您所在的位置: 上海有色 > 有色金属产品库 > 熔剂油用途 > 熔剂油用途百科

熔剂油用途百科

废铝熔剂

2017-06-06 17:50:04

废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收 金属 的废铝熔剂,特别适用于从铝渣中回收 金属 铝(铝合金),属于 金属 处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收 金属 铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3])  (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60%  Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30%  NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海 有色 网查询,更多合作伙伴也可以在商机平台中寻找到! 

油套管

2019-03-18 10:05:23

GB/T 8162油套管尺寸偏差项目 允许偏差外径 管体 D≤101.60mm±0.79mmD≥114.30mm +1.0%         -0.5%接箍 ±1%壁厚 -12.5%重量 单根 +6.5%+3.5%车载量 -1.75螺纹参数允许偏差 品种规格 锥度 螺距 齿高 螺纹角度 螺纹长度 管端倒角 紧密距每英寸 累计 管体螺纹 接箍螺纹圆螺纹油管2 3/8"-5 1/2" 10牙/in +5.208 -2.600 ±0.076 ±0.152 +0.051 -0.102 ±1 2/2 ±1 1/2P +5 -0 ±1 1/2P ±1 1/2P8牙/in +5.208 -2.600 ±0.076 ±0.152 +0.051 -0.102 ±1 2/2 ±1P +5 -0 ±1P ±1P圆螺纹套管 4 1/2"-4 1/2" +5.208 -2.600 ±0.076 ±0.152 +0.051 -0.102 ±1 2/2 ±1P +5 -0 ±1P ±1PP偏梯形螺纹套管 接箍 +4.50 -2.50 ±0.051 ±0.102 ±0.025 - - +5 -0 +1 1/2P-0 +0-1 1/2P管子 完整螺纹 +3.50 -1.50不完整螺纹 +4.50 -1.50油套管机械性能纲级 屈服强度(MPa) 抗拉强度(MPa) 延伸率最低 最低 最低 最低Psi Mpa Psi Mpa Psi Mpa HRC BHNJ-55 55000 379 80000 552 75000 517 - -K-55 55000 379 80000 552 95000 655 - -N-80 80000 552 11000 758 100000 689 - -L-80-1 80000 552 95000 655 95000 655 23 241C-90 90000 621 105000 724 100000 689 25.4 255C-95 95000 655 110000 758 105000 724 - -T-95 95000 655 110000 758 125000 724 25.4 255P-110 110000 758 140000 965 100000 862 - -M-65 65000 448 85000 586 100000 689 22 23580 SS 83000 570 99000 680 100000 689 23 241BG80T 80000 552 110000 758 100000 689 - -BG110T 110000 758 140000 965 125000 862 - -油套管化学成份钢级 C Mn Mo Cr Ni Cu P S Simin max min max min max min maxJ-55                          K-55                          N-80                          L-80-1                          C-90-1                          C-90-2                          C-95                          T-95-1                          T-95-2                          P-110                          M-65                          80 SS                          BG80T                          BG110T                          钢管长度项目 范围1 范围2 范围3油管 6.10-7.32m 8.53-9.75m -套管 4.88-7.62m 7.62-10.36m 10.36-14.63m

油相粘附法(油团聚金)工艺应用实例

2019-02-19 10:03:20

油相粘附又称油聚会金。此工艺的开始研讨成果是加拿大资源开发研讨委员会(CARBAD)创造的。因为金矿资源的不断开发,许多国家的高档次金矿床日见削减,使得从含金低于1g∕t的低档次金矿石、老尾矿堆和含金极低的砂矿中收回细粒金成为往后的首要方针。而如今的重选、浮选法等对低档次砂矿和矿石中的微细金粒收回率都不高,怎么选用预先处理使金富集起来,再用惯例冶金办法冶金已日趋重要。这就是油聚会工艺很快进入黄金选矿范畴的原因。 关于油聚会工艺捕收金的机理,在刘建军等的文章中已有论说。其实质正如浮选作业那样向矿浆中参加异丁基黄药之类的捕收剂,使金粒及其连生体发生疏水性,然后参加中性油,使疏水化的粒子进入油相构成含金聚会物,再选用浮选、筛分等办法取得富集金的油相产品。选用油聚会金工艺,作业进程的要害:一是依据原猜中金属矿藏的品种和数量挑选适合的捕收剂,尽可能使金粒及其连生体预先疏水化,并按捺不含金的其他矿藏使其坚持亲水性,这是完成油团挑选性捕集金的先决条件;二是作业进程坚持较高的拌和强度,使亲水颗粒受流体剪切力的效果从油相中排入水相,以进步油团的挑选性吸附和金的富集比。正因如此,若选用油聚会法处理含硫化矿藏高的质料时,会因硫化矿藏被很多捕集,而导致油团精矿含金档次下降。 J.R.福南德等于1964年选用油聚会法对加拿大魁北克省某含硫化矿低于3%(其间90%为黄铁矿)、含金0.6g∕t的原矿进行了实验。因为原矿中天然金粒度为2~20μm,大部分包裹在黄铁矿中,原矿经蘑矿至85%-0.074mm(200目),向矿浆中参加异丁基黄药,并加中性油拌和使其构成聚会物,经筛分取得的油团精矿捕收了悉数硫化矿藏和单体金,含金档次达35g∕t,金收回率达95%。将此精矿于700~800℃进行氧化焙烧后进化浸出。 广西冶金研讨所对油相粘附捕金的研讨,先后选用了11种人工制造粘附剂,经体系实验后筛选出A型粘附剂,并规划了与之配套运用的振荡粘附槽。此种粘附剂是由石腊、石腊油和蓖麻油等按必定份额调制而成,为习惯不同时节温度改变和其他其体条件的需求,配方可进行恰当调整,使其具有最佳硬度和粘附功能。此粘附剂适用于不含硫化矿藏的矿石和砂矿。当用它处理砂金矿时,经一次选矿金的富集比高达5000~61818倍,油团上金的捕集率可达93.33%~98.32%。工业实验标明:油团精矿含金档次达42272kg∕t,金收回率99.5%,尾矿含金0.054g∕t。

油相粘附法(油团聚金)工艺技术

2019-03-05 10:21:23

油相粘附又称油聚会金。此工艺的开始研讨成果是加拿大资源开发研讨委员会(CARBAD)创造的。因为金矿资源的不断开发,许多国家的高档次金矿床日见削减,使得从含金低于1g∕t的低档次金矿石、老尾矿堆和含金极低的砂矿中收回细粒金成为往后的首要方针。而如今的重选、浮选法等对低档次砂矿和矿石中的微细金粒收回率都不高,怎么选用预先处理使金富集起来,再用惯例冶金办法冶金已日趋重要。这就是油聚会工艺很快进入黄金选矿范畴的原因。 关于油聚会工艺捕收金的机理,在刘建军等的文章中已有论说。其实质正如浮选作业那样向矿浆中参加异丁基黄药之类的捕收剂,使金粒及其连生体发生疏水性,然后参加中性油,使疏水化的粒子进入油相构成含金聚会物,再选用浮选、筛分等办法取得富集金的油相产品。选用油聚会金工艺,作业进程的要害:一是依据原猜中金属矿藏的品种和数量挑选适合的捕收剂,尽可能使金粒及其连生体预先疏水化,并按捺不含金的其他矿藏使其坚持亲水性,这是完成油团挑选性捕集金的先决条件;二是作业进程坚持较高的拌和强度,使亲水颗粒受流体剪切力的效果从油相中排入水相,以进步油团的挑选性吸附和金的富集比。正因如此,若选用油聚会法处理含硫化矿藏高的质料时,会因硫化矿藏被很多捕集,而导致油团精矿含金档次下降。 J.R.福南德等于1964年选用油聚会法对加拿大魁北克省某含硫化矿低于3%(其间90%为黄铁矿)、含金0.6g∕t的原矿进行了实验。因为原矿中天然金粒度为2~20μm,大部分包裹在黄铁矿中,原矿经蘑矿至85%-0.074mm(200目),向矿浆中参加异丁基黄药,并加中性油拌和使其构成聚会物,经筛分取得的油团精矿捕收了悉数硫化矿藏和单体金,含金档次达35g∕t,金收回率达95%。将此精矿于700~800℃进行氧化焙烧后进化浸出。 广西冶金研讨所对油相粘附捕金的研讨,先后选用了11种人工制造粘附剂,经体系实验后筛选出A型粘附剂,并规划了与之配套运用的振荡粘附槽。此种粘附剂是由石腊、石腊油和蓖麻油等按必定份额调制而成,为习惯不同时节温度改变和其他其体条件的需求,配方可进行恰当调整,使其具有最佳硬度和粘附功能。此粘附剂适用于不含硫化矿藏的矿石和砂矿。当用它处理砂金矿时,经一次选矿金的富集比高达5000~61818倍,油团上金的捕集率可达93.33%~98.32%。工业实验标明:油团精矿含金档次达42272kg∕t,金收回率99.5%,尾矿含金0.054g∕t。

