碳化硅的用途
2017-06-06 17:50:02
碳化硅的用途主要体现在四大领域的五大用途。碳化硅主要有四大领域,即: 功能陶瓷、高级耐火材料、磨料及冶金原料。目前碳化硅粗料已能大量供应, 不能算高新技术产品,而技术含量极高的纳米级碳化硅粉体的应用短时间不可能形成规模经济。碳化硅的5大主要用途1?
有色金属
冶炼工业的应用利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等?2?钢铁
行业
方面的应用利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命?3?冶金选矿
行业
的应用碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一?4?建材陶瓷,砂轮工业方面的应用利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?5?节能方面的应用利用良好的导热和热稳定性,作热交换器,燃耗减少20%,节约燃料35%,使生产率提高20-30%?特别是矿山选厂用排放输送管道的内放,其耐磨程度是普通耐磨材料的6—7倍? 碳化硅的用途 非常广泛。
锆的性质和用途
2019-02-19 09:09:04
锆是现代工业的重要金属质料。
锆(包含铪)具有杰出的可塑性;抗蚀功能超越钛,在100℃以下能反抗各种浓度、硝酸以及50%以下浓度硫酸的腐蚀。锆和铪还有特殊的核功能,耐辐照性很好。在高温下锆具有杰出的吸气性。锆广泛用于原子能、电子、冶金、化工、医疗及制革等工业部门。
锆铁的性质及用途
2019-01-04 09:45:23
锆铁是由锆与铁及硅、铝等元素组成的铁合金。炼钢用的锆铁是锆硅铁,含Zr15%~45%,Si30%~65%。用铝热法生产的则因含铝故称锆铝铁,含Zr>15%。1789年德国克拉普罗特(M.H.Klaproth)发现了一种新的氧化物,取名叫“Zircomia’。1824年瑞典贝采利厄斯(J.J.Berzelius)用钾还原K2ZrF6的方法,首次制出锆。1923年美国钢厂首次进行了用锆硅铁做脱氧剂的试验,取得良好效果。之后开始用金属热法生产出锆硅铁和锆铝铁。中国南京特殊合金厂,于1987年试制出锆硅铁,含Zr20%~40%,Si45%~55%;用作炼钢脱氧剂。性质锆的原子量为91.22。外层电子结构为ztdz5s。。熔点1852℃。沸点4400℃。密度6.49g/cm3(20℃)。锆铁系相图见一FN。锆与铁生成稳定的化合物FeZr2(45.1%zr),熔点1650℃,Fe—Zr系内有两个共晶体。在16%Zr时共晶熔点为1330℃;在84%Zr时共晶熔点约为940℃。锆与硅生成多种硅化锆。有Zr:Si(Si13.65%),ZrSi3(Si15.55%),ZrSi(Si23.55%)和ZrSi2(si38.12%)等。商品锆硅铁的密度约3.5g/cm3,熔化温度范围为1260~1345℃。用途锆是稀有金属。它是碳化物形成元素。在炼钢过程中,锆是强有力的脱氧和脱氮元素。锆能细化钢的奥氏体晶粒。它和硫能化合成硫化锆,因此能防止钢的热脆性。锆还有降低钢的应变时效现象和提高钢的低温韧性等优点。
