您所在的位置:
上海有色 >
有色金属产品库 >
球形钛粉用途
球形钛粉用途
钛粉 超细钛粉工艺及用途
2019-02-27 11:14:28
钛粉、粉:纯度:95-99.4%等各种规格性状:钛粉:产品呈银灰色不规则状粉末,有大的吸气才能,高温或电火花条件下易燃。粉:产品呈黑灰色不规则状粉末。
钛粉、粉:纯度:95-99.4%等各种规格
性状:钛粉:产品呈银灰色不规则状粉末,有大的吸气才能,高温或电火花条件下易燃。
粉:产品呈黑灰色不规则状粉末。
用处:钛粉及粉是一种用处十分广泛的金属粉末。是粉末冶金、合金材料添加剂。一起也是金属陶瓷,表面涂复剂,铝合金添加剂,电真空吸气剂,喷、镀等重要原材料。
粒度:-40目到-300目.松装密度:1.2-1.6(g/cm3)
跟着科技市场的开展,粉末冶金制品逐步的浸透广阔工业中,钛粉冶炼越来越先进,节省了生产成本,获得了巨大利益。可是很多人都不知道钛粉是做什么的,接下来就跟我们解说一下钛粉是什么?
钛是钢的一种合金用元素(钛铁),钛会缩小钢的晶粒尺度,一起作为脱氧剂的钛会减低钢的含氧量;在不锈钢中加钛会减低含碳量。钛常与其他金属制成合金,这些金属有铝(改进晶粒大小)
、钒、铜(硬化)、镁及钼等。钛的机械制品(片、板、管、线、锻件、铸件)在工业、世界飞行、休闲及新式市场上都有使用。钛粉在焰火制作上用于供给亮堂的焚烧颗粒。
从地球表面被挖掘的钛矿石中,约95%都被送往提炼成二氧化钛(TiO2),一种超白的耐久颜料,被用于制作涂料、纸张、牙膏及塑胶。二氧化钛也被用于水泥、宝石、造纸用遮光剂及石墨复合鱼杆、高尔夫球杆的强化剂。粉末状的TiO2化学上具慵懒,阳光下不褪色,并且很不透光:就是这些性质,使得它可以为制作家用塑胶的灰色或棕色化学品带来美丽的纯白色。在天然中,二氧化钛这种化合物可在锐钛矿、板钛矿及金红石这几种矿藏中找到。用二氧化钛制成的涂料可以耐高温,轻度阻挠尘污积累,及抵受海洋环境带来的影响。纯二氧化钛的折射率十分高,并且对光学色散才能比钻石还高。除了作为一种很重要的颜料之外,防晒油也要用到二氧化钛,由于它本身就能维护皮肤。最近,它还被用在空气净化器(过滤器涂层)及贴在建筑物窗上的薄膜,这种薄膜在接触到紫外线(太阳或人工)或空气中的水分时,会发生带高度活性的氧化复原物种,如羟基,能净化空气或坚持窗面清洁。
球形氧化锌脱硫剂
2019-02-18 15:19:33
跟着我国资源的不断干涸,以煤、石油为质料的化工产品运用的质料越来越残次化,使化工出产过程越来越困难,为了进步经济功率在炼油工业中运用高含硫油、煤化工业中运用高含硫煤。这样在油制品、煤制品中硫、氮含量越来越高,严重影响产品的质量,为了进步产品的质量就必须在出产过程中除掉质猜中的硫。要除掉质料气中的硫,最有用、最经济的办法就是运用固体脱硫剂。氧化锌脱硫剂是固体脱硫剂的一种,跟着国家经济建设的加速,残次质料的运用也将越来越多。那么氧化锌脱硫剂的消耗量也会越来越大。因而产品有强有力的商场生命力。
氧化锌脱硫剂广泛应用于组成、制氢、组成甲醇、煤化工、制、石油化工等工业质料气(油)的净化。氧化锌与硫化物反响生成非常安稳的硫化锌,经脱硫剂处理后的各种质料气(油)含硫量可降至0.1PPm以下。对含有较杂乱成份的有机硫化物的质料气(油),氧化锌脱硫剂可与钴钼加氢转化催化剂联用,亦可使出口含硫量降至0.1PPm以下。因而有宽广的商场前景。现在国内商场需求量约好4000吨/年,近几年来氧化锌脱硫剂的商场成长率约为8%,CT140型脱硫剂专门为日本商场开发的专用氧化锌面貌一新脱硫剂,首要出口日本。估计每年100吨。