铜线拉丝油

2017-06-06 17:50:07

CA-Draw 5100铜线拉丝油是一种水溶性润滑剂,适用于各种铜线的拉制。对于连铸及常规热轧棒料同样适用。铜线拉丝油CA-Draw 5100为在集中供液系统及单机使用而设计,适用于各类过滤系统,可以用喷淋式及浸式拉丝机。特点:*优异的润滑油性能,特别适于拉制粗线中线;使用成本低。*抗氧化性能好。*低泡性,提高拉线速度。*不含氯和硫。*成品表面光亮。典型理化参数原液 外观                        琥珀色透明液体  比重(20℃)                      0.92  pH(3%,蒸馏水配液)               8.9  电导率(3%,蒸馏水配液)           600μ S/cm  折光系数                        1.0使用浓度推荐举: 使用浓度需根椐线材、设备、线径与拉线速度综合选择,根据进线直径推荐使用浓度如下:  铜线类型(线径mm)                  浓度  粗线(8 -----2.4)                       8----12%  中线(2.4-----0.55)                    4----8%  细线(0.55----0.1)                     2----4%*     将折光仪的读数乘以该系数,即得该乳化液的浓度百分比。 在连续退火冷却水系统中,也可使用浓度为0.5~2.0%的CA-Draw 5100水溶液,化气以防止铜线氧化及便于随后放线。 CA-Draw 5100采用208升铁桶装运。储存条件:5~40℃,室内储存。以上是铜线拉丝油的详细信息 想查阅更多关于铜线拉丝油的信息 请关注上海 有色 网

铝线拉丝油

2017-06-06 17:50:05

铝线拉丝油,是拉丝油的一个品种。拉丝油,用于拉丝、拉拔工艺的高效润滑,具体适用于以下领域:   1、各种丝材、线材的拉丝拉线工艺;   2、电子元器件引出线的铜包钢丝、镀青铜胎圈钢丝、镀铜钢丝的拉拔工艺   3、光面钢丝的拉拔。   拉丝油为棕红色液体,由精制油配以国际上高档合成油,添加高PB值水性极压剂、乳化剂、防锈缓蚀剂、防氧防霉剂等多种助剂,经精湛工艺配制而成。   优异的润滑性能、抗磨性能,提高加工精度、表面光洁度,拉丝模耗量低,有效保护丝材或线材,最大程度的减少划伤等现象的发生;润滑性能、冷却性能、防锈性能、清洗性能——四能一体。能有效的排除 金属 屑、油污、油泥、等切屑,减少胶质堵塞管道的程度;有突出的短期防锈、工序间防锈作用。散热冷却,不燃,安全可靠。属高效节能型产品;   优异的乳化效果,乳化安定性好,调制成的乳化液,无析油,具有良好的润湿性和润滑性,能使被加工机件获得好的表面质量;   有较好的快速消泡作用,属于抑泡型产品;   不含亚硝酸盐等有害物质,无不良的刺激性气味,属环境友好型产品;   本品可代替国外同类产品。使用成本低,加工效率高。不易腐败、稳定性好,使用周期长;   水溶性好,高透明度,易于观察工件动态状况;   经济安全、使用寿命长、不易腐败变质、无油泥废油污染。铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。想要了解更多铝线拉丝油的相关资讯,请浏览上海 有色 网( www.smm.cn )铝频道。

闪速炉熔剂及常用燃料

2019-03-06 09:01:40

一、熔剂     闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。 表1  闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2  As<0.1  F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8  Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3  Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4    直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。     二、燃料     闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。     因为烟气用于制酸,因而对燃料含硫无要求。     各厂闪速炉用燃料的实例见表2,表3。 表2  闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5    注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。 表3  闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm  14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90%    有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。

鼓风烧结配料所采用的熔剂

2019-01-07 17:38:01

鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。       一、硅质熔剂  一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。       二、铁质熔剂  多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。       三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。       表1为熔剂的化学成分实例。   表1  熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95       石灰石20.4155.731.340.330.59     石灰石30.353.970.620.230.89     石英石10.191.0891.80.14      石英石20.52.2197.12       石英石31.261.0894.86       河砂12.41.3575.853.04      河砂21.510.687.48       河砂33.02.074~80  0.30.10.1  烧渣147.44.158.2       烧渣243.866.29.31       烧渣347.554.3510.21       平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60  0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47  5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35  0.01  8~10140     注:Au、Ag的单位为g/t。

火法炼金常用熔剂及其作用

2019-01-07 07:52:09

火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。

铝合金熔体的熔剂精炼

2019-01-02 15:29:20

本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。   在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。   铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。   1 熔剂的作用   盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。   2 熔剂的分类和选择   2.1熔剂的分类和要求   铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。   ①熔点应低于铝合金的熔化温度。   ②比重应小于铝合金的比重。   ⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。   ④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。   ⑤吸湿性要小,蒸发压要低。   ⑥不应含有或产生有害杂质及气体。   ⑦要有适当的粘度及流动性。   ⑧制造方便:价格便宜。   2.2熔剂的成分及熔盐酌作用   铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。   2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4   ,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。   2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;   b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。   3铝合金熔炼中常用熔剂   熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。   3.1常用熔剂   为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。   铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。   表1 常用熔剂的成分及应用   溶剂种类 组分含量,%   NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金   覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg   系,Al-Cu-Si系Al-Cu-Mg-Zn系   Na2CO385。CaF15 一般铝合金   50 50 一般铝合金   KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金   31 14 CaF210 CaCL244 Al-Mg系合金   8 67 CaF210,MgF215 Al-Mg系合金   精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金   8 67 MgF215,CaF210 Al-Mg系合金   KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金   42 46 Bacl26 (2号熔剂) Al-Mg系合金   22 56 22 一般铝合金   50 35 15 一般铝合金   40 50 NaF10 一般铝合金   50 35 5 CaF210 一般铝合金   60 CaF220,NaF20 一般铝合金   36-45 50-55 3-7 CaF 21。5-4 一般铝合金   Na2SiF630-50,C2Cl650-70 一般铝合金   40。5 49。5 KF10 易拉罐合金   从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。   综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。   3。2熔剂用量 .   熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。   3。2。1.主覆盖剂用量   a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合   注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。   b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。   表3: 覆盖剂用量   类 别 用量(占投料量的%)   小碎片碎 屑号外渣子 6-810-1515-20   3.2.2精炼剂用量   不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。   表4 精炼剂用量   合金及制品 熔炼炉 静置炉   高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t   特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t   LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝   其它合金 普通熔剂5-6kg/t   注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加   ②对大规格的圆锭,其熔剂用量也应适当增加。   3。3熔剂使用方法   熔剂精炼法熔炼铝合金生产中常用以下几种方法   ①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。   ②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。   ③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。   ④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。   在这五种方法中,电熔剂精炼效果最好。

冶炼厂熔剂破碎设备选择

2019-01-07 17:38:04

冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。       一、破碎设备的选择       冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。       若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,       近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。    图1  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较    图2  二段一次闭路破碎筛分流程实例    图3  三段半闭路破碎筛分设计流程图实例       二、破碎机生产能力计算       破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。       (一)颚式、圆锥(标准、中型和短头)破碎机       1、开路破碎的生产能力计算   Q=K1K2K3K4Q0     (1)       式中:          Q-设计条件下,破碎机的生产能力,t/h;          Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:   Q0=q0e            K1-熔剂的可碎性系数,由表1选取;          K2-熔剂密度修正系数,由下式计算:   K2=γ/1.6≈γT/2.7            K3-给料粒度或破碎比修正系数,由表2或表3选取;          K4-水分修正系数,进料水分5%以下时,可取1;          q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;          e-破碎机排料口宽度,mm;          γ-熔剂的堆积密度,t/m3;          γT-熔剂的密度,t/m3。   表1  熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易     碎8以下1.1~1.2中等可碎8~161.0难     碎16~200.9~0.95   表2  粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23   表3  中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20     注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;         2、设有预先筛分时取小值;不设预先筛分时取大值。   表4  颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30   表5  开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0   表6  开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0   表7  开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中  型2.765.4 9.620.0短头型4.256.7 14.025.0   表8  颚式破碎机生产实例厂    别设备规格 mm熔剂种类给料粒度 mm排料口宽度,mm生产能力 t/h大     冶450×750石英石、 石英石300~40010050白银一冶600×900石英石、 石英石48075~20035~120铜陵二冶400×600石英石、 石英石32040~10025~60云     冶400×600石英石30040~10012~32       2、闭路破碎时破碎机通过的熔剂量生产能力计算   Qc=KQ0           (2)       式中:          Qc-闭路时破碎机的生产能力,t/h;          Q0-开路时破碎机的生产能力,t/h;          K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。        (二)光面对辊破碎机   Q=60πDLdnγK     (3)       式中:          Q-对辊破碎机的生产能力,t/h;          D-辊筒直径,m;          L-辊筒长度,m;          d-排料口宽度,m;          n-辊筒转数,r/min;          γ-破碎熔剂的堆积密度,t/m3;          K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。       (三)反击式破碎机   Q=60K1C(h+ɑ)dbnγ     (4)       式中:          Q-反击式破碎机的生产能力,t/h;          K1-理论生产能力与实际生产能力的修正系数,一般取0.1;          C-转子上板锤数目;          h-板锤高度,m;          ɑ-板锤与反击板间的间隙,即排料口宽度,m;          d-排料粒度,m;          b-板锤宽度,m;          n-转子的转数,r/min;          γ-熔剂的堆积密度,t/m3。       (四)锤式破碎机   Q=60ZLCdμKnγ      (5)       式中:          Q-锤式破碎机的生产能力,t/h;          Z-排料篦条的缝隙个数;          L-篦条筛格的长度,m;          C-筛格的缝隙宽度,m;          d-排料粒度,m;          μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。          K-转子圆周方向的锤子排数,一般为3~6;          n-转子转数,r/min;          γ-熔剂的堆积密度,t/m3。       由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:   Q=(30~45)DLγ     (6)       式中:          Q-锤式破碎机的生产能力,t/h;          D-按转子外缘计的转子直径,m;          L-转子长度,m;          γ-破碎产物的堆积密度,t/m3。       以上经验公式都有局限性,应注意其使用条件。       三、需要破碎机台数的计算   n=Qn/Q     (7)    式中:          n-需要破碎机台数;          Qn-破碎作业的设计产量,t/h;          Q-破碎机的生产能力,t/(h·台)。       表8至表10为铜冶炼厂熔剂破碎机生产实例。   表9  标准圆锥破碎机生产实例厂    别直径 mm熔剂种类堆积密度 t/m3给料粒度 mm排料口宽度,mm生产能力 t/h大     冶900石英石、 石英石1.490~15025~2850白银一冶1200石英石、 石英石1.6411520~3042~135铜陵二冶900石英石、 石英石1.511012~2540   表10  短头圆锥破碎机生产实例厂    别直径 mm熔剂种类堆积密度 t/m3排料口宽度,mm产品粒度 mm生产能力 t/h备注大    冶1200石英石、 石英石1.48~106~850闭路白银一冶1200石英石、 石英石1.5~1.66~10~1550开路

