万t。 矿石品位:褐铁矿石TFe 40%,P 0.17%~1.43%,S 0.01%~0.61%。菱铁矿石TFe 25%~35%,P 2.8%~0.2%,S 0.4%~20%。磁铁矿石TFe 45%~50%,P 1.3%~0.4%,均属含硫磷较高的自溶性矿石。 该矿尚未开发利用。
生铁都有哪些分类?分别有哪些用途?
2018-07-24 17:09:58
生铁是指含碳量在2.11%-6.69%之间并含有其他非铁杂质的铁碳合金。生铁可以通过降低碳含量来炼成钢。生铁也有很多分类,不同的分类,生铁的用途也就不同,那生铁的分类有哪些呢?生铁可以分为普通生铁和合金生铁。其中,普通生铁,根据生铁中碳的存在的形式不同,可以分为炼钢生铁、铸造生铁和球磨铸铁几种,而合金生铁有可以分为锰铁合金和硅铁合金。不同的生铁分类用途炼钢生铁:
碳是以碳化铁的形式存在的,其断面为白色,又叫做白口铁,主要作为炼钢的原料。铸造生铁:
碳是以片状的石墨状态存在的,其断面是灰色,又叫做灰口铁,主要用于制造各种铸件,如铸造各种机床床座、铁管等。球墨铸铁:
碳是以球形石墨的形态存在,其机械性能远胜于灰口铁,比较接近于钢,主要用于制造曲轴、齿轮、活塞等高级铸件以及多种机械零件。合金生铁作为炼钢的辅助材料,如脱氧剂、合金元素添加剂。锰铁:
主要用于炼钢、铸造用脱氧剂和合金元素添加剂。硅铁:
主要用于炼钢时作脱氧剂、合金元素加入剂、铁合金生产及化学工业中的还原剂,另外,还广泛应用于低合金结构钢、弹簧钢、轴承钢、耐热钢及电工硅钢之中。以上即为生铁的分类和用途,更多钢铁知识,请至
钢铁百科专区
。
105项炼钢常用名词解释
2019-03-06 10:10:51
1冲击面积氧气流股与安静金属液面触摸时的面积。
2炉容比转炉有用容积与公称容量的比值。
3均衡炉衬依据炉衬各部位的丢失机理及腐蚀状况,在不同部位运用不同质料的耐火砖,砌筑不同厚度的炉衬。
4喷孔夹角喷孔几许中心线与喷头轴线之间的夹角。
5静态模型就是依据物料平衡和热平衡核算,再参照经历数据统计分析得出的批改系数,断定吹炼加料量和氧气耗费量,猜测结尾钢水温度及成分方针。
6溅渣护炉运用MgO含量到达饱满或过饱满的炼钢结尾渣,经过高压氮气的吹溅,使其在炉衬表面构成高熔点的熔渣层,并与炉衬很好的黏结附着,称为溅渣护炉。
7转炉的经济炉龄依据转炉炉龄与本钱、钢产值之间的联络,其材料综耗费量最少、本钱最低、产值最高,确保钢质量条件下所断定的最佳炉龄就是经济炉龄。
8归纳砌炉在吹炼进程中,因为转炉炉衬各部位的工作条件不同,内衬的蚀损状况和蚀损量也不一样。针对这一状况,视衬砖的损坏程度的差异,砌筑不同质料或同一质料不同等级的耐火砖,这就是所谓归纳砌炉。
9转炉炼钢的动态操控转炉炼钢动态操控是在静态操控根底上,运用副等测验手法,将吹炼进程中金属成份、温度及熔渣状况等有关信息对吹炼参数及时批改,到达预订的吹炼方针。因为它比较实在的把握了熔池状况,射中率比静态操控明显进步,具有更大的适应性和准确性。其间有吹炼条件操控法、轨迹盯梢法、动态停吹法、称量操控法。
10供氧强度指单位时刻内每吨金属料由喷供应的氧气量,单位是米3/吨·分。
11转炉静态操控以物料平衡和热平衡为根底树立设定的数学模型,即依照已知的质料条件和吹炼结尾钢水温度及碳含量核算铁水、废钢、各种造渣材料及冷却剂的参与量、吹氧量和吹氧时刻,并依照核算成果由核算机操控整个吹炼进程至结尾,在吹炼进程中不按任何新信息量进行批改的一种操控办法。
12炉容比新转炉砌砖后的容积与装入量之比。
13马赫数指氧流速度与临界条件下音速的比值,用于测量氧流速度超越音速的程度。
14氧气流量单位时刻内向熔池供氧的数量。
15定量装入在整个炉役期间,每炉的装入量坚持不变。
16造渣准则断定适宜造渣办法、渣料参与量和时刻及快速成渣。
17分散脱氧脱氧剂参与到熔渣中,经过下降渣中TFe含量,使钢水中氧向熔渣搬运分散,到达下降钢中氧的意图。
18真空脱氧将钢水置于真空条件下,经过下降外界CO分压,打破钢水中碳氧平衡,使钢水中剩余碳和氧持续反响,到达脱氧的意图。
19热效应一个化学反响,当生成物与反响物温度相一起,这个进程中放出或吸收的热量。
20肯定标高氧喷头与零米渠道的间隔。
21相对标高氧喷头与金属液面的间隔。
22洁净钢洁净钢是指:第一是钢中杂质元素〔P〕、〔S〕、〔H〕、〔N〕、〔O〕含量低;第二对错金属搀杂物少,尺度小,形状要操控(依据用处操控搀杂物球状化)。
23压力加工所谓压力加工,就是用不同的东西,对金属施加压力,使之发作性变形,制成必定形状产品的加工办法。
24连铸漏钢所谓漏钢是凝结坯壳出结晶器后,反抗不住钢水静压力的作用,从坯壳处开裂而使钢水流出。
25强度钢在载荷作用下,反抗塑性变形或开裂的才能称为钢的强度。
26抗拉强度钢材被拉断前所能接受的最大应力称为抗拉强度。
27塑性指金属材料在外力作用下,能够安稳地发作永久性变形并能持续坚持其完整性而不被损坏的功能。
28外来搀杂在冶炼及浇注进程中混入钢液并停留其间的耐火材料、熔渣或许两者的反响产品以及各种尘埃微粒等称外来搀杂。
29真空度在真空处理进程中,真空室内能够到达并且能坚持的最低压力为真空度。
30返干是指现已熔化或部分熔化的炉渣呈现变黏乃至结成大块的现象。
31化学亲和力指元素与元素之间结合才能的强弱。
32相就是咱们研讨的体系中具有相同物理性质并且均一的那一部分。
33冲击面积氧气流股与安静金属液面触摸时的面积。
34炉容比转炉有用容积与公称容量的比值。
35均衡炉衬依据炉衬各部位的丢失机理及腐蚀状况,在不同部位运用不同质料的耐火砖,砌筑不同厚度的炉衬。
36喷孔夹角喷孔几许中心线与喷头轴线之间的夹角。
37抗拉强度试样拉断进程中最大力所对应的应力。
38石灰活性是指石灰与熔渣的反响才能,它是衡量石灰在渣中溶解速度的方针。
39碳氧浓度积在必定温度和压力下,钢液中碳与氧的质量百分浓度之积是一个常数,而与反响物和生成物的浓度无关。
40比热容必定量物质升高1℃吸收的热量称热容。单位质量物质的热容称比热容。
41固溶体一种或几种金属或非金属元素均匀地溶于另一中金属所构成的晶体相叫固溶体。
42熔渣碱度炉渣中碱性氧化物浓度的总和与酸性氧化物浓度总和之比称为炉渣碱度。
43转炉的热功率转炉炼钢的热功率是有用热占总热量的百分比,其间有用热指钢水物理热及矿石分解热。
44留渣操作留渣操作就是将上炉终渣的一部分留给下炉运用。结尾熔渣的碱度高,温度高,并且有必定(Tfe)含量,留到下一炉,有利于初期渣尽早构成,并且能够进步前期去除P、S的功率,有利于维护炉衬,节省石灰用量。
45结尾操控主要是指结尾温度和成分的操控。对转炉结尾操控不只要确保结尾碳、温度的准确射中,确保P、S成分到达出钢要求,并且要求操控尽或许低的钢水氧含量。
46拉瓦尔型喷头拉瓦型喷头是缩短-扩张型喷孔,出口氧压于进口氧压之比小于0.528,构成超音速射流。气体在喉口处速度等于音速,在出口处到达超音速。
47转炉的经济炉龄依据转炉炉龄与本钱、钢产值之间的联络,其材料的归纳耗费量最少,本钱最低,产值最多,确保钢质量条件下所断定的最佳炉龄,就是经济炉龄。
48钢水炉外精粹就是将炼钢炉中初炼的钢水移到钢包或其他专用容器中进行精粹,也称为二次精粹。
49冷却效应换算值在必定条件下,参与1kg冷却剂所耗费的热量就是该冷却剂的冷却效应;如是规则废钢的冷却效应值为1.0,其它冷却剂冷却效应与废钢冷却效应的比值为冷却效应换算值。
50复合吹炼强拌和在顶、底复合吹氧工艺中,供气强度(标态)动摇在0.20~2.0m3/(t.min);底部供气组件一般运用套管式喷嘴,中心管供氧,环管供天然气、或液化、或油做冷却剂,此工艺归于复合吹炼强拌和。
51复合脱氧,有何长处复合脱氧指向钢水中一起参与两种或两种以上的脱氧元素。其长处有:⑴能够进步脱氧元素的脱氧才能,因而复合脱氧比单一元素脱氧更彻底。⑵假使脱氧元素的成分份额妥当,有利于生成液态的脱氧产品,便于产品的别离与上浮,可下降钢中搀杂物含量,进步钢质量。⑶有利于进步易挥发元素在钢中的溶解度,削减元素的丢失,进步脱氧元素的功率。
52“后吹”有何弊端一次拉碳未到达操控的方针值需求进行补吹,补吹也称为后吹。因而,后吹是对未射中方针进行处理的手法。后吹会给转炉冶炼构成如下严重危害。
(1)钢水碳含量下降,钢中氧含量升高,然后钢中搀杂物增多,下降了钢水纯净度,影响钢的质量。
(2)渣中TFe增高、下降炉衬寿数。
(3)添加了金属铁的氧化,下降钢水收得率,使钢铁料耗费添加。
(4)延长了吹炼时刻,下降转炉出产率。
(5)添加了铁合金和增碳剂耗费量,氧气运用率下降,本钱添加。
53转炉日历运用系数转炉在日历时刻内每公称吨每日所出产的合格钢产值。
转炉日历运用系数(吨/公称吨·日)=合格钢产值(吨)/(转炉公称吨×日历日数)
54铁水预处理指铁水兑入炼钢炉之前,为脱硫或脱硅、脱磷而进行的处理进程。
55熔渣碱度怎么表明炉渣中碱性氧化物浓度总和与酸性氧化物浓度总和之比称为炉渣碱度。一般用符号R表明。
56不锈钢不锈钢是在大气、水、酸、碱和盐溶液或其他腐蚀性介质中具有高度化学安稳性的合金钢的总称。
57全面质量管理为了能够在最经济的水平上并考虑到充沛满意顾客要求的条件下进行商场研讨、规划、制作和售后服务,把厂商内各部门的研发质量、坚持质量和进步质量的活动构成为一体的一种有用的体系。
58过冷度加热至奥氏体区域的钢,在冷却进程中,由奥氏体改动为其它安排的实践温度与临界温度之差。
59过热、过烧过热是当加热温度超越Ac3持续加热到达必定温度时,钢的晶粒过度长大,然后引起晶粒间的结合力削弱,钢材的力学功能恶化的现象。
过烧是当钢在高温下,在激烈氧化介质中加热时,氧渗透到钢内杂质会集的晶粒鸿沟,使晶界开端氧化和部分熔化,构成脆壳,严重损坏晶粒间衔接的现象。
60成材率指用1吨质料能够轧制出的合格制品分量的百分数。
61操控轧制和操控冷却技能操控轧制和操控冷却技能就是恰当操控加热温度、变形温度(包含每道次的变形量、总变形量、变形速度)及冷却速度等工艺参数,一般是在比惯例轧制温度稍低的条件下,选用强化压下和操控冷却等工艺办法来进步热轧钢材归纳功能的一种轧制办法。
62同素异构改动金属在固态下,在必定温度由一种晶格改动为另一种晶格的进程。
63耐性材料塑性变形和开裂全进程中吸收能量的才能,它是强度和塑性的归纳体现。
64彻底退火、再结晶退火彻底退火是将钢加热至Ac3以上20~30℃,经彻底奥氏体化后进行缓慢冷却,以取得近于平衡安排的热处理工艺。
再结晶退火是把冷却变形后的金属加热到再结晶温度以上坚持恰当时刻,使变形晶粒从头改动为均匀等轴晶粒而消除加工硬化的热处理工艺。
65C曲线C曲线就是使加热至奥氏体区的钢过冷至Ar1以下,在不同温度和时刻下等温改动得到的各种结构安排的曲线,因为其形状像拉丁字母“C”,故常称为C曲线,又称过冷奥氏体等温改动动力学曲线。
66塑性指金属材料在静载荷的作用下发作永久变形而不损坏的才能。
67枝晶偏析在一个晶粒内成分不均匀的现象叫晶内偏析。因为这种偏析是呈树枝状散布的,故又名枝晶偏析。
68固溶处理将钢材加热到奥氏体或α固溶体区的恰当温度,进行必定时刻的保温,使一种或几种相最大极限的溶入固溶体中,然后快速冷却到室温。
69带状安排是钢材的内部缺点之一,呈现在热轧结构钢的显微安排中,沿轧制方向平行摆放,呈层状散布、形同条状的铁素体晶粒与珠光体晶粒。
70固溶强化选用添加溶质元素使固溶体强度升高的强化机制,是经过改动材料的化学成分来进步强度的办法,其强化的金属学根底是因为运动的位错与异质原子之间的相互作用的成果。
71负公役轧制许多产品是依照尺度公役交货。假如产品公役契合国标或厂标,则能够为产品尺度精度满意交货要求。负公役轧制就是使终轧制品厚度比方针厚度偏小,但终轧制品厚度在制品负公役规模。负公役轧制有利于进步成材率,下降轧制本钱,并且对设备没有提出附加要求。
72热处理钢的热处理是将固态钢进行恰当加热、保温文冷却,然后改动其安排、取得所需功能的一种工艺,依据加热温度和冷却办法的不同,可分为退火、正火、淬火、回火以及某些零部件的表面热处理等五大类。
73热脆在固态下,硫在钢中的溶解度极小,以FeS的形状存在于钢种。FeS还与铁、FeO等生成低熔点的共晶体,在钢冷凝进程中沿晶界呈网状分出,其熔点远低于热轧或热锻时钢的加工温度。因而在热加工时沿晶界散布的Fe-FeS、FeS-FeO共晶体已熔化,损坏了各晶粒间的衔接,导致钢的开裂。这种在热加工时发作晶界开裂的现象叫热脆。
74化学平衡大多数的化学反响都具有可逆性,反响能够向某一方向进行,也能够向相反方向进行。在某一条件下,若正方向反响速度和逆方向反响速度持平,反响物与产品的浓度长时刻坚持不变,当物质体系到达了这一状况时,即称为化学平衡。
75非金属搀杂物在冶炼和浇注进程中发作或混入钢中,经加工或热处理后仍不能消除并且与钢基体无任何联络而独立存在的氧化物、硫化物、氮化物等非金属相,统称为非金属搀杂物,简称搀杂物。
76归纳砌炉在吹炼进程中,因为转炉炉衬各部位的工作条件不同,内衬的蚀损状况和蚀损量也不一样。针对这一状况,视衬砖的损坏程度的差异,砌筑不同质料或同一质料不同等级的耐火砖,这就是所谓归纳砌炉。
77活性石灰一般把在1050~1150℃温度下,在回转窑或新式竖窑(套筒窑)内焙烧的石灰,即具有高反响才能的体积密度小、气孔率高、比表面积大、晶粒细微的优质石灰叫活性石灰,也称软烧石灰。
78组成渣洗是在出钢前将组成渣参与钢包内,经过钢流对组成渣的冲击拌和,下降钢中的硫、氧和非金属搀杂物含量,进一步进步钢水质量的办法。组成渣洗既可用于电炉炼钢,也可用于转炉炼钢。组成渣有固态渣和液态渣之分。
79元素的脱氧才能是指在必定温度下,与溶于钢液中必定量脱氧元素相平衡的钢液氧含量。平衡氧含量越低,这种元素脱氧才能越强。
80复合脱氧一起运用两种或两种以上脱氧元素脱氧,其浓度比恰能生成低熔点液态杂乱化合物,有利于上浮排出,然后使所用脱氧元素的脱氧才能大大增强的办法。