南京铅锌银矿业有限公司是具有锌矿产资源优势的厂商,而且相继开宣布锌焙砂,活性氧化锌系列产品,而氧化锌脱硫剂是氧化锌的后续加工产品,为了赶快完成产业化,2003年公司安排相关技能人员完成了氧化锌脱硫剂研发和出产规划作业,并出资500万元,建成了年产能力500吨出产线。
该出产线工艺的首要技能特点是选用络合法,出产的超细氧化锌来抽取脱硫剂,其中最要害的技能在于不同运用要求的产品配方,最要害工艺在于球形化技能。产品具有运用温度低,球化系数高,分量硫容大,然后节省了动力降低了工业运用运转本钱。
脱硫剂物化目标产品型号KT302KT305KT310KT140外观深灰色球白色球淡黄色球白色球外形尺寸mmФ3.5~4.5Ф3.0~5.0Ф3.0~5.0Ф3.0~5.0堆密度kg/l0.8~1.001.10~1.200.7~0.91.35~1.45比表面积㎡/g40~60≥28~100≥30孔容ml/g0.430.400.200.30均匀孔半径A215284 烧失重%≦2≤10≤2磨耗率%≤6≤5≤5≤5zno含量%80~85≥95≥80≥90径向抗压碎强度N/cm≥20≥35≥30≥30穿透硫容%≥20≥22≥10
微电子封装用球形硅微粉
2019-03-07 11:06:31
以集成电路为代表的微电子技能与微电子工业是信息工业的中心与根底。现在国际微电子工业现已超越重金属、轿车和农业而成为全球最大的工业。硅材料在微电子工业中的运用
电子封装的三大主材料是基板材料、塑封料和引线结构及焊料。塑封猜中,环氧塑封料(EMC)是国内外集成电路封装的干流,现在95%以上的微电子器材都是环氧塑封器材。EMC中,硅微粉含量占60%~90%。
01
微电子用硅微粉
硅微粉可分为结晶型和无定型两大类。一般集成电路都是用光刻的办法将电路会集刻制在单晶硅片上,然后接好衔接引线和管脚,再用环氧塑封料封装而成。微电子封装范畴主要用无定型或许说是融凝态硅微粉,尺度在微米量级,依据其形状,融凝态硅微粉又可进一步分为角形硅微粉和球形硅微粉两种。
跟着大规划、超大规划集成电路的开展,集成度越高,要求环氧塑封猜中的硅微粉纯度越高,颗粒越细,球形化越好,特别对其颗粒形状提出了球形化要求。大规划集成电路中应部分运用球形硅微粉,超大规划和特大规划集成电路中,集成度到达8M以上时,有必要悉数运用球形硅微粉。这是由于:
(1)球的表面流动性好,与树脂拌和成膜均匀,树脂添加量小,粉的填充量可到达最高,质量比可达90.5%,因而,球形化意味着硅微粉填充率的添加,硅微粉的填充率越高,其热膨胀系数就越小,导热系数也越低,就越挨近单晶硅的热膨胀系数,由此出产的电子元器材的运用功能也越好。
(2)球形化构成的塑封料应力会集最小,强度最高,当角形粉的塑封料应力会集为1时,球形粉的应力仅为0.6,因而,球形粉塑封料封装集成电路芯片时,成品率高,而且运送、装置、运用进程中不易发生机械损害。
(3)球形粉摩擦系数小,对模具的磨损小,与角形粉比较,模具的运用寿命可进步一倍,塑封料的封装模具报价很高,有的还需要进口,这一点对封装厂降低成本,进步经济效益也很重要。
02
硅微粉球形化的制备
现在国际上对粉体球形化研讨最为成功的国家是日本,他们已大批量地投入出产并运用到航天、超大屏幕电子显像和大规划集成电路中,而我国对此项技能的研讨才刚起步。
国外球形硅微粉的制备一般选用二氧化硅高温熔融喷射法、在液相中操控正硅酸乙脂、的水解法等,但由于工艺杂乱,这些办法国内还只停留在实验室阶段,有较大的技能难度,这是国内至今还不能出产出高质量球形硅微粉的重要原因之一。