锆在铸铁中的作用类似钛。可形成碳化锆,与硫结合形成硫化物。在冷却时促进石墨的生成。少量的锆即有利于白口铸铁的石墨化,使白口铁灰口化。在生产韧性铸铁时缩短退火时间。锆资源含锆矿石有十几种。而在工业上可用的只有锆英石(zircon)和斜锆石(baddeleyite)两种。锆英石也叫锆石,是分布最广的锆矿物。主要产地为美国、巴西、印度、澳大利亚、中国和独联体等国。其主要组成为ZrO2•SiO2。理论成分为:ZrO267.01%和SiO233.99%。锆英石矿石中各种杂质含量为:Fe2O3)0.5%~5.0%和少量CaO、.MgO、TiO2等。斜锆石主要产地在巴西和斯里兰卡。中国储量不大。其主要成分是ZrO2。工业斜锆石含ZrO275%~85%,主要杂质为Fe2O3 2%~5%,SiO2 10%~20%及少量A1203和TiO2。矿物密度为5.7g/cm3莫氏硬度6.5。
锆知识
2019-03-08 11:19:22
锆是银灰色有光泽的金属,密度6.49,熔点1852℃,沸点4377℃。锆的化学性质不生动,细密的在空气中比较稳定,加热时表面构成氧化物覆盖层,失掉金属光泽。粉末状的锆简单在空气中焚烧,细的锆丝可用火柴点着。锆对氧具有很强的亲和力,它能夺去氧化镁、和氧化钍中的氧,自身成为二氧化锆。锆有激烈的吸氢功能,可用作储氢料材。高温下锆还能与氮效果。锆有耐腐蚀性,不与稀、稀硫酸和强碱溶液效果,但易溶解在和中。高温时,锆与非金属元素和许多金属元素反响,生成固溶体化合物。
锆在地壳中的含量为0.025%,居第20位。含ZrO2在20%以上的矿藏虽有十几种,但工业选用的仅有锆石(ZrSiO4)和斜锆石(ZrO2)两种。锆石与钛铁矿、金红石、独居石共生,也可在海滩砂石中找到。一切的锆石中都含有氧化铪(HfO2)和放射性物质,放射强度一般在1×10-7毫居里/克的数量级,含HfO2高的放射性强度也高。
锆英石、斜锆石是锆的首要来历,锆石参加适量的石油焦,在1000℃通入,可得到(ZrCl4),它的蒸气与熔融的金属镁触摸,即被复原为。高纯度可用碘化物热分化法制取。
ZrCl4在常温下呈固态,437℃时提高。因此在冷凝器中所得的ZrCl4为气态凝结而成,操控好传热速度等条件,能够得到细密度高的产品。ZrCl4能够复原得到ZrCl3和ZrCl2,它们是电解制取时熔盐中的首要组分。如制取一般工业锆,无须别离铪,可用提高提纯法制成精ZrCl4后,就用镁复原制得海绵锆。
锆首要用作原子核反响堆燃料元件的包壳材料,所以锆的冶炼流程中都有锆铪别离这一进程。工业上最通用的别离办法是NH4CNS-MIBK溶剂萃取法,萃取剂为甲基异丁基酮(MIBK)。此法的缺点为:①别离系数低,需求的级数多;②NH4CNS简单分化发作CN-,使废水有毒,需在厂内处理。
近年来有用HNO3系TBP(磷酸三丁酯)萃取法和HCl-HNO3系TBP萃取法的。前者矿石分化用NaOH熔融法,带来一系列的困难,包含萃取中呈现三相的困难。后者运用ZrCl4为质料,避免了上述困难,但也有溶液腐蚀性强的缺点。所得ZrO2再进行氯化得到ZrCl4,工业上叫作二次氯化。ZrCl4通过提高提纯,然后用金属热复原法(镁复原或钠复原)制得粗锆,真空蒸馏除掉MgCl2和收回剩余的镁(钠复原时用水洗)。这一进程与钛的复原流程类似,仅有不同处为镁需经预处理提纯。镁复原法的化学反响为:ZrCl4+2Mg→Zr+2MgCl2,复原温度为850℃左右。真空蒸馏温度为950~1000℃。锆自身有吸气效果,所以最终的真空度一般为10-5托。