81剩余元素钢的成分中有些元素不是有意参与的,而是随炼钢质料带入炉内,冶炼进程又不能去除而残存与钢中的元素。
82微合金化钢也叫高强度低合金钢,是指在低碳钢中参与微量的钛、铌、钛等碳氮物构成元素,与钢中的剩余空隙原子碳和氮结组成碳化物和氮化物质点,起到细化晶粒和沉积强化的作用。
83经济炉龄指投入本钱最低、产值效益最多的炉龄,即在一个炉役期内出产率最高、钢质量最好、修理本钱最低时所冶炼钢水的炉数。
84磷的分配系数在炼钢条件下,脱磷作用可用熔渣与金属中磷的浓度的比值来表明,这个比值称为磷的分配系数。
85奥氏体碳溶解于γ-Fe中的空隙固溶体。用A表明。
86活度溶液中因为溶质分子与溶剂分子之间的相互作用在参与实践化学反响时,浓度或许呈现误差,呈现的误差或许是正误差,也或许是负误差,运用浓度应乘上一个校对系数,这个系数叫活度系数,此乘积称为有用浓度,也叫活度。
87可逆反响在同一条件下,既可向正反响方向(从左向右)进行,又可向逆反响方向(从右到左)进行的化学反响。
88熔渣氧化性熔渣的氧化性是指熔渣向金属熔池传氧的才能,即单位时刻内自熔渣向金属熔池供氧的数量。
89拉碳是指吹炼进程进行到熔池钢液中含碳量到达出钢的要求时,中止吹氧并摇炉这个操作。
90合金吸收率被钢水吸收的合金元素的分量与参与该元素总量之比称为吸收率。
91沉积脱氧把脱氧剂参与钢液中,脱氧产品以沉积形体发作于钢液之中的脱氧办法就叫沉积脱氧。
92氢脆钢中的氢能使钢变脆,下降钢的强度、塑性、冲击耐性,称之为氢脆。
93单渣操作所谓单渣操作是指在冶炼进程中只造一次渣,半途不扒渣、不倒渣。
94转炉炉容比转炉炉容比系指转炉有用容积(V)与公称容量(T)的比值。
95高拉碳低氧操控高拉碳低氧操作法要依据制品磷的要求,决议高拉碳规模,既能确保结尾钢水氧含量低,又能到达制品磷的要求,并削减增碳量。
96炉渣的分子理论?熔渣的分子理论以为:(1)熔渣是由各种分子,即简略分子和杂乱分子组成的;(2)简略分子不断构成杂乱分子,而杂乱分子又不断分解成简略分子,处于化学动平衡状况;(3)只要自在状氧化物才有与钢液反响的才能;(4)熔渣是抱负溶液,能够运用质量作用定律。
97冷却效应?冷却效应换算值?在必定条件下,参与1kg冷却剂所耗费的热量就是该冷却剂的冷却效应。
冷却效应换算值:假如规则废钢的冷却效应为1.0,其它冷却剂冷却效应与废钢冷却效应的比值为冷却效应换算值。
98短渣炉渣碱度在4.2或更高时,温度下降时粘度急剧添加,此种渣常称为短渣。
99铁素体碳溶解α-Fe中的空隙固溶体称铁素体,溶解碳量在0.008-0.0218%之间。
100泡沫渣熔渣构成薄膜将气泡包住并使其离隔,引起发泡胀大的熔渣称为泡沫渣。
101耐火度当耐火材料受热软化到必定程度时的温度就是该耐火材料的耐火度。
102铁水预脱硫处理指高炉铁水在尚未兑入炼钢炉之前,参与脱硫剂对其进行脱硫的工艺操作。
103氢脆跟着氢含量的添加钢的塑性下降的现象。
104生成热安稳单质生成1mol化合物的反响热为该化合物的生成热,单位为J/mol。
105转炉热功率指有用热占总热量的百分比,其间有用热指钢水的物理热和矿石分解热。
云南某金矿矿石浸出试验研究
2019-02-20 10:04:42
一、导言
滇东南是我国微细粒浸染型金矿床的会集散布区之一。微细浸染型金矿矿石性质杂乱, 工艺类型特殊, 历年来先后有多家科研规划单位进行过选冶实验研讨工作, 取得了一些研讨成果, 但仍有一些技能问题需求研讨处理。
本次实验以云南省者桑金矿为研讨目标, 进行浸出实验研讨, 为公司出产供给参阅。
二、矿石特征
该矿石类型为氧化型矿石, 其赋存矿藏岩石为蚀变的粉砂泥岩或粉砂岩及少数的基性脉岩类。矿石结构为胶状结构和告知假象结构。首要金属矿藏为褐铁矿、黄铁矿、黄铜矿、毒砂、磁黄铁矿、磁赤铁矿、黝铜矿。矿石化学组成分析标明金是首要收回有用成分, 金档次为0.70g/t。矿石中砷含量0.28%, 绢云母等粘土矿藏约占47%。金首要包裹在褐铁矿等氧化矿藏中, 又因为该矿石中存在很多的铁染粘土矿藏(绢云母为主, 其晶体呈层状格架), 其内也会吸附必定量的超显微金。
对破碎至小于40mm的矿样进行筛分分析, 首要调查了七个粒级的产率和金散布状况。较粗粒级的金档次较高, 可见金的嵌布粒度不细, 矿石浸出时无需细磨见表1。
表1 -40mm矿石筛分分析成果粒度/mm产率/%金档次/g·t-1金散布率/%单个累计单个累计+10.033.2533.250.5628.1828.18-10.0+5.016.2949.550.8420.5948.72-5.0+1.014.0163.560.9419.9468.71-1.0+0.2810.4574.010.8012.6881.38-0.28+0.1542.5376.540.552.1083.48-0.154+0.0762.8179.350.361.5285.00-0.07620.65100.000.4815.00100.00算计--0.66--
三、化浸出实验研讨
(一)归纳样制备。将32袋单样烘干, 破碎至-40mm, 缩分出1/8制成化验样, 分析各袋样品金档次。根据金档次和实验要求, 配限制240kg归纳样。要求配矿核算档次与归纳试样屡次化验均匀档次0.70g/t相吻合。
(二)可浸性实验。为了解矿石中金的可浸性, 并为柱浸实验供给工艺参数, 对矿石进行了化浸出实验研讨。首要调查了NaCN和碱耗量及金浸出率等目标。
化浸出固定条件:给矿100g/次, 粒度-1mm, 矿浆浓度40%, NaCN初始浓度为0.4%。, 工业石灰调理pH值10~11, 摇瓶化18h。实验成果可知, 矿石中金渣计浸出率为87.14%,NaCN耗量261.2g/t, 工业石灰用量5kg/t。该矿石较简单浸出。(三)柱浸实验。将破碎至必定粒度的矿石装入柱中, 用NaOH制造的溶液调理矿石的pH, 待渗出液pH值调至10~11时, 制造pH值≥2、浓度约为0.4‰的NaCN溶液, 调理溶液喷淋速度, 实验操控喷淋强度约8~12L/m2·h1, 喷淋一段时刻对浸出液计量, 取样测NaCN浓度并分析金档次。浸出完毕后, 用必定量水洗刷各柱浸渣, 洗水计量, 取样测NaCN浓度并分析金档次。最终取出浸渣, 烘干、缩分、取样, 分析浸渣中金档次。柱浸实验条件和成果别离见表2。
表2 柱浸实验条件矿石粒度/mm矿石分量/kg制粒水泥用量/kg·-1柱高/cm-4081.7-~175堆比重/g·cm-3饱满含水率/L·t-1喷淋强度/L·m-2·h-1初始喷淋液NaCN浓度/‰1.65202.388.5~10.5~0.4
从实验成果可知,通过25天浸出,渣计浸出率达80.0%,尾渣金档次降至0.14g/t。
(四)其它浸出办法探究实验。为了能进一步进步浸出率,进行了加助浸剂浸出、酸性浸出和尾渣再次浸出实验。
1、增加助浸剂的氛化浸出实验。浸出固定条件:给矿100g/次, 粒度-1mm, 矿浆浓度40%, NaCN初始浓度为1.0‰, 石灰调理值pH值10~11, 摇瓶化18h。化浸出实验成果标明参加H2O2、CaO2、NH4Cl等助浸剂, 金的渣计浸出率没有显着进步。
2、浸出。浸出条件:给矿100g/次, 矿石粒度-1mm,矿浆浓度40%, 用量10kg/t,Fe2(SO4)39kg/t, 硫酸调理pH值1~2。实验成果标明选用酸性浸出, 金浸出率不如直接化浸出率高。
3、尾渣再浸。因为柱浸浸出液金浓度和尾渣金档次还比较高, 通过对柱浸的尾渣再次浸出, 以调查若延伸柱浸时刻,浸出率进步的可能性。
将柱浸尾渣缩分一部分破碎至-5mm, 取必定量的未破碎和破碎至-5mm的柱浸尾渣, 置于有机槽内, 用0.4‰的NaCN溶液静置浸出两天, 浸出实验成果标明柱浸尾渣通过两天的槽浸浸出, -40mm和-50mm尾渣相对原矿的液计浸出率别离达6.57%和5.03%。可见若延伸柱浸时刻, 对金浸出率的进步有必定的协助, 可是浸出周期延伸, 会加大浸出液量, 下降溶液金浓度。
四、定论
1、对破碎至-1mm归纳样进行可浸性实验, 矿浆浓度40%,NaCN初始浓度0.4‰, NaCN耗量261.2g/t, 石灰调理p H值10~11, 工业石灰用量5kg/t, 摇瓶化18h, 渣计金浸出率为87.17%, 金档次降至0.09g/t。
2、破碎至-40mm归纳试样通过25天柱浸浸出, NaCN耗量171.7g/t, 金渣计浸出率为80.0%, 尾渣金档次降至0.14g/t。
3、其它助浸剂浸出、硫脉浸出以及延伸柱浸时刻等浸出办法, 对金浸出未有显着作用。
4、上述实验成果标明, 在惯例的化浸出条件下, 该归纳样较简单浸出。本次实验为者桑金矿的浸出供给技能根据。
参阅文献:
1、马晶,马继武,2001.煎茶岭金矿及其选冶实验研讨[J].黄金科学技能.10(2):35-39.
2、蔡世军,赵志新, 赵安龙.2003.老柞山金矿富砷、铜金矿石的氛化浸出研讨与实践[J].黄金.24(5):38-40.
3、周中定.2003.微细拉浸染型金矿石选金实验研讨[J].黄金.24(6):43-45.
4、谭海明.2005我国南边某金矿体矿石浸出实验研讨[J].中国矿业.14(2):38-42.
(作者简介李桦, 紫金矿业集团股份有限公司, 高级工程师)
云南某地金矿选矿工艺试验研究
2019-02-20 10:04:42
一、前语
滇西北金矿原选用的是全泥化法及堆浸法提取金,因为该矿含有铁、铅、锌、砷和硫等元素,及其他纤细杂乱难浸金矿藏[1],导致浸出作用较差。并且为剧毒化学品,浸出进程对当地环境形成恶劣的影响。为了处理该区域提金法形成的环境污染问题,针对该区域金矿石和特色,选用加拿大Falcon离心选矿机对金进行富集,原矿含金7.7g/t,金精矿含金高达514.03g/t,尾矿含金0.36g/t,金收回率为95.4%,获得了满足的实验目标,为下一步工业上使用无选别工艺处理该区域金矿供给了根据。
二、矿石性质
实验矿样取至矿山范围内多处挖掘点,然后混组成实验用矿样,归纳样金档次为7.7g/t。
(一)首要矿藏特征
矿石中金属矿藏有褐(赤)铁矿、磁铁矿、菱铁矿、铅铁矾、菱锌矿、水锌矿、硅锌矿、异极矿,少数白铅矿、方铅矿、黄铁矿、天然金、银金矿和天然银等。脉石矿藏首要为方解石、白云石、石英和黏土矿藏等。
(二)原矿多元素分析
原矿多元素分析成果见表1所示。
表1 原矿多元素分析成果(三)金的矿藏特征及赋存状况
1、金的形状及嵌布特征
矿石中的金物相分析成果见表2。矿石中的金首要以天然金方式存在。
表2 原矿金的物相分析成果天然金为金黄色或带白彩的黄色,反射色为亮黄色,表面有麻点(氧化铁表膜),具均质性,有延展性,形状多样,以不规则粒状或核晶为主,次有丝状、棒状、树枝状等[2]。矿石中金的粒度分析成果表明,该矿天然金粒度较细,粒径最大0.15mm,一般0.01~0.06mm,首要为中细粒金,尚有<0.01mm的微粒金。
2、天然金的嵌布特征
经重砂别离和显微镜下调查得到金的嵌布特征(见表3)。从该表能够看出,天然金首要为中细粒可见金,嵌布在褐铁矿、磁赤铁矿、铅铁矾、黄铁矿(假象)、石英等矿藏颗粒间及裂隙中,为粒间金和裂隙金,次为微粒金,首要呈微粒嵌布或包裹于褐铁矿及磁铁矿集合体中,粒径<0.01mm。
表3 原矿金的嵌布特性3、金的赋存状况
金的赋存状况见表4。金首要产于褐铁矿、磁铁矿、黄铁矿中,占总量的79169%,这说明金与上述矿藏关系密切,这些矿藏是金的首要载体矿藏。在铅、锌矿藏中金含量占20.32%,是金的非必须载体,脉石矿藏中Au的含量较少。
表4 原矿中各种矿藏含金量和金的散布率三、选矿实验
(一)重选实验
该矿石中的金首要以天然金方式存在,天然金密度大,能够用重选办法收回。可是矿石判定成果表明,天然金以细粒状况存在,惯例重选作用欠好,凭借离心力场能够强化细粒矿藏的重选进程。咱们选用加拿大Falcon离心选矿机对矿石进行重选实验。Falcon离心选矿机规划简略,可发生重力加速度150~300倍的离心加速度,报价低,操作简略,修理和保养费用低,无环境污染,出产成本低,适用面广,能够处理Au、Ag、Sn、W、Ta、Pt、Pd、Nb等宝贵金属。该设备分选质料的细度由高至150~300G的重力所决议,它可有效地收回-011mm等级有用矿藏。矿样磨至80%-0.074mm后,用Falcon离心选矿机进行一次粗选和一次精选,其实验流程见图1,实验成果如表5所示。从表中数据能够看出,Falcon离心选矿机选别该金矿富集比大,金的收回率高。图1 重选实验流程
表5 重选实验成果第二个重选实验原矿磨矿细度仍为80%第二个重选实验原矿磨矿细度仍为80%-0.074mm,选矿流程为两次粗选,一次精选,精选尾矿回来粗选1。流程图见图2,实验成果见表6。图2 重选闭路实验流程图
表6 重选闭路实验成果(二)化拌和浸出实验
在实验室中,原矿磨矿至75%~90%-0.074mm,然后选用拌和浸出办法进行化浸出。浸出时刻为48h,浸出成果见表7。
表7 拌和化浸出实验成果从表7能够看出,化浸出作用较差,在磨矿细度为80%~90%-0.074mm时,金的浸出率根本相同,首要原因归属矿石本身要素,一方面是天然金难以化浸出,另一方面大部分金被其他矿藏所包裹[3],不利于浸出。
四、结语
归纳比照Falcon离心选矿机重选实验及化拌和浸出实验成果,不管从金的收回率仍是出产对环境形成的影响,重选流程显示出较大的优势。其选别工艺流程较为简略,并且出产上操控便利,加拿大出产的离心选矿机报价较贵,出资大,但出产成本低。最重要的是为完成该区域无选别供给了出产条件,对减轻环境污染有利。
参考文献
[1] 张卯均.选矿手册第八卷第三分册[M].北京:冶金工业出版社,1990,204.
[2] 张守范.矿藏学[M].北京:商务印书馆,1956年3月第一版,徐天允,徐正春.金的化与冶炼[M].沈阳:沈阳黄金专科学校,1985 年11月.