金、银锭熔铸的原理-熔剂和氧化剂

2019-02-21 13:56:29

在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。 熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。 熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。 熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。

煤-油聚团选金设备

2019-02-15 14:21:10

吸附设备是煤-油聚团选金新工艺完结工业使用的最中心设备。已规划和选用的设备有下行式串级型搅拌吸附设备(Down stream multistage stirring tank,简称DSMST)和偏疼提高管凹型歪斜筛环流式吸附床(Gas一lift loop reactor with eccentric tube and inclined sieve,简称EILR),以满意操作功能好和出资费用低的要求。    1)下行式串级型搅拌吸附设备(DSMST)    下行式串级型搅拌吸附设备的结构如图1所示。在所规划的DSMST吸附设备中,使用桨叶发生的抽力将浆相和煤一油聚团从混合室上端进口吸入混合室,混合相从槽底出口经提高管排出,从而使煤一油聚团散布均匀,并且无需空气提高设备就能完结浆相或火油聚团的级间传递。把一个搅拌室分红多槽,一起削减槽与槽之间的返混,浆相在搅拌槽内的活动趋向柱塞流,浆相和火油聚团各微元有更多的平等时机进行触摸和吸附别离。    设备级间筛分设备能够使通过上一级槽子吸附的浆相进入下一级槽子进行吸附,一起使煤一油聚团保留在本来的槽内,进行恣意次数的循环。该进程以半回流方法进行。级间筛分设备由提高管和Z型筛组成,省去了紧缩气体和振荡机械系统。混合相的提高量由提高管的高度调理。Z型筛筛网孔径应在煤-油聚团直径和矿粉直径之间。实验结果标明,以筛分替代浮选,能使工艺流程缩短,设备简化。[next]    从DSMST吸附设备与全混式高速搅拌吸附槽的吸附功能比较可知,在矿的含金档次为4.0~5.5g/t条件下,1L的全混式高速搅拌吸附槽在搅拌速度为1400r/min时,金的回收率为84.0%;3.6L的DSMST在搅拌速度为580r/min时,金的回收率为84.0%~85.5%。    DSMST吸附设备的扩大功能列于表1。表1  DSMST吸附设备的扩大功能(间歇操作)吸附槽容积/L处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率/%0.50.15605.720.9483.60.50.156010.651.6184.950143093.68050146093.580.6     通过30kg/h级接连工作,三槽串联吸附,每槽吸附时刻0.5h。榜首槽吸附量达90%以上,第二、三槽吸附量只占总量的百分之几。流量为0.6~2.1m3/h时,金的回收率到达80%以上,渣中金档次可降至0.9g/t。吸附总时刻可缩短至1h(而化炭浆法搅拌吸附时刻长达28h)。经60余次循环后,载金聚团进行焙烧,金档次达2559g/t,富集600倍以上。经接连化实验证明,DSMST吸附设备具有扩大功能好、出资费用低和功率高级特色。    2)偏疼提高管凹型歪斜筛环流式吸附床(EILR )    EILR吸附床,如图2所示。它归于气体提高式触摸器。为了便于气体一起完结物料的搅拌和运送使命,置中心管于偏疼方位。当接连操作时凹型歪斜筛替代溢流口,使浆相溢出而使煤一油聚团停留床内。EILR吸附床内部无滚动部件,结构简略,制作成本低,操作修理便利。该吸附床扩大实验标明,当尺度从40mm×600mm扩大到800mm×3000mm,操作方法从接连改为接连时,金的吸附回收率从83.6%改变到82.4%~83.3%,扩大功能杰出。曾用该设备在中科院化冶所进行了吨级接连性实验,金的吸附回收率达85%。[next]    在接连操作条件下EILR吸附床与DSMST吸附设备的吸附功能如表5.3.2所示。从表2能够看出,EILR吸附床与DSMST吸附设备吸附功能附近,但EILR吸附床结构简略、出资费用低、操作和修理便利,应该为煤一油聚团选金的首选设备。表2  EILR吸附床与DSMST吸附设备吸附功能比较吸附槽类型处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率DSMST50L143016.84.181.5DSMST50L146016.83.882.9EILRФ800mm×3000mm403014.93.184EILRФ800mm×3000mm406014.8384.6