球形化的原理可分为干法和湿法两种:(1)化学性的湿法。让含硅化合物在溶液中反响,经过各种手法操控均匀的成长速率,使反响产品尽量均匀地向各个方向成长,终究取得球形产品。
(2)物理性的干法。依据固体热力学的原理,高温颗粒的尖角部位简单最早呈现液相以及在气液固三相界面上液相表面张力较大、主动滑润成球体的现象来完结球化进程。
详细的工艺办法为以下几种:
①正硅酸乙脂、的水解法;
①正硅酸乙脂、的水解法;
②有机硅或硅酸盐制成二氧化硅溶胶-凝胶后灼烧法;
③二氧化硅高温熔融喷射法;
④、等气体焚烧火焰作热源熔融法;
⑤等离子体高温场作热源熔融法。
前二种为化学湿法,用化学法出产的球形硅微粉,其球形度、球化率、无定形率都可到达100%,而且能够到达很低的放射性目标,但因其容积密度较低,当彻底用此种球形粉制成环氧树脂塑封料,其塑封料块的密实功能、强度和线性膨胀率等受其影响,故实际运用中其最大只能加40%。
28页PPT了解球形石英粉
2019-01-03 15:20:48
立足产业化 钛粉加工工艺研发事半功倍
2019-03-08 12:00:43
钛及其氧化物、合金产品是重要的涂料、新式结构材料、防腐材料,被誉为“继铁、铝之后处于开展中第三金属”和“战略金属”,在航空、军工、冶金、化工、机械、环境保护、医疗器械等范畴有着广泛的使用,在国民经济开展中有其重要的位置和效果。
近年来跟着科学技能的飞速开展,钛及其钛合金粉越来越多地被广泛使用于各高科技范畴与工业出产及人民生活之中,国际上需求量也越来越大,商场远景非常宽广,特别是美国、日本等国对钛的需求正在不断的添加。据介绍,现在我国每年钛材年需求量在2.5~3万吨,而国内年钛产值只要1500~2000吨,商场缺口巨大。在国内商场上,一吨钛金属粉的报价是60万元人民币,国际商场更高达每吨80万美元。
可是,因为钛具有越加工越硬的特性,传统的机械球磨技能无法将其破坏。钛的冶炼困难、产值低、本钱高,因而,国际上对钛产品,特别是钛粉末的加工现在还处于探究、研制阶段,把握钛粉制作的核心技能的国家并不多。新工艺层出不穷 却鲜有大规模工业化
从矿石中提取的钛的最常用的方法,就是克罗尔工艺。可是,因为克罗尔工艺出产时间长,消耗劳动力和动力比较多,许多研讨人员一向致力于寻觅代替工艺。
其间,比较有代表性的有以下四种:metalysi公司(剑桥大学附属公司,原名为FFC)开发的剑桥工艺(Cambridgeprocess,又称“FFC剑桥工艺”)使用电解法来接连出产海绵钛。国际钛粉(ITP)公司(已于2008年末被全球抢先的钛出产商CristalGlobal收买)开发的阿姆斯壮工艺(Armstrongprocess)经过接连低温复原来出产钛粉。杜邦公司和材料与电化学研讨公司(MERCorporation)开发的MER工艺使用直接电解复原法出产钛粉。先进材料集团(ADMA Group)开发的氢化脱氢工艺(hydride/ dehydrideprocess,HDH)使用改善的克罗尔工艺用钛废料、屑和其它钛废弃物来直接出产钛粉。
在上述四种新式工艺中,有三种是关于钛粉是出产工艺,一种是出产海绵钛的。可是,仅有剑桥工艺这个出产海绵钛的技能是由海绵钛出产商赞助研制,因而,相对于其它三种用于出产钛粉的工艺来说,它的工业化进程中会愈加简单。但尽管如此,据业界专家称,剑桥工艺尽管现已商业化多年,却依然遭到那些没有得到解决的技能壁垒的阻止。一起,别的三种工艺的工业化也不尽抱负。阿姆斯壮工艺多年来一向用于出产少数的钛粉,但直到现在还没有用于大规模出产,间隔钛粉的商业化出产仍有必定间隔。有些人以为MER工艺具有必定潜力,但现在尚处于开发初期,其远景仍不明亮。现在来看,氢化脱氢工艺最有出路,ADMA集团报道说正在寻求资金来扩展其出产,专家以为,这一工艺在数年后即可为美国陆军出产钛板。但是,因为其低本钱优势主要是来源于钛废料的高使用率,该工艺仍不能完全替代克罗尔工艺。