制取纯度较高的锆,是用ZrI4在热丝上分化制得,工业上叫作结晶棒。在这一进程中有ZrI2和ZrI3参加效果。锆及锆合金选用真空自耗电弧重熔炉熔炼铸锭,最常用的型材为管材,成型办法包含铸造、揉捏、拉伸,与钛管的加工办法根本相同。
锆和锆合金首要用在水冷式的原子反响堆中。在原子反响堆里,铀棒不能直接与水触摸。由于热水腐蚀铀棒,铀棒使水沾上放射性,就会损害人体健康。用锆作铀棒的护套,能够满意下面四个方面的要求:①抗蚀能力强,不与核燃料和传热介质(如水)发作效果;②有满足的强度、耐热、耐腐蚀;③很少吸收中子,确保裂变“链式反响”的进行;④简单加工成形。
锆还可用作特殊钢的添加剂,含锆不锈钢和耐热钢是制作坦克车、坦克、大炮和防弹板等兵器的重要材料。锆除了加强钢的强度和硬度外,还能改善钢的机械加工功能,可淬硬性、可焊接性。它还能碎化钢中的硫化物,然后细化钢的晶粒组成。参加锆的钢抗氧化性增强,抗腐蚀性也有明显添加。二氧化锆的熔点高达2675℃,化学稳定性好,用作高档耐火材料。
锆矿物
2019-01-30 10:26:34
已发现含锆矿物有30多种,其中具有工业价值的主要有锆英石和斜锆矿两种。锆和铪由于化学性质、离子及原子半径非常相近,因此在自然界中锆与铪均呈共生状态存在。铪本身无独立矿物,均以类质同像赋存于变种锆英石中,含铪较高的变种锆英石矿物有:曲晶石、苗木石、水锆石等。主要锆、铪矿物见下表。
表 锆铪矿物表矿物化学式ZrO2%HfO2%密度g∕cm3硬度颜色斜锆矿(baddeleyfie)ZrO280~980.5~26.5~66~6.5白、红、黄锆英石(zircon)ZrSiO461~671~1.84.2~4.97.5无色、黄、绿、褐、黑等钛锆钍矿(zirkelite)(Ca,Fe,Ti,Zr,Th)2O3521~2.74.75.5黑色、深棕色曲晶石(cyitolite)变种锆石含
TR、U、Th等52.405.5~174.16褐色水锆石(malacone)变种锆石含Al、Ta、Nb、Th、U、H2O53.2~65.13.7~4.63.89~3.936无色苗木石(nacgitc)变种锆石含TR、Ta、Nb、Th、U等49.83.5~74.17.5绿、褐色
锆常识
2019-03-14 09:02:01
锆是银灰色有光泽的金属,密度6.49,熔点1852℃,沸点4377℃。锆的化学性质不生动,细密的在空气中比较稳定,加热时表面构成氧化物覆盖层,失掉金属光泽。粉末状的锆简单在空气中焚烧,细的锆丝可用火柴点着。锆对氧具有很强的亲和力,它能夺去氧化镁、和氧化钍中的氧,自身成为二氧化锆。锆有激烈的吸氢功能,可用作储氢料材。高温下锆还能与氮效果。锆有耐腐蚀性,不与稀、稀硫酸和强碱溶液效果,但易溶解在和中。高温时,锆与非金属元素和许多金属元素反响,生成固溶体化合物。 锆在地壳中的含量为0.025%,居第20位。含ZrO2在20%以上的矿藏虽有十几种,但工业选用的仅有锆石(ZrSiO4)和斜锆石(ZrO2)两种。锆石与钛铁矿、金红石、独居石共生,也可在海滩砂石中找到。一切的锆石中都含有氧化铪(HfO2)和放射性物质,放射强度一般在1×10-7毫居里/克的数量级,含HfO2高的放射性强度也高。 锆英石、斜锆石是锆的首要来历,锆石参加适量的石油焦,在1000℃通入,可得到(ZrCl4),它的蒸气与熔融的金属镁触摸,即被复原为。高纯度可用碘化物热分化法制取。 