作者单位
中国地质大学 (张爱萍)
云南国土资源职业学院(方泽明)
锡尾矿中回收锡实例(云南云龙锡矿)
2019-02-27 08:59:29
云南云龙锡矿所处理的矿石为锡石-石英脉硫化矿,尾矿矿藏组分较简略,以石英为主。其次为褐铁矿、黄铁矿、电气石、少数的锡石、毒砂、黄铜矿等。尾矿含锡档次0.45%,全锡中氧化锡中锡占96.26%,硫化锡中锡占3.74%,铁3.71%,其他含量较低,锌0.051%、铜0.08%、锰0.068%,影响精矿质量的硫、砷含量较高,硫1.88%、砷0.1%。
1992年云龙锡矿在原生矿资源已目趋干涸的情况下,开端在100t/d老选厂处理老尾矿,为了在短期内取得更好的社会效益和经济效益,又提出在选厂基础上改扩建为200t/d,选用重选-浮选流程,于1994年4月正式出产,在出产过程中为断地改善工艺流程,终究断定的出产工艺见图1。图1 云龙锡矿尾矿选矿出产流程
为习惯出产,其间筛分所用筛面前半部分为0.8mm,后半部分为1mm。分泥斗为φ2500mm分泥斗,使用该工艺可取得含锡56.266%、含硫0.742%、含砷0.223%、锡收回率68.3%的锡精矿和含硫47.48%、含锡0.233%、含砷4.63%的硫精矿。
云锡公司有28个尾矿库、35座尾矿坝,现有累计尾矿1亿多吨,含锡达20多万吨,还有伴生的铅、锌、铟、铋、铜、铁、砷等。公司有一个50t/d实验车间和两个选矿工段专门处理老尾矿。1971年到1985年间再选处理尾矿112万t,收回了锡1286t,选出铜精矿含铜443t。
栗木锡矿用重-浮硫程从老尾矿中收回锡。该矿积存尾矿650多万t,尾矿中首要含锡、钨、铌、钽及硅质和长石等矿藏。再选流程包含重选、硫化矿浮选和锡石浮选。经重选后得到的精矿含SnO226.84%、WO39.6%、Ta2O52.7%、Nb2O52.04%,重选收回率SnO32.99%、WO324.05%、Ta2O542.47%、Nb2O524.77%。硫化矿藏浮选流程为一次粗选、二次扫选,精矿档次Cu10.8%、SnS26.57%,收回率Cu78%、硫化物52.66%。硫化矿藏经按捺砷浮铜产出含Cu>20%、Sn>18%、As
东坡矿野鸡尾选厂建有300t/d规划的重选车间,从尾矿中收回锡石。尾砂含Sn0。2%~0.25%,精矿档次Sn42.93、收回率18.66%,每年收回精矿锡量40~50t。
大义山矿1982年建成日处理70~100t选矿厂,从可使用的3.3万t老尾矿(含Sn0.297%)中1年收回锡精矿31t,档次为55%~61%,收回率34%~35%。
国外,英国、加拿大和玻利维亚展开从含锡老尾矿中再选锡的作业。英国巴特莱公司用摇床和横流皮带溜槽再选锡尾矿,从含锡0.75%的尾矿取得含锡分别为30.22%、5.53%和4.49%的精矿、中矿和尾矿。英国罗斯克选厂选别含锡0.3%~0.4%的老尾矿取得含锡30%的锡精矿。加拿大苏里望选厂从浮选锡的尾矿,用重-磁联合流程选出含锡60%、收回率38%~43%的锡精矿。玻利维亚一个选厂再选含锡0.3%的老尾矿和新尾矿,产出含锡20、收回率50%~55%的锡精矿。
炼钢用铁矿石工业指标
2019-01-03 14:43:39
炼钢用铁矿石工业指标矿石类型ω(TFe)主要有害物质其他有害物质ω(SiO2)ω(S)ω(P)磁铁矿石赤铁矿石≥56%≤13%≤0.15%≤0.15%ω(Cu)≤0.2%ω(As)≤0.1%注:矿石块度要求平炉用铁矿石25-250mm;电炉用铁矿石50-100mm;转炉用铁矿石10-50mm
云南镇沅金矿石浮选试验报告
2019-02-21 12:00:34
1 前语
受云南黄金矿业有限责任公司托付,某黄金研讨院对云南镇沅分公司含金矿石进行选矿实验研讨。意图是经过对该金矿石的工艺矿藏学研讨和选矿流程实验,断定原矿选矿技能条件和工艺参数,为选矿工艺流程的挑选和规划供给科学牢靠的根据。
本研讨报告的内容首要是原矿工艺矿藏学研讨、原矿浮选流程实验研讨。
对镇沅含金矿石的工艺矿藏学研讨标明:该矿石工艺类型为贫硫化物碳质微细粒浸染型难处理金矿石。矿石中有价元素为金,档次为5.38g/t。该矿石中金矿藏粒度微细,镜下可见最大金粒为8.5微米,93.84%的金矿藏小于5微米,其间大都呈次显微金。该矿石中金矿藏与金属硫化物联系十分亲近,硫化物中金占86.26%,脉石中金占7.58%,游离金仅占6.16%,硫化物粒度也较细,有73.1%的硫化物粒度小于0.037mm,晦气于金的露出与解离,在原矿磨至-0.074mm占95%时,仍有10.5%的硫化物与脉石连生,5.1%的硫化物被脉石包裹。矿石中有机碳含量为0.70%,有机碳有很强的劫金才能,惯例化,磨矿粒度为-0.074mm占90%时,金浸出率仅为0.74%。
浮选实验研讨成果标明:原矿选用阶段磨浮流程,一段磨矿粒度为-0.074mm占60%,二段磨矿粒度为-0.074mm占90%,金浮选回收率为90.52%,精矿金档次为47.87g/t,浮选尾矿档次为0.57g/t,浮选闭路实验成果见表1。
表1 浮选闭路实验成果产品
称号产率
(%)档次(%)回收率(%)Au(g/t)AsSAuAsS金精矿10.2147.870.7518.7490.5289.5090.26尾 矿89.790.570.010.239.4810.509.74原 矿100.005.400.0862.12100.00100.00100.002 试样的采纳与制备
2.1 试样的采纳
本次实验样品的采纳及代表性由托付方担任。矿样于2005年3月7日抵达我院。
托付方供给的各点矿样状况如表2。
表2 托付方供给的各矿点档次及分量矿点取样档次(g/t)分析档次(g/t)矿样分量(kg)101E-113.053.04500102W-14.432.99512102NM-10.000.701200103E-117.1011.07290104E-14.505.091023104E-28.8011.083301753上盘-0.902431713-18线-2.34500老王寨-3.687002.2 试样的制备
将矿样分点按图1流程破碎后,将各点矿样充沛混匀、缩分,取样进行化学分析,按托付方要求,原矿档次要求在5.0—5.5g/t范围内,各点矿样分析档次及配矿成果见表3。
表3 各点矿样分析档次及配矿成果矿点配矿份额(%)分析档次(g/t)配矿分量(kg)102W-1202.99500103E-11011.07250104E-1405.091000104E-21011.082501753上盘100.90250老王寨103.68250算计100—2500核算档次(g/t)5.31化验档次(g/t)5.38图1 试样制备流程
3 矿石工艺矿藏学研讨
3.1 原矿多元素分析
表4 多元素分析成果元素Au(g/t)Ag(g/t)CuPbZnFeS含量(%)5.382.550.020.010.013.852.03元素CAsSbCaOMgOAl2O3SiO2含量(%)4.140.080.196.523.969.8568.05 3.2 原矿碳物相分析
表5 原矿碳物相分析成果相别C/碳酸盐C/有机碳C/石墨碳全碳含量(%)2.880.700.564.14相对含量(%)69.5616.9113.53100.00 3.3 原矿硫物相分析
表6 原矿硫物相分析成果硫物相S/硫酸盐S/硫化物S/元素硫全硫含量(%)0.191.780.062.03相对含量(%)9.3687.682.96100.00 3.4 原矿筛分分析表7 原矿(-0.074mm占94.11%)筛分分析成果产品粒级
(mm)产率(%)金档次(g/t)金散布率(%)+0.152.926.833.83-0.15+0.0742.973.672.09-0.074+0.04517.792.669.09-0.04576.325.8084.99算计100.005.21100.00 从原矿筛分分析成果看,大大都金矿藏散布在-0.045mm粒级以下,占金总含量的84.99%,阐明金载体矿藏及金矿藏颗粒比较细微。
3.5矿石矿藏组成及含量
镜下所见金属矿藏较少,占3.84%,首要为黄铁矿、白铁矿,少数的辉锑矿、毒砂、褐铁矿,偶见有黄铜矿、闪锌矿、方铅矿、赤铁矿、磁铁矿等。非金属矿藏有石英、绢云母、方解石、白云石等,少数的长石、泥质、石墨碳质、粘土矿藏、绿泥石等,其相对含量检测成果见表8。
表8 矿石矿藏相对含量丈量成果金属矿藏相对含量
(%)非金属矿藏相对含量
(%)黄铁矿、白铁矿3.35石英、绢云母、长石等72.26辉锑矿0.19泥质、石墨碳质、粘土矿藏3.80毒 砂0.09方解石、白云石20.1黄铜矿、方铅矿、闪锌矿0.09褐铁矿0.12合 计3.84合 计96.16总 计100.00 3.6 首要金属矿藏嵌布粒度
该矿石中的金属矿藏首要为黄铁矿(含白铁矿),少数的辉锑矿、褐铁矿,很少的毒砂,金属硫化物与金联系亲近,因而对硫化物粒度进行检测,金属硫化物粒度丈量成果见表9。
表9 硫化物粒度检测成果粒径区间(mm)>0.0740.074—0.0530.053—0.0370.037—0.01算计相对含量(%)12.34.210.449.323.8100.0经过表9能够看到金属硫化物粒度细微,粒度小于0.037mm占73.1%,镜下所见到辉锑矿粒度相对较粗,多在0.037—0.074mm区间,而毒砂粒度细微,一般多在0.01mm左右,晦气于硫化物在磨矿过程中的单体解离。
3.7 首要矿藏的嵌布特征
黄铁矿(含白铁矿):是该矿石中最首要的金属硫化物,占矿石含量的3.35%,首要呈它形粒状与胶状集合体,黄铁矿周边集合微粒毒砂,呈草莓状,黄铁矿粒度较细,多在0.01—0.053mm区间,呈浸染状,星散散布在脉石粒间,结晶程度低,多为胶状黄铁矿(因而光片磨光度欠好),还有的黄铁矿具有再生增大特征,与其它金属矿藏连晶不亲近,该矿石中的黄铁矿在镜下检测过程中没有发现金矿藏,对原矿选用挑选性溶金实验标明,硫化物含金占86.26%,阐明金矿藏与硫化物联系十分亲近,硫化物中金是镜下难以分辩的微粒金和次显微金。
辉锑矿:在该矿石中含量少,仅占矿石含量的0.19%,首要呈它形粒状、长条状、放射状集合体,嵌布在脉石粒间,与其它矿藏联系不亲近,粒度相对较粗,多在0.037—0.074mm区间,镜下没有发现金与辉锑矿有联系。
毒砂:在矿石中含量很少,仅占矿石含量的0.09%,所见毒砂多呈自形—半自形粒状、毒砂粒度微细,大大都在0.01mm左右,星散嵌布在脉石粒间或微裂隙中,少数在黄铁矿周边构成连晶呈草莓状。
褐铁矿:在矿石中含量很少,占矿石含量的0.12%,是在上盘样品中见到,有的光片中呈氧化铁染色,可见部分黄铁矿已被子褐铁矿告知,呈告知残留结构。褐铁矿粒度多在0.037mm左右。
石墨:在该矿石中含量很少,仅占矿石含量的0.56%,绝大大都是在上盘样品中见到,首要散布在结构发育部位,有的光片呈乌煤色,石墨为片状、长条状,嵌布在矿藏粒间,其粒度多在0.01—0.037mm区间。
3.8 矿石的结构结构
3.8.1 矿石结构
自形—半自形—它形粒状结构:毒砂呈自形—半自形,其它金属矿藏基本上为它形粒状结构。
胶状结构:有部分黄铁矿呈细的浑圆的胶状结构,有的集合成集合体。
告知结构:首要在上盘光片中见有褐铁矿告知黄铁矿。
包括结构:微细粒硫化物、金矿藏在脉石中呈包括结构。
3.8.2 矿石结构
浸染状结构:首要金属矿藏在矿石中呈此结构。
脉状结构:有的石英或方解石呈脉状产出。
角砾状结构:矿石呈碎裂或角砾而被硅质或碳质胶结。
3.9 金矿藏工艺特征
3.9.1 金矿藏品种
经过镜下对光片及团矿片的检测,该矿石中的金矿藏首要为天然金,少数为银金矿。
3.9.2 金矿藏形状
金矿藏因为其粒度细微,形状简略,多呈角粒状、浑圆状、麦粒状等。其成果见表10。表10 金矿藏形状特征丈量成果形状特征角粒状浑圆状麦粒状长角粒状算计相对含量(%)39.832.119.58.6100.0
3.9.3 金矿藏粒度特征
该矿石中金的粒度微细,在光片及团矿片中镜下所见最大金粒为8.5微米,其它多在2—5微米,在很多的镜检过程中没有发现硫化物中金,而挑选性溶金分析硫化物含金占金总量的86.26%,因而这部分金为惯例镜下难以分辩的金,为微粒金和次显微金。具体成果见表11。
表11 金矿藏粒度丈量分析成果粒径区间
(mm)>0.010.01—0.005算计相对含量
(%)微6.1693.84
(其间绝大大都为次显微金)100.0
从表11中能够看到金绝大大都都小于5微米,特别是硫化物中大都为次显微金,用机械磨矿很难使金矿藏单体解离。
3.9.4 金矿藏赋存状况
该矿石中在镜下所见金多赋存在脉石粒间,少数在脉石中,所见最大金粒为8.5微米,金矿藏粒度多在2—5微米,所见金粒数量少,因而难以供给金赋存状况数据。对-0.074mm占90%粒度原矿选用挑选性溶金办法,来检测该矿石中金的赋存状况,其成果见表12。
表12 金的赋存状况赋存状况单体露出金硫化物中金碳酸盐中金硅酸盐中金算计相对含量
(%)6.1686.261.366.22100.03.10 矿石工艺类型
该矿石硫化物含量为3.72%,含锑0.19%,含有机碳0.70%、石墨碳0.56%。金矿藏粒度多为微细粒与不行见金,矿石工艺类型属贫硫化物碳质微细粒浸染型难处理金矿石。3.11 矿石可磨度测定
将-2mm原矿筛去-0.15mm粒级后,每份500克,用标准球磨机进行磨矿,时刻别离为5′、10′、15′、20′,磨矿后筛分成果见表13。
表13 可磨度测定成果可磨度测定曲线见图2。
可磨度系数K=T0/T=354/330=1.07
式中:T0——标准矿石磨至-0.074mm占65%所需时刻(秒);
T——镇沅金矿石磨至-0.074mm占65%所需时刻(秒)。
K=1.07,镇沅金矿石磨至-0.074mm占65%时,比标准矿石易磨。
可磨度系数K′=T0′/T′=810/762=1.06
式中:T0′——标准矿石磨至-0.074mm占90%所需时刻(秒);
T′——镇沅金矿石磨至-0.074mm占90%所需时刻(秒)。
K′=1.06,镇沅金矿石磨至-0.074mm占90%时,比标准矿石易磨。图2 可磨度曲线
3.12 矿石工艺矿藏学研讨小结
(1)该矿石中金属硫化物含量为3.72%,金的粒度为微细粒及次显微金,含有0.70%的有机碳,矿石的工艺类型为贫硫化物碳质微细粒浸染型难处理金矿石。
(2)该矿石中金粒微细,镜下可见最大金粒为8.5微米,占93.84%的金小于5微米,其间大都呈次显微金。
(3)该矿石中金与金属硫化物联系十分亲近,硫化物中金占86.26%,脉石中金占7.58%,游离金仅占6.16%,硫化物粒度也比较细微,小于0.037mm的硫化物占73.1%,晦气于硫化物在磨矿过程中的单体解离。
(4)矿石中有机碳含量为0.70%,含量较高,具有极强的劫金才能,对湿法就地产金工艺会发生晦气影响。
4 浮选实验
4.1 流程探究实验
4.1.1 一段磨浮流程实验
4.1.1.1 –0.074mm占85%粒度的一段磨浮流程实验
实验流程及条件如图3,实验成果见表14。图3 一段磨浮实验流程(1)
表14 一段磨浮实验(1)成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)85金精矿17.2518.7763.87中 矿17.054.1914.10尾 矿65.701.722.03原 矿100.005.07100.00 4.1.1.2 –0.074mm占90%粒度的一段磨浮流程实验
实验流程及条件如图4,实验成果见表15。图4 一段磨浮实验流程(2)
表15 一段磨浮实验(2)成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)90金精矿10.7732.5769.58中 矿123.954.0619.29中 矿29.081.232.21尾 矿56.200.808.92原 矿100.005.04100.00 4.1.2 泥砂分选流程实验
实验流程及条件如图5,实验成果见表16。图5 泥砂分选流程