可见,一些新式的改善的技能尽管能够添加产值、降低本钱和能耗,可是在工业化的时分,却往往需求一个较大的周期。与新技能的研制比较,技能的工业化好像愈加重要。
我国钛粉加工工艺研制效果显着
我国钛粉加工技能的研制好像愈加重视商场和工业化问题,且效果显着。早在2000年,哈尔滨鑫科纳米科技开展有限公司的薛峻峰高级工程师等专家的“钛纳米级金属粉的制备与使用”课题就经过有关部门判定并得到大面积使用。据了解,经共同工艺制取的纳米钛粉,能让普通涂料新添耐磨、耐腐蚀等项功能,这项效果在其时属国际创始,并且,与国表里大都纳米研讨尚处实验室阶段比较,这项效果已首先完成了批量出产、大面积使用。别的,照此方法,还能得到铜、铁、镍等金属的纳米材料。专家指出,这一效果工业化远景已被证明非常宽广。同步经过判定的高效能破坏机,单机每年可加工纳米金属粉12吨,且功能改善进步显着,本钱添加不大。
本年3月份,由云南专家研制的“等离子高温别离钛-铝矿”技能获得成功。这一技能将完全完毕钛矿丰厚的云南只卖质料的前史,使我国成为继美国和俄罗斯之后能直接出产金属钛粉末的国际第三大钛工业国。
据悉,云南的矿产资源非常丰厚,但因为冶炼技能落后,长期以来云南的钛矿只能以质料矿石出售为主。云南的钛矿以质料外销,每斤钛矿石才几毛钱,造成了重要的钛资源的贱价丢失。该项技能研制成功后,立刻即可投入使用。据担任“钛-铝工业项目”一期工程金属钛粉厂建造的富民金发矿业有限公司董事长尚家荣介绍,项目发动后,将年产超细化、高纯度金属钛粉2.85万吨,纯铁粉3.7万吨,钛铁粉7200吨,年产值就可到达30.9亿元,可上缴税金7亿元。这将添补我国钛工业开展的前史空白。
这两项技能的工业化,在不同阶段极大地推进了我国钛工业的开展,使我国钛工业在国际范围的影响力越来越大。经过比照也能够看出,咱们不能仅仅静心研讨,而忽视了商场,忽视了技能实践使用的可行性。只要具有工业化条件的技能,才有实践意义,不然,再好的技能也是徒劳无益。
本年6月,第12届国际钛会在北京举行,这是我国自1992年成为国际钛会国际组委会成员国以来初次举行国际钛会,标志着我国钛科学技能开端跨入国际先进水平的队伍。期望业界同仁以既有成果不断鞭笞自己,在未来的出产和研讨进程中,能愈加深化、更具可行性地对钛粉加工技能的进行研讨,推进更新更好的技能的呈现,缩短工业化进程,进而推进我国钛粉加工工业的迅猛开展。
球形碳酸钙的制备及机理分析
2019-03-07 09:03:45
碳酸钙具有方解石、文石和球霞石3种晶型结构,常温常压下方解石最安稳,球霞石热力学安稳性较差,因而制备的碳酸钙多由方解石构成。
碳酸钙微球具有体积小、比表面积大、孔隙率大等特色,广泛使用于生物技术、医药等高端职业。碳酸盐与钙盐在无其他物质的参加下能够直接反响得到立方体碳酸钙,产品一般由方解石构成,一些表面活性剂如柠檬酸(CA)、乙二胺四乙酸盐(EDTA)和十六烷基三甲基化铵(CTAB)以及部分聚合物等能够调控碳酸钙的成长,操控碳酸钙的结晶速度和描摹,终究操控碳酸钙的晶型及晶粒大小。陈先勇等以柠檬酸钠作晶型操控剂,以醋酸钙和碳酸钠为质料制备出了孪生球状碳酸钙。
1、试验
(1)试剂