ZrCl4在常温下呈固态,437℃时提高。因此在冷凝器中所得的ZrCl4为气态凝结而成,操控好传热速度等条件,能够得到细密度高的产品。ZrCl4能够复原得到ZrCl3和 ZrCl2,它们是电解制取时熔盐中的首要组分。如制取一般工业锆,无须别离铪,可用提高提纯法制成精ZrCl4后,就用镁复原制得海绵锆。 锆首要用作原子核反响堆燃料元件的包壳材料,所以锆的冶炼流程中都有锆铪别离这一进程。工业上最通用的别离办法是NH4CNS-MIBK溶剂萃取法,萃取剂为甲基异丁基酮(MIBK)。此法的缺点为:①别离系数低,需求的级数多;②NH4CNS简单分化发作CN-,使废水有毒,需在厂内处理。 近年来有用HNO3系TBP(磷酸三丁酯)萃取法和HCl-HNO3系TBP萃取法的。前者矿石分化用NaOH熔融法,带来一系列的困难,包含萃取中呈现三相的困难。后者运用ZrCl4为质料,避免了上述困难,但也有溶液腐蚀性强的缺点。所得ZrO2再进行氯化得到ZrCl4,工业上叫作二次氯化。ZrCl4通过提高提纯,然后用金属热复原法(镁复原或钠复原)制得粗锆,真空蒸馏除掉MgCl2和收回剩余的镁(钠复原时用水洗)。这一进程与钛的复原流程类似,仅有不同处为镁需经预处理提纯。镁复原法的化学反响为:ZrCl4+2Mg→Zr+2MgCl2,复原温度为850℃左右。真空蒸馏温度为 950~1000℃。锆自身有吸气效果,所以最终的真空度一般为10-5托。 制取纯度较高的锆,是用ZrI4在热丝上分化制得,工业上叫作结晶棒。在这一进程中有ZrI2和ZrI3参加效果。锆及锆合金选用真空自耗电弧重熔炉熔炼铸锭,最常用的型材为管材,成型办法包含铸造、揉捏、拉伸,与钛管的加工办法根本相同。 锆和锆合金首要用在水冷式的原子反响堆中。在原子反响堆里,铀棒不能直接与水触摸。由于热水腐蚀铀棒,铀棒使水沾上放射性,就会损害人体健康。用锆作铀棒的护套,能够满意下面四个方面的要求:①抗蚀能力强,不与核燃料和传热介质(如水)发作效果;②有满足的强度、耐热、耐腐蚀;③很少吸收中子,确保裂变“链式反响”的进行;④简单加工成形。 锆还可用作特殊钢的添加剂,含锆不锈钢和耐热钢是制作坦克车、坦克、大炮和防弹板等兵器的重要材料。锆除了加强钢的强度和硬度外,还能改善钢的机械加工功能,可淬硬性、可焊接性。它还能碎化钢中的硫化物,然后细化钢的晶粒组成。参加锆的钢抗氧化性增强,抗腐蚀性也有明显添加。二氧化锆的熔点高达2675℃,化学稳定性好,用作高档耐火材料。
锆矿
2019-02-11 14:05:30
锆是一种化学元素,它的化学符号是Zr,原子序数为40,是一种银白色的过渡金属。锆的表面易构成一层氧化膜,具有光泽,故外观与钢类似。有耐腐蚀性,不溶于和;高温时,可与非金属元素和许多金属元素反响,生成固体溶液化合物。锆的可塑性好,易于加工成板、丝等。锆在加热时能大量地吸收氧、氢、氮等气体,可用作贮氢材料。锆的耐蚀性比钛好,挨近铌、钽。锆与铪是化学性质历史学类似、又共生在一起的两个金属,且含有放射性物质。地壳中锆的含量居第20位,简直与铬持平。自然界中具有工业价值的含锆矿藏,首要有锆英石及斜锆石。一、锆的性质
的外表象钢,常温下表面被细密的氧化物层掩盖,但仍有金属光泽。粉状锆为暗灰色。的熔点为1852℃,密度为6.49克厘米3。其可塑性好,易于加工成板、丝等。锆在加热时能大量地吸收氧、氢、氮等气体,可用作贮氢材料。锆的耐蚀性比钛好,挨近铌、钽。锆与铪是化学性质非常类似、又共生在一起的两个金属,且含有放射性物质。地壳中锆的含量居第20位,简直与铬持平。
