浮游法选金简述
2019-02-15 14:21:10
浮游选矿简称浮选,系依据矿藏表面物理化学性质的不同,对磨碎的固体矿藏进行湿式选其他一种办法。现在工业上遍及运用的浮选法本质是泡沫浮选法。这是一种在由水、矿粒和空气组成的矿浆(悬浮液)中浮出固体矿粒的工艺办法,是将湿磨至指定细度的矿粒借助于各种浮选药剂的作用使欲浮矿粒粘附于气泡并借气泡的浮力携至矿浆表面,而不与气泡粘附的矿粒则留在矿浆中,借此完成有用矿藏的别离富集。其机理是欲浮矿粒对浮选药剂的挑选功能,本质上是运用各种矿藏表面物理化学性质的差异进行分选。在浮选进程中运用浮选药剂仅调整或改动矿藏的表面性质而未改动矿藏自身的化学组成和性质,因此浮选是一个物理的选矿进程。 使有用矿粒与气泡粘附构成泡沫产品的浮选称正浮选,而使脉石颗粒与气泡粘附构成泡沫产品的浮选称反浮选。出产实践中多选用正浮选。一般所说的浮选如不特别指明均对正浮选而言。 浮选法的出产进程一般包含如下几个环节:①当选前矿石的预备。经破碎筛分和磨矿分级(有时尚须洗矿脱泥)为浮选供给适合粒度的当选物料。②参加浮选药剂。经过各类药剂的作用改动矿藏的表面性质,操控气泡的安稳性,调整矿浆的离子组成发明适合的浮选条件,完成矿藏的别离富集。③充气拌和。经过机械拌和使空气涣散成气泡,矿粒充沛悬浮并促进浮选药剂的溶解和涣散。④气泡的矿化。只要完成有用矿藏颗粒易与气泡粘附而脉石难于同气泡粘附的这种挑选性,才干到达分选意图。⑤矿化泡沫的排出。泡沫产品经刮板刮出或主动溢出成为精矿。 浮选法是一种运用广泛而重要的选矿办法。现在,全世界每年约有20亿吨矿石,100余种矿藏需求用浮选法来处理。大规模的浮选厂,日处理量可达10余万吨。浮选法之所以占有如此重要的位置,是因为其运用规模广、选分效率高,以及能归纳运用矿产资源。 金是一种易浮矿藏,所以浮选一直是处理含金矿石的有用办法之一。在原生的金矿床中,金矿藏常与黄铁矿、黄铜矿、方铅矿、闪锌矿、毒砂等硫化矿藏共生。这些矿藏同是易浮矿藏,并能构成安稳的矿化泡沫,是金矿藏最理想的载体矿藏。经过浮选可以最大极限地使金富集到硫化物精矿中。现在在我国大多数脉金矿山都在选用浮选法或浮选与其他提金办法的联合工艺。浮选法首要用于处理脉金矿石。关于砂金矿石浮选法亦能处理,但因为选用本钱低的重选法可经济地收回,因此在工业出产中尚很少运用浮选。浮选法处理脉金矿石,适于处理中、细粒嵌布的或与有色金属伴生的金矿。关于粗粒单体金宜选用重选或混法收回而关于微细粒金及含泥、氧化程度高的杂乱金矿石多用化学提金法来处理,因此,浮洗与重选、化等组成联合流程是合理途径。 关于多金属矿石的浮选有两种办法。一种是将其间的有用矿藏顺次选入泡沫产品中,叫做优先浮选。另一种是将一切的有用矿藏一起选入泡沫产品,然后再把混合精矿中的有用矿藏逐个分隔,叫做混合浮选。 浮选法被广泛用来处理各硫化物含金矿石,作用最明显。因为经过浮选不只可以把金最大极限地富集到硫化物精矿中,并且可以得到抛弃尾矿,选矿本钱亦很低。浮选法还用来处理多金属含金矿石,例如金-铜、金-铅、金-锑、金-铜-铅-锌-硫等矿石。关于这类矿石,选用浮选法处理可以有用地别离选出各种含金硫化物精矿,有利于完成对矿藏资源的归纳收回。此外,关于不能直接用混法或化法处理的所谓“难溶矿石”,也需求选用包含浮选在内的联合流程进行处理。当然,浮选法也存在局限性。关于粗粒嵌布的矿石,当金粒大于0.2mm时,浮选法就很难处理;对难于取得必要浮选条件的矿石,比方不含硫化物的石英质含金矿石,调浆后很难取得安稳的浮选泡沫,选用浮选法就有必定困难。在经济指标方面,因为浮选需求消细磨矿,并要耗很多药剂,所以浮选法的选矿本钱较重选和混法为高。
散热器用铝合金都有哪些种类
2018-12-27 09:30:05
1.Al6063/ Al6061铝合金
优良的可塑性使之可以挤压的工艺制造型材散热器。几乎可以制造任何形状的散热器,工艺成熟,价格便宜,可加工性能高。
2.铸铝
主要应用于大型不规则外形散热器及设备机柜一体化的散热器。
3.LF/LY系列
主要应用在特殊使用环境的电子设备散热器。使用环境对硬度和防腐蚀性有一定的要求。
目前较多使用的是LY12。
4.纯铝
较多使用于对导热性能要求较高的环境。一般较少使用。删除
散热器用铝合金的种类
2018-12-28 11:21:22
1.Al6063/ Al6061铝合金
优良的可塑性使之可以挤压的工艺制造型材散热器。几乎可以制造任何形状的散热器,工艺成熟,价格便宜,可加工性能高。
2.铸铝
主要应用于大型不规则外形散热器及设备机柜一体化的散热器。
3.LF/LY系列
主要应用在特殊使用环境的电子设备散热器。使用环境对硬度和防腐蚀性有一定的要求。
目前较多使用的是LY12。
4.纯铝
较多使用于对导热性能要求较高的环境。一般较少使用。
国际铜协:铝材料抑菌指数低于铜
2019-01-02 14:54:40
针对近期空调行业爆发的“铝代铜”口水战,一直保持沉默的国际铜业协会昨日向《每日经济新闻》发来声明称,铜作为空调连接管的材料,其承压、抗疲劳、抗腐蚀性能优于铝是有科学依据的事实。在抑菌指数方面,铝的相关指数也远低于铜,“铝代铜”的发展前景仍无法预测。 国际铜业协会声明称,铜管作为空调连接管,经过了几十年的实践检验。单就空调连接管的材料而言,铜的承压、抗疲劳、抗腐蚀等性能均优于铝。而铜铝管作为近两年刚面世的新产品,其耐电化学腐蚀、疲劳破坏,还有待时间的考验。国际铜业协会表示,空调连接管材料的替代更新必须经过慎重的研究和论证。 此前,国内某品牌空调在各地商场促销时,宣称该品牌空调一直使用铜质连接管,并通过软文曝料国内多数品牌空调为节省成本,在空调接管上以铝管代替铜管。该品牌空调有关“黑心管”的宣传,立即引来以科龙为代表的其他空调品牌的反击。 国际铜业协会昨日向本报出具的一份由中国疾控中心环境与健康相关产品安全所2006年对几种主要材料抗菌性能进行的功效比较显示,不锈钢、塑料、铝、银离子、纳米、铜等几种材料中,银离子的抑菌指数最高,铜居次,纳米的抑菌指数为未知,其他材料的抑菌指数为零。据称,在5月份举行的家用空调污染与解决方案专家研讨会上,上海疾病控制中心公布了一条调查数据:易引起食物中毒的蜡样芽孢杆菌在家用空调散热片上的检出率高达100%,家用空调卫生状况堪忧。 家电专家刘步尘表示,在这场空调连接管铜、铝之争中,出现了“权威机构失语”的情况。国内第三方检测机构,此刻应在这场争论中发出声音,就铜、铝空调连接管承压、抗疲劳、抗腐蚀及节能等性能给出权威的对比实验结果。
浅析国内电子电器用铝的发展概况
2018-12-19 17:39:35
铝合金是日常生活中最为常见的有色金属制品,在工业运用中也最为广泛。如航空航天、海上设备、电子消费品、铸件模具等领域,都有着极为丰富的使用。其中与我们日常生产息息相关的,就是日常消费的电子电器用铝产品。 铝具有优良的电导性,因此常被用于高转矩的电动机中;铝具有良好的热导性,因此在制造热交换器、蒸发器、加热电器、炊事用具、汽车散热器等电器用铝方面的应用也极为广泛。铝属于非电磁性,这一优良特点使其在电器用铝方面开拓了更丰富的用途。 铝的密度约为钢、黄铜密度的1/3,与其他有色金属相比,密度更小,同时,在大多环境下,显示出更加优越的抗腐蚀性。铝合金产品能够进行多种表面处理方式,如阳极氧化、机械抛光、化学抛光、人工打磨抛光、拉丝、喷砂等。 目前,电器用铝、电子用铝的常用合金牌号为1060、3003、5052、6011、6061、6063等,在一些机械配件、汽车功放面板、电源外壳、手机外壳、电机马达外壳、LED屏框、灯罩、摄像头配件等十分常见。 目前,国内铝加工厂家的铝板、铝箔产品丰富多样,已基本覆盖电子电器用铝的各个方面。如明泰铝业的电子铝箔在国内市场热销数年,可对电子电器用铝的1系、3系产品进行表面研磨、抛光、拉丝等处理,使铝板表面光泽度更高,明泰铝业拥有先进的涿神箔轧机,保证铝箔的板型良好,液压控制,配合高精度压力传感器和精准辊缝;2010年引进辽宁机械员立式分切机,采用硬齿面齿轮传动,精准度更高;严格控制加工管理,织构、晶粒组织把控精准。 经过多年稳定发展,国内电子电器用铝市场已趋于稳定,并逐步向高端化、专业化方向发展。作为国内铝加工知名企业,明泰铝业也将继续严控优质发展、提高科学管理,为国内电子电器用铝市场再添辉煌!
铀矿石冶金菌优势菌株的研究
2019-01-31 11:05:59
目 录
序言
(1)国内外研讨现状
(2)生物冶金开展趋势及远景
(3)冶金微生物
(4)浸矿系统中的微生物
(5)冶金微生物的多样性
(6)环境微生物多样性的研讨办法
(7)双层固体平板法
(8)本文的研讨意图和含义
1实验材料与仪器
1.1菌株来历
1.2首要仪器
1.3培育基
1.3.1液体培育基
1.3.2固体培育基
2 实验办法
2.1活性培育
2.1.1富集办法
2.1.2 Fe分析办法
2.2 菌株的挑选和纯化
2.2.1 稀释涂布法
2.3 菌株的判定
2.4.1 菌株的判定
2.4.2单菌落的富集培育
2.4.2.1氧化亚铁硫杆菌属
2.4.2.2氧化硫硫杆菌属
2.4.2.3异养菌类
2.4.3基因组DNA的提取
2.4.3.1蛋白酶K法
2.5 最佳成长条件评论
2.5.1铁杆菌
2.5.1.1初始pH值的影响
2.5.1.2接种量的影响
2.5.1.3温度的影响
2.5.2硫杆菌
2.5.2.1不同底物对成长的影响
3 实验成果分析与评论
3.1 活性培育成果分析
3.1.2 铁氧化速率
3.2 菌株挑选成果
3.2.1铁杆菌
3.2.2硫杆菌
3.2.3异养菌
3.3菌株判定成果
3.3.1菌体形状特征
3.3.2显微调查
3.3.2.1普通染色法调查成果
3.3.2.2革兰氏染色成果
3.3.3基因组DNA提取
3.3.3.1 蛋白酶K提取DNA电泳成果
4.3.3.2 16Sr PCR成果
3.4铁氧化曲线
3.4.1 :总铁的改变状况
3.4.1.1细菌氧化Fe2+的机理
3.5成长因子
3.5.1铁杆菌A6
3.5.1.1初始pH
3.5.1.2温度
3.5.1.3接种量的影响
3.5.2硫杆菌B1
3.5.2.1 B1对单质S的运用
3.5.2.2硫杆菌B1对Na2S2O3的运用
3.5.2.3硫杆菌B1对Na2SO3的运用
结 论
参考文献
序言
当今国际金属矿产资源日益干涸,跟着富矿、易挖掘矿不断发掘,低档次、鸿沟档次矿及尾矿许多堆积,惯例冶炼办法本钱过高,使这部分矿产资源不能够运用。生物冶金因具有本钱低、生态环境友好而成为近年来各国争相研讨的热门,并已完结工业化。生物冶金是近代学科穿插开展生物工程技能和矿藏加工技能相结合的工业上的一种新工艺[1]。按微生物在冶金进程中的效果,生物冶金可分为生物浸出、生物氧化、生物吸赞同生物堆集[2]现在生物冶金技能现已在提取低档次难处理矿石中的金属方 面得到大规划的运用,提取的金属包含铜、金、镍、锌、钴、铀等。生物冶金出产的铜、金、铀别离占国际总产量的15%、25%、13%[3],因而生物冶金具有宽广的远景。 (1)国内外研讨现状难浸金矿的细菌氧化预处理,最早1946年在法国提出,但一向到20世纪80年代中期1986年第非金科公司投产时,生物湿法冶金才开端推行到其它金属的提取[4]。自1980年以来,智利、美国、澳大利亚等国相继建成了大规划铜矿藏堆浸厂,锌、镍、钻、铀等金属的生物提取技能亦得到研讨。加拿大用细菌浸铀规划最大、前史最久,安大略州伊利埃特湖区三铀矿公司1986年产铀360t。智利北部的Qubeard Balanac矿山是现在生物浸出实践中十分好的典范,并展现了生物湿法冶金在矿业中的成功开展。我国史书记载“禹收九牧之金,铸九鼎,象神州。”阐明早在原始社会就具有冶金才能了,公元11世纪记载有“胆水浸铜”,可见古人很早就会运用生物冶金技能。在国内,微生物浸矿的研讨始于20世 纪60年代,中科院微生物研讨所对铜官山铜矿进行 实验研讨,后因种种原因而一度中止。20世纪70年代初,在湖南711铀矿进行了处理量为700t贫铀矿石的细菌堆浸扩展实验[5]。核工业北京化工冶 金研讨院在抚州铀矿厂进行半工业细菌堆浸实验收回铀1142.14kg[6]。2000年我国榜首座年产50t规划的难浸金精矿生物氧化—化提金车间在烟台市 黄金冶炼厂正式投产,标志着我国细菌氧化技能在难处理金矿提金工艺中现已从科研阶段转向正式工 业出产[7]。在铜矿挖掘中,1997年5月,德兴铜 选用细菌堆浸技能处理含铜0. 09%~0. 25%的废石,建成了出产才能2000t/a的湿法铜厂[8]。福建紫金铜矿已探明的铜金属储量253万t,属低档次含砷铜矿,铜的均匀档次0.45%,含As2037%。该矿选用生物堆浸技能浸出铜,并建成了年产300t阴极铜的实验厂,现在正在进行建造年产20000t阴极铜的微生物堆浸厂的前期工作。此外,紫金山铜矿还将运用这一新工艺着手进行出产有色金属纳米材料和其它新式粉体材料及复合粉体材料的研讨,逐步完结传统矿业经济向新式经济工业跨进,力求在五年内把紫金矿业建造成为国内闻名的高科技效益型矿业厂商集团,并完结紫金山铜矿的全面开发。(2) 生物冶金开展趋势及远景生物冶金因其有利于环境保护、基建投资少、在某些状况下运作本钱低一级优越性,将取得进一步的开展。现在研讨热门集中于菌种选育,微生物—矿藏界面相互效果实质及其反响速度操控进程,对原生硫化矿提取高效冶金细菌,加强细菌对重金属离子及有毒离子的习惯性,浸矿微生物生态规矩、遗传及代谢调控机制。工艺及工程方面开展趋势为:习惯气候改变的高效细菌,堆浸和就地浸出的水文地质及矿藏学研讨,浸矿工艺流程的优化以及生物冶金规划化,微生物运用于矿山废水以便从水溶液提取贵金属,对其它非金属矿进行生物浸矿探究。
(3) 冶金微生物1947年,Colmer和Hinckle[9]首先从酸性矿坑水中别离出能氧化硫化矿的氧化亚铁硫杆菌,这今后Temple[10]和Leathen[11]对这种自养细菌的特性进行了研讨,发现这种细菌能将Fe2+氧化成Fe3+,并能把矿藏中的硫化物氧化为硫酸。经过半个多世纪的研讨,能够运用生物冶金的细菌有几十种,按它们成长的最佳温度能够分为三类:中温菌(20~40℃)、中等嗜热菌(40~60℃)与高温菌(大于60℃)。它们能够一起把铁和硫作为动力,而一些原核生物只能氧化其间之一作为动力[12]。冶金环境中的微生物是多样的,至今现已报导有13个属类的细菌能够氧化浸出金属硫化物,即Acidianus、Acidimicrobium、Acidiphilium、Acidithioba- cillus、Ferrimicrobium、Ferromicrobium, Ferroplasma, Leptospirillum、Sulfobacillus、Sulfolobus、Sulfurispha- era、Thermoplasma和Thiobacillus。还有一些属的细 菌能够在酸性条件下成长,现在还没有发现它们的 效果,可是不能够扫除这种或许性。这些属包含 Acidisphaera、Acidiobacterium、Alicyclobacillus、Acidi- omonas、Acidiothermus、Picrophilus、Frateuria, Halo- thiobacillus、Propionibacterium和Thiomonas[13]。常用的浸矿细菌首要有:嗜酸性氧化硫硫杆菌 (Acidithiobacillus thiooxidans)、嗜酸性氧化亚铁铁 杆菌(Acidiferrobacillus ferrooxidans)、嗜酸性氧化亚 铁硫杆菌(Acidithiobacillus ferrooxidans)、硫化叶菌属(Sulpolobus)。其间运用最多的是A.t ferrooxi- dans和A.t thiooxidans,尤以前者的生物氧化研讨最为深化[14]。(4) 浸矿系统中的微生物
生物浸出中运用的首要是化能自养微生物,此类微生物可从无机物的氧化进程中取得能量,并以CO2为首要碳源和以无机含氮化合物作为氮源组成细胞物质;又可进一步细分为硫化细菌、氢细菌、铁细菌和硝化细菌等4种生理亚群[15,16]。在硫化矿生物浸出中运用最多的为硫化细菌,在有空气(含有电子受体和少量CO2)、必定的pH、温度及必定的含氮无机物状况下,硫化细菌就能成长繁衍,并将元素S和某些复原态的硫化物氧化成S042-从中取得能量。其间嗜酸氧化亚铁硫杆菌还能氧化金属硫化物,将Fe2+离子氧化成Fe3+离子,三价铁盐是湿法冶金中常用的氧化剂。因而有色冶金中运用嗜酸氧化亚铁硫杆菌在常温酸性溶液中,进行硫化矿石或精矿浸出,使金属硫化物转变为可溶性硫酸盐[17]。按效果的温度这些菌种可分为:中温菌种(msophiles,20-40℃)、中等嗜高温菌种(moderatethermophiles,40-60℃)、嗜高温菌种(thermoples,>60℃)[15-16]。特别是近年来从含硫丰厚的酸性热泉流中别离出的酸热硫化叶片菌、嗜酸热硫球菌以及嗜热嗜酸酸杆菌乃至可在更高的温度下用于硫化矿的酸性浸出[16-18]。矿藏浸出系统中所涉及到的微生物品种是多种多样的,首要有化能自养菌、异养菌和真菌[19,20],此外也有原生动物存在[21]。其间己用于硫化矿生物浸出的菌种首要有嗜酸氧化亚铁硫杆菌(Acidithiobacillusferrooxidans,简称A.f)、嗜酸氧化硫硫杆菌(Acidithiobacillusthiooxidans,简称At)和氧化亚铁微螺菌(Leptospirillum ferrooxidans,简称L.f)。其间嗜酸氧化亚铁硫杆菌(Af能够氧化Fe2+离子、元素硫和复原态硫化物,嗜酸氧化硫硫杆菌(A.t)能氧化元素硫,不能氧化Fe2+离子;氧化亚铁微螺菌(Lf能氧化Fe2+离子,但不能氧化元素硫[18]。除以上几种首要浸矿细菌外,现在许多研讨发现,在硫化矿堆浸系统、硫化矿酸性废水以及酸性温泉中存在其它多种微生物[19,22].在一些堆浸系统和矿山废水中,因为地热或硫化物氧化发作热量,使这些系统中存在着温度梯度,不同温度生态习惯性的细菌生活在不同的温度环境中。在40℃以下的环境中,首要的微生物是嗜酸氧化亚铁硫杆菌和氧化硫硫杆菌。在温度为40-50℃的环境下,首要是硫叶菌属等中等嗜高温菌细菌。在温度超越50℃的极点环境下,只要硫化叶菌等少量几种嗜高温的微生物存在[23]。这些高与此一起,HerbertL等人还从浸矿系统中发现许多异养细菌,包含中温细菌、嗜热细菌和嗜热古细菌[23] 多项研讨标明混合微生物群落存在协同浸矿效果,混合种群细菌间的协同效果能够优化环境中群落活性,相互扬长避短,使互相更好地得到成长,进而促进矿藏的氧化,其浸矿效果比单菌种更好。研讨标明异养菌(如AcidiPhilium spp.)能消化浸矿系统中自养菌的有机代谢产品及残体,下降有机物对自养菌的毒害效果,并能发作维生素、辅因子、鳌合物和表面活性剂,促进自养浸矿细菌的成长及其对金属硫化物的浸出效果。硫氧化细菌(如AL.aldus)能够代谢硫化矿氧化溶解时表面掩盖的单质硫,确保Fe3+能够接连地氧化,硫化矿表面的含硫基团发作Fe2+供铁氧化细菌成长一起阻挠或推迟矿石表面硫膜的构成而促进对金属硫化物的浸出[23,24,25]。
共培育的铁氧化菌L.ferrooxidans和硫氧化菌A.thtoox或ALca比单一菌种对黄铜矿具有更高的溶解功率[26]。Fcihilus和A.thtooxidans的混合培育物能够氧化黄铁矿,可是单菌种不具备此才能。铁氧化菌属如bacillussPp.和A.ferrooxidans的共生可使混合种群在无有机物存在的状况下快速氧化亚铁离子[27]。尽管A.ferrooxidans的铁氧化速率比sthermosu dooxidans低,可是其二氧化碳固定才能却比sthermosu dooxidans强,因而两者共培育能够快速氧化亚铁离子。
(5)冶金微生物的多样性
跟着微生物对硫化矿的不断氧化,其周围环境条件如pH、温度和溶液中可溶性金属离子的浓度也不断发作改变,这些特殊的环境条件必定约束了生命方式的多样性,因而,在生物出槽或堆或反响器中存在的生命方式比较简略,往往归于单细胞生物,并且其优势菌群首要是细菌和古生菌。它们大多数生活在pH[28],它包含嗜酸氧化亚铁硫杆菌、嗜酸氧化硫硫杆菌和嗜酸喜温硫杆菌。这些细菌遍及存在于国际各地的硫化温泉、酸性矿坑水和其他适合的环境。本属细菌归于小杆状细胞,借助于鞭毛运动。革兰氏阴性。从一种或多种复原态的或部分复原的含硫化合物,包含各种硫化物、无机硫、硫代硫酸盐、连多硫酸盐和盐。终究氧化产品为硫酸盐。最适合温度因种而异。
(6)环境微生物多样性的研讨办法环境微生物多样性的研讨办法许多,从国内外现在选用的办法来看,大致上包含以下四类:(1)传统的微生物平板纯培育办法; (2) Biolog微平板分析办法;(3)磷脂脂肪酸法(PLFA);(4)分子生物学技能办法等。
(7) 双层固体平板法
双层固体平板法是本实验的关键技能,经过对传统单层平板培育 技能的改善,把单层改为上下两层,并在基层平板 参加SJH(Acidiphilium sp. ) 菌株。SJH 菌来自英 Bangor大学嗜酸性研讨室,是一种异养性嗜酸性细 菌(Acidiphilium sp. ) ,在静置条件下,能将Fe3 +复原为Fe2 + ,从中取得能量成长。其根本原理是处于饥饿状况的SJH菌株能够运用任何游离的单糖分子和化能无机自养细菌代谢发作的废物,然后使无机自养细菌取得抱负的成长环境。
(8) 研讨意图和含义
生物湿法冶金的开展己稀有十年的前史,因为本钱低、无污染、操作简略而日益遭到人们的注重,特别适用于我国矿产资源档次低、成分杂乱的显现状况。菌种研讨是湿法冶金的研讨要点,而嗜酸性菌在浸出矿藏的运用中,因为削减了工业反响器的冷却设备,供给了更多的优越性,具有极大的运用远景。
本文旨在经过对中温反响器傍边微生物群落组成结构研讨,别离挑选出其间的部分优势菌株,对其最适成长环境进行评论,进一步加深对中温嗜酸微生物浸矿的了解,为今后的大规划工业运用供给可资学习的数据和经历。
研讨内容包含:
(1) 山南矿区堆浸实验六个采样点活性分析
(2) 对活性最佳的群落进行别离挑选得到单菌落
(3) 对得到的单菌落进行判定和最佳成长环境的研讨
1实验材料与仪器
1.1 菌株来历:
721矿山5000吨堆浸实验采纳酸化处理后矿样S1,S2,S3,S4,S5,S6。
采样用镐头挖去表层15cm的矿石后用小铲子搜集矿石装与废矿泉流瓶内,做好符号贴上标签。取样方位见图1.