谈铝轧制润滑油基础

2019-03-01 14:09:46

诗曰:一纪五旬世界史,二轮八载中华情;  上一年汗水铸宏业,今岁大志再起程; 前路或然折并曲,后天只信拼才赢; 春风起处抛坯砖,欢请金珠缀玉龙。   好富顿公司是一家具有150年悠长前史的金属加工光滑介质直销商,咱们触及的范畴也十分广泛,在铝轧制范畴更是一向体现杰出。当今,咱们期望能够在这里和咱们树立一个交流平台,抛砖引玉,修篁待仪;十步芳草,各抒主意,来谈谈铝轧制的方方面面,就让咱们先从根底的部分说起吧。    轧制是铝加工的较重要手法之一。现代铝合金轧材包含板带材,型线材以及管材等,种类规格有数千种,而且还在不断扩大,在宽度方面有3米以上的板材,在厚度方面有0.01mm一下的箔材等。在轧制尤其是板带轧制时需求杰出的光滑以便能够下降冲突力功率耗费,削减轧辊磨损和进步板面质量。要完成杰出的光滑,首要需求分析光滑状况,进而可结合铝轧制特色,来断定光滑要完成的手法,以到达需求光滑的意图。    1,光滑状况    图1是斯特贝克(Stribeck)在1900年提出的光滑状况曲线图1:斯特贝克(Stribeck)曲线   图中的三个区域对应着三种首要光滑状况。在I区,冲突表面被接连的光滑油所离隔,油膜厚度远大于两表面的粗糙度之和,冲突阻力由光滑油的内冲突来决议,即由光滑剂的黏度决议。还可细分为流体动压光滑或许弹性流体动压光滑状况。油品黏度越高,相对速度越快,载荷越低和表面粗糙度越低,越简单呈现动力光滑。    跟着压力添加,油膜变薄到与表面粗糙度在相同数量级时,进入料鸿沟光滑,冲突副表面微凸体间处于触摸状况,是由极性分子构成的鸿沟膜将冲突副(轧辊和轧板)分隔,II和III的区别是,在II区依然由光滑剂的(有机)分子将冲突副分隔,而在III区触摸副表面间隔十分近,温度很高,是有光滑剂中的组分与金属反响构成的无机膜,将冲突副离隔,也称为极压光滑。关于铝轧制光滑,其光滑一般处于动力光滑和鸿沟光滑的混合光滑状体,其冲突系数在0.03-0.10之间,薄膜厚度在0.1-1.0微米之间。      2,动力光滑完成    如上所提在I区的动力光滑首要是依托光滑油的黏度。光滑油的黏度首要与根底油有关,所以动力光滑在很大程度上取决于根底油。一般将根底油分为白腊基,环烷基和芳香基,其功能比较如表1所示。  芳香烃相关的许多物质都是致癌物质,现已有许多资料来报导。所以,根底油的挑选其实首要是在环烷基和白腊基中来挑选。白腊基根底油黏度指数高,稳定性好,为绝大多数油品所选用,由于不期望在温度改变时黏度改变太大,如液压油,淬火油等。致癌物质,但在作为轧制油的根底油上,有不同的考虑。轧制油组分多,环烷基根底油溶解性好,有利于坚持平衡,故期望运用环烷基根底油,更重要的,温度升高,环烷基油黏度下降地更多,这对轧制而言,能够下降咬入困难。但也有选用白腊基的根底油,由于在动力光滑阶段,由于轧制压力十分大,以至于轧辊都发生了弹性变形,因而实际上是处于弹性动力光滑状况,而白腊基的黏压特性更适合这种状况下的光滑。    在所谓老三套的炼油技能(溶剂脱蜡,溶剂精制和白土弥补精制)中,环烷基和白腊基油源有关,现在广泛应用的加氢炼油技能现已摆脱了对油源质量的依托,并使根底油的质量有了明显地进步,如表2所示,加氢处理的根底油的质量得到明显进步,对轧制油的根底油而言,应该优先选用加氢精制的根底油。  3,鸿沟光滑和完成    鸿沟光滑是靠极性分子吸附在表面,构成鸿沟光滑膜来完成光滑的,工件在表面的吸附状况取决于分子的极性,吸附机制有物理吸附,化学吸赞同极压发应如图2所示。  首要构成的是物理吸附,这首要是依托分子间力,它是相对的长程吸附,动力是分子间力,物理吸附与分子的极性有关,但吸附分子没有与金属构成化学键,所以,如图2所示,吸附并不需求活化能,因而很简单完成,但构成物理吸附后,能量下降甚微,阐明吸附膜的光滑强度不高。    假如吸赞同基体金属构成化学键,则会构成化学吸附,如图2所示,化学吸附需求战胜活化能ΔEact1,该活化能值不很大,故在温度恰当状况下即能够进行。经过化学吸附后,有较大的能量下降,吸附膜强度比较大,国内资料上大都称其光滑剂为抗磨剂或许油性剂。   假如温度更高,吸附就有或许战胜如图2所示的较大活化能ΔEact2,光滑剂中的组分和金属完成化学反响,构成光滑膜,该光滑膜来自于光滑剂的分子和金属的一起效果,是一个无机膜,能量下降许多,所以光滑膜强度较高,该膜的构成是根据化学反响构成的,所以,极压光滑也是一种控制性的腐蚀进程。图3是含S光滑剂在光滑进程中所构成的的这物理吸附,化学吸赞同化学反响示意图,能够看出物理吸附是极性吸附,但未构成化学键(虚线);化学吸附则构成了化学键,而化学反响是构成一层无机膜,该光滑膜中不再有有机的光滑剂分子。  4,铝轧制光滑的特色    铝的轧制光滑,相同遵从上述光滑机制。但铝的轧制光滑有其不同于黑色金属轧制的特色。    (1)铝是面心立方金属,4个111密排面,3个110滑移方向,共3x4=12个滑移系,简单发生变形和粘铝;铝是金属,反响性强,与酸碱都可反响;铝的强度较低,外来杂质简单压入表面。归纳这些要素,铝在轧制进程中表面简单呈现缺点,所以表面质量将成为铝轧制光滑较重要方针之一。    (2)轧制进程中由于冲突特别是在前滑区发生的铝粉较多,而铝没有磁性,难以经过磁过滤去除,但铝粉有必要及时去除,不然这些铝粉或许又会压回到表面。所以怎么有用去除轧制进程中发生的铝粉将是轧制光滑中的关键技能。    (3)S是十分有用的光滑材料。硫化物有较大极性首要在表面构成物理吸赞同化学吸附,起到油性剂或抗磨剂效果。部分温度高时,和铁反响构成具有层状结构的FeS无机光滑膜,起到极压光滑效果。但因硫铝反响在铝轧制光滑中一般不运用含S的光滑成分,只能转而次之运用P,如磷酸酯。磷酸酯的吸附机理一般以为能够经过亲核加成构成如图4所示,或许经过酸碱反响,如图5所示。  铝轧制光滑的这些特色,需求在轧制油配方规划中给予充分考虑。    (好富顿公司 陈春怀 2016年3月22日)

煤-油聚团选金原理

2019-01-25 15:49:15

煤一油聚团法选金的基础是用油将亲油性的煤浸润而形成煤、油聚团。在一定酸度和充分搅拌的条件下,亲油的金颗粒从矿浆中有选择性地被俘获到煤、油团聚物中。这些团聚物可循环吸附新鲜矿浆中的金粒直至很高的载金量,然后同矿浆分离。载金聚团再用湿法或火法处理选金。    煤聚团是用中性油作为桥联液,亲油性的煤粒被浸润而互相聚集成团。控制表面活性剂的加入量可以调节聚团的大小和稳定性。煤一油聚团与金粒和脉石之间存在着由动量差、重力差、范得华力和静电斥力所造成的排斥势垒,也存在着相互间的疏水结合能。利用金粒与脉石两者间存在疏水作用能的差别,使得金粒而不是脉石被煤-油聚团吸附。    在选择性地使金疏水化和降低金粒与煤-油聚团之间的作用势垒的同时,用化学方法抑制脉石等杂质的疏水性就会扩大金粒与脉石等杂质的吸附行为的差异。金粒表面的疏水化预处理通常是加入一些表面活性剂,例如黄药和黑药,使金的表面形成一层疏水膜。    煤-油聚团的选金速率是取决于煤-油聚团与含裸露金的矿粒之间的碰撞频率和碰撞能量。碰撞频率主要由含裸露金的矿粒的浓度和运动速度所决定;碰撞能量则由含裸露金的矿粒的质量和相对运动速度所决定,增加搅拌强度,能使矿粒运动加快,也使金粒表面受到擦洗而增大吸附速率。    由于金粒和煤-油聚团的向心力不同,金粒又以一定速率从煤一油聚团上脱落,最后达到动态平衡。此外,原矿的磨矿粒度,原矿中细泥的含量和铁含量等均会影响浆相与煤-油聚团的接触。对矿砂进行脱泥除铁预处理,能够显著提高金的吸附速率和回收率。

煤-油聚团法选金简述

2019-02-15 14:21:10

与炭浆法比较,煤一油聚团法具有无环境污染,出资费用少和出产成本低的长处。煤-油聚团技能在20世纪70年代首要使用于煤泥的收回,后来使用于金的提取。该办法现已发展到可用于砂金、脉金、老尾矿、尾渣和碳质金矿的处理。处理低档次金矿时,载金聚会物富集金的才能可达1~5kg/t;处理高档次金矿时,载金聚会物富集金可达10~15kg/t,金收回率为62%~95%。    在工艺中起附聚金效果的是煤一油聚团。煤和油的挑选影响聚团性质,也影响金的收回率。一般来说,要求煤的灰粉小于7%,有较高的挥发性,且硬度较大。经实验以长焰煤和气煤较好。油以零号柴油、润滑油、变压器油等中性油较好。对油的要求是芳烃含量较高,一般在23%以上,密度约0.84g/cm3,沸点在200℃左右。    煤粉与油的适宜份额是聚团的要害,一起也影响金的收回率。煤和油份额不同,成团粒度不一样。用油量多则聚团粒度大,表面积小,附载金的才能弱。较小的,均匀的聚团能得到更高的聚金率。实验证明,一般聚团粒度以30~60目,最大粒度不超越2mm较好。    煤-油聚团的用量关系到金的收回率和工艺的经济指标,并且与矿石性质有关。煤-油聚团用量添加,金的收回率也随之增高,但终究趋于平衡。考虑到经济指标与产品载金量,一般挑选聚团用量为矿样的20%~25%。    在工艺过程中一般运用硅酸钠作为脉石按捺剂,以按捺聚团中搀杂的脉石灰粉,进步整体聚金功率。工艺吸附设备和煤金聚团枯燥焙烧设备是煤一油聚团选金新工艺完成工业使用的最中心设备。我国规划选用的是固、固一液系统抽吸式串级型拌和吸附设备和偏疼提高管凹型歪斜筛吸附床。    煤金聚团处理流程有枯燥焙烧法和溶剂洗脱法。枯燥焙烧法有接连操作办法和接连操作办法。接连枯燥焙烧设备由进料器、回转窑、焙灰收集器、驱动设备、温度操控设备等组成。焙灰金丢失小于1%。溶剂洗脱工艺可将煤金聚团中的明金和连生体金洗脱下来,然后可削减煤金聚团中微细粒金的焙烧丢失,但煤金聚团中的包体金仍需要用焙烧办法处理。终究取得的金灰进行非化浸出或直接熔炼。

铝材除油洗白剂的日常管理维护

2018-12-26 10:38:45

A、按建浴浓度配制槽液,充分搅拌溶解即可使用(配槽时将桶内液体摇匀倒出)。   B、随着处理工件数量的增加,使用时间延长和工件带走槽液等原因,槽液的有效成分和液面会有所下降,如果表面油污不多及槽液不是太脏,可以及时补充OY-123铝材除油洗白剂;如果槽液比较脏,而且有一定的油污,建议槽液全部更换。   C、如果都采用本品进行油污及氧化皮的清洁时,建议配置两个同样的OY-123铝材清洗槽,一个作为除油用,一个作为洗白用,这样可以解决单槽出现的严重污染问题。删除