表16 泥砂分选实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65%
二段95%精矿18.4243.9271.58精矿20.8852.138.88中矿10.483.166.42泥23.741.56.89尾矿56.480.576.23原矿100.005.17100.00 4.1.3 阶段磨浮流程Ⅰ实验
实验流程及条件如图6,实验成果见表17。图6 阶段磨浮流程Ⅰ
表17 阶段磨浮Ⅰ实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65%
二段90%精矿17.7020.5173.11中矿118.812.7310.34中矿210.784.6910.18尾矿52.710.606.37原矿100.004.97100.00
4.1.4 阶段磨浮流程Ⅱ实验
实验流程及条件如图7,实验成果见表18。图7 阶段磨浮流程Ⅱ
表18 阶段磨浮Ⅱ实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)一段65%
二段95%精矿17.7446.4367.00精矿27.013.016.97精尾13.742.05.12中矿16.962.066.51尾矿54.860.434.40原矿100.005.36100.00由以上探究流程实验成果得知,阶段磨浮流程的回收率优于一段磨浮流程。一起探究了泥砂分选流程,因为矿泥含金档次为1.5g/t 且仍占有6.89%的回收率,不能直接抛尾,所以终究断定选用阶段磨矿浮选流程。
4.2 磨矿粒度实验
4.2.1 一段磨矿粒度实验
实验流程及条件如图8,实验成果见表19。图8 一段磨矿粒度实验流程
表19 一段磨矿粒度实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)60精矿17.0723.2975.81尾 矿82.931.5324.19原 矿100.005.24100.0065精矿16.1923.1772.47尾 矿83.811.7027.53原 矿100.005.18100.0070精矿17.0523.8976.24尾 矿82.951.5323.76原 矿100.005.34100.00 一段磨矿粒度为-0.074mm占60%时,目标比较抱负。 4.2.2 二段磨矿粒度实验
实验流程及条件如图9,实验成果见表20。 图9 二段磨矿粒度实验流程
表20 二段磨矿粒度实验成果-0.074mm含量(%)产品称号产率(%)金档次(g/t)金回收率(%)85精矿122.5518.5680.49精矿27.968.6413.22尾 矿69.490.476.29原 矿100.005.20100.0090精矿122.8918.4979.11精矿28.819.8216.17尾 矿68.300.374.72原 矿100.005.35100.0095精矿122.3418.7479.44精矿29.868.7216.31尾 矿67.800.334.25原 矿100.005.21100.00二段磨矿粒度为-0.074mm占90%时,目标比较抱负。
4.3 调整剂品种实验
实验流程及条件如图10,实验成果见表21。 图10 调整剂品种实验流程
表21 调整剂品种实验成果调整剂
品种调整剂
用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)Na2CO3800精矿1.95101.036.29精尾6.0717.6919.79中矿20.829.1635.14尾 矿71.160.678.78原 矿100.005.43100.00Na2SiO3800精矿2.2585.8035.82精尾3.4814.419.30中矿19.547.3826.76尾 矿74.732.0328.12原 矿100.005.39100.00CaO500精矿3.5151.634.04精尾7.2616.4622.46中矿19.179.5134.27尾 矿70.060.709.23原 矿100.005.32100.00CuSO4200精矿3.1872.3242.43精尾4.5415.0612.61中矿23.498.0334.80尾 矿68.790.8010.16原 矿100.005.42100.00
由实验成果可知,选用Na2CO3作为介质PH调整剂其目标较好。别的,选用CuSO4作为活化剂,浮选回收率未改进。
4.4 调整剂用量实验
实验流程及条件如图11,实验成果见表22。图11 调整剂用量实验流程
表22 调整剂用量实验成果Na2CO3
用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)400精矿8.4636.1055.58中矿19.649.5040.27尾 矿71.900.8010.47原 矿100.005.49100.00600精矿10.6233.8065.54中矿17.648.2626.60尾 矿71.740.607.86原 矿100.005.48100.00800精矿8.0237.9556.06中矿20.829.1635.15尾 矿71.160.678.79原 矿100.005.43100.001000精矿9.5932.0759.46中矿17.948.8630.73尾 矿72.470.709.81原 矿100.005.17100.00
由以上成果断定Na2CO3用量为600 g/t。
4.5 捕收剂品种实验
实验流程及条件如图12,实验成果见表23。图12 捕收剂品种实验流程
表23 捕收剂品种实验成果捕收剂品种及
用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)丁铵黑药
100精 矿15.907.7523.18中 矿25.0214.4367.92尾 矿59.080.808.90原 矿100.005.32100.00丁铵黑药50
丁黄药
100精 矿10.6233.8065.54中 矿17.648.2626.60尾 矿71.740.607.86原 矿100.005.39100.00BK301
100精 矿11.136.6513.79中 矿25.6615.9176.08尾 矿63.210.8610.13原 矿100.005.37100.00烷-1
60
丁铵黑药
50
丁黄药
100
P-1
60精 矿9.2538.9468.60中 矿20.726.0323.80尾 矿70.030.577.60原 矿100.005.25100.00
选用新式药剂烷-1及P-1实验成果与选用丁铵黑药与丁黄药组合没有太大差异,因而仍选用丁铵黑药与丁黄药组合作为捕收剂。
4.6 捕收剂用量实验
实验流程及条件如图13,实验成果见表24。图13 捕收剂用量实验流程
表24 捕收剂用量实验成果粗选捕收剂
用量(g/t)产品称号产率(%)金档次(g/t)金回收率(%)丁铵黑药40
丁黄药80精矿5.9538.5043.45中矿21.1312.4048.25尾 矿72.920.608.30原 矿100.005.27100.00丁铵黑药50
丁黄药100精矿10.6233.8065.54中矿17.648.2626.60尾 矿71.740.607.86原 矿100.005.39100.00丁铵黑药70
丁黄药140精矿12.7230.6271.01中矿19.076.5522.77尾 矿68.210.506.22原 矿100.005.49100.00丁铵黑药80
丁黄药160精矿14.9226.3673.03中矿19.905.7621.28尾 矿65.180.475.69原 矿100.005.39100.00
丁铵黑药总量为180g/t,丁黄药总量为360g/t时浮选目标较好。粗选作业用量为丁铵黑药70g/t及丁黄药140g/t,各次扫选作业折半。
4.7 浮选时刻实验 实验流程及条件如图14,实验成果见表25。图14 浮选时刻实验流程
表25 浮选时刻实验成果时刻(分)产品称号产率(%)金档次(g/t)金回收率(%)单个累计单个正累计负累计单个正累计负累计单个正累计44精矿16.156.15100.0036.3036.305.2542.5042.5026精矿21.747.8993.8526.5034.143.228.7851.2828精矿31.179.0692.1123.2032.732.785.1756.45210精矿40.9710.0390.9420.4031.532.523.7760.22212精矿50.9210.9589.9721.4030.682.323.7563.97214中矿13.5914.5489.0516.1027.082.1311.0074.97216中矿22.016.5485.4610.3025.051.543.9278.89218中矿31.4918.0383.468.1023.651.332.3081.19220中矿42.7520.7881.975.9221.311.213.1084.29222中矿52.0522.8379.224.9219.831.041.9286.21224中矿61.5424.3777.174.4918.860.941.3287.53226中矿71.6626.0375.634.2017.930.871.3388.86228中矿81.6627.6973.973.2417.050.791.0289.88230中矿91.3829.0772.312.8716.380.730.7590.63232中矿101.2330.3070.932.7915.820.690.6591.28234中矿111.1331.4369.702.5415.350.660.5591.83236中矿121.0332.4668.572.3414.930.650.4692.29尾矿67.54100.067.540.605.250.607.71100.0原矿100.05.25100.0从浮选时刻实验成果可知,该矿石浮游速度缓慢,前12分钟浮选回收率仅为63.97%,从负累计档次可看出,浮选尾矿下降速度较缓慢,浮选30分钟后回收率上升也很缓慢,故断定浮选时刻为30分钟即可。
4.8 归纳条件实验
归纳条件实验选用条件实验所断定的最佳参数,进行了一段磨浮与阶段磨浮流程的实验。
4.8.1 阶段磨浮流程归纳条件实验
实验流程及条件如图15,实验成果见表26。图15 阶段磨浮归纳条件实验流程
表26 阶段磨浮归纳条件实验成果产品称号产率(%)金档次(g/t)金回收率(%)单个累计单个累计单个累计精矿10.78—114.57—17.05—1精尾40.651.4381.0399.3210.0527.101精尾30.922.3557.0382.7710.0137.111精尾21.563.9132.4362.689.6546.761精尾14.077.989.9035.767.6954.45精矿20.45—116.70—10.0264.472精尾40.300.7566.4996.623.8168.282精尾30.471.2230.1070.992.7070.982精尾31.502.727.0435.722.0273.002精尾14.387.102.2515.071.8874.88中矿17.08—12.10—16.3591.23中矿24.89—2.35—2.1993.42中矿34.80—1.50—1.3794.79尾矿68.15—0.40—5.21100.00原矿100.005.24100.00 从实验成果可知,一段浮选二次精选、二段浮选二次精选即可。
4.8.2 一段磨浮流程归纳条件实验
实验流程及条件如图16,实验成果见表27。图16 一段磨浮归纳条件实验流程表27 一段磨浮归纳条件实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿2.9796.0854.35精尾Ⅰ7.283.334.62精尾Ⅱ1.954.171.55精尾Ⅲ1.2111.842.73精尾Ⅳ1.7937.0812.64中矿18.626.1910.16中矿24.723.993.59中矿33.692.631.85尾矿67.770.668.51原矿100.005.25100.00从实验成果能够看出阶段磨浮流程的目标略好于一段磨浮流程。为了进一步比照两种流程,又别离进行了阶段磨浮及一段磨浮的闭路实验。
4.9 一段磨浮流程闭路实验
4.9.1 两次精选作业的一段磨浮流程闭路实验
实验流程及条件如图17,数质量流程如图18,实验成果见表28。图17 两次精选的一段磨浮闭路流程图18 两次精选的一段磨浮数质量流程表28 闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿9.7847.5687.15尾矿90.220.7612.85原矿100.005.34100.00 4.9.2 四次精选作业的一段磨浮流程闭路实验
实验流程及条件如图19,数质量流程如图20,实验成果见表29。图19 四次精选的一段磨浮闭路流程图20 四次精选的一段磨浮数质量流程表29 闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿7.3362.4886.18尾矿92.670.7913.82原矿100.005.31100.00 4.10阶段磨浮流程闭路实验
4.10.1 两次精选作业的阶段磨浮流程闭路实验
实验流程及条件如图21,数质量流程如图22,实验成果见表30。图21 两次精选的阶段磨浮闭路流程图22 两次精选的阶段磨浮数质量流程表30 浮选闭路实验成果产品
称号产率
(%)档次(%)回收率(%)Au(g/t)AsSAuAsS金精矿10.2147.870.7518.7490.5289.5090.26尾 矿89.790.570.010.239.4810.509.74原 矿100.005.400.0862.12100.00100.00100.00
4.10.2 四次精选作业的阶段磨浮流程闭路实验
实验流程及条件如图23,数质量流程如图24,实验成果见表31。图23 四次精选的阶段磨浮闭路流程图24 四次精选的阶段磨浮数质量流程
表31 闭路实验成果产品称号产率(%)金档次(g/t)金回收率(%)精矿7.5263.5989.60尾矿92.480.6010.40原矿100.005.34100.00 5 浮选实验产品考察
5.1 原矿-0.074mm占85%、90%、95%硫化物单体解离度考察
对该产品首要是经过磨制团矿片,镜下进行金属硫化物单体解离度考察,在镜下检测过程中,因为富连体在浮选过程中简单进入精矿样品,在检测计算过程中视为单体硫化物,丈量成果见表32。
表32 原矿硫化物单体解离度考察成果连生联系单体
(富连体)硫化物与
脉石脉石包裹算计相对含量
(%)-0.074mm占85%79.614.06.4100.0-0.074mm占90%82.811.75.5100.0-0.074mm占95%84.410.55.1100.0 经过表32中硫化物单体解离度考察成果能够看到,大大都硫化物呈单体和富连体,而纯脉石包裹硫化物别离占6.4%、5.5%、5.1%,硫化物解离特征无显着差异。
5.2 –0.074mm占90%粒度原矿金的赋存状况考察
对该粒度的样品进行消除有机碳和挑选性溶金办法进行考察,其成果见表33。
表33 金的赋存状况分析成果赋存状况单体可浸金硫化物中金脉石中金算计相对含量
(%)6.1686.267.58100.0 5.3 浮选尾矿硫化物丢失状况及金矿藏丢失状况考察
对金档次为0.57g/t的闭路浮选尾矿进行考察,经过磨制团矿片经镜下检测,样品基本上见不到硫化物颗粒,偶然只见到小于3微米以下的硫化物包裹体,选别作用较好。丢失于尾矿中的硫化物绝大大都为脉石包裹硫化物,丢失于尾矿中的金矿藏绝大大都为脉石包裹金。其硫化物赋存状况检测成果见表34,金的赋存状况见表35。
表34 浮选尾矿硫化物丢失状况考察连生联系硫化物单体与脉石连生脉石包裹算计相对含量