二、锆的用处
锆中的热中子抓获截面小,有杰出的核功能,是开展原子能工业不行短少的材料,可作反响堆芯结构材料。在空气中易焚烧,可作引爆及无烟。锆可用于优质钢脱氧去硫的添加剂,也是装甲钢、大炮用钢、不绣钢及耐热钢的组元。锆是镁合金的重要合金元素,能进步镁合金抗拉强度和加工功能。锆仍是铝镁合金的蜕变剂,能细化晶粒。二氧化锆和锆英石是耐火材料中最有价值的化合物。二氧化锆是新式陶瓷的首要材料,还可用作抗高温氧化的加热材料。二氧化锆可作耐酸珐琅、玻璃的添加剂,能明显进步玻璃的弹性、化学安稳性及耐热性。锆英石的光反射功能强、热安稳性好,在陶瓷和玻璃中可作遮光剂运用。锆在加热时能大量地吸收氧、氢、氮等气体,是抱负的吸气剂,如电子管顶用作除气剂,用锆丝锆片作栅极支架、阳极支架等。
三、氧化锆陶瓷
氧化锆精细陶瓷具有电绝缘性、压电性、耐热性、硬度高和耐磨损等特色,可用作电器陶瓷,制造作人工骨、人工齿和固定化触媒载体,所以是材料宗族中的新秀。氧化锆耐性陶瓷,其抗变强度可与高强度的合金钢比美,可作陶瓷鎯头、剪刀和菜刀。陶瓷剪刀。陶瓷剪刀非常尖利,不带磁性,适于剪接录音、录相带。陶瓷菜刀适于切熟食,不会在食物上留下铁腥味。部分安稳的二氧化锆陶瓷,具有高硬度特色,可用于制造耐磨部件,如喷嘴、螺纹导管、揉捏和线材拉模等。
四、锆矿之国——澳大利亚澳大利亚矿产资源丰富。其间,锆英石储量居国际第一位,其产值约占国际总产值的80%。锆英石开采业在该国采矿工业中占有重要位置,首要会集在新南威尔士、西澳大利亚和昆士兰三个州。澳大利亚是国际上锆的最大的直销国。交易目标首要是英国、美国、日本、德国和加拿大。
碳化硅
2017-06-06 17:50:02
碳化硅(SiC)又称碳硅石、金钢砂、耐火砂,是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。碳化硅的硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。工业用碳化硅于1891年研制成功,是最早的人造磨料。在陨石和地壳中虽有少量碳化硅存在,但迄今尚未找到可供开采的矿源。纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的 α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。碳化硅的工业制法是用优质石英砂和石油焦在电阻炉内炼制。炼得的碳化硅块,经破碎、酸碱洗、磁选和筛分或水选而制成各种粒度的产品。碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。
碳化钨
2017-06-06 17:50:00