铝合金表面酸性除油方法

2019-03-11 13:46:31

酸性除油处理也是一种被广泛选用的除油办法。酸性除油剂的首要特点是对铝合金表面腐蚀少,除油速度快。这种除油剂最经济的制造办法是在硫酸溶液中增加少数和OP乳化剂,也能够直接到商场上去购买酸性除油剂来运用。  酸性除油剂一般由无机酸或有机酸、表面活性剂、缓蚀剂及渗透剂等组成。酸性除油也是金属表面常用的除油办法,酸性除油的特点是不需要加温,在常温情况下即可有杰出的除油作用。近年来一些酸性除油增加剂的开发,使酸性除油得到了广泛使用,一起酸性除油还具有除锈功用。选用酸性除油时,酸的浓度不该过高,避免造成对工件的腐蚀及对设备的腐蚀。酸性除油剂常用的酸类有硫酸、磷酸、硝酸、柠檬酸等。表面活性常用OP-10、平平加、磺酸等。关于铝合金不能选用等含卤酸。在酸性除油剂中增加磷酸有利于清洗进程的进行。在除油剂中还应参加缓蚀剂,常用的缓蚀刻有乌洛托品、等。氟化物是酸性除油剂中最常用的渗透剂,氟化物的参加能显着加强其除油作用,还可下降酸浓度,进步除油功率。在铝合金工件的酸性除油配方中氟化物参加量不能过多,否则会腐蚀钛挂具,一起过多的氟化物也会使铝合金表面经除油后光泽下降。在铝合金的酸性除油配方中一般以的方式参加,参加量以1g/L左右为宜。一起还应参加适量的、硝酸盐以避免对钛的蚀刻,并可减缓对铝合金的腐蚀。  酸性除油一般都是在常温的情况下进行的,假如加热到40℃左右可显着进步除油作用,常温除油时作业缸可选用硬PVC,加热除油时应选用PP制造。酸性除油溶液的加热使用特氟龙加热器。  酸性除油剂中用量不能太多,否则会腐蚀钛挂具,并影响铝表面性状。铝离子浓度太高会影响低温除油作用,但能够经过进步氟化物或硝酸的浓度来得到改进。  铝合金酸性除油剂能够选用硫酸阳极氧化、化学抛光等的废酸来制造,以做到废物利用,也可下降成本。如不考虑对废酸的再利用,酸性除油剂也可选用磺酸加少数来制造,这样能够使除油溶液的酸度很低,不管是对工件或是设备的腐蚀性都会很低。

冶炼厂熔剂磨碎分级流程的选择与计算

2019-01-07 17:38:01

一、流程选择       当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。    图1  三段开路破碎筛分流程图实例    图2  熔剂磨碎分级流程实例       二、流程计算       以图2为例,其计算方法如下:   Q1=Q4 Q5=CQ1 Q2=Q3=Q1+Q5       式中:          Q1Q2……-各产物数量,t/h;          C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。   表1  磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限 mmC值 %磨碎机与分级机闭路Ⅰ0.5~0.3 0.3~1.0150~350 250~600磨碎机与旋流器比例Ⅰ0.4~0.2 0.2~1.0200~350 300~600

鼓风炉化矿采用的原料、熔剂和燃料

2019-01-07 07:51:21

一、铅锌氧化矿     表1为会泽铅锌矿的铅锌氧化矿化学成分实例。 表1  铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1  铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4    二、熔剂     熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。    三、燃料     表2为焦炭性质及化学成分实例。 表2  焦炭性质及化学成分实例焦种块度 mm固定碳 %挥发分 %灰分 %灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81

国际投行浇油超级铜牛显形

2018-12-17 09:42:58

超级铜牛越走越稳。市场浓厚的看涨氛围,使得LME期铜区区200美元的回调幅度也难以看到,上周五价格大涨104美元,返身重新冲击4500美元/吨;而国内方面,铜现货价更是连续数日站在了4万元大关之上,周一沪铜也是跳空高开,主力合约0603收盘39790元/吨,涨270元。   国储方面连续两周未有拍卖动作,给了国内市场一定的做多信心。虽然有传言称国储在LME的空头头寸已经移仓远月,但是其场外期权问题还没有得到解决,而且国储目前正在将前几次拍卖会中流拍的库存铜调往上海地区销售,这又给了投资者较大的想象空间。铜价更加易涨难跌。   连日来的铜市走势充分证明,作为目前已经成为一个投资符号的铜市,吸引了越来越多人的注意。不过国内外两个市场表现迥异:在海外市场,越来越多的机构和资金看好这个市场的金融属性,推动铜价持续强劲;而在中国,则吸引了越来越多的投资者,包括很多原本对金属一窍不通的个人,看到高高挂在天上的铜价垂涎三尺,试图参加到这个巨赌游戏中来。上周五的跳空大涨,是对后者最好的警告。   国际著名投行美林证券在其欧美金属和矿业报告中将铜、铝、铂金等金属价格预期上调,并预计商品供需紧张局面明年仍将持续。报告称,没有迹象显示中国需求放缓,而且OECD领先经济指标显示发达国家市场需求出现加速。在其季度报告中,美林将明后两年的铜价预测上调32%,分别从1.25美元/磅和1.10美元/磅调升至1.65美元/磅和1.45美元/磅。    而最新公布的高盛集团研究报告更是语不惊人死不休,其预计,2006年三个月期铝价格为每吨2300美元,较此前估计上调逾500美元,而对三个月期铜价格的预估则几乎大增2000美元至4750美元。预计2005年全球产量缺口为14万吨,而原本预期为少量供过于求。这一预测价格大大超出人们的预期,从而推动周五铜价一路上行。   摒除一切屏蔽我们视线的信息和喧嚣,我们只看价格,可以说铜市正稳稳地行进在超级牛市周期当中,LME期铜下一个目标位就在4500美元,国内3月合约,也将向40500稳步迈进.

电工铝杆用高效排杂净化熔剂介绍

2019-01-08 13:40:18

电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。

高炉炼铁对碱性熔剂3个质量要求

2019-01-04 11:57:16

高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.

冶炼厂熔剂破碎筛分流程的计算

2019-01-07 17:38:01

破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。       计算破碎筛分流程必须具备以下原始资料:       一、按原矿计的生产能力。       二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。    图1  原矿粒度特性曲线       三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。    图2  颚式破碎机产品粒度特性曲线    图3  标准圆锥破碎机产品粒度特性曲线    图4  中型圆锥破碎机闭路破碎产品粒度特性曲线    图5  短头圆锥破碎机开路破碎产品粒度特性曲线   (因本图表不清,需要者可来电免费索取)    图6  短头圆锥破碎机闭路破碎产品粒度特性曲线   (因故图表不清,需要者可来电免费索取)    图7  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较       计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。       破碎筛分流程的基本类型及计算公式列于表1。   表1  破碎筛分流程的基本类型及计算公式      Q1-原矿两,t/h;     Q2,Q3,Q4……Qn-各产物的重量;     β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;     E-筛分效率,%;     Cc-破碎机的循环负荷,%;     Cs-筛分机的循环负荷,%。       破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。   表2  d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口 e筛孔 ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85       以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。    图8  三段一次闭路破碎筛分流程图实例    图9  熔剂破碎筛分流程计算图       该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。       按破碎比: ί=ί 1 ί 2 ί 3   ί=300/6=50       参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。       (一)各段破碎产品最大粒度的计算:   d2=D最大/ ί 1=300/3=100mm   d3=d2/ ί 2=100/3=33.3mm   d7=d3/ ί 3=33.3/5.5=6mm       (二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)   e2=d2/Z=100/1.6=62.5mm(取65mm)   e3=d3/Z=33.3/1.9=17.5mm(取20mm)       短头圆锥破碎机的排矿口e7,参照表2。   e7=0.8,d7=0.8×6=4.8mm(取5mm)       (三)筛孔尺寸和筛分效率       根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。       设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。       (四)破碎作业计算       参照表1,   Q1=Q2=Q3=Q4+Q5=Q8=50t/h   Q6=Q7=C Q3       循环负荷率                      式中:          β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;          β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。       参照表1,   Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下                                 =50×0.25×0.65+25×0.52×0.65                                 =16.58t/h       式中:          β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;          β30~6-产物3中小于6mm粒级含量,%,查图3得出;          β70~6-产物7中小于6mm粒级含量,%,查图6得出。   Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h       任一产物的产率       式中:          Qn-任一产物的产量,t/h;          Q1-流程的给矿两,t/h。             (计算从略)