图1 取样方位示意图
1.2 首要仪器
BT 224S电子天平 北京赛多利斯仪器系统有限公司
SHZ-82A气浴恒温振动器 江苏荣华仪器制作有限公司
雷磁PHS—3C精细pH计 上海精细仪器有限公司
UV-1600紫外、可见分光光度计 北京瑞利分析仪器有限公司
SW-CJ-1FD型单人单面净化工作台 姑苏净化设备有限公司
DNP-9082BS-Ⅲ电子恒温培育箱 上海新苗医疗器械制作有限公司
手提式不锈钢蒸汽消毒器 上海三申医疗器械制作有限公司
TGL-16C高速离心机 上海安亭科学仪器厂
GL-21M型高速冷冻离心机 湖南湘仪离心机仪器有限公司
XSD-01光学显微镜 重庆奥特光学仪器有限公司
PCR仪 德国艾本德公司
M70型制冰机 美国格兰特我国制冷设备制作有限公司
凝胶电泳和紫外成像系统
1.3培育基1.3.1液体培育基
9K(A液) :(NH4)2 SO4 3.0g/L, KCl 0.11 g/L, K2HPO4 0.15 g/L,MgSO4·7H2O 0.15g/L, Ca (NO3)2 0.101 g/L, pH 1.8;
9k (B 液) : FeSO4·7H2O 25 g/ l, pH 1.8。
Waksman: (NH4 ) 2 SO4 0.12 g/L,K2HPO4 3.100 g/L, MgSO4·7H2O 015 g/L
CaCl2 0.1126 g/L,硫粉5g/L,pH4.0。HBS (50倍异养根底盐溶液) : Na2 SO4· 10H2O 7.15 g/L, ( NH4 ) 2 SO4 2.215 g/L, KCl 2.15 g/L,MgSO4 ·7H2O 2.5 g/L, KH2PO4 2.15 g/L, Ca (NO3 ) 2 ·4H2O 0.17 g/L。YF: 50 倍HBS 20 mL,酵母提取物0.12 g/L, Fructose 0.13 g/L, TE 1mL, pH 3.0。上述选择性培育基选用高压蒸汽灭菌锅121℃灭菌20 min,冷却至室温备用; FeSO4 ·7H2O 选用滤除菌。
1.3.2 固体培育基
FeO: A液: 50倍HBS 8 mL, tryptone soya broth 0.11g, 0.14 ml TE, H2O 276 mL,pH 2.5;B 液: agarose 2.18 g, H2O 100 mL;C液: FeSO4 ·7H2O 1M /L。iFeO:去掉FeO中的tryptone soya broth即可。FeSO: A液:50倍HBS 8mL, tryptone soya broth 0.11 g, 0.12 mL TE, H2O276 mL;B 液: agarose 2.18 g, H2O 100 ml;C液: FeSO4·7H2O 1mol/L。YF : A液: 50倍HBS 8 mL,酵母提取物0.108 g, Fructose 0.112 g, TE 0.14 mL, H2O 292 mL, pH 310;B液: agarose 2.18 g, H2O 100 mL;C液: FeSO4 ·7H2O 1mol /L 。四种选择性固体培育基FeO,iFeO,FeSO,YF前三种为双层固体平板,分上、下两层,除基层培育基中添加SJH菌外,其它成分相同。双层固体平板法是本实验的关键技能,经过对传统单层平板培育技能的改善,把单层改为上下两层,并在基层平板 参加SJH (Acidiphiliumsp ) 菌株。SJH菌来自英Bangor大学嗜酸性研讨室,是一种异养性嗜酸性细菌(Acid iphiliumsp ) ,在静置条件下,能将Fe3+复原为Fe2+ ,从中取得能量成长。其根本原理是处于饥饿状况的SJH菌株能够运用任何游离的单糖分子和化能无机自养细菌代谢发作的废物,然后免除有机物对无机自养细菌的成长按捺。
FeO平板用于别离铁氧化兼性或异养菌;
iFeO平板用于别离铁氧化自养菌;
FeSO平板用于别离硫氧化或铁硫氧化兼性菌;
YF平板为单层,用于别离以有机物为动力的嗜酸性异养细菌或真菌(Johnson, 1995)。各种培育基与琼脂糖别离经高压蒸汽灭菌后冷却至50℃左右(琼脂糖温度可稍高至65℃)混合,别离参加所需量的经滤灭菌的FeSO4·7HO2、连四硫酸钾。基层培育基在45℃时接种入5% SJH,充沛混匀,敏捷倒入平板,待凝结后倒入上层。一般平板制备好后需室温放置2~3d,置4℃冰箱冷藏。
2 实验办法
2.1活性培育
2.1.1富集办法
别离取矿样10g在无菌条件下接种到已灭菌的9K+S+Fe液体培育基中, 35℃,130r/min条件下气浴振动培育。每隔必定的时刻测定Fe2+的转化状况,当Fe2+转化率到达95%-98%时停止,保存。
2.1.2 Fe分析办法液体培育以Fe2+转化为Fe3+的转化速率反映铁氧化细菌的活性;硫氧化细菌活性以pH值的改变为根据。Fe2+、Fe3+选用EDTA滴定法;精确量取1ml待测液,参加1滴1mol/L HCl、1滴显色剂结晶紫、5滴10%磺基水杨酸,此刻溶液色彩为红褐色,用标定好的1mol/L的EDTA滴定,色彩变为浅黄色时为滴定结尾,此刻测定的数值为Fe3+含量。参加氧化剂过硫酸铵能够将溶液中的Fe2+氧化为Fe3+,持续滴定,滴定结尾刻度为总Fe含量。Fe2+含量为总Fe含量减Fe3+含量。
2.2 菌株的挑选和纯化
2.2.1 稀释涂布法
取1mL富集培育菌液按无菌操作梯度稀释到10ˉ8,别离取10ˉ6、10ˉ7、10ˉ8稀释度的菌液0.1mL涂布于固体iFeo,FeSO,YF培育基平板上,置35℃恒温培育箱培育。2.3 菌株的判定2.3.1 菌株的判定
经过对细菌菌落形状特征、显微镜下细菌形状调查、细菌的生理生化特性;DNA提取,16S rPCR ,将细菌进行分类判定[微软我国1] 。
[微软我国2] [微软我国3] 2.3.2单菌落的富集培育
2.3.2.1氧化亚铁硫杆菌属:
先用接种环挑取单菌落,接种到1ml iFeo培育基的离心管中,做好符号。该离心管在35℃恒温培育箱内培育,直到色彩变成棕赤色。在超净工作台内转接到含5mL iFeo培育基的试管中,35℃气浴摇床内培育到色彩至棕赤色。再将该试管转接到50ml 9K+Fe培育基中扩展培育。
2.3.2.2氧化硫硫杆菌属:
先用接种环挑取单菌落,接种到1ml FeSO培育基离心管中,做好符号。该离心管在35℃恒温培育箱内培育,直到色彩变成蛋黄色。在超净工作台内转接到含5ml FeSo培育基的试管中,35℃气浴摇床内培育到色彩至黄色。再将该试管转接到50ml 9K+S培育基中扩展培育,将扩展培育得到的菌液离心得到菌体。
2.3.2.3异养菌类:
挑取但菌落接种在5ml 5倍固体YF平板浓度培育基中,扩展培育后接种到50ml pH值为2.0的 LB培育基内。 LB培育基先高压蒸汽灭菌,在超净工作台内用已灭菌的pH为0.5的硫酸调理pH。
2.3.3基因组DNA的提取
2.3.3.1蛋白酶K法
离心搜集的细胞用TE缓冲液洗刷3-4次以去掉高价铁离子沉积。细胞破壁之前,上述细菌细胞从头悬浮于400ul pH8.0的TE缓冲液中,并于70℃温育10min,以损坏或许存在的DNA酶的活性。稍冷却后,在上述悬浮液中参加4ul20%(w/v)的SDS和5ul 20mg/ml的蛋白酶K,55℃温育15min。然后,参加等体积的/戊醇(24/l,v/v)混匀后, 12000rp/min 10min,将上清液小心肠吸入到新的EP管中,重复一次;在上清液中参加2倍体积的无水乙醇,并置于-20℃ 20min或过夜。5000rpm离心5min搜集DNA沉积,沉积用70%的乙醇洗刷三次后,天然枯燥并将沉积溶于适量的pH8.0的TE缓冲液中。在溶有DNA的缓冲液中参加终究浓度为 20µg/ml的RNase A, 37℃90min。最终,顺次用等体积的酚//戊醇(25/24/l,v/v)和/戊醇(24/1,v/v)各抽提一次,无水乙醇沉积,70%的乙醇洗刷三次。纯化后的DNA别离用5µl的pH8.0的TE缓冲液和去离子水溶解,4℃保存备用。
2.3.4 16sr DNA PCR扩增
所用的引物序列如下所示:
16SP1:5'-AGAGTTTGATCCTGGCTCAG-3'
16SP2:5'-GGTTACCTTGTTACGACTT-3'
扩增反响系统如下:
ddH2O 4.3μL
2×GC buffer 12.5μL
dNTPs 2μL
16SP1 0.5μL
16SP2 0.5μL
LA Taq(5U/μL) 0.2μL
模板DNA 5μL
总体积 25μL PCR扩增反响条件为:94℃变性3min;94℃,1min, 48℃,30s; 72℃,1min,30个循环;72℃延伸10min。0.68%的琼脂糖电泳检测(上样量:3μL DNA+3μL的2×buffer)。-20℃保存。
2.4 最佳成长条件
2.4.1铁杆菌:
在35℃气浴摇床,转速为130r/min,接种量为10%,pH=2.0的条件[微软我国4] 下,研讨微生物成长状况,以Fe3+为目标,制作微生物的铁氧化曲线。
2.4.1.1初始pH值的影响
在9K+Fe培育基,35℃气浴摇床,转速为130r/min,接种量为10mL的条件下,研讨培育基不同初始pH对微生物成长状况(以氧化率到达98%所需求的时刻计)的影响。调理初始pH为 1.0、1.5 、2.0 、2.3、2.5 、3.0。
2.4.1.2接种量的影响
在9K+Fe培育基,35℃水浴摇床,转速为130r/min,pH=2.3的条件下,研讨培育基不同接种量对微生物成长状况(单位时刻铁的转化量计)的影响,接种量别离为5%、10%、20%、25%、30%、50%。
2.4.1.3温度的影响
在9K+Fe培育基,转速为130r/min的气浴摇床,接种量10%,pH=2.3的条件下,研讨培育基不同温度对微生物成长状况(铁的转化状况计)的影响,调理温度为25℃、28℃、30℃、35℃、40℃、45℃、.
2.4.2硫杆菌:
2.4.2.1不同底物对成长的影响:
办法
制造不含Fe2+的9K培育基,别离参加单质S、Na2S2O3和Na2SO3,以S计,参加S的浓度为1g/L,即0.03mol/L,于35℃,130r/min条件下培育。因为硫化合物的氧化生成硫酸,是一个产酸进程,可用溶液pH值的下降程度标明硫化合物被细菌氧化量的多少,因而,按必定时刻距离测定溶液中pH值调查硫杆菌对硫化合物的运用状况。pH值由pH计测定。3 实验成果分析与评论
3.1 活性培育成果分析:
3.1.1 pH改变状况:图2 S1-S6在9K+S+Fe培育基pH改变状况
同图2可见,S2,S3,S5,S6 pH出现先上升后下降的趋势,培育0-18h时段氧化亚铁硫杆菌占优势,Fe2+氧化为Fe3+很活泼pH出现上升趋势,此刻氧化硫硫杆菌遭到按捺,培育到20h后,氧化亚铁硫杆菌因为底物缺乏遭到按捺,氧化硫硫杆菌为优势菌株,单质S氧化为SO42-发作H+ pH下降。
S1先下降后上升,标明在培育初始阶段,硫杆菌推迟期比较短,先进入对数成长阶段。中后期铁杆菌进入快速成长阶段,硫杆菌成长遭到按捺。
S4,pH值整个阶段改变不大,标明成长进程中两类细菌平衡且呈必定份额。
3.1.2 铁氧化速率:图3 S1-S6在9K+S+Fe培育基培育进程Fe氧化状况由图能够看出,S1-S6成长曲线呈S型,接种0-10h为延滞期10-20h 为对数成长期,Fe2+敏捷氧化为Fe3+,25h之后因为产品的堆集,铁氧化速率变缓,转入衰亡期。纵向比较发现S3成长速率较快,单位时刻内氧化Fe2+的量最多,最早Fe2+氧化率到达98%。
3.2 菌株挑选成果:
经过划线法,涂布倒平板法,极限稀释法得到多个单菌落。要点研讨了活性最佳的S3菌群。从S3挑选得到6种菌落形状不同的铁杆菌,1种硫杆菌和3种异养菌。
3.2.1铁杆菌:图4 S3在 iFeo平板上别离得到的A1菌株[微软我国5] 培育时刻10天
表1 A1菌落形状特征菌株形状直径(mm)边际通明色彩中心有无Fe沉积Fe沉积圈直径 A1圆形0.5-0.8规矩不通明红褐色有细小可见图5 S3在 iFeo平板上别离得到的A2菌株 培育时刻8天
表2 别离株A2形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A2圆形2-3不规矩不通明红褐色有0.5mm-1.5mm图6 S3在 iFeo平板上别离得到的A3菌株 培育时刻8天
表3 别离株A3形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A3圆形3-8不规矩不通明红褐色有2mm-5mm图7 S3在 iFeo平板上别离得到的A4菌株 培育时刻7天
表4 别离株A4形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形10规矩不通明红褐色有6mm图8 S3在 iFeo平板上别离得到的A5菌株 培育时刻8天
表5 别离株A5形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形3-6规矩不通明红褐色有2mm-4mm图9 S3在 iFeo平板上别离得到的A4菌株 培育时刻7天
表6 别离株A6形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形1-3规矩不通明红褐色有0.5mm-1mm
3.2.2硫杆菌:图10 S3 在FeSO平板别离得到的B1菌株 培育时刻5天
表7 别离株B1形状特征表菌株形状巨细d(mm)边际通明色彩B1椭圆形12规矩不通明中心蛋黄色外围白色 3.2.3异养菌图11 S3 在YF平板别离得到的C1菌株 培育时刻4天
表8 别离株C1形状特征表菌株形状巨细d(mm)边际通明色彩C1圆形50规矩不通明中心棕褐色外围白色图12 S3 在YF平板别离得到的C2菌株 培育时刻3天
表9 别离株C2形状特征表菌株形状巨细(mm)边际通明色彩B1圆形3-5不规矩不通明中心白色外围白灰色图13 S3 在YF平板别离得到的C3菌株 培育时刻3天
表10 别离株C3形状特征表菌株形状巨细(mm)边际通明色彩B1圆形5规矩不通明外层通明中层白色内层褐色
因为A6平板形状比较特殊,本实验室比较罕见,所以本文对A6进行要点研讨
3.3菌株判定成果
3.3.1菌体形状特征
该菌在固体培育基上培育时,培育基的色彩由开端的浅绿色变为黄绿色,约5天左右在培育皿上长出小菌落,该菌落为黄褐色、圆形,直径约0. 5—0. 中部突起,被水合高铁包裹,质地坚固,较难挑起。在显微镜下该菌为短杆状,两头钝圆,以单个、双个或几个呈短链状存在,能运动,革兰氏染色阴性,用测微尺量得菌体直径约0.5-0.7um,长度约1.2-1.8um。
3.3.2显微调查:
3.3.2.1番红染色调查成果:
菌株A6:
形状: 短杆状,两头钝圆,以单个、双个或几个呈短链状存在图14 A6在光学显微镜下400倍 染色液为番红染液
3.3.2.2革兰氏染色成果:革兰氏染色:阴性图15 A6革兰氏染色状况:光学显微镜1000倍下调查
3.3.3基因组DNA提取
3.3.3.1蛋白酶K提取DNA电泳成果
如图所示
图16 为A6 蛋白酶K法提取DNA 琼脂糖凝胶电泳图 (上样量: 3μL DNA+3μL 2×buffer )
D 箭头所指W1为意图DNA
3.3.3.2 16Sr PCR成果图17 为A6 16s rDNA PCR成果图
(P1为Marker,P2,P3,P4为PCR产品电泳图,p5为阴性对照,上样量:3μL DNA+3μL 2×buffer)
如图(17)所得电泳条带成果显现:所得PCR产品片段为1500bp,与估计成果相吻[微软我国6] 合。[微软我国7]
3.4铁氧化曲线s图18 为A6在9K+Fe培育基中35℃ 130r/min 制作的铁氧化曲线
由图(18)能够看出,在接种后的初始阶段,因为生存环境的改变,细菌处于推迟期,活性很低,细胞根本不割裂或割裂很少,细菌数量根本保持安稳,所以接种后前5h内培育液的Fe3+改变较小,细菌对铁的氧化速率相对较低.10h后开端出现对数成长,20h 左右到达安稳时.