(%)2.64.193.3100.0表35 浮选尾矿金的赋存状况考察赋存状况单体露出金硫化物中金脉石中金
,算计相对含量
(%)1.121.4397.45100.0
5.4 金精矿多元素分析
表36 多元素分析成果元素Au(g/t)Ag(g/t)SFeCaOMgOAl2O3含量(%)47.8710.5018.7423.654.013.4210.49元素SiO2AsCCuPbZnSb含量(%)21.810.755.210.0510.0250.0741.40
注:金精矿为阶段磨浮二次精选作业闭路实验精矿。 5.5 精矿碳物相分析
表37 精矿碳物相分析相别C/碳酸盐C/有机碳C/石墨C总含量(%)1.291.762.165.21相对含量(%)24.7633.7841.46100.00 5.6 精矿硫物相分析
表38 精矿硫物相分析相别S/硫酸盐S/硫化物S/天然硫S总含量(%)0.2118.280.2518.74相对含量(%)1.1297.551.33100.00 5.7浮选精矿产品考察
对浮选精矿进行磨制团矿片,经镜下进行硫化物单体解离度考察,其成果见表39,金的赋存状况见表40。
表39 精矿硫化物单体解离度考察连生联系单体与脉石连生脉石包裹算计相对含量
(%)92.16.51.4100.0表40 精矿金的赋存状况考察赋存状况单体露出金硫化物中金脉石中金算计相对含量(%)12.1584.743.11100.0 5.8 沉降实验
(1)原矿-0.074mm占90%沉降速度测定。
对原矿进行浓度为15%、20%沉降实验,成果见表41,沉降曲线见图25。
表41 原矿-0.074mm占90%沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:15%浓度:20%515810301520582830864140112545013667115679120190103140217125223914823026817832802093302832254286229430288232529023562942408297243930024624312266沉降总高度(mm)392362
图25 原矿沉降速度曲线 (2)原矿-0.074mm占60%沉降速度测定。
对原矿进行浓度为25%、30%沉降实验,成果见表42,沉降曲线见图26。
表42 原矿-0.074mm占60%沉降速度实验成果20沉降时刻弄清区高度(mm)小时分浓度:25%浓度:30%5141110251620462530653340844150102501119631
1557614017587219610423020212932061343302081384211142430213145521514862191528225159922616224231179沉降总高度(mm)392362图26 原矿沉降速度曲线
(3)浮选精矿沉降速度测定。
选用图十九浮选闭路实验精矿,矿浆浓度10%、15%,沉降实验成果见表43,沉降曲线见图27。
表43 浮选精矿沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:10%浓度:15%512111110193159152882152029124530293265129427313029427422942753294276529427624294276沉降总高度(mm)325325图27 精矿沉降速度曲线
(4)浮选尾矿沉降速度测定。
选用图二十三浮选闭路实验尾矿,矿浆浓度15%、20%,沉降实验成果见表44,沉降曲线见图28。
表44 浮选尾矿沉降速度实验成果沉降时刻弄清区高度(mm)小时分浓度:15%浓度:20%5851015102029193041274053355065441765212098681401198421409923017112332031493302181724222177522818462321877235190823919492431981026122224262222沉降总高度(mm)341321图28 尾矿沉降速度曲线
6 引荐准则工艺流程及技能条件
工艺参数及流程结构:
一段磨矿:-0.074mm占60%
一段浮选:一次粗选、一次扫选、二次精选
二段磨矿:-0.074mm占90%
一段浮选:一次粗选、二次扫选、二次精选技能条件:药剂条件
作业Na2CO3
(g/t)丁铵黑药
(g/t)丁基黄药
(g/t)2#油
(g/t)浮选时刻
(min)一段磨矿粗选60050100405扫选3570205二段磨矿粗选3004080408扫选Ⅰ2040206扫选Ⅱ2040206算计90016533014030图29 引荐浮选工艺流程 7 结语
(1)云南镇沅矿石中金矿藏及其载体矿藏粒度微细,晦气于金矿藏的露出与解离,需要在较细的磨矿粒度条件下进行浮选。
(2)浮选实验研讨标明,该矿石选用阶段磨浮流程成果好于一段磨浮流程,在原矿粒度为90%-0.074mm时,一段磨浮尾矿档次为0.76g/t,浮选回收率为87.15%,阶段磨浮尾矿档次为0.57g/t,浮选回收率为90.52%。因而断定选用阶段磨浮流程进行浮选。
(3)因为矿石中含有一定量的含泥碳质矿藏,影响矿石矿化速度,因而矿石浮游速度缓慢,需要在较高药剂浓度下长时刻浮选。
(4)闭路实验浮选尾矿档次0.57g/t,经产品考察,丢失于尾矿中的硫化物93.3%为脉石包裹,丢失于尾矿中的金97.45%为脉石中金。
10月份生铁市场低位波动运行
2018-12-17 09:42:53
概述:自8月份以来,国内钢材市场进入下跌通道,各品种价格均出现不同幅度的滑落。受此影响,生铁市场在9月份“应声而落”。8月份我国生铁产量2809.06万吨,较7月份增加45.78万吨,比去年同期增长27.6%,国内生铁产量继续呈增长态势,加之生铁出口行情清淡,加剧国内生铁市场竞争。如果钢材市场近期内仍未见好转,一些小铁厂考虑自身承受经济能力问题,降低价格以减少库存的现象可能会逐渐增多,生铁市场压力将大大增加。在钢材市场以及钢坯市场持续疲软的压力下,预计10月份生铁市场将低位波动运行。 一、生铁产量整体持续上升 主要生铁产地更为明显 从数据显示国内2005年8月份产量呈稳步上升态势,据统计数据显示:8月份我国生铁产量2809.06万吨,较7月份增加45.78万吨,比去年同期增长27.6%,日均产量为90.61万吨,环比增长1.48万吨,虽然近期钢市行情持续低迷,成交十分清淡,总体价格水平不断向低处滑行,市场需求疲软,但国内钢材产量却从未减少,供需矛盾更趋激烈。从8月份全国铁、钢、材的生产情况看,大幅增产的状况仍然继续,各类品种产量增长率在23--35%之间,与当前生产资料市场需求普遍疲软的大形势不协调,随着供需矛盾不断加剧,市场压力逐步增强。 从区域产量上来看,国内主要生铁产区河北、辽宁、山东、江苏等地产量均处于上升通道。由于8月份国内生铁市场形势良好,炼钢生铁价格的上涨,使得铁厂利润有所恢复,国内部分小铁厂又将重新投入生产,因此各地生铁产量持续增长。 二、生铁出口量大幅下降 后期将逐渐减少 从数据可以看出,7月份生铁出口量为393,239.46吨,比6月份有较大增长,而8月份国内生铁出口量为78,721.07吨,较7月有明显下降,减少了314,518.46吨,将近80%的量。主要原因是由于中国从8月起对生铁征收20%出口关税,使国内生铁出口严重受阻,可以认为,今年后几个月中生铁大量出口的可能性非常小,“出口转内销”的生铁资源也将加剧炼铁企业间的竞争。在当前国内需求相对疲软、钢厂库存较为充裕的形势下,对国内市场产生一定冲击。 三、国内生铁价格高位回落 市场低迷 9月份国内生铁行情处于持续下滑的状态,钢材市场的大幅下跌也对整个原料市场价格造成了较大的影响。在这种格局下,国内钢厂采购也处于较为谨慎的状态,前期8月份在生铁市场价格处于较高价位时,钢厂采购了相当数量的资源,目前并未消耗完毕,在市场价格下跌的过程当中,又有相当数量的厂家和经销商通过各种渠道与钢厂签订了相当数量的供货合同,各大钢厂在近期生铁资源贮备方面都没有任何值得担心的问题。而较小的钢坯或轧材厂在库存允许的情况下尽量减少采购,在河北及山东一带较为常见的铁水交易都受到了相当大的影响。总体而言在钢坯和钢材市场产品滞销的情况下,采购方资金压力也明显增大,对后市价格能否稳住都没有信心。 国内最具有代表性的江浙、淄博、武安、太原地区,进入9月份后价格走势均处于低迷下滑态势。自8月份以来,随着国内钢材市场持续低迷价格不断下滑,钢厂对原料采购热情普遍不高,大多处于谨慎保守并观望态度为主,采购量有一定缩减,生铁需求不足,成交清淡,铁厂库存有所增长,部分资金困难的厂家急于抛货,市场价格随之不断拉低,加上各地钢坯价格不断回落,对生铁市场都造成一定影响。 河北市场 河北地区铁厂资源受山西生铁资源冲击较大。目前出货情况仍不理想,各厂家均有一定数量库存。本月当地市场一直处于低迷下滑的状态,成交清淡.由于下游需求没有放开,目前各铁厂销售情况均不太理想,部分商家表示,生铁市场仍会有继续下调的可能,但是幅度不会太大。目前唐山地区炼钢生铁整体价格在2230-2250元/吨。 山东市场 本月上旬山东地区整体价格从前期的2320-2350元/吨,跌至2220-2240元/吨,下滑100元/吨左右,钢厂采购方面在市场价格快速下跌后也大幅减少了对生铁的采购,市场资源消耗速度的减缓也对各铁厂造成了较大的影响,部分铁厂为回笼资金,相继低价抛货,最低曾出现过2180元/吨的铁水价格。 华东市场 在国内价格普遍下滑的情况下,江浙市场也受到一定影响,随之滑落,各钢厂9月份的生铁采购价格也陆续出台,价格基本在2300元/吨左右。在需求供应都较为稳定的情况下,华东地区后期市场价格将随着成交情况变化而波动。福建市场价格走势也类似于江浙,目前钢厂到厂价格稳定在2350元/吨左右。 山西市场 本月山西地区生铁市场降幅较大,目前炼钢生铁价格基本维持在2060-2080元/吨,较上月跌幅达到150元/吨左右,由于钢市的持续低迷、价格的不断滑落,下游市场的萎靡不振以及炼钢企业已处于亏损的边缘,使铁厂方面基本已无调价空间。短期内在钢材市场仍看不到好转的形势下,山西生铁市场将面临更严峻的考验。 四、10月份国内生铁市场低位波动运行 近期,受建筑钢材及带钢价格连续下跌影响,大部分铁厂心态不稳,对后市失去信心,部分厂家为减轻经营风险,出货价格不断下调。10月份国内多家钢厂有检修和减产计划,在此情况下市场需求也将受到进一步影响,从已经出台的国内大钢厂的生铁采购价格来看都在2300元/吨以下,而且因为现有库存较多等原因,均没有放量采购。另外,钢市的低迷使钢坯价格出现回落,目前唐山地区150方坯最高报价为2750元/吨,此价位成交有一定困难。武安地区150方坯价格为2680-2700元/吨,下滑幅度较大。钢坯价格的回落使生铁价格失去有利支撑因素,生铁价格后市如何,人士对此有不同看法: 一种看法是生铁市场仍将处于下滑通道,短期内难以平稳。理由是:1、由于钢材市场价格的持续回落,及钢坯价格的下滑,对当地生铁市场带来较大影响。2、市场整体仍处于下降通道当中,市场可供资源较多,采购方心态并不急迫。3、国内中小厂家资金压力较大,后期一旦库存过高,部分厂家有可能抛货变现。4、国内钢厂减产检修等计划对需求有一定影响。 另一种看法是生铁行情跌势将有望趋缓,月底将有望回复平稳。理由是:1、目前国内生铁的持续大幅降价使得生铁价格已经接近底线,在现有情况下,继续大幅下跌的可能性不大。2、即将进入冬季,钢厂面临冬储,对原料的采购将有所加大,相应生铁需求也会有一定好转,市场有望恢复平稳。3、目前矿粉以及焦碳价格的平稳,给生铁价格起到一定支撑作用。 两种看法各有各的道理,后期市场走势如何,具体还要看钢材市场走势。综合上述分析,10月份国内生铁行情将以低位波动的态势运行,整体生产成本决定了继续下跌空间不大,需求面上因国内钢厂减产,部分调坯轧材厂家停产检修,生铁价格也没有大幅回调所具备的条件,整体行情将以小幅波动为主,估计只有国内钢铁市场全盘回调的时候,生铁市场的现状才会有所好转。.
云南铜业将建全国规模最大的铜矿山
2019-01-25 10:18:44
从云铜集团了解到,到2010年,云铜将在云南省迪庆藏族自治州形成年产20万吨精矿含铜的规模,建成全国规模最大的铜矿山。
2006年下半年,云铜集团将在迪庆首期建成一座2万吨采选厂,此为云南建国以来一次建成的产量规模最大,速度最快,投资最省的铜采选厂。
据了解,云铜集团把迪庆矿业开发作为实施资源战略重中之重的项目,在短短一年多时间一举突破迪庆矿业几十年徘徊不前的局面,新建矿山迪庆矿业公司从洽谈到风险勘探,研究论证,确定采选厂开工建设仅用了14个月,云铜集团先期投入勘探资金5000万元,探获近300万吨铜金属储量。迪庆州投资8000万元建设的矿区公路,11万伏输电线路进展顺利,将于10月份建成。
炼钢渣加压式时效处理新技术的开发
2019-01-03 09:37:01
日本住友公司和歌山钢铁厂开发的炼钢渣加压式时效处理技术获得日本经济产业省技术环境局局长平成19年度资源循环技术系统项目的奖励。住友公司和歌山钢铁厂开发的炼钢渣加压式时效处理是一种在所需时间内大幅度减少处理成本和设备、并促进钢渣再循环利用的技术。
众所周知,钢水精炼过程中产生的副产品钢渣,和水反应后产生的硬化性质可广泛作为公路路基用材料。使用炼钢渣的公路路基由于具有坚固性和耐持久性,则为降低道路维修费用起到了重要作用。
但是,钢渣中由于残存的设有完全反应的氧化钙和水反应后使钢渣的体积膨胀,导致使用前就得进行反应。为此,需要在露天的阴凉处堆放2年。最近,采用了以露天堆放式蒸汽时效为主要的处理方法,最少只需2天左右,但需人工操作和较为宽阔的场地等又成为新的研究课题。
住友公司和歌山钢铁厂将钢渣中的残存的设有完全反应的氧化钙在加压蒸汽中和水反应,发现反应速度是原来的24倍。为此,开发了将钢渣放到容器中送入低压蒸汽,使之进行强化反应的加压式蒸汽时效处理设备。
加压式时效处理设备的开发,使钢渣的时效处理时间从露天堆放式蒸汽时效处理的2天又缩短约2小时,同时降低了钢渣体积膨胀的波动率,提高了产品质量。此外,减少了钢渣处理所需要的场所面积,降低了设备成本,实现了钢渣搬入、搬出移动的自动化和安全性;同时,还减少了钢渣填埋的处理量,降低了由遮盖物引起的扬尘量,并使反应用蒸汽的使用量减少一半,节省了能源,为实现循环社会做出了贡献。
住友公司和歌山钢铁厂去年就引入2座加压式时效处理设备,经过这种设备处理的钢渣用于公路路基,提高了公路路基材料用钢渣的质量。
低镍生铁冶炼奥氏体不锈钢攻关成效
2018-12-10 09:46:24
近日在酒钢不锈钢厂采访时了解到,该厂低镍生铁冶炼奥氏体不锈钢应用项目已圆满完成目标任务。截至目前,酒钢低镍生铁和镍基料吨钢用量已达到630千克/吨左右,吨钢成本降低近千元。
据了解,酒钢低镍生铁是采用高炉或矿热炉冶炼的一种含镍量在4%—12%的生铁,采购时镍的价格按照市场镍点的95%计算,所含生铁则不计价。近年来,不锈钢厂300系列奥氏体不锈钢产品受镍价攀升、市场波动等因素影响,成本居高不下。低镍生铁所具有的价格优势就成为该厂降低产品成本的一个攻克亮点。
去年10月起,该厂开始分阶段地进行低镍生铁和镍基料应用研究。在前期优化料篮配料结构、提高低镍生铁加入量的基础上,该厂积极开展电炉工艺攻关,进一步降低300系列奥氏体不锈钢成本,缓解低镍生铁原料的采购限制,提高吨钢低镍生铁和镍基料的加入量。为保障低镍生铁电炉冶炼的长期性和经济型,采用全固体配料模式生产。同时通过改变加料模式,减少电炉高碳铬铁配料量,降低了电炉冶炼能量负荷,从而缩短了电炉冶炼时间。在产品化学成分满足JIS标准的情况下,通过配料优化控制磷含量,实施脱磷工艺处理,成功解决了低镍生铁磷值过高的问题,使低镍生铁吨钢用量稳步提高到目前的630千克/吨左右。
据了解,截至目前,不锈钢厂低镍生铁已从电炉装入量的15%提高到70%以上,有效降低了300系列的奥氏体不锈钢冶炼成本。(Fiona)
转炉炼钢对铁水成分和温度有什么要求?