铝带箔轧机轧制油再生装置

2019-03-08 12:00:43

铝带箔轧机在出产进程中选用轧制油(基础油为火油)作为冷却和润滑剂,轧制油在循环进程中会遭到重油(如液压油)的污染,跟着重油含量的添加,将会使产品表面在退火时构成黄斑,现在国内尚无较好的处理计划,只能对整个油箱的油进行替换。本项目设备就是针对去除轧制油中重油而规划开发的工艺技能与环境保护配备。     本设备的技能原理是使用轧制油中各组分物化特性的不同,经过选用真空精馏的办法别离轧制油与重油;选用背压和流量调理相结合的操控手法处理物料运送精度问题;选用细管制、多管程、大进口的计划处理气相轧制油冷凝问题;选用多级多点连锁报警保护方法保证设备安全;选用壳装规划便于设备和保护。     本设备具有运转方法灵敏、运转成本低、规划紧凑、自动化程度高和安防办法完善等特色;再生后的轧制油质量(初馏点≥205℃、终馏点≤280℃、重油含量≤0.1%)满意轧机用油标准。首台设备2005年4月应用于美国铝业(上海)有限公司,再生轧制油理化功能彻底满意轧机用油标准,且各项功能指标到达世界先进水平。     本设备可广泛用于铝带箔加工厂,是出产高质量、高附加值产品的有用质量操控手法,不只提高了产质量量,减少了新油的使用量,一起变废为宝,提高了厂商的环境保护、清洁出产与循环经济水平。设备现在在国内尚无先例,仅有欧洲极少数轧机出产厂具有规划制作才能,属填补国内空白项目。

铝材冲压分析及冲压油选择要点

2019-01-09 11:26:51

通常是先加工成铸造品、锻造品以及箔、板、带、管、棒、型材等后,再经冷弯、锯切、钻孔、拼装、上色等工序而制成。    铝元素的化学性质相对比较活泼,容易与酸、碱发生化学反应从而出现腐蚀、锈点、发黑、发霉。铝材质目前在汽车发动机、变速器、航空设备和其它机械设备行业被广泛使用,因此对铝材冲压加工专用冲压油的需求日益增长,冲压油产品提供了铝材加工时速度和大进料比所要求的良好润滑性和冷却性,可延长刀具的使用寿命。    综合上面所述,铝及其合金冲压油的选择非常重要,必须保证良好的润滑性、冷却性、过滤性和防锈性,因此可用于铝及其合金加工的冲压油与普通的冲压油有所不同,选择一款合适的冲压油是十分必要的。    铝材冲压油的选择    冲压拉伸油属于金属加工油,适用于超高强度拉伸成型、拉管冲压成型及冲剪、拉削等。冲压拉伸油分为:水溶性冲压拉伸油、金属冲压拉伸油、铝材冲压拉深油。    1、冲压拉伸油的润滑性:这是拉延油较重要性能,润滑性不好,会导致工件破裂、板材与金属产生烧结、产品出现划伤,模具磨损严重,降低模具寿命。    2、冲压拉伸油的冷却性:冲压加工产生热量的原因很多,模具与材料间的摩擦热及材料塑性变形热都以加工热的形式表现出来。特别是加工形状复杂的零件或塑性变形阻力大的材料时,产生的热量更大,长时间连续进行这种加工时,要是不除去或不抑制这种热量,热量就蓄积到模具上,使模具温度继续上升,模具进一步膨胀,凸模与凹模之间的间隙就会减少,摩擦及施加给材料上的应力就会增大,局部产生高温,导致润滑膜破裂,从而造成烧结、拉伤和破裂等故障。在这种情况下,通过使用水溶性冲压油剂,能够抑制产生的热量,特别是高速连续动作加工和高速连续自动化加工领域以及不锈钢的拉深加工或易拉罐的高速加工等,多使用冷却性好的水容性冲压油剂。    3、冲压拉伸油的防锈性:冲压加工后的零件,一般要原封不动放置很长时间,为了使其在放置期间不生锈,要求拉延油具有良好的防锈性。因为冲压加工用润滑油吸附性很强,在金属表面保持着难以破坏的油膜,所以一般就具有防锈效果。但其效果的大小是根据润滑油的性质和加工条件的不同而不同,另外也根据零件放置环境不同而不同,因此在环境恶劣和存放时间长时,对油品防锈性要求更高。    4、冲压拉伸油的带油焊接性:为了简化工序提高生产效率,要求拉延油具有不必清洗可以带油焊接的性能。有时由于拉延油的附着,在焊接的地方生锈。有的油在焊接时产生有害气体以及影响焊接强度。冲压加工后带油焊接时不发生上述问题,这对拉延油来说是非常重要的。    5、冲压拉伸油的脱脂性(易清洗性):附着在冲压件上拉延油,通过采用确实可以洗净的洗涤剂和洗涤方法来进行清洗时,洗涤成本低廉,并且用很短时间就能脱脂,这也是重要特性之一。冲压件清洗不干净,会影响后工序的喷漆和电镀。    6、冲压拉伸油的操作性:冲压加工前,把拉延油涂刷到加工板材上的操作需要时间和劳力,有损于生产效率,因此这个操作容易进行也成为对拉延油要求的一个性质。特别是对于大尺寸零件,这个性质尤为重要,如果从操作性来看,应尽量采用低粘度的拉延油。    对于冲压成型加工来说,在冲压过程中会产生大量的热量,热量可使工件发生变形,严重影响到工件的精度。因此选择冲压油时既要考虑润滑和冷却性能外还要考虑到冲压油的极压抗磨,如选择的切削极压抗磨性能过低,那么材质可能造成成型不佳的效果。因此对于精冲压成型或超精冲压成型加工选用极压抗磨性能好的冲压油。    在冲压油的选择方面除了要考虑冲压油的润滑性、冷却性等性能外,还要考虑冲压油的防锈性、成本和易维护等方面的性能。冲压油易选用粘度相对较低的基础油加入减磨添加剂,这样既可达到润滑减摩,也可有很好冷却和易过虑性。但是冲压油存在的问题是闪点低,在冲压成型时温度高,易变形,危险系数较高,而且挥发快,用户使用成本相应变高,因此在条件允许的景况下尽量选用抗压抗磨性高的冲压油。    铝材冲压油的使用与维护    (1)铝材冲压油应贮存于阴凉干燥处并保持容器密闭,避免水与杂质的混入,贮存温度不要超出60°C。    (2)为确保冲压效果,不能和其它油脂混合使用,严禁混入其它杂物。

冶炼厂熔剂破碎筛分流程的选择

2019-01-07 17:38:01

破碎作业一般分为粗、中、细碎三段,其粒度的划分见表1。   表1  粗、中、细碎粒度的划分项  目给料粒度,mm出料最大粒度,mm粗  碎>30100~150中  碎100~30030~100细  碎50~1005~30     注:冶炼厂一般要求矿山供应300mm左右的熔剂。       表1的划分是相对的,可以大致说明破碎分段的情况。有些破碎机可兼有粗、中碎或中、细碎的作用。破碎段数的确定主要依给料粒度、产品粒度及所选用的破碎设备型号、性能而定。       熔剂破碎设备的破碎比用i=D/d表示,式中i为破碎比,D与d分别为破碎前后物料的最大粒度。       总破碎比等于各段破碎比的乘积。主要破碎机的破碎比范围可参照表2选取,熔剂硬度大的取值小,硬度小的取大值。   表2  破碎机在不同情况下的破碎比范围破碎段数破碎机型式流程类型破碎比第Ⅰ段 第Ⅱ段     第Ⅱ段或第Ⅲ段               第Ⅲ段  颚式破碎机 标准圆锥破碎机 中型圆锥破碎机 同上 对辊破碎机(光面) 同上 对辊破碎机(齿面) 反击式破碎机 同上 捶式破碎机(单转子) 捶式破碎机(双转子) 细碎颚式破碎机 短头圆锥破碎机 同上开路 开路 开路 闭路 开路 闭路 开路 开路 闭路 开路 开路 开路 开路 闭路3~5 3~5 3~6 4~8 3~8 3~15 10~15 10~15 8~40 10~15 30~40 10~21 3~6 4~8       几种主要破碎机排料中大于排矿口尺寸的过粗颗粒含量β和最大颗粒与排矿口尺寸之比Z见表3。   表3  破碎机排矿中大于排矿口颗粒含量β和最大颗粒与排矿口尺寸之比Z矿石硬级颚式破碎机标准圆锥破碎机短头圆锥破碎机β,%Zβ,%Zβ,%Z硬 中硬 软38 25 131.75 1.60 1.4053 35 222.4 1.9 1.675 60 382.9~3.0 2.2~2.7 1.8~2.2     注:1、短头圆锥破碎机闭路时取小值,开路时取大值;         2、最大颗粒度为95%的熔剂通过筛孔尺寸的粒度,用d最大表示。       熔剂破碎作业的总破碎比:i=D最大/d最大。式中D最大和d最大分别为进厂熔剂和最终破碎产品的最大粒度。       在实际应用中,要求的总破碎比往往较大,物料需经几段破碎才能达到最终的粒度。破碎机常和筛子组成破碎筛分流程。       破碎筛分流程中的筛分主要有预先筛分和检查筛分之分。预先筛分的作用是把给料中小于破碎机排料粒度的粒级分出,以减轻破碎机的负荷和磨损检查筛分的目的是控制破碎产品的粒度以及充分发挥破碎机的能力,其筛孔尺寸大致为所要求粒度的大小,筛上产品为不合格产品,返回破碎机再行破碎,筛下产品为合格产品。       冶炼厂用作熔剂破碎的设备能力,一般均比较富余,同时为避免增加设备和厂房,通常不单设预先筛分而在最后一段设检查筛分,也可兼作预先筛分之用。凡是不带筛分或仅有预先筛分的为开路流程,凡是有检查筛分的为闭路流程。       在设计中通常用普氏硬度系数f作为物料的硬级分类,f=16~20为难碎性矿石或硬矿石;f=8~16为中等可碎性矿石或硬矿石;f<8为易碎性矿石或软矿石。f大致等于抗压强度(MPa)的1/10,可以用试验室测定的为标准。       图1至图9为熔剂破碎筛分流程图实例。    图1  三段一次闭路破碎筛分流程图实例    图2  三段开路破碎筛分流程图实例    图3  二段一次闭路破碎筛分流程图实例(1)    图4  二段一次闭路破碎筛分流程图实例(2)    图5  二段一次闭路破碎筛分流程图实例(3)    图6  二段开路破碎设计流程图实例    图7  二段一次闭路破碎筛分流程图实例(4)    图8  二段开路破碎筛分设计流程图实例    图9  三段半闭路破碎筛分设计流程图实例       开路流程的优点是比较简单,设备少,扬尘点也较少。缺点是当要求破碎产品粒度较细时,破碎效率较低。闭路流程的破碎效率较高,但需要设备较多,流程较复杂。       闭路流程的检查筛分是先筛去合格产品,筛上物入最后一段破碎,破碎产物返回筛分。当入筛粒度较大且有一部分产物符合某种产品要求时,宜采用双层筛。