3.4.1 :总铁的改变状况:图19 为A6在9K+Fe培育基中35℃ 130r/min 制作的总铁改变曲线
由图(19)可见,在细菌培育进程中,溶液的总铁含量随时刻改变呈下降趋势,这是因为Fe2+被细菌氧化为Fe3+后,Fe3+又发作水解反响:
4Fe2++2H++O2→2Fe3++2H2O (1)
Fe3++H2O→FeOH2+H+ (2)
Fe3++2H2O→Fe(OH)2+2H+ (3)Fe3++3H2O→Fe(OH)3+3H+ (4)3Fe (OH)3+4SO2-4+3Fe3++3H2O+2NH+4→2[NH4Fe3(SO4)2(OH)6]+3H+ (5)
实验中发现,在细菌培育进程中,三角瓶内壁和瓶底逐步生成一层黄色的沉积物———黄铵铁矾[NH4Fe3(SO4)2(OH)6][4]。在生物脱硫和细菌浸矿中,该沉积可占据载体表面,影响底物与代谢产品的传递,导致养分直销缺乏,下降细菌氧化速率
3.4.1.1细菌氧化Fe2+的机理
从反响式(1)能够看出,在Fe2+被细菌氧化为Fe3+进程中, Fe2+为电子供体,O2为电子受体。电子由Fe2+传送至O2的进程中,菌体起着传导电子的效果[29],并将细胞色素c向分子氧投递进程中所
开释的能量贮存在ATP中供成长需求[30]。所以,Fe2+的氧化速率是电子传导速率的直接反映,能够描绘细菌的成长活性
3.5成长因子
3.5.1铁杆菌A6
3.5.1.1初始pH
在35℃气浴摇床,转速为130r/min,接种量为10mL的条件下,研讨培育基不同初始pH对微生物成长状况(培育24h不同出始pH铁氧化百分率计)的影响,实验果如图所示。从图能够看出,跟着培育液的初始pH值的不断增大,氧化率逐步增大,当培育液初始pH值到达2.30后氧化率最高到达98%,当到达2.5后,氧化率敏捷下降.因而,氧化亚铁硫杆菌成长的最佳初始pH值约为2.30.当pH超越3.0时成长遭到按捺.图20 为A6在9K+Fe培育基中35℃ 130r/min 不同初始pH,培育24h二价铁氧化率图21 为A6在9K+Fe培育基中35℃ 130r/min 不同初始pH,培育进程铁氧化状况
由图(20-21)能够看出当pH 为2.3时单位时刻铁氧化速率最快。
本实验存在的缺乏与改善:
因为在不同的pH,空气也能将Fe2+氧化为Fe3+,所以应该做一组空白实验。
实验进程中发现9K培育基在pH>3时分不安稳,会出现沉积现象。
3.5.1.2温度
温度的影响
从图(22)中能够看出,当温度适合即为30℃~35℃左右时,迟延期为10小时左右,阐明细菌在这一温度规模内,能够十分敏捷地习惯培育液条件,吸收养分物质,转化Fe2+为Fe3+。而当温度超出或低于这一温度规模时,迟延期都会有显着延伸,阐明细菌成长被按捺。
图22 为A6在9K+Fe培育基中pH 2.3 130r/min 不同温度,培育进程铁氧化状况
由图(22)标明温度在35℃时,成长最佳。
本实验存在的缺乏:本实验应该考虑到空气对Fe2+的氧化,也应该做一组空白对照。
3.5.1.3接种量的影响
接种量为1%-10%时争加接种量迟延期的缩短呈线形联系,当接种量到达10%今后持续增大接种量迟延期的缩短仅有细小改变,当到达50%时持续增大接种量反而会
增大迟延期。分析以为这首要是因为,当接种适量添加时,进入培育液中的初始菌数添加,相应的在培育液中能够习惯环境,具有较强活性的菌数也会添加,有利于氧化亚铁硫杆菌的快速繁衍。但因为培育液中的养分物质有限,参加过多的菌液也会影响细菌的成长繁衍。所以养分物质满足充沛,其它条件适宜的状况下应尽量加大细菌的接种量来对其进行培育。图23 为A6在9K+Fe培育基中35℃ 130r/min 不同温度,培育进程铁氧化状况
由图(23)能够看出在1%-10%之间,单位时刻内铁氧化速率随接种量的添加呈线性联系,接种量在10%-30%之间单位时刻内铁氧化速率不再呈线性联系,接种量超越30%接种量添加,单位时刻内铁氧化速率反而下降。
3.5.2硫杆菌B1
3.5.2.1 B1对单质S的运用
图24 为B1对单质硫氧化进程中PH改变状况
以单质S为底物时,B1成长进程中pH值的改变状况如图(24)可知,溶液中pH一向呈下降趋势,但在培育的前两10h溶液的pH值下降较缓慢,在第10h后,才有较大起伏下降,或许因为替换动力物质,细菌开端有一段延滞期,活性较差,需求经过本身生理机能的调理以习惯新环境。细菌直接氧化单质硫,与它和单质硫的
直触摸摸有密切联系,涉及到菌体在固体颗粒表面吸附,一起细菌能发作一些表面活性物质,如磷脂酰甘油,能下降介质的表面张力,促进细菌与硫的直触摸摸。Kovaleva等[31].经过电镜调查发现,硫杆菌在元素硫培育基中成长时,有硫被细菌吸收并散布在细胞表面、细胞壁、细胞周质以及细胞色素中。Karavaiko等[32]发现吸收的元素硫构成直径为20~40nm的圆球,且细菌在安稳成长期对元素硫的吸收率最高。
单质硫被氧化硫硫杆菌氧化为硫酸或许经过下列进程[33]:单质硫经过细胞壁进入细胞内部,与复原型胱苷肽(GSH)构成多硫化合物。谷胱苷肽多硫化合是硫氧化系统的活性物质。盐是硫氧化进程中的榜首级产品。或许的反响如下:
S8+GSH→GS8SH(1)
GS8SH+O2→硫氧化酶→GS8SO2H(2)
GS8SO2H+H2O→GS7SH+H2SO3(3)
(2)SO32-经过硫磷酸腺苷(APS)效果进一步氧化成SO42-:
2SO32-+2AMP→硫磷酸腺苷复原酶→2APS+4e-(4)
2APS+2Pi→二磷酸腺苷复原酶→2ADP+2SO42-(5)
2ADP→AMP+ATP(6)
SO32-氧化进程中,能量以ATP方式贮存。一旦硫被氧化成SO32-时,菌体对动力的运用变得较快。当硫杆菌B1以单质S为底物成长时,整个进程涉及到硫杆菌在固体颗粒表面的吸附及产品透过细胞壁分散等一系列杂乱的传质进程,因为硫杆菌B1在单质S颗粒表面的吸附速度较慢,使得该固相界面传质进程成为单质S运用进程的限速进程[34]。跟着细菌对新环境的习惯以及氧化硫的酶系统的发动,硫杆菌B1就以单质S为基质进行成长繁衍。
3.5.2.2硫杆菌B1对Na2S2O3的运用图25 为B1对Na2S2O3氧化进程中PH改变状况
如图(25)可看出,溶液中pH值改变趋势与以单质S为底物时略有不同。因为Na2S2O3是弱碱性盐,溶液中有微量OH-解离,因而,参加Na2S2O3后,会导致溶液pH值升高,而此刻细菌在新的环境中有一个习惯进程,其活性也较低。经过两天的延滞期,细菌进入快速成长阶段,第30h时,溶液中pH值降至1.49。在培育的进程中可显着看到单质硫的小颗粒。这是因为NaS2O32一方面是强配体,又具有必定复原性,易被细菌的氧化酶氧化,另一方面Na2S2O3在酸性条件下不安稳,易发作歧化反响:Na2S2O3→Na2SO3+S↓,分化发作的硫没能被细菌及时运用则集合沉积[35]。
3.5.2.3硫杆菌B1对Na2SO3的运用图26 为B1对Na2SO3氧化进程中PH改变状况
在以Na2SO3为底物时,B1成长进程中pH值的改变状况如图26所示。因为Na2SO3为弱酸强碱盐,其投加后直接导致溶液pH值的升高。当细菌经过时间短的习惯后,随同菌体的成长,溶液pH值开端下降。前5h的时刻内,pH值下降较快,之后,跟着SO32-的削减,pH值的下降趋势减缓。
经过以上三张图比照咱们能够判别,硫杆菌B1对硫的运用率是Na2S2O3﹥S﹥Na2SO3结 论经过完本钱次实验,总结出以下定论:
(1):活性培育发现S2,S3,S5,S6 pH出现先上升后下降的趋势,培育0-18h时段氧化亚铁硫杆菌占优势,Fe2+氧化为Fe3+很活泼pH出现上升趋势,此刻氧化硫硫杆菌遭到按捺,培育到20h后,氧化亚铁硫杆菌因为底物缺乏遭到按捺,氧化硫硫杆菌为优势菌株,单质S氧化为SO42-发作H+ pH下降。
S1先下降后上升,标明在培育初始阶段,硫杆菌推迟期比较短,先进入对数成长阶段。中后期铁杆菌进入快速成长阶段,硫杆菌成长遭到按捺。
S4,pH值整个阶段改变不大,标明成长进程中两类细菌平衡且呈必定份额。
S1-S6成长曲线呈S型,接种0-10h为延滞期10-20h 为对数成长期,Fe2+敏捷氧化为Fe3+,25h之后因为产品的堆集,铁氧化速率变缓,转入衰亡期。纵向比较发现S3成长速率较快,单位时刻内氧化Fe2+的量最多,最早Fe2+氧化率到达98%。
(2):S3经过平板别离,极限稀释法别离得到铁杆菌6株、硫杆菌1株、异养菌3株。
(3):经过 平板菌落调查、显微调查、革兰氏染色、DNA 提取和16 sr DNA PCR 开始 对铁杆菌A6进行判定
(4):对铁杆菌A6的成长因子:温度、初始pH、接种量进行研讨发现最佳成长温度为35℃ 最佳pH为2.3 最合理的接种量为10%
(5):对硫杆菌B1不同底物的氧化状况进行分析,发现最适合B1的底物为Na2S2O3其次为单质S。
参考文献
[1]李学亚,叶茜.微生物冶金技能及其运用[J].矿业工程2006 4(2): 49-51.
[2]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].2003:4-9.
[3]AkeilA.Potential bioleaching developments towards commercial reality:Turkish metalminings' future[J].Minerals Engineering,2004,17: 477-480.
[4]杨显万,郭玉霞.生物湿法冶金的回忆与展望[J].云南冶金,2002,31(3): 85-88.
[5]肖芳欢.三二○铀矿床改用留矿淋浸采矿法可行性初探[J] .铀矿采,1990 (1) : 7-11.
[6]刘健,樊保团,张传敬.抚州铀矿细菌堆浸半工业实验研讨[J].铀矿冶,2001,20(1): 15-27.
[7]谢,刘青廷,朱打败.烟台市黄金冶炼厂金精矿生物氧化--化提金工艺[J].黄金,2003,24(9): 31-32.
[8]孙业志,吴爱祥,黎建华.微生物在铜矿溶浸挖掘中的运用[J] .金属矿山,2001 (1) : 3-5.
[9]ColmerA R andHinckleM E.The Role ofMicroorganisms in AcidMine Drainage: A PreliminaryReport[J]. Science, 1947,106(2751): 253-256.
[10]TempleK L and DelchampsEW. Autotrophic Bacteria and the Formation ofAcid in Bituminous CoalMines[J].AppliedMicrobiology,1953,1(5): 255-258.
[11] LeathenW W,KinselN A and Braley SA. FerrobacillusFerrooxiands: A ChemosyntheticAutotrophic Bacterium[J]. JBacteria,l 1956, 72(5):700-704.
[12]DouglasRawlings,David Barrie Johnson. Biomining
[13]陈勃伟,温建康.生物冶金中混合菌的效果[J].金属矿山, 2008, 382(4): 13-14.
[14]廖梦霞,邓天龙.难处理硫化矿生物湿法冶金研讨进展(Ⅰ):微生物氧化工艺技能研讨[J].稀有金属, 28(4): 767-768.[15]RawlingsDE.ThemoleeulargenetiesofThtobaeilh ferrooxl dansandothermesoPhilie,aeidoPhilie,ehethotroPhie,iron-orsulfur-oxidizingbaeteria[J].Hydrometallurgy,2001,59:187-201.
[16]姜成林,徐丽华.微生物资源学【M].上海:科学出版社,1997.
[17]RawlingsDE.Charaeteristiesandadaptabilityofiron-andsulfur-oxidizingmicroorganismsusedforthereeoveryofmetalsfrommineralsandtheir [M]. 2007: 263-278.
[18]钟慧芳,陈秀珠,李雅芹,等一个嗜热嗜酸细菌的新属一硫球菌属[J],微生物学报,1982,22(l):l一7.
[19]DoPsonM,LindstromEB.AnalysisofeomrnunitycomPositionduringmoderatelythennoPhiliebioleachingofPyrite,arseniealPyrite,andehaleoPyrite[Jl.MierobiologyEeology,2004,48(l):19-28.
[20]RomeroJnezCVasquezMetal.CharaeterizationandidentifieationofanironoxidizingLePtosPirillumlikebaeteriumPresentinthehighsulfateleaehinsolutionofacornlnereialbioleaehingPlant[J].ResearehMicrobiolog 2003,154(5):353--359.[21]童雄.微生物浸矿的理论与实践[M〕.北京:冶金工业出版社,1997.
[22]RobbinsE1.BacteriaandarehaeainaeidicenVironmentsandakeytoMorphologiealidentifieation[J].Hrobiologia,2000,433:61-89.
[23]FowlerTAHolmesPR.MechanismofPyritedissolutioninthePreseneesofthiobacillusferrooxidans[J].Appliedandenvironmentalmierobiology,1999 65(6):2987~2993.
[24]DoPsonMLindstromEB.PotentialroleofThiobae“5inarsenoPtebioleaehing[J].APPliedandenvironmentalmierobiology,1999,65(l):36-40.
[25]SemenzaMVieraMCurutehetqetal.TheroleofAeldlthiobaeilh5callusinthebioleaehingofmetalsulfides[J].LatinAmerieanAppliedReseareh,2002,32(4):303-306.
[26]Ehrlich-HLBrierleyCL.Aeidophiliebaeteriaandtheiraetivityinmineralsulfideoxidation.Microbialogymineralreeovery,1990:3-27.
[27]ClarkDANotrisPR.Aeidimicrobiumferrooxidansgen.novsP.nov.:mixedcultureferrousironoxidationwithSulfobaeillussPeeies[J].Mierobiology,1996,141:785一790.
[28]KellyWoodAP.ReelassifieationofsomespeeiesofThiobaeillustothenewlydesignatedgeneraAeidithiobaeillusgen.nov.thiobacillusgennov.andThermithiobaeillusgen.nov[J].hitemationaljoumalofsystematieandevolutionarymierobiology200050:511--516.
[29]刘清.徐伟昌.张宇.重金属离子对氧化亚铁硫杆菌活性的影.铀矿冶.2004 23 ( 31: 155-157 .)
[30]谢海石,刘华.高铁离子浓度下氧化亚铁硫杆菌的成长行为I JI.进程工程学报.2004 4( 1): 43-46
[31]Kovaleva T V,Karavaiko G I,Piskunov V P.Identification and distribution of sulfur in Thiobacillus ferrooxidans cells[J].Mikrobiologiya,1983,52(3)455-460
[32]Karavaiko G I,Gromova L A,Pereverzev N A.Nature of asulfur containing component and its function in Thiobacillusferrooxidans cells[J].Mikrobiologiya,1983,52(4):559-562.
[33]柳建造,邱冠周,王淀佐.硫化矿藏细菌浸出机理评论[J].湿法冶金,1997,16(3):1-3.Liu Jian-she,Qiu Guan-zhou,Wang Dian-zuo.Discus-sion on the bacterial leaching mechanism of sulfide mineral[J].Hydrometallurgy,1997,16(3):1-3(.in Chinese)(1)
[34]宫磊.生物催化氧化法处理H2S废气的工艺及理论研讨[D].昆明:昆明理工大学,2005:87-101.Gong Lei.Study on the Technology and Theory of Treat-ment of Hydrogen Sulphide by Bio-catalytic OxidationProcess[D].Kunming:Kunming University of Science andTechnology,2005:87-101(.in Chinese)
[35]张俊,范伟平,方苹,等.底物对亚铁硫杆菌生物氧化进程的影响[J].南京化工大学学报,2001,23(6):37-41.Zhang Jun,Fan Wei-ping,Fang Ping,et al.Effect of sub-strates on bio-oxidation catalyzed by Thiobacillus ferrooxi-dans[J].Journal of Nanjing University of, Ch, emical Tech-nology,2001-23(6):37-41(.in Chinese).
钨铜的应用
2019-05-27 10:11:36
钨铜是一种由高纯度钨粉和纯度高塑性好的高导电性铜粉结合,经过静压成型,高温烧结,熔融技术精制而成而成的复合金属材料。杰出的导电性、热膨胀小、高温不软化,高强度,高密度,高硬度。 电火花制作电极前期选用铜或石墨电极,廉价但不耐烧蚀,现在基本上已被钨铜电极代替。钨铜电极的优势是耐高温、高温强度高、耐电弧烧蚀,并且导电导热功能好,散热快。使用会集在电火花电极、电阻焊电极和高压放电管电极。电制作电极特点是种类规格繁复,批量小而总量多。作为电制作电极的钨铜材料应具有尽可能高的致密度和安排的均匀性,特别是细长的棒状、管状以及异型电极。 电制作电极用钨铜合金在电火花制作开展开端的较长时期内,遍及选用铜和铜合金作为制作电极。尽管铜和铜合金多少钱低廉、使用方便,可是因为铜及铜合金电极不耐电火花烧蚀,导致电极耗费大,制作精度差(有时需进行屡次制作)。跟着模具精度和许多难制作材料部件用量的不断添加,以及电火花制作技术的日益老练,钨铜材料作为电火花制作电极的用量日积月累。选用钨铜材料的电制作电极,不只使被制作模具及部件的精度进步,并且电极丢失小,制作效率高,乃至一次即可完结产品的粗制作和精制作。作为电制作电极的钨铜材料应具有尽可能高的致密度和安排的均匀性,特别是一些细长棒材、管料以及异型电极,假如选用惯例的办法制取,则技术非常冗杂,材料利用率很低
空调器用铜管技术要求,内螺纹铜管知识概括
2019-03-06 11:05:28
本文空调器用铜管技能要求,对空调器用内螺纹铜管的品种、技能要求、实验办法、查验规矩和标志、包装、运送及储存做了全面归纳,供空调出产厂商参阅运用。
一、引证标准
GB/T 5121-1996
GB/T 5231-1985
GB/T 6397-1986
GB/T 228-1987
GB/T 242-1997
GB/T 244-1997
JIS H3300-1997
GB/T 246-1997
GB/T 8888-1988
GB/T 17791-1999
GB/T 5248-1998
铜及铜合金化学分析办法;加工铜一化学成份和产品形状;
金属拉伸实验试样;金属拉伸实验办法;金属管、扩口实验办法;
金属管曲折实验办法;铜和铜合金无缝铜管;金属管压扁实验办法;
重有色金属加工产品的包装、标志、运送和储存。
金属管清洁度实验办法;铜及铜合金元缝管涡流探伤办法;
二、术语,下列术语和界说适用于本标准
(1)圆度 同一垂直面铜管最大外径与最小外径的差值。
(2)米克重 每 1m 长度内螺纹铜管或许光管的质量。单位:克每米(g/m)(3)清洁度 铜管每平方米内表面积残留物质量。单位: 克每平方米(g/㎡)
(4)内螺纹铜管 外表面润滑,内表面具有必定数量、必定规矩螺纹的铜管。
(5)均匀厚度 指内螺纹铜管按称重法算出相应公称外径的无缝光管的壁厚值。