2019-01-07 07:51:16
铁水是炼钢的主要原材料,一般占装入量的70%~100%。铁水的化学热与物理热是氧气顶吹转炉炼钢的主要热源。因此,对入炉铁水化学成分和温度必须有一定的要求。
A 铁水的化学成分
氧气顶吹转炉炼钢要求铁水中各元素的含量适当并稳定,这样才能保证转炉冶炼操作稳定并获得良好的技术经济指标。
(1)硅(Si)。硅是转炉炼钢过程中发热元素之一。硅含量高,会增加转炉热源,能提高废钢比。有关资料表明,铁水中wSi每增加0.1%,废钢比可提高约1.3%。铁水硅含量高,渣量增加,有利于去除磷、硫。但是硅含量过高将会使渣料和消耗增加,易引起喷溅,金属的收得率降低。Si含量高使渣中Si02含量过高,也会加剧对炉衬的冲蚀,并影响石灰渣化速度,延长吹炼时间。
通常铁水wSi=0.30%~0.60%为宜。大中型转炉用铁水硅含量可以偏下限,而对于热量不富余的小型转炉用铁水硅含量可偏上限。转炉吹炼高硅铁水可采用双渣操作。
(2)锰(Mn)。铁水锰含量高对冶炼有利,在吹炼初期形成MnO,能加速石灰的溶解,促进初期渣及早形成,改善熔渣流动性,利于脱硫和提高炉衬寿命。铁水锰含量高,终点钢中余锰高,可以减少锰铁加入量,利于提高钢水纯净度等。转炉用铁水对wMn/wsi比值的要求为0.8~1.0,目前使用较多的为低锰铁水,wMn=0.20%~0.80%。
(3)磷(P)。磷是高发热元素,对大多数钢种是要去除的有害元素。因此,要求铁水磷含量越低越好,一般要求铁水wP≤0.20%;铁水中磷含量越低,转炉工艺操作越简化,并有利于提高各项技术经济指标。
铁水磷含量高时,可采用双渣或双渣留渣操作,现代炼钢采用炉外铁水脱磷处理,或转炉内预脱磷工艺,以满足低磷纯净钢的生产需要。
(4)硫(S)。除了含硫易切削钢以外,绝大多数钢种硫也是要去除的有害元素。氧气转炉单渣操作的脱硫效率只有30%~40%。我国炼钢技术规范要求人炉铁水wS≤0.05%。冶炼优质低硫钢的铁水硫含量则要求更低,纯净钢甚至要求铁水wS≤0.005%。因此,必须进行铁水预处理降低入炉铁水硫含量。
(5)碳(C)。铁水中wC=3.5%~4.5%,碳是转炉炼钢的主要发热元素。
B 铁水的温度
铁水温度的高低是带入转炉物理热多少的标志,铁水物理热约占转炉热收入的50%。铁水温度高有利于稳定操作和转炉的自动控制。铁水的温度过低,影响元素氧化过程和熔池的温升速度,不利于成渣和去除杂质,容易发生喷溅。因此,我国炼钢规范规定入炉铁水温度应大于1250℃,并且要相对稳定。
通常,高炉的出铁温度在1350~1450℃,由于铁水在运输和待装过程中散失热量,所以最好采用混铁车或混铁炉的方式供应铁水,在运输过程应加覆盖剂保温,以减少铁水降温。
云南氧化锌矿浮选药剂制度实例介绍
2019-02-26 16:24:38
氧化锌矿的浮选
氧化锌矿藏有:菱锌矿(ZnCO3)、红锌矿(ZnO)、异极矿(Zn2SiO4·H2O)、硅锌矿(Zn2SiO4)等。其间最有利用价值的是菱锌矿。
最常用的浮选办法有两种:加温硫化浮选法;常温下阳离子捕收剂法。
加温硫化法:首要脱去-10μ细泥,浓缩今后,升温至50℃,用硫化氧化锌矿藏,用硫酸铜活化,再用高档黄药作首要捕收剂,用柴油、焦油等作辅佐捕收剂,2#油作起泡剂,水玻离作脉石按捺剂,一般浮选作用杰出。但当含有很多氢氧化铁时作用欠好。
阳离子捕收剂法,也就是伯胺法,适用于含高铁物料的浮选。
阳离子捕收剂法是在常温下进行的浮选,用阳离子捕收剂。在伯胺中只要C12~C18浮选作用最好。伯胺中饱满胺比不饱满胺好,直链的比支链的好,C16以上的胺不易于溶解矿浆要加温,C10~C20的混合胺比单一的十八碳榜首胺好。矿浆pH值为10.5~11.5,调整pH用,按捺剂采用水玻离按捺铁质脉石以及绢云母化和绿泥石化脉石、用六偏磷酸钠按捺石英和白云石,以上两种按捺剂合用几呼能按捺一切脉石矿藏。用栲胶能够更有用的按捺白云石等碳酸盐类脉石矿藏。
若原矿氧化锌是以异极矿和硅锌矿为主而脉石以绿泥石和绢云母为主,用磷酸盐类按捺剂按捺脉石,作用比较好。
在阳离子捕收剂浮选中,矿泥的影响比较突出,-10μ细泥含量在15%以内时加苏打、水玻璃、羧甲基纤维素、腐植酸钠等能够消除矿泥影响,不用脱泥。大于15%时要进行脱泥加0.3~0.5公斤/吨·原矿的、硅酸钠等分散剂脱泥作用好。
广西泗顶选矿厂氧化铅锌矿的浮选
矿石类型有硫化矿、氧化矿、混合矿,原生金属矿藏首要为方铅矿、闪锌矿,此外还有黄铁矿、褐铁矿和赤铁矿。氧化金属矿藏首要有白铅矿、铅矾、菱锌矿、红锌矿和水锌矿等。锌的氧化矿藏中菱锌矿和氧化锌约占80%,硅锌矿和异极矿占18%,硫酸锌矿藏占2%,脉石矿藏首要为方解石、白云石、重晶石、石英和粘土。闪锌矿粒度0.01~12mm。锌档次6%~7%,氧化率40%,有时达50%。铅档次1%~2%,氧化率20%~30%。浮选目标:锌原矿档次7.24%,锌精矿档次49.5%,锌回收率74%,铅原矿档次1.2%,铅精矿档次54%,铅回收率65%。选锌浮选前脱除细泥,用混合胺作捕收剂,用作调整剂,混合胺与多段增加比一段增加为好,浮选氧化锌时pH值在11左右。代号 ZNY
有用物质含量 90(%),外观为淡黄色膏状
首要用途:氧化锌矿浮选(菱锌矿、硅锌矿、异极矿等氧化锌矿)
浮选功能:具有杰出的浮锌挑选功能,耐低温功能(最低温度5℃)。
运用办法:将药剂用水兑成2%水溶液运用,用40℃温水溶解即可。
适用范围:菱锌矿等,锌1%左右的氧化矿能够选到含锌30%以上的锌精粉,锌回收率70%以上。
环保功能:药剂无毒无害,易生物降解,对环境友好,契合环保要求。
产品特色:
1.不脱泥优先浮选办法;
2.可常温浮选,节能降耗;
3.泡沫适中,浮选安稳,易于出产操作;
4.对各类氧化锌矿有特效,可完成氧化锌矿资源加工工业化。
产品质量标准:Q/HS-2017
项目 质量标准 实验办法
外观(250C) 粘稠物 目测
活性物含量,% ≥ 90
PH值(5%水溶液) 8-9 PH试纸法
包装规格:200公斤/铁桶或塑料桶。
运送与储存: 不燃不爆,按一般化工产品运送。
云南某铜钴矿的选冶试验研究
2019-02-22 14:08:07
钴是一种银白色金属,归于铁族元素。钴的矿藏或钴的化合物一向用作陶瓷、玻璃、搪瓷的釉料。直到20世纪,钴及其合金才在电机、机械、化工、航空和航天等工业部门得到广泛的使用,且消费量逐年添加。当今,钴已经成为一种全球的战略物资。我国钴资源十分稀缺,2007年对外依存度到达90%,是对外依存度最高的有色金属元素。因而,加大对钴矿石的选别使用具有重要的含义。
1 矿石性质
矿样来自云南某选厂的铜钴矿石,矿样首要化学成分分析见表1
表1矿样首要化学组成分析成果(质量分数)/%CuCoSFeAsSiO2CaOAl2O3MgO0.230.247.499.270.04155.12.698.720.99矿石中首要有用金属矿藏为黄铁矿、黄铜矿、含钴黄铁矿、铁硫砷钴矿以及少数的铁硫砷钴矿等;麦石矿藏首要为石英、长石、白云母等。由于该矿石中有用矿藏品种繁复,所以该矿藏归于杂乱难选的硫化矿。
2实验研讨 钴多伴生在铁、铜和镍矿中。工艺矿藏学研讨发现,该矿石中的钴首要是以类质同象的办法代替黄铁矿中的铁离子赋存在黄铁矿中。现在国内外对处理硫化铜钴矿石的浮选工艺流程计划首要有两种:第一是混合浮选;第二是优先浮选。本文选用石灰抑硫、优先浮选取得铜,然后再对硫钴精矿选用焙烧-湿法浸出取得钴和铁。
2.1选矿实验 2.1.1磨矿粒度对现场原矿在不同磨矿粒度下进行了选矿探究实验。矿样磨细,粗精矿中铜钴档次改变不大,收回率逐步升高,适宜的磨矿粒度为-0.074mm粒级占80%。
2.1.2浮选实验工艺矿藏学研讨标明,硫钴精矿中首要钴矿藏为铁硫砷钴矿(Co,Fe)AsS,矿藏含钴量12%~30%,钴与铁类质同象代替。由于钴矿藏首要以含钴黄铁矿办法存在,一般用石灰按捺钴、铁硫化矿藏。其原理是,石灰在水中生成氢氧化钙,它进一步解离得到ca2+和OH一,这两种离子对硫化铁矿藏均有按捺作用,OH一使硫化铁矿藏表面生成氢氧化铁的亲水薄膜,阻碍了捕收剂的吸附,而Ca2+在硫化铁矿藏表面生成CaSO4等难溶化合物,从而使硫化铁矿藏遭到按捺。依据矿样的矿石性质,实验决议选用抑硫浮铜的计划,进行铜硫别离实验。别离取得铜精矿、硫钴精矿。原矿浮选准则流程见图3,浮选探究实验成果见表2。表2成果标明,选用优先浮铜,铜、钴别离经一次粗选、二次精选的工艺,可取得含铜16.95%、含钴0.37%的铜精矿和含钴1.17%、含铜0.23%的钴精矿,铜钴取得较好别离。
表2原矿浮选实验成果产品名称产率/%档次/%收回率/%铜钴铜钴铜精矿0.816.950.3760.281.28铜中矿5.530.520.6712.7816.01硫钴精矿12.710.231.1712.9964.26硫钴中矿6.220.120.353.329.41尾矿74.740.0320.02810.639.04给矿100.000.2250.231100.00100.00选用电子显微镜能谱分析和MLA矿藏自动检测技能对浮选所获硫钴精矿进行了矿藏查定和定量测定,硫钴精矿的首要成分见表3。表3硫钴精矿首要成分分析成果(质量分数)/%CuCoSCaOAl2O3FeMgOSiO20.231.1747.10.210.8740.070.0812.53检测标明,浮选所获硫钴精矿含钴1.17%,含硫47.1%,含铁40.07%。工艺矿藏学研讨标明硫钴精矿中的钴首要会集在黄铁矿中,且以类质同象的办法与黄铁矿共生,这也是通过屡次精选,硫钴精矿含钴仅为1%左右的原因。
2.2硫钴精矿冶金实验
钴含量为1.17%的精矿在市场上较难供应,因而对浮选所获硫钴精矿进行了冶金提钻探究实验研讨。对浮选所获硫钴精矿,选用高压氧浸出,在技能上可行,但由于钴的档次太低,设备的投入将很大,一起生产中要耗费很多的氧,经济上不划算,所以选用火法焙烧-湿法浸出的办法。在火法焙烧过程中硫能够得到充沛的使用,通过收回焙烧过程中的烟气制取硫酸,经济效益较好,焙砂浸出后的浸出渣中铁的档次能够到达65%,可直接作为铁精矿供应,浸出液通过一次除铁后用沉钴得到的钴渣中钴的档次能够提高到13%左右,直接作为钴精矿进行供应。实验成果见表4。
表4硫钴精矿冶金实验成果产品名称档次/%收回率/%钴铁钴铁钴渣13.0215.886.5-铁精矿0.2362.25-90.33结语
1)对原矿样选用石灰抑硫、优先浮铜工艺流程,在磨矿粒度为-0.074mm粒级占80%的条件下,可取得铜精矿含铜16.95%、铜收回率60.28%,硫钴精矿含钴1.17%、钴收回率64.26%的技能指标,钴能得到有用富集。2)浮选所获硫钴精矿的首要成分为黄铁矿,钴类质同象代替黄铁矿中的铁。这也是通过屡次精选,硫钴精矿含钴仅为1%左右的原因。3)对含钴1.17%、硫47.1%、铁40.07%的硫钴精矿选用焙烧-湿法浸出的办法进行富集,得到钴渣中钴的档次可达13.02%,浸出渣铁精矿中铁的档次可到达62.25%,钴得到很好的富集,而且硫能够制取硫酸,铁能够归纳收回。
日本转炉炼钢工艺的最新进展(一)
2018-12-14 09:31:07
1日本转炉炼钢工艺的最新进展 近年来,用户对低磷钢和超低磷钢的需求明显增加,特别是深冲钢和高级别管线钢等对磷含量要求苛刻的钢种,常规转炉炼钢法难以低成本地组织生产。20世纪90年代中后期,为解决超低磷钢的生产难题,日本各大钢厂进行了转炉脱磷的试验研究,1993年~2007年,日本新日铁、JFE、住友金属和神户制钢四家钢铁企业申请的转炉脱磷专利量分别为33、40、18和7项(共计98项)。 日本发明的转炉脱磷炼钢工艺主要方法有∶JFE的LD一NRP法、住友金属的SRP法、神户制钢的H炉、新日铁的 LD一ORP法和MURC。其操作方式主要有两种∶第一种是采用两座转炉双联作业,一座脱磷,另一座接受来自脱磷炉的低磷铁水脱碳,即“双联法”。典型的双联法工艺流程为∶高炉铁水铁水预脱磷转炉脱磷转炉脱碳二次精炼连铸。第二种是在同一座转炉上进行铁水脱磷和脱碳,类似传统的“双渣法”。 双联法是日本各大钢厂目前采用的最先进转炉炼钢方法,其主要优势是∶炉内自由空间大,允许强烈搅拌钢水;顶吹供氧;高强度底吹(0.3立方米/吨· 分);不需要预脱硅;废钢比较高(8%~10%);炉渣碱度较低(1.5~2);渣量大幅下降;处理后铁水温度较高摄氏1350度,大幅度提高了脱磷效率。 2生产实绩 2.1JFE福山制铁所 福山制铁所有两个炼钢厂(第二炼钢厂和第三炼钢厂)。该制铁所是日本粗钢产量最高的厂家(1080万吨/年)。第三炼钢厂有两座320吨顶底复吹转炉,采用LD 一NRP工艺“双联法”,一座转炉脱磷,另一座脱碳;转炉脱磷能力为450万吨/年。该厂1999年开始全量铁水转炉脱磷预处理。 脱磷转炉指标∶炉令低于脱磷转炉,转炉在炉役前期用于脱碳,炉役后期用于脱磷,炉令约7000炉;石灰消耗5~6公斤/吨。 第二炼钢厂有3座250吨顶底复吹转炉,采用传统“三脱”工艺(NRP)。“三脱”处理能力为420万吨/年。该厂统计的生产数据表明,铁水罐内脱磷处理周期长、产能低;LD一NRP技术与常规冶炼技术相比,每吨钢成本低5美元左右。此外,JFE京滨炼钢厂的两座330吨转炉也采用双联法炼钢。 2.2住友金属鹿岛制铁所 住友金属鹿岛制铁所有两个炼钢厂,第一炼钢厂3座250吨转炉,采用该公司发明的SRP法(双联法)炼钢。第二炼钢厂2座250吨转炉,采用常规冶炼工艺。第一炼钢厂一座转炉脱磷,另二座转炉脱碳(二吹一),脱磷铁水富余25%,运送给第二炼钢厂。住友金属鹿岛制铁所两个炼钢厂的生产流程见图1。 脱磷转炉指标∶ 吹炼时间为8分钟;冶炼周期为22分钟;废钢比为10%(加轻废钢);出铁温度为摄氏1350度;渣量为40公斤/吨。 脱碳转炉指标∶ 吹炼时间为14分钟;冶炼周期为30分钟;锰矿用量为15公斤/吨(锰回收率∶30%~40%);渣量为20公斤/吨。.
转炉炼钢用原材料有哪些,为什么要用精料?
2019-03-06 09:01:40
炼钢用原材料分为主质料、辅质料和各种铁合金。氧气顶吹转炉炼钢用主质料为铁水和废钢(生铁块)。炼钢用辅质料通常指造渣剂(石灰、萤石、白云石、组成造渣剂)、冷却剂(铁矿石、氧化铁皮、烧结矿、球团矿)、增碳剂以及氧气、氮气、氩气等。炼钢常用铁合金有锰铁、硅铁、硅锰合金、合金、金属铝等。
原材料是炼钢的物质根底,原材料质量的好坏对炼钢工艺和钢的质量有直接影响。国内外大量生产实践证明,选用精料以及质料标准化,是完成冶炼进程自动化、改进各项技能经济指标、进步经济效益的重要途径。依据所炼钢种、操作工艺及配备水平合理地选用和调配原)I身料可到达低费用投入,高质量产出的意图。
转炉入炉质料结构是炼钢工艺准则的根底,首要包含三方面内容:一是钢铁料结构,即铁水和废钢及废钢品种的合理配比;二是造渣料结构,即石灰、白云石、萤石、铁矿石等的配比准则;三是充分发挥各种炼钢质料的功用运用作用,即钢铁料和造渣料的科学使用。炉料结构的优化调整,代表了炼钢生产经营方向,是最大程度安稳工序质量,下降各种物料耗费,添加生产能力的根本确保。
炼钢炉尘提取还原用铁粉重选技改实践
2019-01-21 18:04:35
一、前言
炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。
由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。
二、原因分析
(一)原料分析
铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。
炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。
另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。
(二)原工艺流程及存在的缺陷
1、原工艺流程
原工艺流程如图1所示。2、原工艺存在的缺陷
(1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。
(2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。
(3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。
(4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。
三、解决措施
针对现有生产工艺存在的问题,对现有工艺进行了优化。
(一)新工艺流程
经改造后的新工艺流程(略)
(二)改造措施
1、将一段摇床改为螺旋溜槽。
2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。
3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。
4、在新增球磨机后增加一台磁选机。
四、改进效果
经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。
五、结论
(一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。
(二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。
日本转炉炼钢工艺的最新进展(二)
2018-12-14 09:31:03
2.3住友金属和歌山制铁所 住友金属和歌山制铁所年产粗钢390万吨。炼钢生产采用SRP法,100%铁水经转炉脱磷。该厂脱磷转炉与脱碳转炉设在不同跨,脱磷转炉和脱碳转炉的吹炼时间为9~12分钟,转炉炼钢的冶炼周期控制在20分钟之内。一个转炉炼钢车间供钢水给三台连铸机,是目前世界上节奏最快的钢厂。 和歌山制铁所SRP法优点是∶ 可以采用较高磷含量的低价位铁矿石炼铁,铁水磷含量放宽至0.10%~0.15%,降低了矿石采购成本; 炼钢时,可以使用锰矿石代替锰铁合金; 与高拉速连铸机相匹配,加快了大型转炉的生产节奏; 脱碳炉渣可返回用于脱磷转炉,炼钢渣量显著降低; 脱磷炉渣不经蒸汽稳定化处理,可直接铺路,降低了炉渣处理成本; 建立起高效率、低成本、大批量生产洁净钢的平台,显著改善了IF钢板抗二次加工脆化和热轧钢板低温冲击韧性等性能; (7)工序紧凑。 2.4神户制钢 由于神户制钢生产的高碳钢比例较大,转炉的脱磷负荷大,铁水脱磷、脱碳预处理用H炉(专用转炉)。处理过程分两步∶首先在高炉出铁沟用喷吹法对铁水进行脱硅处理,用撇渣器去除脱硅渣后,将铁水再兑入H炉进行脱磷、脱硫。脱磷时,喷吹石灰系渣料,同时顶吹氧气;脱磷后,再喷入苏打粉系渣料硫。经预处理的铁水再装入另一座炉进行脱碳。用H炉进行铁水脱磷、脱硫处理具有如下特征∶ H炉内空间大,进行铁水预处理时,炉内反应效率高、反应速度快,可在较短的时间内连续完成脱磷、脱硫处理; 可用块状生石灰和转炉渣代替部分脱磷渣; 脱磷过程中添加部分锰矿,可提高脱磷效率,且增加了铁水中的锰含量。 2.5新日铁八蟠制铁所 新日铁八蟠制铁所有两个炼钢厂,第一炼钢厂2座170吨转炉,采用传统的“三脱”工艺;第二炼钢厂2座350吨转炉,炼钢生产采用新日铁名古屋制铁所发明的LD一ORP工艺(双联法),参见图2。2.6新日铁君津制铁所
新日铁君津制铁所有两个炼钢厂,第一炼钢厂和第二炼钢厂均采用KR法脱硫(S
LD一ORP法渣量少,可生产高纯净钢。脱磷转炉弱供氧,大渣量,碱度为2.5~3.0,温度为摄氏1320~1350度,纯脱磷时间为9~10分钟,冶炼周期约为20分钟,废钢比通常为9%,为了提高产量,目前已达到11%~14%,经脱磷后钢水(P<=0.020%),兑入脱碳转炉,总收得率92%以上。转炉的复吹寿命约4000炉。脱碳转炉强供氧,少渣量,冶炼周期约为28~30分钟,脱碳转炉不吃废钢。从脱磷至脱碳结束的总冶炼周期约为50分钟,恰好与连铸机的浇铸周期50~60分钟相匹配。新日铁君津制铁所日本钢厂第二炼钢厂 LD一ORP工艺流程见图3。 .