重有色冶金炉对入炉熔剂的粒度要求

2019-01-07 17:38:01

火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。   表1  重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉 铜密闭鼓风炉 铜熔炼反射炉 铜白银炉 铜电炉 铜闪速炉   铜转炉   铜火法精炼炉 铅鼓风炉 铅锌鼓风炉 锡反射炉 锡电炉 氧气底吹炼铅炉 镍闪速炉 镍电炉<3 40~50 <6 <6 3~5 <0.5   5~25   2~3 <6   <3~6 <10 <3 <0.3 5~10<3 30~80 <6 <6 3~5 (石灰)       (石灰) <6 <6 <5~6 <10 <3    湿式配料时<0.2 其它块度20~100         铜连续吹炼炉 石英石3~25

实际生产中如何降低硅微粉的吸油值?

2019-01-18 11:39:34

在高聚物基料中添加硅微粉填料,不仅可降低高分子材料成本,还可提高材料的尺寸稳定性,并赋予材料抗压、抗冲击、耐腐蚀、阻燃、绝缘性等特殊的物理化学性能。 如何提高硅微粉在高聚物中的流动性,降低其粘度,提高整体填充率一直是行业内比较热门的研究方向,而降低硅微粉的吸油值有助于提高其在高聚物中的流动性。 吸油值也称树脂吸附量,表示填充剂对树脂吸收量的一种指数。在实际应用中,大多数填料用吸油值这个指标来大致预测填料对树脂的需求量。吸油值不同,则粉体填料的粒度、比表面积、分散性、润湿程度、吸附性能不同,从而影响粉体与高聚物作用的相容性,所以吸油值直接影响材料质量、性能及用途。图1 粉体吸收油的两种主要形态 吸油值与粉体的大小、形状、分散与凝聚程度、比表面积及颗粒的表面性质有关。但由于硅微粉主要作为填充料用于相关行业,对粒径的要求很高,故通过增大粒径来降低比表面积从而降低吸油值的方式有一定的局限性。因此,由图1可知,如何减少硅微粉颗粒表面和空隙的油(树脂)是降低其吸油值的关键。 第一 实验原料 天然石英原矿分别通过球磨、振动磨、气流磨分级系统制作的平均粒径在2.5-3.0μm的超细硅微粉; 平均粒径为20±0.5μm硅微粉成品及其产生的布袋除尘粉; 三种平均粒径为20±0.5μm的硅微粉(普通硅微粉、铝酸酯改性剂改性后的硅微粉、硅烷偶联剂改性后的硅微粉)。 第二 研磨设备对硅微粉吸油值的影响 表1 不同研磨分级设备生产硅微粉粒径分布及吸油值由表1可知,球磨机、振动磨和气流磨所得硅微粉样品的平均粒径差别不大,故可认为三者因粒径引起的吸油值变化不大。但三者的吸油值检测结果为:气流磨>球磨机>振动磨,主要是振动磨硅微粉样品在整个体系中粗细微粉分布较好,细颗粒较好的填充中粗颗粒之间,增大了整个体系的填充性,使得分布在颗粒空隙中的油减少,从而整体降低了整个系统的吸油值。 表2 不同研磨分级设备生产硅微粉的振实密度由表2可知,振动磨硅微粉样品的振实密度最高,进一步验证良好的粒径分布可有效降低粉体间的空隙率,提高粉体填充性。 第三 原有粉体系统中添加微粉对硅微粉吸油值的影响 表3 硅微粉成品及布袋除尘粉粒径分布表3为20±0.5μm硅微粉成品和其生产过程中布袋产生的除尘粉的粒径分布,图2为硅微粉成品中按不同比例添加布袋除尘粉引起的吸油值变化(此举为模拟生产过程中调节风门和分级频率控制旋风收集和布袋除尘出料比)。图2 硅微粉成品中添加布袋除尘粉引起的吸油值变化 由图2可知,当布袋除尘粉添加量控制在4%左右时,能够有效填充硅微粉成品中颗粒与颗粒产生的空隙,从而降低系统吸油值。但随着布袋除尘粉的持续增加,系统吸油值迅速升高,这是因为在硅微粉成品颗粒填充饱和后,新的布袋除尘粉之间又形成新的颗粒间隙,同时微粉粒径较小,比表面积较大,表面能升高,其表面也具有较高的吸油能力,造成系统吸油值升高。 在实际生产中,可通过调节分级频率和风门大小来控制硅微粉颗粒大小比例,从而降低硅微粉成品的整体吸油值。 第四 改性剂对硅微粉吸油值的影响图3 不同硅微粉在电子显微镜下的分散状况 图3为平均粒径为20±0.5μm硅微粉、铝酸酯改性剂改性后的硅微粉、硅烷偶联剂改性后的硅微粉在电子显微镜下的照片,由图可知,硅微粉分散性大小为硅烷偶联剂改性后的硅微粉>铝酸酯改性剂改性后的硅微粉>平均粒径为20±0.5μm硅微粉。 表4 不同改性硅微粉产品的吸油值表4为平均粒径为20±0.5μm硅微粉、铝酸酯改性剂改性后的硅微粉、硅烷偶联剂改性后的硅微粉吸油值对比:平均粒径为20±0.5μm硅微粉>铝酸酯改性剂改性后的硅微粉>硅烷偶联剂改性后的硅微粉。 改性剂可降低硅微粉表面吸附油脂的能力,减少粉体团聚产生的粒子间空隙,从而降低粉体吸油值,且硅烷偶联剂对硅微粉的改性效果较为明显。 第五 结论 (1)采用振动磨分级系统生产的硅微粉的填充性较气流磨和球磨机较高,故其吸油值最低。 (2)硅微粉成品中添加一定比例的微粉可有效减少粉体系统颗粒间隙,从而降低产品吸油值。在实际生产中,可根据生产不同粒径的粉体,调节分级频率和风门大小,有效改变所产生布袋除尘粉的量,从而提高旋风收集产品的吸油值。 (3)改性剂对粉体吸油值影响明显,其中又以硅烷偶联剂对硅微粉改性效果最佳。在实际生产过程中,需要根据不同行业需求,选择不同的硅烷偶联剂。