(6)圆度 同一垂直面铜管最大外径与最小外径的差值(管材任一端面上丈量的最大与最小直径之差)
三、产品分类与命名
1 产品分类
热交换器用铜管的品种及牌号见表 1。 2 表 1 铜管的品种及牌号 GB/T8895 直销方法 铜管品种 铜材称号 牌号 纯铜或许无 直料(L)/ 卷料(LWC) 光管/ 氧铜 内螺纹管 磷脱氧铜 TP2 (Y2)、 软(M) C1220T (OL) Cu-DHP T2 硬(Y)、 半硬 C1100T 轻软质 状况 牌号 状况 软质(O) Cu-ETP ISO1190-1 JISH3300 牌号
2 产品型号命名如下:
(1)卷料内螺纹铜管标识
示例1:内螺纹铜管,外经Φ 9.52mm、底壁厚 0.27mm、齿高 0.16mm、齿数 70、螺旋角 18 度、 直销方法(LWC),牌号 TP2,铜管直销状况 M,履行标准 GB1527。 符号为:内螺纹铜管 Φ 9.52×0.27×LWC 0.16×70×18 TP2M GB1527。
示例2:内螺纹铜管,外经Φ 9.52mm、底壁厚 0.27mm、齿高 0.16mm、齿数 70、螺旋角 18 度、 直销方法(LWC),牌号 C1100T,铜管直销状况 OL,履行标准 JISH 3300。 符号为:内螺纹铜管
(2)卷料光身铜管标识
示例3:光身铜管,外径Φ 9.52mm、壁厚 0.45mm、方法 LWC,牌号 T2,铜管的状况 M,履行标准 GB/T 8895。 3 符号为:光身铜管Φ 9.52×0.45×LWC T2 M GB/T 8895 。
示例4:光身铜管,外径Φ 9.52mm、壁厚 0.32mm、直销方法 LWC,牌号 C1100,铜管的状况 OL,履行标准 JIS3300。 符号为:光身铜管Φ 9.52×0.45×LWC C1100 OL JISH 3300。
四、技能要求
1 外观要求
(1)表里表面要求
管材的表里表面无针孔、裂缝、起皮、气泡、粗拉道、搀杂、海绵、铜粉、积碳层、绿锈、脏污、水珠和严峻的氧化膜(内螺纹铜管内表面齿型均匀、无划伤)。表里表面色彩要求不得呈(灰)黑色、蓝色,呈细微灰黑色时不能被擦除,不能有油污流出。用气吹表里表面不得有粉沫,且吹后表面不得变成白色。不允许存在显着的划伤、凹坑和斑驳等缺点。
(2)管才质量
管材不该有分层和显着呈暗裂状粗燥感。
2 工艺功能要求
(1)压扁实验 调查压扁后的试样,试样不该有肉眼可见的细小裂纹。
(2)扩口实验 铜管进行扩口实验时,从铜管的端部切取恰当的长度作实验,实验成果应契合表 5 的规 定。
(3)管内清洁度表 6 规则 表 6 铜管清洁度 牌号 T2、TP2 外径/㎜ ≤15 >15 清洁度/(mg/㎡) ≤25 ≤38 扩口率/% 30% 35% 冲锥 60° 60° 成果 试样不该发生肉眼可见的裂纹和 裂口 圆度/㎜ ≤0.30 ≤0.40 5
(4)力学功能与晶粒度 铜管力学功能与晶粒度应契合表 7 的规则。 表 7 铜管力学功能与晶粒度 GB/T8895 直销方法 直料(L)/ 卷料(LWC) 铜管品种 牌号 光管/内 螺纹管 T2 M TP2 C1220T (OL) 220~255 状况 牌号 C1100T 状况 轻软质 220~255 0.015~0.040 JISH3300 抗拉强度 MP 均匀晶粒度㎜
(5)曲折实验 铜管在弯心直径为铜管公称外径 1.5 倍的条件下,曲折 180?一次不该发生皱折和裂纹。
(6)涡流探伤查验办法 一切铜管都有必要通过涡流探伤检测。喷墨符号有必要清晰可见。喷墨的长度为 500mm 左右。 喷墨沿铜管圆周散布,且不少于 2/3 圆周。涡流探伤伤点不多于 5 个/1000m。 注:涡流探伤查验喷墨长度与喷墨符号,涡流探伤按 0.3mm 标准孔进行。
(7)化学成份 铜管的化学成分应契合表 8 的规则,一般情况下能够只丈量 Cu+Ag 确保铜管原料。
五、查验办法
1 外观质量 以目视进行查验。
2 结构尺度 结构尺度用相应精度的东西进行查验。
3 功能要求
(1)压扁实验 铜管的压扁实验按 GB/T246 的规则。
(2)清洁度实验 铜管清洁度参照 GB/T
(3)力学功能 6 17791 实验办法进行。 力学功能实验的其他测验办法按 GB228-2002 履行。
(4)均匀晶粒度 铜管的均匀晶粒度参照 YB/T5148、YS/T 347 和 GB6394 进行。
(5)扩口实验 铜管的扩口实验按 GB/T242 的规则。
(6)曲折实验 铜管的曲折实验按 GB/T244 的规则。
(7)米克重 取 1m 左右长度铜管将两端口磨平后,用卷尺丈量长度,用 1mg 精度的天平称重,核算单 位长度的分量,即为米克重;缺乏 1m 的定尺铜管将两端口磨平后,用游标卡尺丈量长度,用 1mg 精度的天平称重,按份额核算单位长度的分量,即为每米克重。
(8)化学成分分析 铜管的化学成分分析按 GB/T5121 的规则。
六、标志、包装、运送、储存 标志、包装、运送、储存应契合 GB/T 8888 的规则。
1 标志
(1)在查验合格的铜管标签上应标示如下标志:供方技能监督部分的检印、合金牌号、规格、直销状况、批号、出产日期、缺点点数、毛重、毛重、履行标准、出产供应商称号、本卷材料的总长度和净分量等。
(2)铜管的包装图示标志及储运标志应按 GB/T 8888 的规则履行。
2 包装
(1)铜管应按照规则的要求进行包装,包装方法用求悉数用通明塑料纸(塑料胶纸)包装,并在最初部位作显着的标识。
(2)直管包装应契合 GB/T 8888 的规则。
3 运送、储存
(1)铜管在运送的过程中不受雨、雪的影响及受潮。
(2)产品应储存在枯燥、通风杰出的仓库中。
(3)铜管运送、储存应契合 GB/T8888 的规则。
钛标准—压力容器用钛及钛合金焊丝
2018-12-18 10:15:53
JB/T 4745—2002 附录D(规范性附录)压力容器用钛及钛合金焊丝 D.1 范 围 D.1.1 本附录适用于钛制压力容器的钨极气体保护焊用钛及钛合金填充丝和熔化极气体保护焊用钛及钛合金焊丝。D.1.2 本附录适用于压力容器用国产钛材的焊接,也可适用于相应进口钛材的焊接。D.1.3 本附录规定了钛及钛合金焊丝(包括焊丝和填充丝)的要求、试验方法、检验规则和标志、包装等。 D.2 合同内容 本附录所列焊丝的订货合同应包括下列内容:a) 焊丝的牌号、状态、直径;b) 产品形式(直段或无支架卷);c) 对残余元素是否有要求;d) 订货重量;e) 本标准及附录的编号;f) 其他需要说明的事项。 D.3 要 求 D.3.1 牌号、状态、直径与产品形式D.3.1.1 焊丝的牌号、状态、直径及其允许偏差应符合表D.1的规定。表D.1 钛焊丝牌号、状态、直径及其允许偏差牌号 状态 直径mm 直径允许偏差mmSTA0R 冷加工态(Y)真空退火态(M) 0.8,1.0,1.2,1.6,2.02.4,3.2,4.0,4.8 ±0.05(直径<4.0)±0.1(直径≥4.0)STA1R STA2R STA3R STA9R STA10R D.3.1.2 焊丝的产品形式分直段和无支架卷两种。D.3.1.3 直段供货的焊丝长度及允许偏差为915mm±6mm,长度有其他要求时应协议解决。D.3.2 熔炼方法和化学成分D.3.2.1 用于制作焊丝的铸锭应采用真空自耗电弧炉熔炼,熔炼次数不得少于两次。D.3.2.2 焊丝的化学成分应符合表D.2的规定。表D.2 钛焊丝化学成分牌号 主 要 成 分% 杂 质 元 素% 残 余 元 素≤ %Ti Mo Ni Pd Fe O C N H 单个 总和STA0R 余 — — — ≤0.10 ≤0.10 ≤0.03 ≤0.015 ≤0.005 0.05 0.20STA1R 余 — — — ≤0.20 ≤0.10 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA2R 余 — — — ≤0.20 0.10-0.15 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA3R 余 — — — ≤0.30 0.15-0.25 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA9R 余 — — 0.12~0.25 ≤0.20 ≤0.10 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA10R 余 0.2~0.4 0.6~0.9 — ≤0.30 ≤0.12 ≤0.03 ≤0.020 ≤0.008 0.05 0.20注:当合同中未特别指明时,残余元素包括AL、V、Sn、Mo、Zr、Ni、Cu、Si、Y(该牌号中含有主要成分元素应除去)。合同中未注明时,不提供残余元素的分析结果。D.3.2.3 用户从产品上取样进行化学成分复验时,成品分析的允许偏差列于表D.3。表D.3 钛焊丝成品化学成分分析允许偏差成分元素 规定成分范围% 成品分析允许偏差%Mo 0.2~0.4 ±0.03Ni 0.6~0.9 ±0.03Pd 0.12~0.25 ±0.02Fe ≤0.10或≤0.20 ±0.05≤0.30 ±0.10O ≤0.10 ±0.020.10~0.15 ±0.02≤0.25 +0.03C ≤0.03 +0.01N ≤0.015或≤0.02 +0.01H ≤0.005或≤0.008 +0.002单个残余元素 ≤0.05 +0.02D.3.3 低倍检查 焊丝的横向低倍组织上不应有裂纹、折叠、气孔、分层、缩尾、金属或非金属夹杂物及其他影响使用的缺陷。 3.4 表面与宏观质量 3.4.1 焊丝表面应清洁,无氧化色,不应有裂纹、起皮、折叠、起刺、斑疤和夹杂等,不应有润滑剂和其他外来物质的污染,以及其他影响使用的缺陷。 3.4.2 焊丝应满足在自动或半自动焊接设备中均匀送进的要求。 3.4.3 成卷供货的焊丝缠绕时不应有波浪形、死弯、重叠、并可无阻碍地自由退绕,外端头应有标记,以使方便的找出。 D.4 试验方法 D.4.1 焊丝化学成分仲裁分析方法按GB/T 4698的规定进行。D.4.2 焊丝的尺寸、重量应使用相应精度的量具测量。D.4.3 焊丝的低倍组织检验参照GB/T 5168的规定进行。D.4.4 焊丝的表面与宏观质量的检查采用目视进行。 D.5 检验规则 D.5.1 检查和验收D.5.1.1 焊丝应由供方技术监督部门检验,保证焊丝质量符合本标准的规定,并填写质量证明书。D.5.1.2 需方对收到的焊丝,应按本标准的规定进行复验,如复验结果与本标准规定不符时,应在收到产品之日起6个月内向供方提出。D.5.2 组批焊丝应成批提交检验,每批应由同一牌号、熔炼炉号、制造方法、状态和规格的产品组成。D.5.3 检验项目 每批焊丝均应进行化学成分、尺寸、代倍及表面与宏观质量的检验。D.5.4 取样位置和取样数量D.5.4.1 每批焊丝由成品上任取一个试样进行气体(N、H、O、C)含量的分析,其他成分的含量以原铸锭的分析结果报出。当所使用的铸锭没有分析过残余元素含量时,还应从同一锭号的成品丝材中任意取一个试样进行残余元素的分析。不注明可不分析残余元素。D.5.4.2 每批焊丝任取两卷(或根)分别在每根的两端各取一个试样进行横向低倍组织检查,检验不合格时,该批产品为不合格。D.5.4.3 焊丝应逐根(卷)进行尺寸、表面与宏观质量的检查。D.5.5 重复试验 在化学成分分析检验中,如果有一个分析结果不合格,则从该批焊丝中取双倍试样进行该不合格项目的复验。复验结果若仍有一个不合格,则该批焊丝为不合格。 D.6 标志、包装、运输、储存 D.6.1 产品标志 在已检验的每件(卷)焊丝上应牢固地扎上一个标牌,标牌上应注明牌号、状态、规格、熔炼炉号、批号、净重、生产厂名称(或标识)、本标准呈等。D.6.2 包装、包装标志、运输、储存D.6.2.1 焊丝按标准重量包装时,其实际净重与所示标准重量的差值应在标准重量的10%内,标准重量可按供方习惯,也可双方协议。D.6.2.2 成卷交货的焊丝,无支架卷的内、外直径和卷的宽度可按供方习惯,也可双方协议。D.6.2.3 每件(卷)焊丝用聚乙烯薄膜套好、扎紧后,用木箱包装。产品装箱时,箱内应衬以防潮纸,箱内各件之间须用软材料填实、固定。不同批号的焊丝不得装入同一箱内。D.6.2.4 产品装箱后,在包装箱外壁上应有一清晰、牢固的标记,标记内容有:产品名称、牌号、本标准号、锭号、批号、规格、净重、生产厂名称等。D.6.2.5 产品的其他包装、包装标志、运输和储存等应符合GB/T 8180的规定。D.6.3 质量证明书 每批产品应附有质量证明书。质量证明书应包括产品名称、牌号、锭号、批号、状态、规格、数量(件数、毛重、净重)、合同号、本标准号、生产厂名称与地址、各项分析检验的结果、技术监督部门的印记、检验员印鉴、检查日期、包装日期。 D.7 说明 压力容器用钛及钛合金焊丝也可按GB/T 3623—1998的焊丝技术要求订货,但焊丝的化学成分应符合本附录的要求。 .
硫化叶菌对镍钼硫化矿的浸出作用
2019-02-21 11:21:37
一、前语
生物冶金是树立环境友好型冶金形式的一个方向,但与传统湿法浸矿工艺比较,现行硫化矿细菌氧化浸出技能在处理硫化矿方面尚没有真实具有竞赛优势,首要原因是浸出速度慢、浸出周期长,然后使运营本钱偏高,运用仅局限于一些较高价值低档次硫化矿。耐温菌浸出技能的研讨与开展是进步反响速度的要害一步。
现在在生物冶金技能中大多选用氧化亚铁硫杆菌(Thiobacillus ferrooxidans)浸出有色金属,而对钼、镍等重要有色金属的生物浸出报导较少,且仅限于常温菌。一些研讨者选用常温菌浸出低档次钼矿,但浸出率均不抱负且浸出周期长,原因之一在于常温菌的抗钼才干很差。杨显万等用氧化亚铁硫杆菌处理一种含Cu和Mo 的低档次矿,在30℃条件下浸出60 d, Cu 浸出率为60%,而Mo 浸出率仅为0.34%。Donati 等发现氧化亚铁硫杆菌不被MoS3 表面吸附,原因是Mo 对细菌有毒性。Hammaini 等[8]的研讨标明,在9K 培育基顶用T.ferrooxidans 浸矿,1 mmol/L 钼对铁氧化已有按捺作用,2 mmol/L 则彻底按捺铁氧化。经过驯化能够大大进步细菌的耐钼才干,童雄等研讨标明,钼的硫化矿浸出有菌条件比无菌时浸出速度快5 倍。在细菌习惯矿藏前,只能得到15~25 mg/L 的钼浸出液,经过驯化培育,可进步到200 mg/L 以上。本作业选用金属硫叶菌(Sulfolobus metallicus)嗜热菌作为驯化浸矿菌种,对镍钼矿的浸出进行了体系研讨,并与常温菌浸矿才干作了比较。成果标明,古生嗜热菌的金属硫叶菌对镍钼矿的浸出能够战胜常温菌浸出周期长、浸出率低的缺点,尤其在耐钼安稳性上有严重改进。研讨成果有望为生物法提取镍钼等宝贵金属的工艺规划和运用供给重要依据,关于稀有金属生物浸出的菌种选育和拓宽具有重要意义。
二、试验
(一)材料、试剂及仪器
所用矿样为贵州镍钼硫化矿,其含镍矿藏首要为二硫镍矿(NiS2 )、辉镍矿(Ni3S4)和辉砷镍矿(NiAsS),少数或微量针镍矿(NiS)和紫硫镍铁矿(FeMnS4)、硫镍铁矿和含镍黄铁矿等,矿石均匀含钼达5%,其间的钼矿藏是一种胶状的集合体(胶硫钼矿,Jordisite),所以,X 衍射分析没有检测到硫化钼的存在。深化的矿藏学研讨标明,这种钼集合体除硫与钼外,碳也是首要元素,因而称为“碳硫钼矿”。由于碳的原子量较低,故光谱半定量分析未检出。矿藏的首要成分见表1 和图1。
表1 贵州镍钼硫化矿光谱半定量分析成果图1 矿藏X 射线衍射图谱
试验前矿样经烘干、细磨至需求粒径。
菌种:金属硫叶菌(Sulfolobus metallicus,购于日本菌种保藏中心)属古生菌,能够好氧成长,既能氧化S又能氧化Fe2+,最适温度为65℃,选用M174 培育基培育( 成分见表2)。氧化亚铁硫杆菌(Thiobacillus ferrooxidans)由中国科学院微生物研讨所供给,选用9K培育基(见表3)培育。
表2 金属硫叶菌的M174 培育基表3 9K 培育基试剂与仪器:硫酸铵,硼砂,钼酸钠,,酵母等;日立F-2500 型荧光分光光度计,XSP-24N-103型生物显微镜,TZL-16 高速离心机,THZ-82 恒温水浴振动器,PHS-29A 型数字pH 计,原子吸收仪。
(二)试验办法
1、细菌的驯化及无铁细胞悬浮液的制备
细菌驯化:浸出试验前,Sulfolobus metallicus 在相同的矿藏、矿浆浓度条件下进行驯化,使细菌习惯浸矿环境,并进步菌株的耐钼才干。驯化条件:在装有100mL 培育基的150 mL 三角瓶中参加粒径
终究以3000 r/min 离心除矿,以10000 r/min 离心搜集驯化后的细菌,作为浸矿菌种。若当即浸矿,则可接入浸矿液中,不然置入冰箱4℃保存。细胞计数选用血球计数板法。
无铁细胞悬浮液的制备:将培育好的菌液置于低速离心机中3000 r/min 离心10 min,以除掉菌液中的大颗粒沉积物,上清液用高速离心机进行细胞别离,10000r/min 离心30 min,细胞沉积物用pH 1.8 的无菌蒸馏水洗下,清洗数次后稀释至原体积,搜集的细胞当即运用或在4℃冰箱保存。
2、摇瓶浸出
不同条件浸样各重复3 次,取其均匀值。培育基100mL,接种量均为10%(φ),初始pH 为2(浸出进程始终坚持该值),温度65℃, 转速200 r/min,浸出时刻均为20 d.。浸前各摇瓶称重,定时取样,并弥补蒸腾的水分和取走的培育基。浸出率以浸出20 d 的渣样计。浸出20d 的矿渣经抽滤,浸渣用1%的稀洗刷数次后烘干,称重,检测其间Ni 和Mo 含量。
三、成果与分析
(一)无菌及驯化与非驯化条件下的细菌浸出成果
本试验将细菌浸出分为无菌组、以Fe2+为动力培育的驯化细菌浸出组、以Fe2+为动力培育的非驯化浸出组、以S0 为动力培育的驯化细菌浸出组、以S0 为动力培育的非驯化细菌浸出组,顺次编号为No.1~5。矿浆浓度为10 g/L,矿藏粒径
表4 不同培育条件下的浸出成果(二) Fe3+对细菌浸出作用及介质电位的影响
以有菌无铁、有菌有铁、无菌有铁和无菌无铁4 组共12 个浸出样进行摇瓶浸出,编号顺次为1~4。有铁组均参加0.5 g/L Fe3+,矿浆均为10 g/L,矿藏粒径
表5 有菌无铁、有菌有铁、无菌有铁和无菌无铁对细菌浸出的影响对加Fe3+和不加Fe3+的浸出液的总铁浓度和介质电位改动作了比较,总铁浓度成果见图2,可见未加Fe3+浸出时,前6 d 的介质总铁浓度和增加速度比参加0.5g/L Fe3+低许多,这标明加铁组在浸出开端就很快发动了对矿藏的浸出氧化,而对照组由于没有初始Fe3+的存在其浸出发动缓慢许多.图2 浸出初期加铁与不加铁介质中总铁浓度
外加0.5 g/L Fe3+也改动了浸出液的电位。依据伦斯特方程EFe3+/Fe2+=0.78+0.059lg([Fe3+]/[Fe2+]),介质电位取决于溶液中Fe3+的浓度。电位测定显现,有菌外加0.5g/L Fe3+与不加Fe3+的电位改动有差异,加Fe3+的电位比不加Fe3+高,两者在浸出进程中电位都先缓慢下降再缓慢上升(图3)。由于浸出开端一周左右,65℃下矿藏中的FeMoO4 开端水解开释Fe2+,使Fe2+浓度增大,而此刻浸出液中的细菌尚处于延滞期或习惯期,氧化Fe2+的才干极弱,因而外加Fe3+组的Fe3+/Fe2+比下降,而不加Fe3+组Fe3+/Fe2+极低,故两者的电位呈下降趋势。之后又缓慢上升是由于细菌由延滞期进入指数增加期和安稳时,氧化Fe2+的才干增强,浸出液Fe3+/Fe2+逐步增大,电位逐步上升,当至必定电位值后,Fe3+/Fe2+处于安稳状况,此刻浸出液中细菌氧化Fe2+生成Fe3+的量与矿藏中FeMoO4 水解开释的Fe2+量比安稳,浸出液电位在500mV 左右。到浸出后期,由于浸出液中的细菌数削减,氧化 Fe2+才干大大削弱,而矿藏中从FeMoO4 开释出的Fe2+浓度改动不大,且Fe3+作为氧化剂而耗费,Fe3+/Fe2+比下降(若发作铁钒沉积,Fe3+浓度会下降较多),导致浸出液电位下降,但不低于300 mV。总归,在镍钼硫化矿加铁和不加铁的细菌浸出中,浸出液中的电位上升幅度都不大,很或许是由于高温下矿藏中开释的Fe2+及细菌氧化Fe2+生成Fe3+的才干受钼浓度影响而构成Fe3+/Fe2+上升有限。这也是浸出液电位全体不高的原因之一。图 3 加Fe3+组与对照组电位改动
(三)矿浆浓度对细菌浸出的影响
矿藏粒径
表6 矿浆浓度对细菌浸出的影响(四)pH 对细菌浸出的影响
各浸样矿浆浓度均为10 g/L,矿藏粒径
表7 不同pH 条件下的浸出成果(五)矿藏粒径对细菌浸出的影响
每个浸样均参加0.5 g/L Fe3+,无菌组作对照。矿浆浓度10 g/L,接种量10%,温度65℃,浸出20 d。不同矿藏粒径的浸出成果如表8 所示。从表看出,有菌组
表8 矿藏粒径对细菌浸出的影响(六)浸出进程中无菌和有菌样浸出液的 pH 值改动从图4 看出,无菌组和有菌组在浸出进程中的pH改动趋势相反,前者pH 呈逐步上升趋势,然后者则先升高然后逐步下降。这是由于有菌组在浸出进程中开端遭到矿藏脉石的影响而使浸出液pH 上升,当浸出到第4 d 时,细菌不断将矿藏表面的S0氧化成H2SO4,使浸出液的pH 下降。图 4 有菌和无菌浸样在浸出进程中的pH 改动
(七)金属硫叶菌与氧化亚铁硫杆菌的浸出作用比较
在培育基体积(100 mL)、接种量(10%)、矿浆浓度(10g/L)、矿藏粒径(图5 金属硫叶菌与氧化亚铁硫杆菌对镍、钼浸出作用的比较
(八)浸出进程中 Cu,Zn,Fe 含量的改动