碳化钨粉(WC)是生产硬质合金的主要原料,化学式WC。全称为 Wolfram Carbide, 也译作tungsten carbide为黑色六方晶体,有金属光泽,硬度与金刚石相近,为电、热的良好导体。熔点2870℃, 沸点6000℃,相对密度 15.63(18℃)。碳化钨不溶于水、盐酸和硫酸,易溶于硝酸-氢氟酸的混合酸中。纯的碳化钨易碎,若掺入少量钛、钴等金属,就能减少脆性。用作钢材切割工具的碳化钨,常加入碳化钛、碳化钽或它们的混合物,以提高抗爆能力。碳化钨的化学性质稳定。提炼方法: 用金属钨粉和炭黑为原料,按一定比例配成混合料,将混合料装入石墨舟皿中,置于炭管炉内或高中频感电炉中,在一定温度下进行炭化,再经球磨、筛分即得碳化钨粉。粗晶碳化钨分子式为WC,具有一些中、细晶WC粉不同的特殊性能和用途,尤其是高温WC具有结构缺陷少、显微硬度高、微观应变小等优点,广泛应用在地矿开采、石油钻探、车床加工等方面。硬度仅次于金刚石,价值极高。目前粗晶WC的生产方法主要有:1.钨粉高温碳化 高温长时碳化,可以使WC的晶格缺陷降至最低、微观应变最小,WC的塑性得到改善。这是目前国内的主要生产方式。碳化的温度不宜超过1800-1900℃,在超过1800℃,WC晶粒间易发生晶界融合长大,致使WC粒度分布不均。一些研究表明,降低原料钨的粒度,提高碳化温度,降低碳化时间,可以提高获得的WC品质。2.氧化钨掺锂盐的中温还原和高温碳化 该法原理为:通过加入添加剂,加速WO3还原过程中的挥发沉积速率,致使钨粉粒度在较低的温度下得以长大,用于钨粉长大的添加剂为锂盐,该法主要用于制取矿用合金和冷微模合金。3.添加钴、镍高温碳化 在钨粉配碳时加入少量钴、镍或它们的氧化物,可以改变碳化机理,提高碳化的速度,此种方法生产的粗晶WC的晶粒度受配钴量的影响极大,配钴量越大所得WC越粗。4.添加钠盐法 在APT中添加钠盐,然后在较高的温度下还原,可得粒度大于10μm的粗钨粉,再经高温碳化可得粗颗粒WC粉。该法还处于研究中,一些技术还不成熟。5 .APT快速锻烧快速还原法 此法的实质是将APT在850-1000℃下于氧化气氛中快速加热锻烧,然后在氢气炉中快速加热到1100-1300℃的温度下还原,用此种方法可制备粒度为25-36μm的钨粉。6. 卤化物沸腾层氢还原法 将钨的氯化物或氟化物在沸腾层中用H2还原。首先将H2和原始钨粉送入反应器底部,制成钨沸腾层,而卤化物蒸气由反应器上部通入反应器内,在给定的最佳温度下被H2还原成钨粉,并沉积在原始钨粉上,使原始钨粉逐渐粗化,定期有反应器内部卸出钨粉。用此种方法制备的钨粉粒度大于40μm。7.粗晶铝热工艺 通过高吸热反应使WC直接从钨精矿中生产出来,该法能生产高纯度、粗颗粒、大块、单相WC晶粒。8.钨精矿熔盐碳化法(气体喷射法) 首先在1050-1100℃的高温下,用Na2SiO3-NaCl熔盐将钨精矿分解,将所生成的Na2WO4-NaCl熔盐相同含有Fe、Mn、Ca的硅酸盐相分离,然后用甲烷喷入熔盐相中,生成粗晶WC。该法优点成本低,约为通常60%,缺点是杂质(Mo、Cr、Fe、Ni、Si)含量偏高,需要长时间的化学处理。
碳化硅板
2017-06-06 17:50:03
碳化硅板是民用
产业
中不可缺少的材料。碳化硅板导热性能好,热振稳定性高,高温下长时间使用不变形、不软化、不产生疏松膨胀,可保持碳化硅固有的高的热传导率,使用在高温窑炉上,作为隔焰板使用,可显著提高炉膛温度,节约能源、增加
产量
,提高经济效益。碳化硅板特点:1.耐火度高.2.导热性能好.3.膨胀系数小.4.强度高.5.超薄型,节能.碳化硅板适用于各种日用瓷、艺术瓷、中高档卫生瓷、磁性材料、建陶、砂轮等窑炉上,作为隔焰板、推板、棚板、支架、匣钵使用,应用于燃煤、燃气、燃油等各种工业窑炉中,也可作为内衬材料,及粉末冶金
行业
罐体材料使用。未来碳化硅板的应用会越来越广泛。