水钢转炉炼钢应用锰硅合金的生产实践
2019-02-15 14:21:16
钢铁作为一种重要的根底原材料,在世界各国的经济开展中发挥着无足轻重的效果。自18世纪50年代以来,跟着贝塞麦转炉的呈现以及大规模的钢铁制作业的鼓起,人类社会的文明前进显着加快。尤其是20世纪以来,钢铁工业的蓬勃开展,成为全球经济和社会文明前进的重要物质根底。在能够预见的时刻规模内,钢铁仍然是世界上非常重要的材料,钢铁材料的概括优异功能使其在首要根底工业和根底设备中仍然是不行代替的材料。钢铁以其本钱的竞争力和质料的高储备量、易挖掘、易加工以及杰出的再生运用性,仍将作为全球性的首要根底原材料。
在钢铁工业的开展进程中,其根本原理并没有呈现根本性的改变,但钢铁出产工艺流程中各工序的技能方式以及工程的组成内在则发生了巨大的改变,从而使钢厂结构方式及制作流程发生了深入改变。20世纪50年代氧气转炉的呈现,使炼钢工业相貌敏捷改观。70年代石油危机今后,因为动力报价上涨,连铸技能迅猛开展,连铸坯热送热装和直接轧制的完结,使钢厂的出产愈益专业化和系统化。
在绝大部分钢种的出产中,锰和硅都是有必要元素。在炼钢进程中作为添加剂,它们是运用最广泛的脱氧剂,它们相互效果能共同进步脱氧才能。一起,又别离以合金元素的方式对钢的功能起着重要的效果。此外,元素锰仍是惯例的首要脱硫元素,避免钢的热脆,改进钢的加工功能和力学功能。
1 工艺设备概略
水钢炼钢厂主体规划为三座公称容量15吨的氧气顶吹转炉,始建于20世纪70年代。1997年对主体设备和辅佐设备进行技能改造,完结了全连铸出产,实践出钢量到达25t.2001年又完结了对转炉的扩容改造,公称容量增为25t,实践出钢量到达了35t.钢包容量也相应增大,为满意炉外精粹的需求,液面自在高度约为350-500mm.
水钢转炉炼钢工艺的脱氧和合金化操作悉数在钢包中完结。选用的铁合金种类首要有:高碳锰铁、硅铁、以及少数的或硅铝。参加次序依据铁合金中首要元素的脱氧才能巨细,先弱后强,依次为:高碳锰铁、硅铁、或硅铝。铁合金在钢包中的参加时刻操控在转炉出钢量约30%-60%的规模内。此外,转炉出钢量约30%时,经过钢包底部的吹氩透气砖吹氩拌和,加快钢液成分和温度的均匀化。
与国内同行业先进目标比较,存在的首要距离是铁合金消耗量较高,合金收得率较低。2000年的均匀消耗量为:锰铁14.59kg/t,硅铁6.79kg/t.
2 出产实验
2.1 实验依据
模拟实验研讨标明,密度低于液体的固体颗粒在不同高度参加到液面停止的流体时,密度愈大,透入深度愈大。参加方位愈高,透入深度愈大。依照物理学的根本理论可概括为:动量愈大,透入深度愈大。根本契合热力学第必定律。假如注入流体引起包内液体构成循环流场,固体颗粒的透入深度愈大,愈有利于进入循环流场。
依据冶金热力学理论分析,运用锰硅合金代替部分锰铁和部分硅铁在钢包中进行脱氧和合金化,有助于进步硅的有用溶解,一起也有助于锰和硅一起参加脱氧并进步硅的脱氧才能。
2.2 实验计划
首要出产种类为低合金钢20MnSi和普通碳素钢。冶炼普通碳素钢时,运用相对密度较高的锰硅合金代替部分75硅铁和悉数高碳锰铁,另外补加少数硅铝合金;铁合金的参加次序为:锰硅合金、硅铁、硅铝合金;出钢温度操控在1650-1670℃,出产低合金钢20MnSi时,每炉钢运用200kg硅锰合金代替部分高碳锰铁和部分硅铁,另外补加少数合金;铁合金的参加次序为:高碳锰铁、锰硅合金、合金;出钢温度操控在1660-1680℃.出钢进程选用双挡渣操作,出钢前选用挡渣帽避免出钢初期一次下渣,出钢晚期运用挡渣球避免出钢终了二次下渣。出钢时刻操控在1分30秒至2分30秒。[next]
2.3 成果和评论
对400多炉出产实验的炉前盯梢计算和成果分析标明:冶炼低合金钢20MnSi时,硅系铁合金的元素硅收得率由本来的82.86%进步到88.25%,净增加率为5.39%,锰的收得率由90.05%进步到92.50%,净增加率为2.45%;冶炼普通碳素镇静钢时,硅系铁合金中硅的收得率由68.38%进步到74.78%,净增加率为6.40%,锰的收得率由86.7%进步到91.2%,净增加率为4.5%.
以冶炼普通碳素镇静钢为例,对部分计算成果比较如下。由表1能够看出,炉号为13-13778至13-13807的13炉普通碳素镇静钢(17炉其他钢号未列入)的冶炼操作和产品成分均较为安稳。均匀出钢量为每炉35.5±0.3 t,锰硅合金的参加量为每炉195±15kg,75硅铁的参加量为每炉75±5kg,硅铝复合铁合金的参加量为均匀每炉27.5±2.5kg.产品的均匀碳含量为0.136%,均匀硅含量为0.218%,均匀锰含量为0.475%.硅的均匀收得率为74.97%,这与200炉普通碳素镇静钢的计算成果74.78%根本共同。炉前盯梢计算的200炉普通碳素镇静钢,其化学组成成份悉数契合国家标准要求。组成C、Si、Mn的含量在内控标准抱负值规模内的为170炉,占85%;挨近内控标准下限的为15炉,占7.5%;挨近内控标准上限的为10炉,占5%;超出内控规模的有5炉(碳超下限的有4炉,碳超上限的有1炉)占2.5%.为进一步限制钢中碳含量的动摇规模,将入炉质料的组成成份安稳与进程操控相结合,规范位操作,下降出钢温度(将普通碳素镇静钢的出钢温度操控在1640-1660℃),进步拉碳命中率,操控结尾碳含量约为0.06%.水钢运用的锰硅合金碳含量约为1.8%,高碳锰铁的碳含量约为7.0%.因而,运用锰硅合金代替高碳锰铁时,其参加量必定要依据结尾碳的操控水平缓钢种碳含量的要求来断定。
在选用锰硅合金代替部分硅铁和碳素锰铁之前,曾对各种铁合金中的硅在冶炼普通碳素镇静钢时的收得率作过计算。依照2000年9月份的计算和计算成果,均匀出钢量为每炉25.8t,每炉钢水中各种铁合金的均匀参加量依次为:碳素锰铁130kg,75硅铁90kg,(或硅铝)复合铁合金30kg.各种铁合金中硅的均匀收得率为68.38%.
200炉冶炼20MnSi钢的首要技能目标为:均匀出钢量35.5±0.5t/炉,锰硅合金参加量200kg/炉,75硅铁参加量220kg/炉,高碳锰铁参加量510±30kg/炉,参加量27.5±2.5kg/炉。产品的均匀碳含量为0.205%,均匀硅含量为0.546%,均匀锰含量为1.395%.硅的均匀收得率为88.25%.在运用锰硅合金前的首要技能目标为:均匀出钢量26.1t/炉,75硅铁参加量220±10kg/炉,高碳锰铁参加量515±15kg/炉,和硅铝的参加量30±5kg/炉。硅的均匀收得率为82.86%.
3 结 论
(1)出产实验成果标明,冶炼低合金钢20MnSi时,铁合金中硅的收得率由本来的82.86%进步到88.25%,锰的收得率由90.05%进步到92.50%.冶炼普碳钢时,铁合金中硅的收得率由本来的68.38%进步到74.78%,锰的收得率由本来的86.7%进步到91.2%.
(2)选用相对密度与钢水附近的锰硅合金代替部分75硅铁和部分高碳锰铁,是元素收得率显着进步的重要因素。
云南某高磷褐铁矿石选冶联合工艺研究
2019-01-24 09:38:21
随着我国钢铁工业的高速发展,国内铁矿石资源日益紧张,可利用的铁矿资源日益趋向于贫、细、杂。为提高我国铁矿石资源的自给率,缓解进口铁矿石的压力,需要研究开发利用大量的难选铁矿石。我国铁矿资源中硫、磷、二氧化硅等有害杂质含量高,杂质与有用铁矿物紧密共生,给铁精矿除杂造成了一定的难度。磷是钢铁冶炼过程中主要的有害元素之一,严重影响炼钢工艺和钢材产品质量。随着冶金工业的发展和新工艺的实施,对铁精矿的质量要求越来越高,对磷的含量也有严格的限定,因此铁精矿高效降磷迫在眉睫[1-3]。
目前国内外对难选低品位高杂质褐铁矿的选矿多采用强磁选-正浮选、弱磁选-强磁选-正浮选、分级-重选-细粒级浮选、絮凝-强磁选、反浮选-焙烧-弱磁选、焙烧-弱磁选-反浮选等联合流程[4]。
云南某褐铁矿石资源量好,铁矿物粒度嵌布复杂,含磷高,且泥化现象严重,属难选呆矿石,长期以来一直没得到开发。为了开发利用矿产资源,提高企业矿产资源自给率,企业方委托昆明理工大学对该矿石进行选冶试验研究。经一系列探索性试验研究,发现采用常规单一的强磁选,重选,浮选方法选别后得到的精矿铁品位很难达到48%以上,含磷却在0.8%以上。针对这种情况,研究了反浮选-磁化还原焙烧-超细磨磁絮凝的选冶联合工艺,最终获得了铁品位为69.57%,回收率为71.62%的铁精矿,其中含磷0.29%、含硫0.17%、含硅5.75%、获得了令人满意的技术指标。
一、矿石工艺矿物学研究
云南某铁矿是一个多期、多因、多类型叠加的具有复合特征的大型铁矿床,地质储量达19.94亿t,主要分为原生矿和氧化矿两大类别。氧化矿石分布于矿体露天,占总储量的16%,氧化矿石矿物组分以褐铁矿为主,分子式为2Fe2O3•3H2O,含量约占70%。矿石中的褐铁矿通常是多矿物的集合体,由针铁矿、纤铁矿、水针铁矿、水纤铁矿、以及含水的氧化硅、泥质等机械混人物组成。褐铁矿常呈不规则粒状、网状、胶状嵌布在石英中,由于矿物单体大部分粒度细小,彼此大多互相呈浸染状分布而不易区分;脉石矿物主要为石英和绿泥石,其次为胶磷矿和蒙脱石。褐铁矿粒度一般为0.004~0.15mm,最小为0.002mm。该矿石中的褐铁矿有两种成因类型,一种为沉积型褐铁矿,是在沉积岩形成的过程中形成,常以胶结物的形式分布于石英碎屑之间,中间常混入细小的蒙脱石、绿泥石。沉积型褐铁矿呈隐晶状集合体;褐铁矿的第二种成因类型为外生作用下经氧化水解形成褐铁矿集合体。这种类型褐铁矿的成分差异比较大,其中磷的含量也有较大的变化。石英嵌布粗细不均,产出粒度为0.015~1mm。矿石中有3种成因形成的石英,第一种为沉积形成的硅质岩后重结晶形成显微粒状的石英;第二种为石英碎屑;第三种为后生石英,粒度相对较大,常成脉状条带状分布。矿石中有害元素磷是以胶磷矿的形式存在,胶磷矿是由极细的磷灰石集合体构成,胶磷矿产出粒度为0.003~0.2mm。矿石中含磷较高,而磷并不是以独立矿物的形式存在,而是有90%以上呈类质同象和极细的机械混入物的形式存在于载体矿物褐铁矿中。
原矿主要化学元素分析结果如表1所示。从表1可见,原矿全铁含量为43.75%,杂质硅和磷含量较高,而硫含量较低。原矿铁物相分析结果如表2所示。从表2可见:原矿中主要含铁矿物为褐铁矿,褐铁矿之中的铁占69.10%,其它矿物中的铁很少。鉴于对原矿工艺矿学的研究以及在对类似铁矿石研究的基础上,曾得出单一的选矿或冶金都不是最佳的方法,只有通过选矿与冶金的有机联合,才能获得比较好的经济效益,以下研究工作主要思路:通过选矿的方法尽量降低原矿中磷的含量,同时要确保铁的回收率,再将所得脱磷粗精矿进行磁化还原焙烧-弱磁选或磁絮凝试验,最终得到合格铁精矿。
二、选矿工艺技术的研究
(一)强磁选流程试验
褐铁矿与脉石矿物的磁性差异较大,具备强磁选的分选条件,因此进行强磁选流程试验。将原矿磨至-0.074mm占90%,调解好冲洗水,给矿浓度及分选时间等条件后,在磁场强度为880kA/m下进行强磁选,试验结果见表3。从表3可见,强磁选作业得到的铁精矿品位和回收率分别为45.35%,69.03%,磷在精矿中有所富集。其原因是双重的。一方面,铁物相分析结果表明硅酸铁占有率为17.67%,这部分铁在强磁选中不能很好地回收。另一方面,由于原矿中磷灰石嵌布粒度非常细,无法使其与铁矿很好地解离,因而不能降低精矿中磷的含量,最终磷随铁精矿的富集而富集。原矿经磨矿后,铁矿物的粒度两极分化严重,使得部分细粒铁矿物又损失在尾矿中,因此强磁选作业并没有达到预先抛尾保铁降磷的效果。
(二)直接反浮选脱磷流程试验
在一定的浮选条件下,利用弱磁性铁矿物与磷灰石矿物表面性质的差异,采用阴离子捕收剂进行直接反浮选脱磷试验[5],来达到“保铁降杂”的目的,下面对这一工艺的浮选条件及合理的药剂制度进行了探索性试验。
1、磨矿细度试验
磨矿细度对选矿的标影响非常大,对于细粒嵌布铁矿而言,磨矿不仅要使矿物达到单体解离的目的,同时不能使矿石泥化而影响分选指标。在矿浆自然pH为6.5的条件下,进行了磨矿细度试验。试验流程为一段反浮选脱磷粗选,试验结果见表4。从表4可见,随着磨矿细度的增加,铁精矿铁品位变化不大,但铁的回收率有所下降。磷品位有所上升,脱磷率不高。当磨矿细度增大后含磷矿物解离度会增加,同时褐铁矿也容易泥化,使得捕收剂选择性变差,此外由于含磷矿物基本上是以类质同象及极细的机械混入物的形式存在于褐铁矿中,通过细磨也无法使含磷矿物单体解理出来。综合考虑,反浮选磨矿细度-0.074mm占90%较为适宜。
2、Na2CO3用量试验
在磨矿细度为-0.074mm占90%下,为消除矿浆中Ca2+,Mg2+等有害离子的影响,同时反浮选脱磷宜在碱性矿浆中进行,试验采用Na2CO3调节矿浆pH值,进行Na2CO3用量试验,试验结果见表5。从表5可见,随着Na2CO3用量的增大,铁精矿中铁品位呈上升趋势,磷品位变化不大,铁回收率有所上升,尾矿中磷品位增大。综合考虑,Na2CO3用量6.5~7.4kg/t比较适宜,此时矿浆pH=9~10之间,铁精矿含磷0.75%,铁回收率为93.61%。
3、捕收剂种类试验
在磨矿细度为-0.074mm占90%,pH=9~10,新调整剂(1)240g/t,水玻璃4 000g/t,淀粉800g/t下,进行捕收剂种类试验,试验结果见表6。从表6可见,捕收剂M反浮选脱磷效果相对较好,M为脂肪酸类捕收剂按一定比例配制而成,当用量为600g/t时,得到精矿铁品位为44.86%,含磷0.74%,铁的回收率为93.23%。
4、二段反浮选脱磷试验
粗选条件探索性试验表明:一段反浮选脱磷后,槽内铁精矿含磷为0.74%,为进一步降低槽内铁精矿中磷的含量,进行了二段浮选脱磷试验,试验流程及条件如图1所示。试验结果见表7。 从表7可见,粗选2并没有使槽内精矿磷进一步降低,其尾矿含磷仍有0.84%,磷的脱除率低,同时损失近4个百分点的铁矿物回收率。因此通过多段反浮选来降低槽内铁精矿中磷含量的效果并不明显。此外,抑制剂及捕收剂用量探索性试验结果表明该矿石采用反浮选深度降磷的难度非常大,槽内精矿含磷在0.75%左右,铁矿物回收率在90%左右。