浸出进程中浸出液中的有价金属Cu, Zn, Fe 浓度改动如图6 所示。到219.5 h,浸出液中Cu, Zn 和Fe 的浓度别离到达11.07, 8.17 和267.6 mg/L。本研讨标明,当Cu2+浓度小于0.5 g/L 和Zn2+浓度小于1 g/L 时对细菌氧化Fe2+的才干没有影响。该浸矿菌能氧化30 g/L 乃至更高浓度的Fe2+,因而,浸出进程中这3 种金属离子对细菌的浸出不会构成影响。矿藏中其他金属离子对细菌浸矿的影响有待进一步研讨。图 6 浸出进程中Cu, Zn, Fe 浓度改动
(九)金属硫叶菌在浸出液中的增加与钼浓度的联系
挑选10 g/L 矿浆浓度,10%的接种量(接种浓度为4.4×107 mL−1),全程盯梢浸样中的细菌增加和被浸出钼浓度的改动,成果如表9。从表能够看出,经过驯化的金属硫叶菌有很强的耐钼才干。浸出14 d 浸出液中钼浓度达173.74 mg/L,游离细菌为2.54×107 mL−1;浸出20 d 浸出液中钼浓度达283.37 mg/L,游离细菌浓度为0.83×107 mL−1。经过盯梢记数和比较发现,浸出10~12 d时,浸出液中的游离细菌最多,之后逐步削减。因而,在10~12 d 时刻段镍和钼的浸出速率也应是最快的。
表9 浸出时刻、浸出钼浓度与浸出液中S.m 菌浓度的联系图7 浸出16 d 无菌和有菌浸出样的矿粒表面描摹
(十)浸出进程中矿粒表面描摹
浸出进程中矿粒表面的改动能够反映细菌与矿藏的作用方法。在浸出16 d 时,将有菌和无菌浸样中的矿粒别离进行电镜扫描调查,发现无菌样的矿粒表面很润滑,没有细菌与矿藏作用的任何迹象,而有菌样的矿藏表面则呈现很多的腐蚀坑,这显然是细菌附在矿粒表面不断氧化掩盖在矿藏表面的S0 发作硫酸留下的腐蚀痕迹,如图7 所示。(十一)细菌浸矿作用的机理分析
金属硫叶菌以直接作用方法分化二硫镍矿(NiS2)、辉镍矿(Ni3S4)、针镍矿(NiS)。硫化矿细菌浸出的作用机理一向存在着两种观念,即直接作用和直接作用。直接作用就是细菌与硫化矿直接触摸,经过排泄酶来分化矿藏,以浸出矿藏中的金属离子。而直接作用则是细菌经过溶液中的Fe3+和H+与矿藏作用,浸出金属离子。金属硫叶菌浸出NiS2的作用方法是直接作用,这能够从电镜调查及表4 和5 的试验成果得以证明。无菌组和增加Fe3+的浸出试验标明,在无菌无铁的浸出样中,Ni 浸出率达77.64%,这应该是酸性条件下H+与矿藏反响所造成的。有菌无铁和无菌有铁浸出的Ni 浸出率相差不大,标明浸出进程中有菌组经过细菌氧化Fe2+(矿藏中分化)发作Fe3+及细菌经过附在矿粒表面不断氧化浸出进程中发作的S0而发作硫酸,使浸出液坚持必定酸性环境,并在矿藏表面构成许多酸腐蚀坑。无菌有铁组则是经过Fe3+和H+的化学作用浸出,首要反响如下:金属硫叶菌对MoS2 的浸出作用也是直接作用,Fe3+是仅有的氧化剂。李宏煦等以为FeS2, MoS2, WS2氧化硫时是以S2O32−为中间进程而完结的,S2O32−终究氧化为SO42−,伴有部分S7 则被细菌进一步氧化为硫酸,其反响式为:Huang 等以为,在低pH 下,Fe3+经过σ键与黄铁矿表面键合,所构成的化学键有利于电子从黄铁矿中的硫转移到Fe3+,电子并非直接从硫的价带而是从黄铁矿与铁离子构成的t2g 轨迹转移到Fe3+。而Fowler 等以为,氧化进程中Fe3+等氧化剂向t2g 轨迹注入空穴,这些空穴可劈开水分子而构成OH−,而OH−具有强氧化性,可与硫反响,使黄铁矿中的S2−氧化。Silverman 等提出,黄铁矿表面构成的铁氢氧化物或氧化态物质经过从t2g 轨迹得电子而积累电荷,积累的电荷发作电子态改变发作正电位,然后使S2−氧化。同归于细菌直接氧化作用机理的辉钼矿,其氧化进程与黄铁矿相同。在无菌条件下钼的浸出为O2 氧化MoS2所造成的。由于在O2存在的条件下,一切安稳的硫化矿在任何pH 值下都是不安稳的,可被氧化成S, HSO4−, SO42−。而在高温条件下,从体系的热力学和动力学分析可知,高温有利于矿石浸出进程的进行,因而嗜热菌比常温菌的生物浸矿更具热力学和动力学优势。
四、定论
(一)比无菌组高许多,标明细菌浸出比简略的酸浸出作用更好,速度更快。
(二)驯化组比非驯化组的浸出率高。因而,在选用细菌浸出钼矿前,应对细菌进行驯化,使其习惯浸出进程中的物理和化学环境,如钼浓度和机械剪切力等。嗜热金属硫叶菌对矿中镍和钼的浸出率显着高于常温菌氧化亚铁硫杆菌。
(三)以S0培育的细菌浸出率略低于以Fe2+培育的细菌。尽管金属硫叶菌既能氧化S0又能氧化Fe2+,但以Fe2+培育的细菌在浸出时不只具有氧化S0的才干,并且氧化Fe2+的才干更强。
(四)5 g/L 的矿浆浓度比别的几组浓度浸出样的钼浸出率高许多。标明较高矿浆浓度的镍钼硫化矿不只具有较大的剪切力,还具有相对高的钼浓度,对金属硫叶菌的成长代谢有影响,对细菌的浸矿才干发作了必定的按捺作用。必定矿浆浓度对镍浸出率影响不显着。
会泽铅锌矿方铅矿、闪锌矿和黄铁矿的浮游性研究
2019-01-24 11:10:22
会泽铅锌矿位于云南省东北部,是国内高品位铅锌矿之一。北京矿冶研究总院通过对矿石特点进行深入的研究与分析,在小型试验、半工业试验基础上,制定了硫化矿的铅硫异步等可浮工艺[1,2]。所谓铅硫异步等可浮主要是指在整个的铅硫混合浮选的过程中,人为地、分阶段控制浮选矿浆pH、抑制与活化条件、捕收剂作用强度等因素,确保铅硫矿物在各自适宜的浮选条件下最充分地发挥其特有的浮游性〔3〕。作者在试验过程中发现方铅矿、闪锌矿和黄铁矿之间具有浮游性差异,且方铅矿和黄铁矿的浮游性较好且相近,闪锌矿的浮游性较差。为研究会泽铅锌矿的铅硫异步等可浮机理,本文对三种单矿物进行了比较详细的浮选试验,以探索铅硫异步等可浮流程的选择依据。
一、试验原料和方法
方铅矿、闪锌矿和黄铁矿取自会泽铅锌矿的6号矿体。经化学分析和物相鉴定知,提纯后单矿物的纯度均在97%以上。浮选试验在XFG型挂槽式浮选机中进行,每次称取1g矿样放入30mL浮选槽中,加入适量的去离子,按图1所示流程进行调浆、加药、浮选。浮选粒级-01074+01038mm。浮选结束后低温烘干精矿和尾矿,称量,并计算回收率。图1 单矿物的浮选流程
二、结果与分析
(一)乙黄药对三种矿物浮游性的影响
由图2可知,随着乙黄药用量的增加,三种矿物的回收率均逐渐提高。当乙黄药用量增至2×10-4mol/L时,回收率基本上达到最大值,且几乎不再随乙黄药用量的增加而变化。闪锌矿的浮游性比方铅矿、黄铁矿的浮游性好,方铅矿与黄铁矿的浮游性相近。由图3可知,方铅矿在pH2~12的范围内具有较好的浮游性;闪锌矿在酸性、中性和弱碱介质中的浮游性较好,在强碱介质中较差;黄铁矿在弱酸、弱碱和中性介质中的浮游性较好,在强酸和强碱介质中较差。图2 乙黄药用量对矿物回收率的影响
(自然pH值5.45~5.89)图3 pH值对矿物回收率的影响
(乙黄药用量2×10-4mol/L)
(二)ZnSO4和可溶性淀粉对三种矿物浮游性的影响在浓度为2×10-4mol/L的乙黄药浮选体系中,当加入ZnSO4和可溶性淀粉时,其用量和pH值对方铅矿、闪锌矿和黄铁矿浮游性的影响见图4~7。
1、调整剂用量试验图4 ZnSO4用量对矿物回收率的影响(pH8)图5 可溶性淀粉用量对矿物回收率的影响(pH8)图6 pH对矿物回收率的影响(ZnSO4用量200mg/L)图7 pH对矿物回收率的影响
(可溶性淀粉用量20mg/L)
由图4可知,当ZnSO4用量为200~800mg/L时,ZnSO4对闪锌矿具有显著抑制作用,而对方铅矿和黄铁矿抑制作用较弱,且方铅矿和黄铁矿的浮游性相近。由图5可知,当可溶性淀粉的用量为20~80mg/L时,可溶性淀粉对闪锌矿具有明显的抑制作用,而对方铅矿和黄铁矿的浮游性几乎没有影响。
2、调整剂pH值试验图
由图6可知,当ZnSO4存在时,在pH6.5~10的范围内,闪锌矿的浮游性较弱,方铅矿和黄铁矿的浮游性较强。在pH6.5~7.5的范围内,方铅矿比黄铁矿的浮游性好,在pH7.5~12范围内,黄铁矿比方铅矿的浮游性好。由图7可知,当可溶性淀粉存在时,在pH6~10的范围内,可溶性淀粉对闪锌矿有较强的抑制作用,而对方铅矿和黄铁矿的影响较小。
综上所述,在乙黄药浮选体系中,采用ZnSO4或可溶性淀粉作为调整剂,在一定的用量和pH值的条件下,方铅矿与黄铁矿的浮游性非常相近。因此,采用混合浮选可以实现闪锌矿与方铅矿、黄铁矿的分离。这恰好与工业上的铅硫异步等可浮工艺相一致。单矿物浮选试验的结果表明,在一定的浮选条件下,可以实现以铅为主的铅硫混合浮选工艺,这证明了铅硫异步等可浮工艺的可行性。
三、结论
1、试验结果表明,会泽铅锌矿同一矿体的方铅矿、闪锌矿和黄铁矿之间存在浮游性差异。总体而言,三种矿物在弱酸、弱碱和中性介质中的浮游性较好,在强酸、强碱介质中的浮游性较差。
2、在方铅矿和黄铁矿保持较好浮游性的情况下,ZnSO4和可溶性淀粉可以显著抑制闪锌矿,这表明会泽铅锌矿采用铅硫异步等可浮工艺的可行性,进一步为铅硫异步等可浮工艺提供了理论依据。
参考文献
[1] 北京矿冶研究总院.云南驰宏锌锗股份有限公司深部混合矿扩大连续浮选试验研究[R].北京矿冶研究总院,2003
[2] 北京矿冶研究总院.复杂难处理富锗铅锌硫化氧化混合矿的选矿新技术研究[R].北京矿冶研究总院, 2003
[3] 李凤楼,孙传尧,赵纯录,等.铅锌混合精矿异步混合浮选新工艺的研究[J].有色金属(选矿部分), (2):30~36
作者单位:
东北大学(陈经华、孙传尧)
北京矿冶研究总院(孙传尧)
稀土用途
2017-06-06 17:50:03
稀土用途 稀土的用途十分广泛。只要在一些传统产品中加入适量的稀土,就会产生许多神奇的效果。目前,稀土已广泛应用于冶金、石油、化工、轻纺、医药、农业等数十个
行业
。稀土钢能显著提高钢的耐磨性、耐磨蚀性和韧性;稀土铝盘条在缩小铝线细度的同时可提高强度和导电率;将稀土农药喷洒在果树上,即能消灭病虫害,又能提高挂果率;稀土复合肥即能改善土壤结构,又能提高农产品
产量
;稀土元素还能抑制癌细胞的扩散。 由于稀土元素在光、磁、电领域能够产生特殊的能量转换、传输、存储功能,因而,通过对稀土原料的加工,已形成稀土永磁材料、稀土发光材料、稀土激光材料、稀土贮氢材料、稀土光纤材料、稀土磁光存储材料、稀土超导材料、稀土原子能材料等一批新型功能材料。这些材料因为无污染、高性能而被称为“绿色材料”,它们已经或将要在电子信息、汽车尾气净化、电动汽车以及空间、海洋、生物技术、生理医疗等领域发挥巨大的作用。 稀土有净化环境的功能。汽车尾气净化催化剂是稀土应用量最大的项目之一。电子信息
产业
的发展给稀土在高新技术领域应用带来高潮。由于稀土元素具有特殊的电子层结构,可以将吸收到的能量转换为光的形式发出。利用这一特性制成的稀土荧光材料可用于计算机显示器及各种显示屏和荧光灯。以彩电为代表的家电产品广泛应用了稀土的荧光、抛光、永磁、功能陶瓷、玻璃添加剂等多种功能材料,带动了80年代稀土开发应用;90年代以来,以计算机为代表的电子信息产品飞速发展,这些产品除用上述稀土材料外,还有稀土贮氢、磁光、超磁致伸缩等功能材料,直接拉动了世界稀土生产的增长。 以稀土制造的永磁材料,磁性能高出普通永磁材料4到10倍,尤其钕铁硼永磁体是目前发现磁性能最高的永磁材料,被称为超级磁体和当代永磁之王。由于此类材料具有超乎寻常的功能,使电子信息设备在不断提高性能的同时,也实现了轻、薄、小型化。稀土永磁材料还在各类电机、核磁共振仪器、磁悬浮列车等领域有着精妙的应用,并被确定为电动汽车主发动机的首选材料。有专家
预测
,未来几年内,如果稀土永磁材料得到良好的应用,仅材料产值就将达35亿美元,其辐射产值将达到数千亿美元。 稀土贮氢材料贮存密度大于液氢,体积却只有普通钢瓶的六分之一。目前应用最为成功的是镍氢电池, 其等体积充电容量是目前广泛使用的镍镉电池的2倍,且没有记忆效应和镉的污染;与锂离子电池相比,又具备价低、安全性能好的优势,被各国科技和
产业
界称为“绿色电池”,已大量应用于便携式电器、移动电话等无线电子设备,并可望成为下世纪电动汽车的电源。 稀土用途愈来愈广泛,稀土也将会在更多的场合被使用。 以上是稀土用途介绍,更多信息请详见上海
有色金属
网。
锡锭用途
2017-06-06 17:49:52
锡锭用途是一些锡锭用户会关心的话题,因为想更多的了解其特性,这对其自身以后的货物操作也会有好处。锡锭用作涂层材料,在食品、机械、电器、汽车、航天、浮法玻璃和其它工业部门中有着极广泛的用途。产品名称:锡锭 执行标准:GB/T728-1998 牌号:Sn99.99 Sn99.95 Sn99.90 主要用途:可以用作涂层材料,在食品、机械、电器、汽车、航天和其它工业部门中有着极广泛的用途。在浮法玻璃生产中,熔融玻璃浮在熔融的锡池表面冷却固化。 性状:银白色金属,质软,有良好延展性。熔点232℃,密度7.29g/cm3。无毒 产品规格:每锭重25kg±1 kg;捆装,每捆重约1050 kg锡的用途:锡很容易与铁结合,它被用来做铅、锌和钢的防腐层。涂锡的钢罐多用于贮藏食物,这是金属锡的一个重要市场。其它用途: * 锡是一些重要合金如青铜、巴氏合金等的组成部分。 * 氯化锡在印刷术中被用作一种还原剂和媒染剂。锡盐喷在玻璃上可以形成导电的涂层。这些涂层被用在防冻玻璃上。 * 一般玻璃板是将熔化的玻璃浇在锡板上形成的,来保证玻璃面的平坦和光滑。 * 焊锡含锡用来连接管道和电子线路。此外锡还被用在多种化学反应中。 * 锡纸常用来包装食物或药品。 * 制造镀锡铁(马口铁),可防锈、制作罐头容器。 * 有机锡可作为有机化合物的合成的试剂,作用包括还原官能团,造成自由基,令有机份子重新排列。锡是一种质地较软的金属,熔点较低,可塑性强。它可以有各种表面处理工艺,能制成多种款式的产品,有传统典雅的欧式酒具、烛台、高贵大方的茶具,以至令人一见倾心的花瓶和精致夺目的桌上饰品,式式具全媲美熠熠生辉的银器。锡器以其典雅的外观造型和独特的功能效用早已风靡世界各国,成为人们的日常用品和馈赠亲友的佳品。如果你想了解更多锡锭用途的信息,你可以在上海有色网中锡专区寻找。你会发现除了锡锭之外,其他一些相关有趣的知识。
铝锭用途
2017-06-06 17:49:58
铝锭用途相关知识很多,让我们对它进行下介绍。铝锭用途: 近五十年来,铝已成为世界上最为广泛应用的金属之一。特别是近年来,铝作为节能、降耗的环保材料,无论应用范围还是用量都在进一步扩大。尤其是在建筑业、交通运输业和包装业,这三大行业的铝消费一般占当年铝总消费量的60%左右。 在建筑业上,由于铝在空气中的稳定性和阳极处理后的极佳外观,使铝在建筑业上被越来越多地广泛应用,特别是在铝合金门窗、铝塑管、装饰板、铝板幕墙等方面的应用。 在交通运输业上,为减轻交通工具自身的重量,减少废气排放对环境的污染,摩托车、各类汽车、火车、地铁、飞机、船只等交通运输工具开始大量采用铝及铝合金作为构件和装饰件。随着铝合金加工材的硬度和强度不断提高,航空航天领域使用的比例开始逐年增加。 在包装业上,各类软包装用铝箔、全铝易拉罐、各类瓶盖及易拉盖、药用包装等用铝范围也在扩大。 在其它消费领域,电子电气、家用电器(冰箱、空调)、日用五金等方面的使用量和使用前景越来越广阔。 铝锭分类铝锭按成分不同分重熔用铝锭、高纯铝锭和铝合金锭三种:按形状和尺寸又可分为条锭、圆锭、板锭、T形锭等几种,下面是几种常见的铝锭; 重熔用铝锭--15kg,20kg(≤99.80%Al): T形铝锭--500kg,1000kg(≤99.80%Al): 高纯铝锭--l0kg,15kg(99.90%~99.999%Al); 铝合金锭--10kg,15kg(Al--Si,Al--Cu,Al--Mg); 板锭--500~1000kg(制板用); 圆 锭--30~60kg(拉丝用)。在我们日常工业上的原料叫铝锭,按国家标准(GB/T 1196-2008)应叫“重熔用铝锭”,不过大家叫惯了“铝锭”。它是用氧化铝-冰晶石通过电解法生产出来的。铝锭进入工业应用之后有两大类:铸造铝合金和变形铝合金。铸造铝及铝合金是以铸造方法生产铝的铸件;变形铝及铝合金是以压力加工方法生产铝的加工产品:板、带、箔、管、棒、型、线和锻件。按照?重熔用铝锭?国家标准,“重熔用铝锭按化学成分分为6个牌号,分别是Al99.85、Al99.80、Al99.70、Al99.60、Al99.50、Al99.00”(注:Al之后的数字是铝含量)。目前,有人叫的“A00”铝,实际上是含铝为99.7%纯度的铝,在伦敦市场上叫“标准铝”。大家都知道,我国在五十年代技术标准都来自前苏联,“A00”是苏联国家标准中的俄文牌号,“A”是俄文字母,而不是英文“A”字,也不是汉语拼音字母的“A”。和国际接轨的话,称“标准铝”更为确切。标准铝就是含99.7%铝的铝锭,在伦敦市场上注册的就是它。通过了解铝锭用途的知识,我们才可以掌握其真正的价值,你可以登陆上海有色网查找更多的信息。
难处理金矿预氧化高效嗜热菌的选育研究
2019-02-20 14:07:07
跟着金矿资源的不断挖掘,易处理矿日益减少。现在难处理金矿的金资源占国际黄金储量的近60%。所谓“难处理”是指用传统化浸出不能有用提取矿石中的金。细菌氧化法用于难浸金矿的生物预氧化是1964年法国Pares首要提出的,在今后的作业,又相继在南非、巴西、澳大利亚、美国等国家投入工业运用。从实践得知,经生物浸出预处理后金的收回率显着进步。
从动力学观念看,所得成果不太抱负。过长的停留时刻(2~5 d)导致过高的操作本钱。因而需求改善生物浸出动力学。按生物浸出直接机理,动力学改善就应依据经过发现新一类细菌或选用遗传基因操控技能改善已知细菌,以开发活性更大的细菌。
一般生物冶金中常用的菌种首要是常温菌,如氧化亚铁硫杆菌和氧化硫硫杆菌,它们的最适温度为28~30℃。近些年来对嗜热菌在冶金方面的研讨也证明嗜热菌具有从各种硫化矿中提取金属的才能,如铜矿、钼矿、镍及促进金的收回等;一些研讨的成果证明嗜热菌对矿石具有比常温菌更快的氧化速度,与常温细菌比较,嗜热菌适用于发热的反响系统,可省去运用中温菌的冷却设备;从动力学的视点讲可进步反响速度,缩短预氧化时刻。但是在国内对嗜热菌运用研讨较少。本研讨的意图是挑选高效嗜热菌,研讨其形状特性,其氧化黄铁矿单矿藏才能,尴尬处理金矿预氧化以及黄铜矿的生物浸出供给根底数据,具有重要的理论和实际意义。
一、实验材料和办法
(一)酸性矿坑水
调查地质条件、地理环境以及气候的影响,并依据嗜热菌所适合的成长环境,采纳煤矿酸性矿坑水作为别离样品。
实验用酸性煤矿矿坑水采自南边某城市,该煤矿为挖掘了几十年的老矿,煤层内搀杂脉石矿藏首要为黄铁矿,在废矿堆显着看到黄铁矿的氧化。该煤矿全年平均气温约为25℃,夏天空气温度最高40℃,地表温度最高可达50℃。因而从该矿坑水有或许别离到意图菌株。水样经膜过滤办法浓缩搜集,再在高速台式离心机进行水样别离,得到用于别离的酸性矿坑水。
(二)别离用培育基
基本培育基组成:(NH4)2SO4 3gL-1,KCl 0.1 gL-1, K2HPO4 0.5 gL-1, MgSO4 7H2O 0.5gL-1,Ca(NO3)2 0.01 gL-1。实验进程中,选用多种动力与基本培育基组合,接种入酸性矿坑水,进行意图菌株的别离。
(三)黄铁矿单矿藏
将黄铁矿单矿藏用切割机切割成15mm×10mm×5mm的长方体,将其中一个表面进行初磨、细磨、抛光使其成为镜面,用蒸馏水冲刷置于室温进行枯燥。
(四)实验办法
1、菌种别离办法。固体培育基平板划线别离法和液体培育基稀释别离法相结合。将酸性矿坑水和不同培育基按不同稀释度倒置于多孔培育板内,放置于恒温生化培育箱,温度操控在50℃进行培育。培育进程中,调查菌落成长状况,并在显微镜下用血球计数板进行核算。
2、细菌形状调查。用日立S-570扫描电镜调查菌落在矿样中成长的形状。被调查菌种样品制备流程如下进程:(1)固定:-饿酸双固定,2.5%固定4h(或过夜)磷酸缓冲液清洗3次,每次15min,1%饿酸(OsO4)固定2h,磷酸缓冲液清洗两次,每次15min; (2)脱水:乙醇系列30%,50%,70%,85%,95%乙醇各一次,每次15min,100%乙醇两次,每次15 min; (3)置换:乙酸异戊脂两次,每次15 min(或过夜);(4)二氧化碳临界点枯燥;(5)离子溅射金;(6)日立S-570扫描电子显微镜调查、照相。
3、黄铁矿预氧化程度调查办法。将黄铁矿单矿藏抛光片置于200 ml三角瓶中,培育基选用FeS2(10g L-1)+ yeast(0.02% W/V)为底物的培育基,温度52℃,接种量15%,调理溶液初始pH值为2.0,摇床转速150 r min-1,别离培育5,8,12和16 d,取出样品用扫描电镜调查黄铁矿单体矿藏被氧化的程度。
二、意图菌株形状特征
意图菌株扫描电镜图如图1所示。图1 菌株扫描电镜图
经过采样、富集、别离纯化等系列办法,建立了从自然界选育高效嗜热菌的有用办法,终究别离出一株嗜热菌。经分子生物学判定可知,该菌株为革兰氏阳性菌,无机化能养分菌,细胞呈杆状、细胞巨细在0.4~2×3~6.8μm之间,能在铁、硫、硫化矿等不同底物上成长。专性好氧,嗜酸,中等嗜热,最适成长温度50℃,在60℃能存活。以Fe2+,硫化矿为动力自养成长,以酵母为动力异养成长,以铁和酵母为动力混合养分成长;有酵母存在时,可氧化元素硫。以无机底物为动力自养成长时,细胞杰出成长需求满足CO2,在有机物存在的混合养分条件下该菌更易成长。在细胞成长进程中有球形孢子生成,细胞不具运动性。
依据伯杰氏细菌判定手册中对Sulfobacillus属的描绘:Sulfobacillus菌属存在于富含铁、硫、硫化矿的酸热环境中,属革兰氏阳性、无机化能养分菌,细胞呈杆状、棒状,最适成长温度为52℃。比照选育出的意图菌株生理和生化特征可知,其为Sulfobacillus中等嗜热菌,典型种为Sulfobacillus thermosulfidooxidans,在金属硫化矿的生物浸出进程中起重要的效果。