环保型铝箔上光油的研制与应用

2019-02-28 10:19:46

包装印刷用铝箔(常分0.2mm~0.25mm的硬铝箔和0.07mm~0.09mm的软铝箔)上光油,又称罩光油和OP维护剂。本文侧重论述和介绍彻底选用国产原材料,研制出的归于环保型上光油的常温固化、耐高温固化及光固化三大类型的五个种类的材料组成、配方规划和运用成果。    铝箔上光油的主要任务    铝箔上光油的主要任务是,将现已完结一切单一印刷或多色套印的精包装印刷的半成品,再涂布一层维护层。其意图是进一步促进包装印刷制品表面光泽、漂亮、耐酸、碱等,一起又要维护已印刷的图文墨膜。不只增加了印刷制品的表面硬度,还具有必定的柔韧性,也能前进包装印刷正品率,前进产品包装的高附加价值。    从铝箔上光油的用途上,咱们现已知道了它的主要任务。但人们在其运用范围上,仅仅将常温固化类光油用于食品包装上居多,特别是近三年来,时兴的在啤酒封口(顶)包装标识上更是色彩斑斓。一般耐高温121~160℃的上光油用于蒸煮的饮料罐厅、烟包和药品包装上。    跟着国家药品包装容器(材料)标准到现在(2004年6月1日)施行,传统的检测根据GB12255-90仅有规格、蒸腾物、黏合剂涂布量差异、热封强度、维护层的耐热性等五项,开端被YBB00132002(药品包装用复合膜、袋公例)所替代。这不只标志着我国包装制品,特别是药品包装制品同国际标准的接轨,一起也标志着传统的上光油产品的完结。环保型铝箔上光油的面世,更标志着新的上光油产品的开端。其产品的开发根据:    一是:(1)辨别红外光谱;(2)外观;(3)隔绝功能(水蒸气和氧气);(4)机械功能;(5)复合袋的热合强度(双层和多层);(6)溶剂残留量;(7)袋的耐压功能(三边封袋和其他袋);(8)袋的下跌功能(袋与内装物总质量和下跌高度);(9)溶出物实验:①重金属;②易氧化物;③不蒸腾物;(10)微生物极限(一般复合膜、袋;外用药复合膜、袋等)(11)反常毒性。    二是:YBB00132002规则了(1)复合膜系指各种塑料与纸、金属或其他塑料经过黏合剂组合而构成的膜,其厚度一般不大于0.25mm;(2)复合袋系将复合膜经过热合的办法而制成的袋,按制袋方式可分为三边封袋、中封袋、风琴袋、自立袋、拉链袋等。并且明文规则了复合膜的分类、隔绝功能、机械功能、下跌功能、微生物极限目标、尺度偏差等。笔者环绕着环保和同国际市场接轨,除物理丈量外,又增加了理化目标的丈量。一起由于曩昔溶剂总残留量为30mg/m2,现改为10mg/m2和残留定量3.0mg/m2。结合先选用硫代硫酸钠滴定液(0.01mol/L)滴定至近结尾时,参与的淀粉指示液0.25ml,持续滴定至无色,另取水空白液同法操作,二者耗费滴定液之差不得过1.5ml的严苛约束。加上上光油能在180-250℃,10秒不变色、不褪色、不掉色、不侧光(既有因热又有因光,既因软化点过高,又有因导电引起的)。一起还应契合以下技能要求:(1)保色功能好,经必定温度枯燥图文不搬迁、不泛黄、不变色或油墨墨膜不掉块;(2)有必定的光亮度、结实度,胶粘带粘拉不掉落;(3)同白色印刷油墨或五颜六色油墨及底油触摸时应有必定的亲和性;(4)固量高而黏度小,透明度高,特别是流滑润爽性好;(5)上光油成膜后本领模切,不伤刀,并本领压花、打孔等机械冲击。    铝箔上光油的根本组成    环保型铝箔包装上光油的根本组成是:树脂、溶剂、填料、助剂。现在常温铝箔包装上光油的系统中多以热塑性树脂为主,而一般耐高温(120-160℃)铝箔上光油的系统中则选用热塑性树脂,再增加少数热固性树脂或树脂,但耐高温(180-250℃)铝箔包装上光油系统里则以热固性树脂并兼有树脂。其树脂的挑选有:酸树脂、硝化纤维素、聚酰胺树脂、天然松香改性树脂、酚醛树脂、有机硅树脂、聚酮树脂、基树脂等等。其溶剂的配比则以醇、酯、酮为主,辅之。助剂类有流平剂、滑爽剂和微量的光稳定剂及热稳定剂等。    现在,关于常温固化的铝箔上光油树脂除以上介绍的外,在环绕彻底无毒的一起,大多挑选软化点较高的聚酰胺树脂同的硝化纤维素或同聚酮及萜烯树脂组成,也有选用乙烯树脂同硝化纤维素等组成,以防在必定温度下回粘。而溶剂的挑选和配伍则以气味小,多元混合溶剂以完成上光油在涂布成膜进程的蒸腾梯度平衡(表里一齐干)。至于助剂的挑选则以实惠价廉为主,以确保同质的上光油到达不同的涂布面积(量),一起在相同的涂布量时,完成较低本钱和为了操控较低的溶剂总残留量和残留两。例如混合溶剂的组成(配方):47.14,35.35,工业乙醇17.51,作为上光油的稀释剂。比现遍及单一选用溶剂的长处是:铝箔包装印刷上的溶剂气味小,溶剂残留量少,成膜枯燥速度快,附着牢度好,光油光泽度高而稀料溶剂本钱低。    在一般耐高温121-160℃乃至180℃的铝箔包装上光油则以改性松香酯同硝化纤维素或高软化点聚酰胺树脂或选用硝化纤维素参与基树脂等组成。也有选用软化点高的热塑性酸树脂增加氯醋树脂等组成的。现在耐高温(180-250℃乃至更高的上光油)铝箔包装上光油以热固性树脂同树脂及硅树脂等接枝混合组成。为了操控易氧化物常常引进稳定剂。为了操控反常毒性的生成,凡在树脂、溶剂、助剂乃至颜、染料分子中呈现O、H、Cl等字样一概不予选用。氧化物的理论学说是:(1)元素和氧化合而成的化合物。这儿所说的氧化物是指氧以单个原子参与结合而构成的离子型或共价型氧化物。此外,还有过氧化物、超氧化物、臭氧化物、有机氧化物(如)等,同一元素能够有价态不同的氧化物。如:二氧化硫SO2和三氧化硫SO3;氧化亚铜Cu2O和氧化铜CuO,制备办法有:①单质或化合物在空气中或纯氧中焚烧,可得到常见氧化物;②在赤热的温度下,用水蒸气将单质氧化成氧化物;③用硝酸作氧化剂可把某些元素氧化成氧化物;④氢氧化物的脱水或碳酸盐、硝酸盐的热分化;⑤向盐溶剂中加碱,以除掉沉积氢氧化物或氧化物,然后进行脱水枯燥;⑥用复原剂复原高氧化态氧化物,可得到低氧化态的氧化物。(2)金属或非金属和氧化合而成的化合物。同一元素能够有几种价数不同的氧化物。例如CO和二氧化碳CO2和氧化铜CuO;一氧化铁FeO,三氧化二铁Fe2O3和四氧化三铁Fe3O4等。氧化物可分为酸性氧化物、碱性氧化物、氧化物和慵懒氧化物等。    为了完成结实的附着力,在该产品系统中除了严把溶解度、氢键力、表面张力、沸点及蒸腾速度和蒸腾速率的一起,适量引进潮湿助剂,有利于上光油与印刷图文墨膜的亲合性。其意图就是要绕过技能的壁垒约束,完成铝箔上光油(维护剂)的科学化和规范化。铝箔上光油的出产工艺    原材料棗投入溶剂棗投入树脂棗开机涣散溶解棗助剂增加棗刮样棗测验。    铝箔上光油的配方举例:    耐高温铝箔上光油(配方一)检测陈述    附注:1.别离于160℃和200℃条件出产运用该产品(批量涂布,见表一),其间2为归纳记载);    2.地址:河南凯迪药包材料有限公司    3.时刻:2004年6月6日上午(测验日期相同);    4.检测根据:GB12255-90;    5.铝箔选用0.024×140mm的素铝箔(PTP);    6.药用铝箔检测记载(见表一)。    表一药用检测记载    1.蒸腾物的测定    取100mm×100mm两片    目标:≤4mg/0.02m2    枯燥前分量(mg)1109.30    枯燥后分量(mg)1109.30    蒸腾物(mg/0.02m2)丈量成果0.20鉴定合格    2.上光油涂布量差异丈量    取100mm×100mm五片称重    檫去上光油分量差值即为涂布量,求出平均值    各片涂布量与平均值的差,即为涂布量差异    目标:12.5%    原始分量(mg)①547.30②546.60③554.50④549.45⑤552.10    除掉上光油分量(mg/m2)①531.70②530.80③538.20④533.40⑤535.90    涂布量(g/m2)①15.60②15.80③16.30④16.05⑤16.20    涂布量平均值(g/m2)15.99    涂布量差异丈量成果①-2.43%②-1.18%③1.93%④0.37%⑤0.31%鉴定合格    热封强度目标:≥5.88N/15mm丈量成果鉴定    10.10合格    维护层耐热性目标:200℃,0.2Mpa无显着粘落丈量成果鉴定    无合格    阐明的是:笔者先后在江苏省镇江市江州医药精包装股份有限公司别离将送达的耐高温上光油(配方1-5)在180-250℃枯燥3-8秒后,对易氧化物的理论目标进行了四次丈量,成果是:配方1为0ml,配方2为0.7ml,配方3为0ml,配方4为0.8ml,配方5为0.7ml(以上是二者耗费滴定液之差数)。    除此之外,笔者选用耐高温上光油参与着色剂(染料、色浆)作为一般铝箔包装印刷油墨和耐高温铝箔包装印刷油墨进行试印成果,其印刷墨膜均能到达YBBOO132002所规则的检测要求。并能与DIC的产品相媲美,且本钱仅是DIC的三分之二。    结语    跟着主动、省力、高速、精密、优质的铝箔包装印刷及涂布上光油(维护剂)的开展,针对市面上铝箔上光油“水平面趋同”效应的呈现,高本钱及残留有害物带来的坏处都逐个显现出来,加上没有构成集合效应,上光油技能水平和该产品层次难以有用地得到前进。    纵观全球市场经济一体化,质和量应该说是一枚的两个面。由于当今科学理论不只造就了新的包装印刷材料,并且也造就了铝箔包装印刷上光油的新产品,一起也造就了新一轮的科学根底理论知识的更新。咱们只要在市场竞争中权衡利弊,才干将国产铝箔上光油的产品推行、运用到极限;只要做好售前的产品查询、介绍和售后运用技能的终端盯梢效劳,才干遭到国表里包装印刷用户的喜爱;只要用先进的科学,才干长时间而有用辅导我国铝箔包装(印刷)上光油产品技能的前进!