三、磁化还原焙烧工艺技术的研究
(一)焙烧温度试验
上述选矿工艺技术研究结果表明,整个作业磷的脱除率不高,铁精矿品位不到45%,含磷0.75%左右。为提高铁精矿品位,同时降低铁精矿中磷的含量,将脱磷铁精矿进行了磁化还原焙烧试验。磁化还原焙烧-弱磁选是在矿石中加入还原剂碳粉及助剂Na2CO3进行焙烧,使褐铁矿等弱磁性铁还原成强磁性铁矿物。助剂Na2CO3改变有害杂质的物相组成,然后采用弱磁选方法分选出铁精矿。影响焙烧的因素较多,主要有矿石性质、焙烧温度、焙烧时间、入烧粒度、焙烧气氛以及助剂种类和用量等。经一系列条件探索性试验后,确定了煤粉用量为15%,助剂Na2CO3用量为10%,焙烧时间为120min的条件。在最佳条件组合下,考察了焙烧温度的影响。脱磷精矿还原焙烧试验流程见图2,焙烧温度试验结果见表8。
从表8可见,在不同的温度下,脱磷精矿经磁化还原焙烧后,有5%~8%的烧失率,焙烧后铁品位能提高1%~3%。同时磷含量由0.75%上升到0.8%左右。还原焙烧温度对分选指标也有很大的影响,温度从800℃增大到1 070℃,精矿铁品位从51.52%升到63.80%,铁回收率从34.76%上升到74.31%。但铁精矿中磷品位含量超标。焙烧温度为1 070℃时,铁精矿含磷量也高达0.63%,试验中发现温度超过1 100℃后,矿石发生软熔,弱磁选作业铁回收率很低,因此取焙烧温度为1 070℃。
(二)磁絮凝试验
为降低最终铁精矿中磷的含量,对焙烧矿样进行超细磨以增大铁矿物与磷矿物的解离度,考虑到常规的弱磁选设备不能很好地回收细粒级铁矿物,试验中采用磁絮凝的方法来分选磁性矿物,同时进行了磁絮凝与磁选管对比试验。磨矿细度对磁絮凝的影响试验结果见表9。从表9可见,磨矿细度对磁絮凝指标影响比较大,随着磨矿细度的增加,最终精矿铁品位有所提高,磷含量明显降低。磨矿细度为38μm占90%时,磁絮凝精矿铁品位为68.06%,含磷0.3%,铁回收率为82.74%。同时通过表8数据对比可以看出,磁絮凝比磁选管能获得更高的铁回收率,精矿磷含量由0.63%降至0.30%;同时对38μm占90%的焙烧矿样进行了磁选管试验,在磁场强度为96kA/m下经1次粗选,最终铁精矿铁品位为70.12%、含磷0.28%、铁回收率为60.59%。这表明焙烧矿样经过超细磨后,增大了铁矿物与磷矿物的解离度,采用磁絮凝能很好地降低精矿中磷的含量。此外磁絮凝过程中微细粒铁矿物被外加磁场所磁化形成絮凝,进而增大了分选粒度,克服了弱磁选设备对微细粒铁矿物回收差的弊端,从而获得更高的铁回收率。
四、全流程试验
在以上试验的基础上,进行了反浮选-磁化还原焙烧-磁絮凝的全流程试验,试验全流程如图3,精矿主要化学元素分析结果见表10。试验结果表明,在反浮选-磁化还原焙烧-磁絮凝全流程试验中,可以获得品位为69.57%、回收率为71.62%的铁精矿。铁精矿含磷0.29%,含硫0.17%,含硅5.75%。
五、结论
(1)工艺矿物学研究表明:云南某褐铁矿铁石性质复杂、矿物粒度嵌布微细、泥化现象严重、含磷高、且大部分磷以类质同象和极细的机械混入物的形式存在褐铁矿中,属难选呆矿石。
(2)常规单一的强磁选、重选、浮选工艺对该矿石几乎没有分选效果。为此采用反浮选-磁化还原焙烧-超细磨磁絮凝的工艺流程处理该矿石,获得了铁品位为69.57%、回收率为71.62%、铁精矿含磷为0.29%、含硫为0.17%,含硅为5.75%,技术指标令人满意。
(3)超细磨-磁絮凝能很好降低精矿中磷的含量,提高精矿品位,同时解决常规弱磁选设备不能有效回收微细粒级铁矿物的问题。这一工艺为难选高磷铁矿石的提铁降杂提供了一种新的方法。试验中最佳参数的确定需要作进一步研究。
(4)随着矿石资源的日益紧张和对冶炼原料的要求越来越高,用简单的物理选矿工艺处理难选矿石变得越来越困难,寻求新的选矿工艺显得尤为重要。本研究为类似难选褐铁矿石的分选提供了一种新的思路。
参考文献
[1] 袁致涛,高太,印万忠,等.我国难选铁矿石资源利用的现状及发展方向[J].金属矿山,2007(1):1-6.
[2] 褚 永,李玉平.国际铁矿石资源市场均衡价格探讨[J].金属矿山,2008(2):13-15.
[3] 孙克己,卢寿慈,等.弱磁性铁矿石脱磷选矿试验研究[J].中国矿业,1999(6):61-64
[4] 孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-14
[5] 胡为柏.浮选[M].北京:冶金工业出版社.1997.
[6] 罗立群,张泾生,高远扬,等.菱铁矿干式冷却磁化焙烧技术研究[J].金属矿山,2004(10):28-31.
锰矿石冶炼富锰渣和生铁工艺流程
2019-01-04 17:20:18
锰矿石冶炼富锰渣和生铁工艺流程: 小高炉开启,原材料:锰矿石、焦炭。选择合量41以上的锰矿石(mn:23左右,fe:18左右).和碳质还原剂(通常用二级焦碳).原矿石和焦炭的配比为3.5:1,加进治炼炉里,经过炉加热炼两个小时成液体状。经管道流进指定的加有耐热材料的模具里(生铁重些从底下的口子流出.富锰渣从上面口子流出) 冷却后得到富锰渣和生铁。富锰渣和生铁出炉比例约为10:1。1.5吨原矿石经冶炼得到约一吨富锰渣和0.1吨生铁及付生铁。 冶炼一万吨原矿石需要消耗约三千吨二级焦炭。锰矿原矿石价格:锰矿石(mn:23,fe:18) 400元/吨 加减一度锰50元,加减一度铁15元。 二级焦炭:1300元/吨 一级焦炭:1800元/吨富锰渣(mn:33):1150元/吨. 生铁(含碳量2.5%--4%):2750/吨小高炉锰矿原矿石富锰渣焦炭生铁
云南某铅锌矿选矿工艺试验研究
2019-02-20 10:04:42
云南硫化铅锌矿资源丰富、类型多。云南某铅锌矿系一黄铁矿型含银多金属硫化矿。首要金属矿藏为方铅矿、铁闪锌矿、黄铁矿。矿石具有原矿含银高(首要在方铅矿中)、锌矿藏为铁闪锌矿、矿石黄铁矿含量高的特色。研讨、开发、运用该铅锌资源对进步云南铅锌资源的运用率、对当地经济发展具有重要意义。
一、矿石性质
(一)矿藏组成
试样系一黄铁矿型含银多金属硫化矿,以黄铁矿、铁闪锌矿、方铅矿为主,其次为毒砂、黄铜矿、白铁矿及微量磁黄铁矿、褐铁矿等;脉石矿藏以石英、方解石为,其次为长石、白云母、绢云母等粘土矿藏及微量磷灰石等。矿藏相对量成果见表1,原矿多元素分析及各物相分析成果别离见表2和表3。
表1 矿藏相对量测定成果(质量分数)/%表2 原矿多元素分析成果(质量分数)/%表3 原矿藏相分析成果(二)首要矿藏的嵌布特征
方铅矿(PbS)首要呈粒状、块状产出。部分受应力作用,呈压碎结构。与铁闪锌矿、黄铁矿、方黄铜矿等亲近共生。一般粒度在0.20~0.02mm。方铅矿中包体矿藏首要有硫锑铅矿、铁闪锌矿、方黄铜矿及微量锌黄锡矿。也有呈细粒、细粒星散状不均匀嵌布在脉石中,粒度为0.02~0.001mm。
铁闪锌矿(Zn,Fe)S首要呈粒状、碎屑状、细密块状。首要与方铅矿、方黄铜矿、黄铁矿等亲近共生。孔隙较多。部分铁闪锌矿中有方铅矿、毒砂等包体。为粗细不均匀嵌布,一般产出粒度为10~0.04mm。适当部分的铁闪锌矿中有乳滴状方黄铜矿(包含少量黄铜矿),呈固熔体别离结构。方黄铜矿粒度在0.01~0.0004mm。也有呈微细粒状。团絮状不均匀散布在脉石中,粒度在0.006~0.001mm。
黄铁矿(FeS2)多呈自形晶、半自形晶、碎屑状及他形不规则粒状。与方铅矿、铁闪锌矿、毒砂、黄铜矿等亲近共生。部分黄铁矿显碎斑结构及骸晶结构。少量黄铁矿与毒砂相互告知成连晶。在黄铁矿中有被告知的方铅矿包体,黄铁矿堆积体孔隙中嵌布有黄铜矿、铁闪锌矿、方铅矿及脉石矿藏等。脉石矿藏也有呈网脉状穿插在黄铁矿中。呈粗细粒不均匀粒状产出,一般粒度40~0.03mm。也有呈他形微细粒、斑驳状、叶片状、浸染状不均匀嵌布在脉石中,粒度在0.001~0.0005mm左右。
石英(SiO2)呈他形粒状,少量呈自形晶、半自形晶嵌布在其他脉石及金属矿藏。大都石英为细粒、微细粒集聚,其间有呈浸染状微细粒金属矿藏。产出粒度在3.8~0.02mm左右。
方解石(CaCO3)多为细粒、微细粒集聚成粒状、脉状产于石英等脉石及金属矿藏中。有的呈细粒星散嵌布在石英中。粒度在1.1~0.2mm左右,脉宽1.4~0.3mm。
银首要以天然银及硫化银等呈超显微包体(1μm以下)涣散在方铅矿、黄铁矿、铁闪锌矿、及脉石矿藏中,部分银呈固熔体状况存在。砷首要以毒砂方式存在,大都与黄铁矿共生、连生。
二、实验计划挑选
原矿性质考察成果标明,试料首要收回目标为方铅矿、铁闪锌矿及黄铁矿。方铅矿、铁闪锌矿及黄铁矿多呈细密状、浸染状,呈自形晶、半自形晶产出,适合浮选收回,故选定浮选对其进行研讨。
对试料进行了优先浮选、铅锌分混合浮选、等可浮探究实验。实验成果标明,优先浮选的成果显着优于铅锌部分混选和等可浮的成果。铅锌部分混浮流程反映出的首要问题是:铅锌混合精矿的别离,虽然选用了混合精矿再磨、混合精矿脱药,包含运用作为按捺剂等多种办法,其别离作用均难到达令人满意的程度;等可浮流程其目标虽优于铅锌部分混浮流程,但仍比优先浮选差。且操作较难操控,目标不易重现。故选用优先浮选计划。实验流程见图1。图1 实验流程
三、优先浮选实验
(一)磨矿细度实验
依照图1所示流程,磨矿细度对精矿档次和收回率的影响成果见图2。图2标明,跟着磨矿细度的添加,铅、银收回率略有进步,但档次呈下降趋势。当-0.074mm粒级含量不小于85%时,磨矿细度添加,锌档次、收回率添加;当-0.074mm粒级含量大于85%时,锌档次添加,锌收回率下降。归纳考虑,本实验磨矿细度挑选-0.074mm粒级占80%。别的,图2联系曲线还标明铅银之间呈正相关性。
图2 磨矿细度对铅锌精矿目标的影响
1-铅精矿铅收回率;2-锌精矿锌收回率;3-铅精矿银收回率;
4-铅精矿银档次;5-铅精矿铅档次;6-锌精矿锌档次
(二)铅循环粗选药剂条件实验
依据经历,挑选对黄铁矿有杰出按捺作用的石灰作为黄铁矿的按捺剂,挑选硫酸锌、钠组合作为铁闪锌矿的按捺剂,因为高碱环境,挑选捕收才能相对较强的丁黄药为捕收剂[1~4],起泡剂为2#油。鉴于铅粗选药剂品种多,为考察药剂全体运用情况,确保药剂运用的归纳作用,且为节约实验本钱,进步实验功率,本铅循环药剂用量实验选用正交法(4要素3水平)。在磨矿细度为-0.074mm粒级占80%,2#油用量为36g/t时,挑选CaO、ZnSO4、NaSO3、丁黄药作为本正交实验的4个要素,每个要素的用量设置为3个水平(在探究实验的基础上进行)。实验流程如图1,实验组织见表4,实验成果见表5。
表4 铅粗选药剂实验组织(单位:g/t)表5 铅粗选药剂用量正交实验成果实验成果标明,多相目标较好计划为A2B2C1D3,即CaO,5kg/t;ZnSO4,1kg/t;Na2SO3,50g/t;丁黄药150g/t。按要求对此计划进行验证实验。验证实验成果标明,A2B2C1D3确为一较好计划。据此断定了终究铅粗选药剂用量。
(三)锌循环粗选药剂条件实验
与铅循环相同,锌循环粗选黄铁矿按捺剂、捕收剂、起泡剂仍选石灰、丁黄药和2#油,活化剂用硫酸铜。本实验选用正交法(3要素3水平)。2#油用量为48g/t时,挑选CaO、CuSO4和丁黄药作为本正交实验的3个要素,每个要素的用量设置为3个水平(在探究实验的基础上进行)。实验流程见图1,实验组织见表6,实验成果见表7。
表6 锌粗选药剂实验组织(单位:g/t)表7 锌粗选药剂用量正交实验成果归纳较好计划为A2B3C2,即CaO1.0kg/t;Cu2SO41.5kg/t;丁黄药50g/t。按此计划进行验证实验。验证实验成果标明,此计划确为一较好计划。据此断定了终究锌粗选药剂用量。
锌精选探究实验标明,锌精选作业无须加捕收剂、起泡剂。只须在锌精选Ⅰ加适量石灰即可。
(四)硫循环系统条件实验
锌尾矿中的硫选用浮选收回,浮选收回活化剂选用硫酸,捕收剂用丁黄药,起泡剂用2#油。依据实验成果,断定药剂用量为硫粗选:H2SO4,7kg/t;丁黄药,200g/t;2#油,48g/t;硫扫选:H2SO4,1kg/t;丁黄药,100g/t;2#油,36g/t。
(四)小型闭路实验
小型实验流程及药剂准则见图3,实验成果见表8。小型闭路实验进程安稳、成果牢靠,实验成果标明该工艺流程和药剂条件对该试料有着很好的适用性。图3 小型实验流程及药剂准则
表8 小型闭路实验成果四、结语
1、实验研讨成果标明,对云南某黄铁矿型含银铅锌多金属硫化矿选用优先浮选工艺处理可获得铅档次57.33%、铅收回率94.08%、银档次2201.72g/t、银收回率83.14%的铅精矿;锌档次48.28%、锌收回率88.38%的锌精矿和硫档次45.09%、硫收回率77.39%的硫精矿。
2、因为所选工艺没有精矿别离问题,药剂条件又人为地加大了矿藏间的浮选性质差异,为矿藏更好地分选发明了条件。实验研讨标明,本优先浮选工艺具有实验进程安稳、实验目标重现性好的特色,阐明该工艺对该矿石是适合的。
3、用正交法断定铅、锌粗选药剂的用量,不但可确保药剂运用的全体作用最佳,还可节约时间、节约实验经费、节约实验本钱,进步实验功率。
4、因为原矿含As高(1.09%),在分选进程中,砷多在硫精矿中富集(首要以毒砂方式存在,大都与黄铁矿共生、连生),黄铁矿的运用将取决于黄铁矿与砷矿藏的别离作用。
参考文献:
[1] 胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987.[2] 程德明.我国硫化铅锌矿选矿技能的现状与远景[J] .广东有色金属学报,1994(1):6 - 12.
[3] 谢雪飞.高碱条件下归纳收回伴生银的研讨与实践[J].矿冶工程,2002(1):58 - 60.
[4] 赵纯禄.铁闪锌矿浮选工艺进程的特性[J].有色金属(选矿部分) ,1995(5):4 - 7.44