三、氧化黄铁矿单矿藏成果
金具有亲硫和亲铁的两层性质,在矿床构成的进程中,金常常与硫化矿藏共生;黄铁矿是金的首要载体。张世柏等在研讨了黄铁矿表面及其与Au[HS]2-溶液效果后以为,晶体表面的缺点是黄铁矿与Au[HS]2-效果后并吸附于其表面的阶梯面和扭折位的根本原因;李久岭等以为,硫化物的晶体结构中往往存在电价不平衡、缺位等,这为金替代一个硫而与另一个硫呈共用电子状况进入黄铁矿型结构供给了或许性。
难处理金矿预氧化的意图也是将包裹于金外表面的黄铁矿部分或悉数氧化,以便露出金于后续的化提金。因而,研讨选育的嗜热菌氧化黄铁矿单体矿藏的才能是十分必要。氧化完毕,用扫描电镜调查黄铁矿被氧化成果。如图2。图2 黄铁矿氧化前后描摹比照图
黄铁矿浸出前镜面润滑,颗粒完好,边际规整,结构细密[如图2(a)];经过5 d的氧化,被抛光的黄铁矿表面遭到轻度腐蚀[如图2(b)];经过8 d氧化,被抛光的黄铁矿表面遭到重度腐蚀[如图2(c)];跟着细菌氧化时刻的添加,黄铁矿的腐蚀程度在不断的加深,腐蚀12 d后构成空泛[如图2(d)],腐蚀16 d构成了空泛并伴有裂纹[如图2(e)],构成的空泛和裂纹逐步加深,黄铁矿细密结构被损坏。关于难处理金矿,一旦包裹在金单粒外的黄铁矿被细菌氧化构成空泛和裂纹后,那么包裹的颗粒金就露出出来,后续直接化提金就变得十分简单。
黄铁矿氧化进程中,发作如下反响:由反响式(1)看出,氧化进程中发生酸,导致溶液pH值不断下降,因而从产酸的程度能够调查黄铁矿被氧化的程度。如图3所示。图3 pH随黄铁矿氧化改变曲线
从图3能够看出,黄铁矿预氧化进程中,溶液pH值不断下降,经过140h的预氧化,溶液pH值到达1.2。从实验可知,经过16d的生物预氧化,单体黄铁矿被氧化掉60%以上,到达露出单体金的意图。
四、定论
(一)经过采样、富集、别离纯化等系列办法,建立了从自然界选育高效嗜热菌的有用办法,终究别离出一株嗜热菌,并判定为为Sulfobacillus中等嗜热菌,典型种为Sulfobacillus thermosulfidooxidans,在金属硫化矿的生物浸出进程中起重要的效果。
(二)经过该菌株氧化黄铁矿才能可知,选育的嗜热菌株具有预氧化难处理金矿的才能,是一株活性较高、高效的浸矿功用菌。
(三)要想将该菌株用于工业运用,还需求对其进行屡次转接驯化,一起在今后的实验进程中还需求驯化其耐受砷的才能以及耐受其他重金属的才能,以在有毒性的条件下保持其活性。
锌锭用途
2017-06-06 17:49:55
锌锭用途主要有以下几个方面;(一)制造铜合金材(如黄铜);用于汽车制造和机械行业。锌具有适用的机械性能。锌本身的强度和硬度不高,但加入铝、铜等合金元素后,其强度和硬度均大为提高,尤其是锌铜钛合金的出现,其综合机械性能已接近或达到铝合金、黄铜、灰铸铁的水平,其抗蠕变性能也大幅度被提高。因此,锌铜钛合金目前已被广泛应用于小五金生产中。 (二) 用于铸造锌合金;主要为压铸件,用于汽车、轻工等行业。许多锌合金的加工性能都比较优良,道次加工率可达60%-80%。中压性能优越,可进行深拉延,并具有自润滑性,延长了模具寿命,可用钎焊或电阻焊或电弧焊(需在氦气中)进行焊接,表面可进行电镀、涂漆处理,切削加工性能良好。在一定条件下具有优越的超塑性能。三)镀锌;锌具有优良的抗大气腐蚀性能,所以被主要用于钢材和钢结构件的表面镀层(如镀锌板),广泛用于汽车、建筑、船舶、轻工等行业。近年来西方国家开始尝试直接用锌合金板做屋顶覆盖材料,其使用年限可长达120-140年,而且可回收再用,而用镀锌铁板作屋顶材料的使用寿命一般为5-10年.以上是笔者为您提供的有关锌锭用途的咨询,
黄铜用途
2017-06-06 17:50:02
现如今黄铜在人们的日常生活中和工业上产中应用的已经越来越广泛了,但是很多人对于黄铜的用途还只是停留在黄铜工艺品、铜器、化工原料等简单的理解上。到底黄铜用途是什么?了解黄铜用途,才能更好的利用黄铜。 黄铜是由铜和锌所组成的合金。如果只是由铜、锌组成的黄铜就叫作普通黄铜。黄铜常被用于制造阀门、水管、空调内外机连接管和散热器等。 黄铜用途概述:黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上 的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 更多特殊黄铜用途: 铅黄铜用途:铅实际不溶于黄铜内,呈游离质点状态分布在晶界上。铅黄铜按其组织有α和(α+β)两种。α铅黄铜由于铅的有害作用较大,高温塑性很低,故只能进行冷变形或热挤压。(α+β)铅黄铜在高温下具有较好的塑性,可进行锻造。 锡黄铜用途:黄铜中加入锡,可明显提高合金的耐热性,特别是提高抗海水腐蚀的能力,故锡黄铜有“海军黄铜”之称。 锰黄铜用途:锰在固态黄铜中有较大的溶解度。黄铜中加入1%~4%的锰,可显著提高合金的强度和耐蚀性,而不降低其塑性。 铁黄铜用途:铁黄铜中,铁以富铁相的微粒析出,作为晶核而细化晶粒,并能阻止再结晶晶粒长大,从而提高合金的机械性能和工艺性能。铁黄铜中的铁含量通常在1.5%以下,其组织为(α+β),具有高的强度和韧性,高温下塑性很好,冷态下也可变形。常用的牌号为Hfe59-1-1。 镍黄铜用途:镍与铜能形成连续固溶体,显著扩大α相区。黄铜中加入镍可显著提高黄铜在大气和海水中的耐蚀性。镍还能提高黄铜的再结晶温度,促使形成更细的晶粒。 更多关于黄铜用途的资讯,请登录上海
有色
网查询。
中高温浸矿菌结合对高砷铜精矿的浸出研究
2019-02-21 11:21:37
高砷铜精矿首要指砷超越2%的铜精矿。铜砷别离是选冶范畴的一大难题。现在国内外关于细菌脱砷的研讨,首要会集在高砷金精矿。高砷铜精矿的细菌浸出研讨较少。以砷黝铜矿为主的铜精矿,含砷量较高,砷铜比一般为1∶3~5,铜精矿中含砷可高达6%~8%。本实验研讨的含砷矿样以砷黝铜矿为主。温健康等人对我国某含砷低档次硫化铜矿浮选精矿进行了中温浸矿菌浸出实验研讨,该浮选精矿铜矿藏首要为次生硫化铜矿,极少量的黄铜矿和斑铜矿,首要含砷矿藏为硫砷铜矿,As 0.79%、Cu 17.98%、铜浸出率可到达85.52%。周硪等人对云南某铜矿的高砷硫化铜精矿进行了中温浸矿菌浸出实验,该精矿含砷2.5%、铜11.48%、原生硫化铜矿占总铜含量的62.3%,次生硫化铜矿占总铜含量的35.7%,浸出时刻10d,铜浸出率30%。从上述实验能够看出,中温浸矿菌对以次生硫化铜矿为主的高砷铜精矿较以原生硫化铜矿为主的高砷铜精矿的浸出效果好。
近20年,国外对原生硫化铜矿的细菌浸出进行了很多的研讨。研讨标明,嗜热嗜酸菌(又叫高温菌)对原生硫化铜矿的浸出率是中温浸矿菌的数倍(5倍以上)。国外展开了黄铜矿精矿的嗜热嗜酸菌生物浸出研讨。如澳大利亚BacT ech/MinTech塔斯梅尼亚矿用中等嗜热嗜酸菌浸出黄铜矿精矿,温度48℃,处理量5 kg/d,铜的浸出率到达96.4%。国内昆明冶金研讨院也完成了用嗜热嗜酸菌浸出低档次黄铜矿的研讨,并获得突破性效果。从云南某温泉区收集的水样中别离出严厉无机化能自养型嗜热嗜酸菌,并将其用于以黄铜矿为主的低档次硫化铜矿的生物浸出,与中温硫杆菌比较,在相同的实验条件下(浸出温度在外),嗜热嗜酸菌对总铜的浸出率到达97%,是中温浸矿菌浸出率32. 43%的3倍。以浸渣中残留黄铜矿计,嗜热嗜酸菌对黄铜矿的浸出率为97.05%,是中温浸矿菌浸出率15.43%的6倍。嗜热嗜酸菌对黄铜矿的浸出有特效,但未见其对高砷铜精矿的研讨报导。本文首要研讨嗜热嗜酸菌对高砷铜精矿的生物浸出。
一、两段法浸出实验原理
根据中温硫杆菌和嗜热嗜酸菌各自的生理生化特征,选用两段浸出的办法处理高砷铜精矿。榜首段:一方面运用中温硫杆菌(最佳成长温度:30℃左右)对砷有较强耐受力的特色,在高砷环境中能发挥较强的氧化浸出效果,浸出铜精矿中的大部分砷,此刻砷首要以As3+存在。进一步氧化使As3+转化成As5+,恰当调理pH,As5+与浸出液中的过量Fe3+反响构成安稳的铁(臭葱石)沉积,然后下降浸出液中砷含量,以减轻对第二段高温菌的毒性;另一方面运用中温浸矿菌对次生硫化铜矿有较强的氧化浸出才干的特色,浸出高砷铜精矿的易浸矿藏。第二段:运用高温浸矿菌(最佳成长温度:65℃)对难浸的原生硫化铜矿氧化浸出才干强的特色,在较短时刻内使难浸的原生硫化铜矿大部分氧化浸出,Cu2+进入溶液。固液别离即可脱砷。
二、实验材料及办法
(一)矿样与菌种
实验矿样:取自云南某选矿厂的浮选铜精矿,其化学多元素及铜物相分析成果如表1、表2所示。
表1 高砷铜精矿化学多元素分析(质量分数)/%1)铜精矿As含量随不同批次矿样而有改变,改变起伏为3.0%~8.0%,上表所列成分为本实验矿样,若砷含量高或低于上表所列,则采纳配矿的办法使其安稳在4.39%左右;2)单位为g/t。
表2 高砷铜精矿铜物相分析从表2可知,该铜精矿是氧硫混合矿,氧化率挨近50%。硫化铜矿以原生硫化铜矿为主。X衍射分析标明,原生硫化铜矿以砷黝铜矿为主,约60%~70%,黄铜矿约30%~40%。
实验菌种:选用实验室长时刻驯化、挑选和诱变等手法选育出的耐高砷中温浸矿菌和高温浸矿菌。
(二)分析检测办法
物相分析:用X射线衍射仪、日本岛津EPMA-1600电子探针等办法进行矿样细菌浸出前后的物相分析。
化学元素分析:选用原子吸收光谱法或碘量法测定铜,可溶性铁离子(Fe2+和Fe3+)浓度选用重滴定法。
pH测定:选用精细pH计或精细pH试纸检测。
(三)拌和浸出实验办法
称取矿粉若干,按1∶10(w/v)份额参加培育基,用1∶1硫酸溶液调理pH至2.0左右,待pH值安稳后按10%份额接入菌种液,称重定重,30℃(中温浸矿菌)或65℃(高温浸矿菌)水浴中进行拌和浸出实验。无菌酸浸对照加0.2%硫酸。浸出过程中操控pH值1.5~2.0左右,每天3次守时用适温自来水弥补蒸发水到定重。守时取上清液分析进入溶液中的铜、铁等。浸出周期为10d。取样量用基本培育基补加,实验完毕后过滤,浸渣用1%稀洗刷数次后烘干称重,对浸渣中残留铜、砷等进行含量和物相分析。
三、实验成果与评论
(一)中、高温浸矿菌独自或组合运用对浸出效果的影响
高温浸矿菌对原生硫化铜矿一黄铜矿的浸出速率较快,浸出率较高。高温菌对以砷黝铜矿为主的原生硫化铜矿的浸出效果还未见报导。本实验在浸出周期的不一起段运用不同的浸矿菌种或其组合,研讨中温菌、高温菌别离运用和其组合运用对高砷铜精矿的氧化浸出特性。
建立高温菌组、中高温菌组和中温菌组。高温菌组:整个浸出周期(10 d)均运用高温浸矿菌;中高温菌组一两段法浸出:浸出实验前期(1~6d)运用中温菌,后期(7~10d)运用高温菌;中温菌组:整个浸出周期(10d)均运用中温浸矿菌。浸出成果见图1。图1 不同浸矿时段运用不同浸矿菌种对浸出效果的影响
从图1可知:两段法浸出即实验前期运用中温浸矿菌,后期运用高温浸矿菌的中高温菌组,铜浸出率最高。浸出周期别离只运用高温浸矿菌或仅运用中温浸矿菌,二者的浸出效果均不如两段法浸出的中高温浸矿菌组。两段法菌种组合浸出10 d,总铜浸出率90.01%,而中温菌组78.13%,高温菌组为55.16%。仅用中温菌,浸出6d总铜浸出率可达70%,随后浸出率上升变缓,持续延伸浸出时刻到10d,浸出率仍未见明显提高,仅上升8.13%。但中温菌浸渣在两段法浸出的后期,转入高温浸矿体系后,总铜浸出率有较大程度的升高,上升约20%左右。对中温菌组的菌浸渣进行X衍射分析,渣内铜矿藏首要为砷黝铜矿,其次为黄铜矿,中温浸矿菌对砷黝铜矿和黄铜矿等原生硫化铜矿的浸出效果差,铜浸出率别离为17.48%和14.2%,对原生硫化铜矿的总浸出率算计为16.26%。如表3所示。
表3 浸渣原生硫化铜矿藏相分析/%从表3高温菌浸渣X衍射分析成果可知,渣内仍首要残留砷黝铜矿及极少量的黄铜矿,但二者的含量却大大少于高温菌浸出前。阐明高温菌在两段法浸出后期对砷黝铜矿和黄铜矿等原生硫化铜矿确有较强的氧化浸出才干;高温菌对黄铜矿的浸出率可达78.45%,是中温浸矿菌14.2%的5.5倍以上;对砷黝铜矿的浸出率为33.42%,是中温浸矿菌17.48%的2倍左右;对原生硫化铜矿的总浸出率算计为50.24%,约为中温浸矿菌16.26%的3倍。但高温菌对砷黝铜矿的氧化浸出效果较黄铜矿差。从图1可知,仅用高温菌浸出的高温菌组,细菌成长的延滞期较长,其浸出速率和浸出率远远不如中温菌组和中高温菌组。阐明高温菌组的浸出体系从一开端就不利于其发挥较强的氧化浸出效果。矿浆中的高砷可能是高温菌成长繁衍和氧化活性高效发挥的按捺要素之一。经电子探针分析可知:浸渣中砷首要以铁的方式存在。
据材料介绍:只要在浓酸溶液中才存在As3+离子。因为生物氧化均是在较强酸性环境中进行(pH 1.5~2.0),因此,在砷的生物氧化过程中,As3+的发生和存在是不可避免的。在生物氧化中,不同的细菌对砷的耐受才干是不同的。有人研讨以为,氧化亚铁硫杆菌和氧化硫硫杆菌等中温浸矿菌在5g/L亚盐和40g/L盐的条件下,其成长受按捺。当溶液中As3+的浓度为30 mmol/L(2. 25g/L)时,对中等嗜热细菌是首要的毒源。中温菌对As3+的耐受力较高温菌强。本实验成果也从一方面证明了上述观念,因为在相同的实验条件下,高温菌组的总铜浸出率远远低于中温菌组。
(二)Fe3+的增加对细菌浸出的影响
从上述研讨可知:As3+、As5+对中高温浸矿菌均有很大的毒性,As3+对细菌的按捺才干远大于As5+,高温菌对As3+、As5+的耐受力较中温浸矿菌差。而研讨发现,生物氧化过程中,砷首要还是以As3+的状况进入溶液,且其在生物氧化过程中很安稳,需强氧化剂才干将其氧化为As5+。因此生物氧化过程中为了削减As3+对细菌尤其是对两段法浸出后期高温浸矿菌的毒害,有必要加速As3+→As5+的氧化,As5+再经过与浸出液中Fe3+反响生成铁沉积入渣。据研讨,生物氧化过程中,Fe3+、Fe/As摩尔比等,都会影响到As3+的氧化。
Fe3+是一种氧化剂,具有很强的氧化性。在必定条件下,Fe3+能够将浸出液中As3+氧化成As5+。只要As5+才干与溶液中Fe3+反响生成铁沉积。反响方程式如下:在两段法浸出前期的中温浸矿体系中,经过补加不同浓度的Fe3+,一方面研讨Fe3+对中温浸矿菌浸出高砷铜精矿的影响,另一方面研讨最佳Fe3+增加量。
在3个实验组中的中温浸矿体系中别离增加2.0、7.5、15g/L的Fe3+,以Fe2(SO4)3的方式增加;建立不增加Fe3+对照组。2.0 g/L的Fe3+的增加量计算根据:以没有增加Fe3+的浸出液中{(Fe3++Fe2+)+增加Fe3+}摩尔浓度÷( As3++As5+)摩尔浓度=3~6。实验成果如图2所示。图2 Fe3+的增加量对中温浸矿菌浸出的影响
从图2可知,中温浸矿体系中增加Fe3+能加速中温浸矿菌的浸出速率。但增加的Fe3+的浓度越高,细菌浸出速率反而越低。实验标明以2.0g/L的Fe3+的增加量为最佳。浸出体系中Fe3+的浓度越高,浸出率反而越低的机理现在还不清楚。
(三)黄铁矿精矿的增加对细菌浸出的影响
在生物氧化浸出液中砷离子首要是生成铁(FeAsO4)沉积,因此溶液中过量的Fe3+存在是沉积反响进行的首要条件。浸出液中,因为各种矿藏的氧化速度不同,各种离子( Fe2+、Fe3+、As3+、As5+)的浓度也各不相同,对铁生成的影响也较大,为保证砷离子沉积彻底,一般溶液中Fe/As摩尔比以3~6为好。从Fe3+的增加对中温浸矿菌浸出的影响研讨成果可知,在浸出液中增加适量的Fe3+对中温浸矿菌浸出速率确有促进效果。但从生产成本考虑,在浸出体系中很多增加Fe3+不太实际,若运用细菌能氧化浸出黄铁矿生成Fe2+、Fe3+的特性,经过增加黄铁矿来弥补Fe3+,以到达浸出液中存在过量Fe3+的意图。
下述实验首要研讨在中温浸矿体系中增加黄铁矿对中温浸矿菌浸出的影响及黄铁矿的最佳增加量。
实验分两个过程:①黄铁矿精矿细菌培育液的制备。实验组在2.5%、5.0%( w/v)黄铁矿精矿600 mL矿浆中别离接种10%( w/v)中温浸矿菌,在30℃的水浴中拌和培育7d。②中温浸矿菌浸矿实验。在各自的细菌培育液中别离增加高砷铜精矿实验矿样60g,开端浸出实验。对照组不增加黄铁矿精矿细菌培育液。实验成果如图3所示。
从图3可知:增加必定量的黄铁矿精矿能提高中温浸矿菌的浸出速率,原因是黄铁矿精矿细菌培育液中含有很多的Fe3+、Fe2+,能够弥补浸出体系需求的Fe3+。黄铁矿精矿增加量以2.5%为宜。图3 增加黄铁矿精矿对中温浸矿菌浸出的影响
四、结语
(一)在中高温浸矿菌结合的两段法浸出的条件下,能呈现较快的浸出速率和较高的浸出率,浸出10 d总铜浸出率可到达90. 01%。对浸渣原生硫化铜矿藏相分析可知:高温菌对黄铜矿的浸出率可达78. 45%,是中温浸矿菌14. 2%的5.5倍以上;高温菌对砷黝铜矿的浸出率为33.42%,大约是中温浸矿菌17.48%的2倍;对原生硫化铜矿的总浸出率算计为50.24%,是中温浸矿菌16.26%的3倍。但高温菌对砷黝铜矿的氧化浸出效果较黄铜矿差;两段法对高效生物浸出高砷铜精矿是比较适合的,在必定程度上能保证高温菌对砷黝铜矿和黄铜矿等原生硫化铜矿发挥较强的氧化浸出效果。中温浸矿菌尽管对原生硫化铜矿的氧化浸出才干较高温浸矿菌差,但对As3+和As5+的耐受力较高温菌强。两段法即浸出前期运用中温菌,运用了中温菌对砷有较强耐受力的特色,一起浸出易浸的硫化矿;浸出后期运用高温菌,则运用了高温菌对原生硫化铜矿有较强浸出效果的特色。二者合作运用将是往后生物冶金研讨和产业化推行的要点。
(二)在两段法浸出前期增加适量Fe3+或黄铁矿精矿均能加速中温浸矿菌的浸出速率,前者以2.0 g/LFe3+的增加量为最佳,后者以2.5%的增加量即可,但要以细菌培育液的方式增加。
高磷软锰矿脱磷菌的选育及脱磷试验研究
2019-02-18 15:19:33
我国锰矿中磷的含量遍及偏高,磷锰比[ω(P)/ω(Mn)]平均在0.1左右,而冶金用矿石要求ω(P)/ω(Mn)<0.003。在已勘探的矿床中,含磷偏高[ω(P)/ω(Mn)>0.005]的锰矿石占总储量的49.59%。锰矿石中的磷主要以磷灰石或胶磷矿方式存在。磷矿藏粒度微细,或与能矿藏严密共生,或呈类质同象方式存在,单体别离较高困难。
近年来,国内外对锰矿石脱在户外工艺都进行了较为深化的研讨。研讨办法主要有高梯度磁选法、浸法、炉外脱磷法、黑锰矿法等。高梯度磁选法存在动力耗费过高、设备磨损严峻、纤细颗粒主动聚会等问题,按浸法仍停留在小试阶段;炉外脱磷法本钱过高;黑锰矿法存在设备腐蚀严峻等问题,都未能从根本上处理富锰降磷问题,所以研讨者们提出了使用微生物脱磷新思路,并取得了较大发展。微生物技能的长处在于出资少、能耗小、本钱低并对环境友好。研讨标明,很多种细菌、真菌、放线菌都具有溶磷作用。不少研讨者在实验室对磷矿粉浸磷都取得了成功。
本实验所用菌株为湘潭锰矿矿区不同植物根系土壤样品中挑选出的脱磷作用较好的菌株,经过紫外诱变得到高产菌株,并以此进行软锰矿脱磷实验,得到了较好的作用。
一、实验材料与办法
(一)土壤收集与预处理
所用土样取自湖南湘潭锰矿矿区植物根系表面以15~20cm深处,置于事前已灭菌的锥形瓶中,24h内别离菌株。
(二)矿样
矿样取自湖南永州市某锰矿、破碎,研磨至粒度小于0.1mm。矿样中ω(P)/ω(Mn)=0.0109,属高磷锰矿。矿样多元素化学分析成果见表1。
表1 矿样多元素化学分析成果(三)培育基
培育基除查氏固体培育基、牛内膏蛋白胨培育基和PKO固体培育基外,还酸制了富磷培育基(蔗糖30g,2~3g,磷酸氢二钾1g,硫酸严铁0.01g,0.5g,硫酸锰0.5g,蒸馏水1000mL)和缺磷+Cas(PO4)2培育基(葡萄糖10g,氯化钙0.2g,硫酸镁0.5g,硫酸铵2.0g,0.2g,磷酸三钙0.9g,蒸馏水1000mL)。以上培育基均调整pH至7.0。
(四)实验办法
1、菌株别离
选用稀释平板别离法别离菌株,培育基为本氏培育基和年肉膏蛋白胨培育基。将所取土样制成10-3,10-4,10-5,10-6,10-7各种浓度的稀释液。将10-5~10-7稀释度的溶液接种到培育基上,放入恒温生化培育箱中于30℃下培育。
2、溶磷菌的挑选
挑选分为平板初筛和摇瓶筛2个过程。
初挑选用溶磷圈法。将别离取得的纯菌株接种于PKO固体培育基上,置于30℃培育箱中培7~15d,调查有无溶磷圈,并依据溶磷圈直径(D)与菌落直径(d)的比值开始断定脱磷才能。将有脱磷作用的别离物接种于斜面培育基上保存备用。
复筛时用无菌水将试管斜面上的孢子洗下,用血小球计数板计数,调整菌液浓度大约到108个/mL。移取1mL该菌悬液接种于PKO液体培育基中,放在转速为150r/min的摇床上,于28℃下培育5d。将所得菌液于9000r/min离心机中别离15min,汲取上清液,用钼锑抗分光光度法测定其有用磷含量。
3、模仿锰矿脱磷
将实验用菌种接种至查氏周体培育基中,再转接种至富磷培育基中,放入摇床内,在30℃、150r/min转速条件下活化2次,每次2d,备用。
取活化后的菌种1mL接种至装有100mL含0.090g磷酸钙及0.2612gMnO2(MnO2)的量依据ω(P)/ω(Mn)=0.0109核算所得)的缺磷培育基的三角烧瓶中,在30℃下,于150r/min转速摇床中好氧培育,调查pH和磷浓度的改变。
4、紫外诱变
以模仿锰矿脱磷实验中作用最好的P69号菌株为发菌株。
(1)菌悬液的制备。将P69菌株活化后用适量生理盐水洗下菌苔,倒入盛有玻璃珠的锥形瓶中,激烈振动将菌块打破后,离心(3000r/min)20min,弃去上层清液,将菌体用无菌生理盐水洗刷2次,最终制成菌悬液,用血球计数板在显微镜下直接计数,调整菌液浓度至108个/mL。
(2)紫外线处理。翻开15W紫外灯开关,预热20min。在无菌条件下,用移液管移取6ml上述菌悬液,放入9cm的无菌培育皿中,再放入一无菌磁力搅拌棒,然后置于紫外灯下30cm处,照耀时刻分别为2,4,6min。
在红灯下,将处理过的菌悬液稀释至10-5,10-6,10-7,涂布在PKO无机磷培育基上,每种浓度的菌液涂3个平板,同时取未经紫外线处理的稀释菌液涂于平板上作对照。用报纸包好,防止光照,置于恒温培育箱中于28℃下培育48h。
(3)挑选。诱变菌株的挑选(初筛和复筛)办法与1.4.2相同。
5、软锰矿脱磷
取诱变后的P-2-8菌液30mL接种至装有150mL软锰矿矿浆缺磷培育基的三角烧瓶中(矿将固体质量分数为20%),基他办法同3。
二、成果与评论
(一)平板初筛
在PKO固体培育基中于30℃培育箱中培育,得到具有显着溶磷圈的真菌菌株9株,其在7~15d内的D/d规模见表2,菌落特征见表3。
表2 9株脱磷菌在固体培育基上D/d规模表3 9株菌菌落特征(二)摇瓶复筛
接种1mL浓度为108个/mL的菌悬液于PKO液体培育基中,放在转速为150r/min的摇床上,于28℃下培育5d。成果见表4。
表4 液体培育成果初筛和复筛成果标明,P69的D/d值规模为1.12~2.30,在液体培育基中溶磷增加量为15.012mg/L,两个数值在9株溶磷菌中均为最大,因而P69具有最大脱磷才能。
(三)模仿锰矿脱磷
各菌株培育5d和10d后的pH值如图1所示,溶磷作用假如图2所示。图1 不同溶磷菌株对溶液pH值的影响
图2 不同菌株的溶磷作用
从图1,2可知,一切参试菌株培育5d后,培育pH均有所下降,至培育10d时,P71,P79,P98,P113,P115培育液的pH有必定上升,P69,P79,P95培育液Pha在本不变,P117的pH下降。培育5d时,菌株对P的脱降率到达50%左右,其间P69的脱磷率最高,为52.2%。
(四)此外诱变
1、初筛
对P69进行紫外线诱变,共长出菌株29株,其间以P-2-8(诱变2min组的8号菌)的溶磷作用最好。诱变15d后,它的D/d值从1.12~2.30增大到1.47~4.33,与原菌株的比照状况如图3所示。
图3 固体培育基上D/d改变比照
由图3可见,从第6d起,诱变后菌株的D/d值显着进步,P-2-8的D/d值最高,达4.33。
2、复筛
对诱变菌株磷含量进行测定,其诱变后的脱磷菌的液体培育成果见表5。
表5 诱变后的脱磷菌的液体培育成果比照由表5可见,诱变后,菌株的溶磷量为24.05mg/100mL,明显大于动身菌株P69的溶磷量(15.01mg/100mL)。诱变菌株溶磷量比动身菌株溶磷量进步约60.2%。
(五)软锰矿脱磷
图4为P-2-8和P69对软锰矿脱磷的实验成果。能够看出,P-2-8的脱磷率跟着时刻的延伸而不断进步,从第3d的12.3%增加到第15d的74.6%,是原菌株P69脱磷率33.2%的2.25倍。脱磷后锰矿中磷的质量分数由0.19%下降到0.048%,ω(P)/ω(Mn)由本来的0.0109降至0.0028,脱磷后的矿石到达冶金要求。
三、定论
(一)从湘潭锰矿矿区所取土样挑选得到有溶磷作用的菌株9株。以这9株菌进行模仿锰矿脱磷实验,其间P69的脱磷作用最佳,脱磷率为52.2%。
(二)以P69号菌株为动身菌株进行紫外诱变,得到脱磷作用显着进步的菌株P-2-8。用P-2-8进行软锰矿脱磷实验,脱磷率为74.6%,脱磷后锰矿中磷的质量分数为0.048%,ω(P)/ω(Mn)为0.0028,契合冶金要求。
铝材用途
2019-01-02 15:29:17
第一部分:按所属系列描述 以下按合金系统、合金称呼、材料特性、用途的顺序进行叙述 一、JIS A.A 1000 系列--纯 铝 系 1、 1060 1060 作为导电材料IACS保证61%,需要强度时使用6061 电线 2、 1085 1080 1070 1050 1N30 1085 1080 1070 1050 ─ 成形性、表面处理性良好,在铝合金中其耐蚀性最佳。因为是纯铝、其强度较低,纯度愈高其强度愈低。日用品、铝板、照明器具、反射板、装饰品、化学工业容器、散热片、溶接线、导电材 3、 1100 1200 1100 1200 AL纯度99.0%以上之一般用途铝材,阳极氧化处理后之外观略呈白色外与上记相同。一般器物、散热片、瓶盖、印刷板、建材、热交换器组件 1N00 - 强度比1100略高,成形性良好,其化特性与1100相同。 二、日用品 2000 系列-- AL x Cu 系 1、 2011 2011 快削合金,切削性好强度也高。但耐蚀性不佳。要求耐蚀性时,使用6062系合金 音量轴、光学组件、螺丝头 2、2014 2017 2024 2014 2017 2024 含有多量的Cu,耐蚀性不佳,但强度高,可作为构造用材使用。锻造品亦可适用。 航空器、齿轮、油;压组件、轮轴 3、 2117 2117 固溶化热处理后,作为铰钉用材,为延迟常温时效速度之合金。 4、 2018 2218 2018 2218 锻造用合金。锻造性良好且高温强度较高,因此使用于需要耐热性之锻造品。耐蚀性不佳。 汽缸头、活塞、 VTR汽缸 5、 2618 2618 锻造用合金。高温强度优越但耐蚀性不佳。 活塞、橡胶成形用模具、一般耐热用途组件 6、2219 2219 强度高,低温及高温特性良好,溶接性也优越,但耐蚀性不佳。 低温用容器、航天机器 7、2025 2025 锻造用合金。锻造性良好且强度高,但耐蚀性不佳。 螺旋桨、磁气桶 2N01 - 锻造用合金。具耐热性,强度也高,但耐蚀性不佳。 航空器引擎、油压组件 三、 3000 系列--AL x Mn 系 1、3003 3203 3003 3203 强度比1100约高10%,成形性、溶接性、耐蚀性均良好。 一般器物、散热片、化妆板、复印机滚筒、船舶用材 2、 3004 3104 3004 3104 强度比3003高,成形性优越,耐蚀性也良好。 铝罐、灯炮盖头、屋顶板、彩色铝板 3、3005 3005 强度比3003高约20%,耐蚀也比较好。 建材、彩色铝板 4、 3105 3105 强度比3003略高,其它之特性与3003类似。 建材、彩色铝板、瓶盖 四、4000 系列--AL x Si 系 1、4032 4032 耐热性、耐摩秏性良好,热膨胀系数小。 活塞、汽缸头 2、4043 4043 汤流良好,凝固收缩少,用硫酸阳极氧化处理呈灰色之自然发色。 溶接线、建筑嵌板 五、5000 系列--AL x Mg 系 1、 5005 - 5005 5050 强度与3003相同,加工性、溶接性、耐蚀性良好,阳极氧化后之修饰加工良好,与6063形材颜色相称。 建筑用内外装、车辆之内装、船舶之内装 2、5052 5052 为中程度强度之最具代表性合金,耐蚀性、溶接性及成形性良好,特别是疲劳强度高,耐海水性佳。 一般钣金、船舶、车辆、建筑、瓶盖、蜂巢板 3、5652 5652 限制5052之不纯物元素,并抑制过氧化氢分离之合金,其它特性与5052同 过氧化氢容器 4、5154 5154 强度比5052约高20%,其它特性与5052相同 与5052同样、压力容器 5、5254 5254 限制5154之不纯物元素,并抑制过氧化氢分解之合金,其它特性与5154相同。 过氧化氢容器 6、5454 5454 强度比5052约高20%,其特性与5154大致相同,但在恶烈环境下之耐蚀性比5154良好。 汽车用车轮 7、5056 5056 耐蚀性优越以切削加工作表面修饰,阳极氧化处理性及其染色性良好。 相机本体、通信机器组件、拉炼 8、5082 5082 强度与5083相近,成形性、耐蚀性良好。 罐盖 9、5182 5182 强度比5082约高5%,其它之特性与5082相同。 罐盖 10、 5083 5083 溶接构造用合金。在实用非热处理合金中是最高强度之耐蚀合金,适用于溶接构造。耐海水性、低温特性良好 船舶、车辆、低温用容器、压力容器 11、5086 5086 强度比5154高,为耐海水性良好的非热处理系溶接构造用合金。 船舶、压力容器、磁气圆盘 5N01 -强度与3003相同,光辉处理后之阳极氧化处理可有很高的光辉性。成形性、耐蚀性良好。 厨房用品、相机、装饰品、铝板 5N02 铰钉用合金,耐海水性良好 铰钉 六、6000 系列 --AL x Mg x Si 系 1、6061 6061 热处理型之耐蚀性合金。用T6处理能有非常高的耐力值,但溶接接口之强度低,因此使用于螺钉、铰钉 船舶、车辆、陆上构造物 6N01 中强度之挤型用合金,有6061与6063之中间的强度,挤出性冲压淬火性均良好,可作复杂形状之大型薄肉形材,耐蚀性、溶接性均佳。车辆、陆上构造物、船舶 2、6063 6063 代表性的挤出用合金,强度比6061低,挤出性良好,可作复杂的断面形状之形材,耐蚀性及表面处理性均佳 建筑、公路护栏、高栏、车辆、家具、家电制品、装饰品 3、6101 6101 高强度导电用材。55% IACS保证 电线 4、6151 6151 锻造加工性特别好,耐蚀性及表面处理性亦佳,适用于复杂的锻造品。 机械、汽车组件 5、6262 耐蚀性快削合金,耐蚀性及表面处理性比2011更佳,其强度与6061相同。 相机本体、氧化器组件、制动器组件、瓦斯器具组件 七、7000 系列--AL x Zn x Mg 系 1、7072 7072 电极电位低,主要用于防蚀性覆盖皮材,亦适用于热交换器之散热片。 铝合金合板材之皮材,散热片 2、7075 7075 铝合金中具有最高强度的合金之一,但耐蚀性不佳,与7072之覆盖皮材可改善其耐蚀性,但成本提高。 航空器、滑雪杖 7050 7050 改善7075淬火性之合金,耐应力腐蚀裂痕性良好,适用于厚板、锻造品 航空器、高速回转体 7N01 溶接构造用合金,强度高而且溶接部之强度于常温放置,可回后到接近母材的强度。耐蚀性也非常良好。 车辆、其它陆上构造物、航空器 3、7003 7003 溶接构造用挤出合金,强度比7N01略低,但挤出性良好,可作薄肉之大型形材,其它之特性大致与7N01相同。 车辆、机车车轮外圈 第二部分:铝材的专业用途 以下按使用处所、适用材料、合金形态的顺序描述: 一、建筑用铝合金 1、屋顶 1050、1100、3105、5052 板 2、 住宅、仓库、工厂、办公室、商店 1050、1100、3003、5005、5052、6063 板、形材 3、 天花板、内壁、隔间 1100、5005、6063 板、形材 4、换气孔、扶手、照明器 1080、5052、5N01、6063 形材、板 5、门 1050、1100、5005、5052、6063 板、形材 6、百叶窗 5052、5182 板 7、窗帘窗轨 5052、6063 形板、板 8、格子门、门扉 5052、6063 板、形材、管 9、滑窗 1100、5052、6063 形材、板 10、窗框 6063 形材 11、 围墙 5052、6061、6N01、6063、5056 板、形材、线 12、阳台、balcony 5052、6063、6N01 形材 二、土木用铝合金 1、道路标识 5052、6061、6063 板、形材 2、公路护栏高栏 6061、6N01、6063、5083 形材、板、管 3、照明柱 5052、5083、6063 管 4、桥梁、步道桥 5083、6061、6N01、7003、7N01 形材、板、管 板、形材 5、隔音墙 1100、5052、6063 形材、板、管 6、一般大型构造物 2014、5052、5083、6061 6N01、6063、7003、7N01 形材、板、管 7、触轮(trolley) 5083、6101、6063、7003 形材 8、有关线路上部构造 5052、5083、6061、6N01、7003、7N01 形材、板、管 9、工程用垫板 7N01、7003 形材 10、鹰架(造船、建筑用) 5052、6N01、6063 板、形材 11、闸门 5052、5083 板、形材 12、覆盖 6063 形材 三、电气机器组件用 1、一般装饰用途 1080、1070、1050、6063 板、形材 2、弱电底座、保护板 1100、5052、5082 板 3、保护箱、电容器箱 1100、1050 板 4、电解电容器 1085、1070、1050 箔 5、可变蓄电池 1100、1050、1070、5052 板、箔 6、 Volume shaft、轴承 2011、2017 棒、管 7、扩音器框架 1100、5052 板 8、转钮 2011、5052、5056、6063、6262 棒、板 9、开关面板Switch plate 1100、5052 板 10、白热灯炮金属口 3004 板 11、日光灯金属口 1100 板 12、Sheath heater 1100、3003、6063 管 13、 导电管 1050、3003、6063 形材、管 14、半导体散热器 1050、6063 板、形材 15、TV天线 1100、3003、6063 管 16、 TV橱柜 5052 板 17、VTR cylinder 2018、2618 棒 18、VTR 导带器 5052、5056、6063、7003 形材、管 19、磁气圆盘 5086 板 20、磁气drum 2025、2218、4032 锻造品 21、雷达天线、碟式天线 6061、6N01、6063 形材 22、马达框架 1050、6063 板、形材 23、回转机 Coil 1060、6101 形材,2024、7N01 形材,1060、6101、6061、6063 形材、板、管 24、 电缆被覆 1050 管、板 25、换气扇叶片 1100、3003、5052 板 26、电饭锅 1100、3003、3004、5N01 板 27、散热片 1100、1200、1050、3003、7072 板 28、复印机滚筒 1050、3003、6063 管 四、一般机器用、包装容器用铝合金 1、 光学精密机器关系 (1) Camera照相机体 5052、5056、6262 管、棒 (2)Camera照相机零件 1100、5N01 板 (3) 组件类 2011、5056、6262 棒 (4) 键盘 1050、1100 板 (5)齿轮、地板 2014、2017、5083 板 2、 纤维关系 (1)Belt frame 6063、7003 形材 (2)纺织机构造 2014、7075、7N01、7003 形材、棒 (3)纺缍 2017、2024、7075 棒 (4)线轴 6061、6N01、 6063、 7N01 管 (5)Screen、印染框 6063 形材 (6)飞轮 (Flyer) 7003 管 (7)纺纱 Pot 2017、7N01 板、锻 3、农林、水产、包装、容器关系 (1)插秧机、苗箱 5052 板 (2)割草机把手 5056、6063、6N01、 7003 管 (3)储藏库 5052、5083 板 (4)送水管 5052、6063 管 (5)集乳罐 1050、1100、3003、5052 板 (6)瓶盖 1200、1100、3003、3105、5052 板 (7)铝罐 3004、5052、5082、5182 板 (8)啤酒桶 1050 板 (9)鱼仓 5052、5083 板 (10)水中呼吸用高压筒 2017、5056 锻造品 (11)液化瓦斯筒 5052、5083 板 (12)包装容器 1N30、8021、8079 箔 (13)球棒 6061、6N01、6063、7001、7178 管 (14)弓箭 2024、7075、7078 管 (15)球拍类 6061、6N01、6063、7N01、7003 形材 (16)铭板 1050、1070、1080 板 (17)印刷板 1050、1100、3003 板 (18)游泳池 5052、5083、6063 板、形材 五、化学装置用铝合金 1、 LNG瓦斯桶类配管蒸发装置 3003、5052、5083、6063 板、管、形材 2、空气瓦斯分离装置 1050、1100、3003、4043、5052、5083、5154、6063、6151、6951 管、形材、板 3、化学容器配管 1050、1070、3003、5052、5083 板、管、clad材 4、过氧化氢装置 1070、1080、5652、5254 管、板、棒
钨条用途
2017-06-06 17:50:03
钨条用途非常广泛。钨金原名钨
金属
条,简称钨金、钨条。 钨金是世界上少有的一种
有色
矿产品,年
产量
很低,用途非常广泛,主要用于铸造配料用原料。钨金来源于一种白色砂型矿体,矿线特别微小,经过采掘、研磨、水重选、提炼等多道工艺,得到品位达到95%以上的钨矿粉,再经过高温电炉提炼成型生产出的成品才是钨金。钨金的熔点:3500℃。目前钨矿主要分布在中国和俄罗斯,中国现在是世界上最大的钨金出口国。钨条的主要用途包括:钢铁工业: 钨大部分用于生产特种钢。广泛采用的高速钢含有9%——24%的钨、3.8%——4.6%的铬、1%——5%的钒、4%——7%钴、0.7%——1.5%碳。高速钢的特点是在空气中有高的强化回火温度(700——800℃)下,能自动淬火,因此,直到600—650℃它还保持高的硬度和耐磨性。合金工具钢中的钨钢含有0.8%——1.2%的钨;铬钨硅钢含有2%——2.7%的钨;铬钨钢中含有2%——9%的钨;铬钨锰钢中含有0.5%——1.6%的钨。含钨的钢用于制造各种工具:如钻头、铣刀、拉丝模、阴模和阳模,气支工具等零件。钨磁钢是含有5.2%——6.2%的钨、0.68%——0.78%碳、0.3%——0.5%铬的永磁体钢。钨钴磁钢含有11.5%——14.5%的钨、5.5%——6.5%钼、11.5%——12.5%钴的硬磁材料。它们具有高的磁化强度和矫顽磁力。 碳化钨基硬质合金: 钨的碳化物具有高的硬度、耐磨性和难熔性。这些合金含有85%——95%的碳化钨和5%——14%的钴,钴是作为粘结剂
金属
,它使合金具有必要的强度。主要用于加工钢的某些合金中,还含有钛、钽和铌的碳化物。所有这些合金都是用粉末冶金法制造的。当加热到1000——1100℃时,它们仍具有高的硬度和耐磨性。硬质合金刀具的切削速度远远地超过了最好的工具钢刀具的切削速度。硬质合金主要用于切削工具、矿山工具和拉丝模等。 热强和耐磨合金: 作为最难熔的
金属
钨是许多热强合金的成分,如3%——15%的钨、25%——35%的铬、45%——65%的钴、0.5%——0.75%的碳组成的合金,主要用于强烈耐磨的零件,例如航空发动机的活门、压模热切刀的工作部件、涡轮机叶轮、挖掘设备、犁头的表面涂层。 在航空火箭技术中,以及要求机器零件,发动机和一些仪器的高热强度的其它部门中,钨和其它给熔
金属
(如钽、铌、钼、铼)的合金用作热强材料。 触头材料和高比重合金: 用粉末冶金方法制造的钨-铜合金(10%——40%的铜)和钨-银合金,兼有铜和银的良好的导电性、导热性和钨的耐磨性。因此,它成为制造闸刀开关、断路器、点焊电极等的工作部件非常的效的触头材料。成分为90%——95%的钨、1%——6%的镍、1%——4%的铜的高比重合金,以及用铁代铜(—5%)的合金,用于制造陀螺仪的转子、飞机、控制舵的平衡锤、放射性同位素的放射护罩和料筐等。 电真空照明材料: 钨以钨丝、钨带和各种锻造元件用于电子管生产、无线电电子学和X射线技术中。钨是白织灯丝和螺旋丝的最好材料。高的工作温度(2200——2500℃)保证高的发光效率,而小的蒸发速度保证丝的寿命长。钨丝用于制造电子振荡管的直热阴极和栅极,高压整流器的阴极和和各种电子仪器中旁热阴极加热器。用钨做X光管和气体放电管的对阴极和阴极,以及无线电设备的触头和原子氢焊枪电极。钨丝和钨棒作为高温炉(3000℃)的加热器。钨加热器在氢气气体、惰性气体或真空中工作。 钨的化合物: 钨酸钠用于生产某些类型的漆和颜料,以及纺织工业中用于布疋加重和与硫酸铵和磷酸铵混合来制造耐火布疋和防水布疋。还用于
金属
钨、钨酸及钨酸盐的制造以及染料、颜料、油墨、电镀等方面。也用作催化剂等。钨酸在纺织工业中是媒染剂与染料和在化学工业中用作制取高辛烷汽油的催化剂。二硫化钨在有机合成中,如在合成汽油的制取中用作固体的润滑剂和催化剂。处理钨矿石的时候可得到得三氧化钨,再用氢还原三氧化钨制得钨粉,广泛用于钨材及钨冶金材原料。我国是产钨大国,钨资源储量520万吨,为国外30个产钨国家总储量(130万吨)的3倍多,
产量
及出口量均居世界第一。湖南、江西、河南三省的钨资源储量居全国的前三位,其中湖南、江西两省的钨资源储量占全国的55.48%。湖南以白钨为主,江西以黑钨为主,其黑钨资源占全国黑钨资源总量的42.40%。我国的钨矿大体上分布于我国南岭山地两侧的广东东部沿海一带,尤其是以江西的南部为最多,储量约占全世界的二分之一以上。此外,江西的大余、湖南的汝城、安化、临武、资兴、荼陵等地;以及广西和云南、四川、福建等省也有钨矿资源。国外钨矿的主要产地是加拿大和美国。钨条用途还有很大拓展空间。
锇的用途
2019-03-13 11:30:39
锇的用处 锇及其合金在石油化学工业上首要作催化剂。在电子电器工业上,作电阻、继电器、火花塞电极、电触头、热电偶及印刷电路等。在玻璃工业上,锇不会使熔化的玻璃污染,可作为制作光学玻璃时的容器内衬。锇铱合金可以作挂钟和仪器中的轴承,制作笔尖和唱针。 锇的性质 锇是铂族金属之一,呈灰兰色。熔点高,约为3050℃。密度大,为22.5克/厘米3。锇即便在高温下也不易加工,一般只用作合金元素。锇的抗氧化性很差,在空气中,室温下锇表面就生成兰色二氧化锇薄膜。硝酸与锇效果也会生成。此两种氧化物都是挥发性的有毒化合物,能影响粘损害皮肤,自然界中,锇与铂族金属常共生在一起。 .
铷的用途
2019-03-12 11:03:26
的用处和大致相同,但光电池和光阴极的灵敏度以及运用规模稍逊于。和钾、钠、的合金可用以除掉高真空体系的剩余气体。碘化银 (RbAg4I5)是杰出的离子导体,用作固体电池电解质。的特征共振频率为6835兆赫,可用作时刻标准。原子钟的特点是体积小,重量轻,需求的功率小。用气泡制成的磁强计,丈量规模达15000~80000伽马(1伽马为10-9 特斯拉)。氧化可用以调整光学玻璃的密度和折射率,并可用来出产光敏玻璃和光色玻璃。硝酸还可用作化学钢化玻璃的熔剂,以进步玻璃的抗张强度。铸铝合金中参加0.01~1%的,能够改进其力学性能。熔化的铜中参加0.01~0.5%的,用喷雾法可制得表面积大而性能好的铜粉。许多有机和无机组成中,能够用Rb2O替代K2O作助催化剂的组分。盐还可用于制药。 因为活性大,出产、运用、储存和运送必须在紧密阻隔空气的设备中进行。80℃以下可用橡胶容器;200℃以下可用玻璃、石英、黄铜、铝或陶瓷容器;700~1000℃须用不锈钢、镍合金或镍制容器。
镁的用途
2019-03-07 10:03:00
镁首要用于制作铝合金,镁作为合金元素能够进步铝的机械强度,改进机械加工及耐碱腐蚀功能。因为镁基合金(含铝、锰、锌、锂等)的结构件或压铸件的比强度(单位分量的强度)大,在轿车、航空、航天等工业中,用镁替代部分的铝,可减轻结构的分量。因为镁和卤素的集合力强,镁是用在金属热还原法出产钛、锆、铪、铀、铍等的重要还原剂。镁是用作出产球墨铸铁的球化剂。在钢铁冶炼顶用镁替代脱硫,能够使钢中硫的含量下降得更低,使镁在这方面的用量增加较快。在有机组成中,使用镁的格里纳德(Grignard)反响,能够组成多种杂乱的有机化合物。镁还用作化工储槽罐、地下管道及船体等阴极保护用的阳极材料。用镁来制作干电池、镁—海水储藏电池。镁因为焚烧热高,焚烧时宣布耀眼的火焰,用镁制作照明弹、焚烧弹和烟火等。此外,镁还能够作为一种新的储能材料
贵金属用途
2017-06-06 17:50:13
贵
金属
用途十分广泛,贵
金属
除首饰外,还大量用于电子产品和特殊合金等方面。贵
金属
元素由于有优良的物理化学性能(如:高温抗氧化性和抗腐蚀性)、电学性能(优良的导电性、高温热电性能和稳定的电阻温度系数等)、高的催化活性、强配位能力等,在工业中用途极广,其应用的"少、小、精、广"的特点,因而被称为现代"工业的维他命"。贵
金属
与当代高新技术的发展关系密切。1.贵
金属
在生物医学中的应用利用贵
金属
,特别是以铂及其合金制造的微探针来探索神经系统和修复受损部分,已取得显著成效。例如,视觉神经等神经修复装置,横隔膜神经耳涡神经剌激装置,脊髓剌激装置,小儿脊柱弯曲的整形装置等。心脏病人用心脏起博器也用贵
金属
制造。因为这些装置的植入人体部分除了需与人体相容、无毒外,还要求有良好的抗腐蚀性、导电性、抗蠕变性等。常用的有Pt、Pt - Ir、Au、Au - Pt、Ag - Pd等
金属
或合金材料。贵
金属
同位素、化合物可用于肝、肺、肾、乳腺、脑等疾病及肿瘤的诊断治疗。2.航空航天材料中的贵
金属航空、航天、航海工业,要求材料具有高温抗腐蚀性、高可靠性、高精度和长的使用寿命,有的非用贵
金属
不可。如火箭点火引爆合金,航空发动机点火接点,导弹、卫星、舰艇、飞行器等控制方向、姿态的仪表材料(如陀螺仪的导电游丝)精确测温材料,应变材料等。3.信息技术及激光技术中的贵
金属电子计算机极大地促进信息技术的发展。电子计算机的心脏大规模集成电路元件的制造离不开贵
金属
。随着集成电路及无线电元器件小型化、片状化、组合化的发展,贵
金属
厚膜浆料的需要剧增。现在已经形成包括导电、电极、电阻、电位器及介质浆料的包封材料的系列产品。混合集成电路(其中约80%是厚膜集成电路)广泛用于电子计算机、传真、电视、录像、电影、无线电等部门。贵
金属
的电镀从全面电镀向局部电镀转变,引线框架等元件镀银或镀钯代替镀金,从低速电镀和高速电镀发展,最近正在发展微细部分的高精度电镀技术。4.自动化技术中的贵
金属
材料自动技术离不开电,贵
金属
材料由于其抗氧化最适于制造电接点。现在研究的主攻方向是:在提高电接点性能及质量的基础上,谋求贵
金属
的节约和代用;由包层材料代替实体材料,且包层材料向层化发展;镀层替代包层,由全面镀向部分镀变更;减少合金中贵
金属
含量,向完全不含贵
金属
的材料发展。5.能源技术的贵
金属
材料核反应堆是核发电的基础。在核裂变压反应堆中,使用 Ag - In - Cd合金作为中子吸收材料。在AI中加入Cu、Ag等元素,制成电子高、抗拉强度高、对放射性敏感性低的核反应堆结构材料。另一种材料是由(重量)%:Ag5 ~50,TiO.05 ~ 0.4、Zr0.05 ~ 0.3、V0.05 ~ 0.2、W0.05 ~ 0.3及余量铝组成。Pt - 6Ru/Pt热电偶用于核反应堆1870K以下温度的测量。6.贵
金属
催化剂及新材料的发展铂族
金属
具有优良的催化活性,较高的选择性、较长的使用寿命和可回收再生等优点,其研究和开发对工业和社会发展意义重大,今后许多领域必将是铂催化剂大显身手的时代。化学及石油化工用催化剂。80%以上的化学反应与催化有关,铂族
金属
催化剂在其中占有重要地位。如硝酸工业氨氧化用铂铑,或有铂钯铑催化网,70年来一直是硝酸工业核心。几乎年有的精细化工与贵
金属
催化剂有关使用载体催化剂,并向均相多功能催化剂方向发展。提高汽车油辛烷值的石油重整,一直离不开铂及铂及铂等基催化剂,另外,裂化、另氢等催化剂也多以铂或钯为基。贵
金属
用途极广,在高新技术的发展中处于重要地位。随着科学技术的发展,其应用领域和用途还会扩大,起越来越重要作用。
铜合金用途
2017-06-06 17:50:06
铜合金的用途,用之广泛。黄铜 以锌作主要添加元素的铜合金,具有美观的黄色,统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成,具有良好的冷加工性能,如含锌30%的黄铜常用来制作弹壳,俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成,其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能,常添加其他元素,如铝、镍、锰、锡、硅、铅等。铝能提高黄铜的强度、硬度和耐蚀性,但使塑性降低,适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性,故称海军黄铜,用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能;这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 青铜 原指铜锡合金,后除黄铜、白铜以外的铜合金均称青铜,并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能、减摩性能好和机械性能好,适合於制造轴承、蜗轮、齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高,耐磨性和耐蚀性好,用於铸造高载荷的齿轮、轴套、船用螺旋桨等。铍青铜和磷青铜的弹性极限高,导电性好,适於制造精密弹簧和电接触元件,铍青铜还用来制造煤矿、油库等使用的无火花工具。 白铜 以镍为主要添加元素的铜合金。铜镍二元合金称普通白铜;加有锰、铁、锌、铝等元素的白铜合金称复杂白铜。工业用白铜分为结构白铜和电工白铜两大类。结构白铜的特点是机械性能和耐蚀性好,色泽美观。这种白铜广泛用於制造精密机械、化工机械和船舶构件。电工白铜一般有良好的热电性能。锰铜、康铜、考铜是含锰量不同的锰白铜,是制造精密电工仪器、变阻器、精密电阻、应变片、热电偶等用的材料。 铜及铜合金板带材作为重要的基础材料和功能材料,铜合金有极大的用途,在国民经济发展中得到了广泛的应用:如用于制作通讯及射频电缆屏蔽层的电缆带,电脑散热器用铜板带,机械设备制造
行业
用大规格铜板,日用五金、各种电器、轻工、装饰(如灯具、建筑装潢、牌匾)等用铜板带及钢铁
行业
用高炉冷却壁铜板的结晶器板等。起着举足轻重的作用。
硅石的用途
2017-06-06 17:50:03
硅石的用途很广。自然界里比较稀少的水晶可用以制造电子工业的重要部件、光学仪器和工艺品。 二氧化硅是制造玻璃、石英玻璃、水玻璃、光导纤维、电子工业的重要部件、光学仪器、工艺品和耐火材料的原料。 硅石是制造光导纤维的重要原料。一般较纯净的石英,可用来制造石英玻璃。石英玻璃膨胀系数很小,相当于。普通玻璃的1/18,能经受温度的剧变,耐酸性能好(除HF外)。因此,石英玻璃常用来制造耐高温的化学仪器。石英砂常用作玻璃原料和建筑材料。 从硅石获得消光剂的方法很多,根据其制造工艺主要可以分为两类。一类是热液法制造,生产的二氧化硅形态相对较为松软。用硅胶制造的产品质地则较硬。经过处理后的两类产品均可制成标准的二氧化硅消光剂。处理过程是指使用有机(石蜡)或无机材料对二氧化硅表面进行一定程度的改性。与硅胶消光剂相比,处理过的二氧化硅拥有不同的粒径、粒径分布和孔隙体积。热液法消光剂在粒径和分布方面也不同。未处理与处理过的产品也有所不同。目前只有一种消光剂适应于特殊场合,该消光剂采用热解法制造,拥有很强的消光效率,且特别适用于水基涂料体系。 二氧化硅的消光效果相对较强,浓度较高时可能导致粘度升高。储存过程中有沉淀的趋势,特别是未经处理的二氧化硅。为了避免积聚,我们可以使用石蜡或热解法二氧化硅。该消光剂能够调节45°、60°和85°方位的消光度。添加了二氧化硅消光剂的涂料可以进行罩涂。 合成的硅酸铝能部分替代二氧化钛做为一种高质量增量剂使用,可应用于乳液底漆。该产物在干燥的乳液漆膜中能表现出均衡的消光效果。在长油醇酸树脂体系中可做为消光剂使用,但必须与颜料和填料一起进行分散。除了在粉末涂料系统中,二氧化硅消光剂可应用于所有的涂料。 硅石的用途在食品工业中主要用于防止粉状食品聚集结块,以保持自由流动的一类食品添加剂或用于吸附液态的香料、油脂、维生素等,使之成为粉末状,如粉末油脂、固体香料和固体酒之类制品。
磷铜的用途
2017-06-06 17:50:02
磷铜的用途:1、磷铜是由青铜添加脱气剂磷P含量0.03~0.35%,锡含量5~8%.及其它微量元素如铁Fe,锌Zn等组成延展性,耐疲劳性均佳可用于电气及机械材料,可靠度高于一般铜合金制品.锡磷青铜有更高的耐蚀性,耐磨损,冲出时不发生火花。用于、中速、重载荷有轴承,工作最高温度250℃。具有自动调心对偏斜不敏感,轴承受力均匀承载力高,可同时受径向载荷,自润滑无需维护等特性。锡磷青铜是一种合金铜,具有良好的导电性能,不易发热、确保安全同时具备很强的抗疲劳性。锡磷青铜的插孔簧片硬连线电气结构,无铆钉连接或无摩擦触点,可保证接触良好,弹力好,拨插平稳。该合金具有优良有机械加工性能及成屑性能,可使零件加工过程迅速缩短了加工时间 。2、磷铜是含磷的紫铜,由于具有良好的自去污能力和良好的流动性、润湿性,已经被制作为“无银焊条”替代银焊条用于空调、冰箱的钎焊。
铝粉的用途
2017-06-06 17:50:01
铝粉的用途是一种投资者想知道,因为了解它可以帮助操作。应用范围 铝粉因具有银白色金属光泽,所以俗称铝银粉或银粉,其化学成份实为“铝”,并非“银”。应用范围:粉末涂料、油墨、塑胶色母粒、印刷、仿金纸、仿金卡、金胶片、纺织品,但在水性漆及带酸碱的油漆中使用会氧化变黑。不推荐用于要求耐酸碱及与雨水结合的场合。超细银粉 超细浮银表面积大,当其暴露在空气中,能迅速在其表面生成一层钝态的保护膜,即氧化发黑,需做好密封措施,浮银不推荐用于要求耐碱的场合,如有要求可考虑采用银白珠光粉;2、银粉的批次间有一定的差别,且受工艺、喷涂的影响较大,除需尽量保持生产工艺的稳定性外,应先试验再生产,以免扩大损失。3、超细银盖底添加量1-2%,在添加高光蜡AW500B的情况下0.6%-1.5%就可盖底并产生很强的金属光泽,银粉添加量大越白,添加量越小越蓝,添加量不足时有黑点黑丝,或俗称苍蝇屎,整体偏黑。4、浮银呈片状,总是漂浮在涂层的最外面一层,所以硬度及抗氧化发黑的性能稍差,要得到较好的硬度需内加消印增硬剂AS501,外加银粉增硬剂POL16,POL09等,不能加高光蜡、金银粉排列剂、聚乙烯蜡等,混合时间越长效果越好。浮银 1、银粉粒径越小金属感越强,遮盖力也越强;添加量太大易产生吐粉和堵塞枪头的现象;添加量不够时容易出现黑点、发花或细小的条纹。R18、R01等特效新型银粉分散剂是用SIO2作载体的高效分散剂,不同于普通的银粉分散剂,不管银粉添加多少均可均匀分散无黑点,因而可以通过调节底色及减少银粉用量来调制灰黑、蓝相及不同色相的银粉效果,添加量极小,对流平有良好的促进作用。外加到片料里一起磨,不能直接外加,直接外加会产生颗料及白点等,R01效果最好,直接干混无颗粒。 2、浮型铝粉的片状结构在研磨挤出过程中会被破坏(变形或粉碎),结果使颜色发灰,所以一般使用干混方法。非浮银 非浮银均匀地、平行地分布在整个涂膜在中,因而被树脂包裹,所以具有良好的抗氧化性及耐磨性,较好的耐候耐酸碱性,无手印,表面亮泽,且颜色可从底粉来调节,但添加量较浮银大,金属效果无浮银强,较白。2、PCRDIS型铝粉特别适用于户外产品,因为有无机包覆层,具有很好的耐水,耐候,耐化学性;虽然用硅等材料包膜,但在自然曝晒的环境中,铝粉在光照和湿度等条件下,很快会发生氧化等化学物理变化,从而使金属感减弱,涂膜发灰发暗,出现灰斑等。为解决此类问题及被擦伤等问题,建议用透明粉罩光。3、盖底添加量以透明底粉测试,闪银的添加量最多可以达到10%左右;混合与喷涂工艺直接影响喷涂与遮盖效果,请注意混合均匀及喷涂的一致性,粒径越粗闪烁效果越好。4、由于银粉颗粒在形状、密度和带电荷量方面与粉料存在差异,会造成分离现象而影响上粉。采用邦定技术将粉末与银粉进行粘接,上粉及效果大大提高。5、铝粉能耐高温600度不变色。铝粉,俗称“银粉”,即银色的金属颜料,以纯铝箔加入少量润滑剂,经捣击压碎为鳞状粉末,再经抛光而成。铝粉质轻,漂浮力高,遮盖力强,对光和热的反射性能均好。经处理,也可成为非浮型铝粉。 铝粉可以用来鉴别指纹,还可以做烟花。铝粉由于用途广、需求量大、品种多,所以是金属颜料中的一大类。颜料用的铝粉粒子是鳞片状的,也正是由于这种鳞片状的粒子状态,铝粉才具有金属色泽和屏蔽功能。金属铝粉工业化生产很久以前就有,早期的生产方式是捣冲法,把铝碎屑放在捣冲机的凹槽内,捣杵在机械带动下连续冲打凹槽内的铝屑,具有延展性的铝在冲击下逐渐变成薄片并且破碎,在铝变得非常微薄细小后进行筛选,取出合乎要求的铝粉作为产品。捣冲法的生产效率很低,产品质量不易掌握,而且生产过程中粉尘很多,非常容易起火和爆炸。1894年,德国Hamtag用球磨机生产铝粉,在球磨机内放入钢球、铝屑和润滑剂,利用飞动的钢球击碎铝屑之后成为鳞片状铝粉,在球磨机内和管道里充满惰性气体,这种方法仍然沿用,被称之为“干法生产”。1910年,美国J.Hall发明了在球磨机内加入石油溶剂代替惰性气体,生产的铝粉与溶剂混成浆状,成为浆状铝粉颜料。这种方法设备简单,工艺安全,产品使用起来非常方便,很快为世界各国所采用。现代绝大多数铝粉颜料都采用这种方法,这种方法也称之为“湿法”。铝为银灰色的金属,相对分质量26.98,相对密度2.55,纯度99.5%的铝熔点为685度,沸点2065度,熔化吸热323kj/g,铝有还原性,极易氧化,在氧化过程中放热。急剧氧化时每克放热15.5 kj/g,铝是延展性金属,易加工。金属铝表面的氧化膜膜透明、且有很好的化学稳定性。 颜料用的铝粉是指粒子呈鳞片状,表面包覆处理剂且宜于做颜料的铝粉。铝粉浆是颜料铝粉与溶剂的混合物,它的用途和特性与铝粉大致相同,由于它使用起来简便,故产量和用量更大。 颜料用铝粉与其他颜料相比,更具有其特性,表现在以下几方面:1、鳞片状遮盖的特性 铝粉粒子呈鳞片状,其片径与厚度的比例大约为(40:1)-(100:1),铝粉分散到载体后具有与底材平行的特点,众多的铝粉互相连接,大小粒子相互填补形成连续的金属膜,遮盖了底材,又反射涂膜外的光线,这就是铝粉特有的遮盖力。铝粉遮盖力的大小取决于表面积的大少,也就是径厚比。铝在研磨过程中被延展,径厚比不断增加,遮盖力也随之加大。2、铝粉的屏蔽特性 分散在载体内的铝粉发生漂浮运动,其运动的结果总是使自身与被载体涂装的底材平行,形成连续的铝粉层,而且这种铝粉层在载体膜内多层平行排列。各层铝粉之间的孔隙互相错开,切断了载体膜的毛细微孔,外界的水分、气体无法透过毛细孔到达底材,这种特点就是铝粉良好的物理屏蔽性。3、铝粉的光学特性 铝粉由色浅、金属光泽高的铝制成,它的表面光洁,能反射可见光、紫外光和红外光的60%-90%,用含有铝粉的涂料涂装物体,其表面银白光亮,这就是铝粉反射光线的特征。4、铝粉的“双色效应”特性 铝粉由于具有金属光泽和平行于被涂物的特性,在含有透明颜料的载体中,铝粉的光泽度和颜色深浅随入射光的入射角度和视角的变化发生光和色的变化,这种特性称为“双色效应”。铝粉在涂膜内以不同层次排列,当入射光照射到各层铝鳞片时,因穿过不同厚度的涂膜受到不同的削弱,反射出的光线显然亮度也不同。当光线射入含透明颜料和铝粉的膜层内时,入射光透过颜料粒子成为有色光,再经过不同层次的铝粉反射出来,就会发生色调和金属光的变化,入射光和视角自垂直逐渐发生角位移动,光线则透过不同粒子数量的颜料和不同粒径的铝粉,反射出的光线的色调和金属光也发生无穷的变化。铝粉的这种特性,已广泛地应用于涂料内,作锤纹漆或金属漆。5、铝粉的漂浮特性 颜料用铝粉及铝粉浆的一大种类是漂浮型的,它的特点是鳞片状浮于涂膜表层。如果你想更多的了解关于铝粉的用途的信息,你可以登陆上海有色网进行查询和关注。
锌的用途
2017-06-06 17:49:55
锌的用途比其他有色金属的用途来的多.以下为一些常见的锌的用途.世界上锌的全部消费中大约有一半用于镀锌,约10%用于黄铜和青铜,不到10%用于锌基合金,约7.5%用于化学制品。 通过在熔融金属槽中热浸镀需要保护的材料和制品,锌可用于防蚀。对金属制品,可分批镀锌;对轧制钢带卷,可连续镀锌。近年来,钢带热浸镀锌量有显著增长。电镀锌也有使用,但该法一般用于较薄的镀层和不同的表面光洁度。 使用含锌粉的涂料是涂层的另一种方法;对于与水连续接触的物体,如用于船舶、桥梁和近海油气井架的大的钢构件,只须和大的锌块连接,便可得到保护,不过锌块要定期更换。 压铸是锌的另一个重要应用领域,它用于汽车、建筑、部分电气设备、家用电器、玩具等的零部件生产。 锌也常和铝制成合金,以获得强度高、延展性好的铸件。在制成薄板时(一般是用连铸连轧法生产薄板),锌还常和少量铜和钛制成合金,以获得必需的抗蠕变性能。因为锌的用途的广泛被运用,锌已经得到有色金属贸易商的一致认可.有成为有色金属"主力军"的趋势