无水氯化钙(CaCl2)、无水碳酸钠(Na2CO3)、无水乙醇(C2H5OH)和一水柠檬酸(C6H8O7·H2O)、(NaOH)。
(2)仪器与设备
场发射扫描电子显微镜(FESEM,表面镀金,作业电压15kV)、Zetasizer3000HS、多功能X射线衍射仪(XRD,扫描视点3-80°,铜靶,电压40kV,电流40mA)、SpectrumOne型傅里叶变换红外光谱仪(FTIR,KBr压片,测验规模400-4000cm-1)。
(3)乙醇溶液法制备碳酸钙
别离制造2份100mL体积分数为0,25%,50%和75%乙醇水溶液贮存于0℃条件下备用,称取4份0.01mol的无水氯化钙别离参加4种不同体积分数的乙醇水溶液中拌和使其充沛溶解,相同办法称取4份0.01mol的无水碳酸钠别离参加不同体积的乙醇水溶液中拌和使其充沛溶解,并在0℃水浴条件下别离参加相应乙醇体积分数的CaCl2溶液中,然后用浓度为1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。
同样地,称取0.01mol的无水氯化钙和无水碳酸钠,别离参加2份100mL体积分数为50%的无水乙醇溶液中,拌和使其溶解充沛,将Na2CO3溶液在水浴温度为60℃条件下,参加CaCl2溶液中,然后,用1.0mol/L的NaOH溶液调理溶液的pH值为12.0,拌和1h后,静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。
(4)添加柠檬酸制备碳酸钙
称取0.01mol的一水柠檬酸,参加100mL浓度为0.15mol/L的CaCl2溶液中,拌和使其溶解均匀,用1.0mol/L的NaOH溶液调理溶液的pH值为5.8,必定拌和速度下快速倒入100mL浓度为0.15mol/L的Na2CO3溶液,调理溶液的pH值为12.0,拌和1h后静置沉降,过滤,用蒸馏水洗刷数次,冷冻干燥。同上所述,称取0.1mol的一水柠檬酸进行上述反响。
2、成果与评论
(1)描摹分析由图1可知,乙醇的体积分数为0(水溶液)时,制备的碳酸钙相似于短柱状,面和棱均清晰可见;
乙醇的体积分数为25%时,制备的碳酸钙相似于梭状,并且单个呈现空心,见图1b中扩大图,制备的碳酸钙没有显着的棱角,空心梭的截面呈现空心环的描摹;
乙醇的体积分数为50%时,制备的碳酸钙为双球形,从图lc中的扩大图能够看出,微球是由纳米颗粒构成;
乙醇的体积分数为75%时,制备的碳酸钙相似于棉絮状,见图1d中扩大图。
跟着反响溶液中乙醇体积分数的添加,碳酸钙晶粒的直径逐步减小,能够估测乙醇的添加能够阻挠碳酸钙的成核或成长。乙醇的体积分数为50%时,生成的碳酸钙是直径为纳米级的颗粒,因为较高的表面能而聚组成球,构成双球状。图2为乙醇体积分数为50%时,不同水浴温度条件下制备的碳酸钙微球FESEM图画。从图中能够看出,较高温度下制备的碳酸钙微球中间洼陷程度较小,或许是跟着反响时间添加,高温下乙醇部分蒸发导致浓度减小,对碳酸钙的成长按捺效果减小,然后有利于碳酸钙微球的成长,中间洼陷程度削减。图3是柠檬酸浓度别离为0.1、1.0mol/L时,制备的碳酸钙微球FESEM图画。柠檬酸浓度为0.1mol/L时,制备的碳酸钙微球粒径较大。经过图3a中扩大图能够看出,与在乙醇溶液中制备的碳酸钙相似,都是由纳米状碳酸钙聚合而成,不同的是在柠檬酸的操控下制备的碳酸钙微球没有中间洼陷,构成的球较规整。
柠檬酸浓度为1.0mol/L时,制备的碳酸钙微球粒径显着减小,且相似于圆饼状,由图3d中扩大图发现,制备的碳酸钙微球相似于层状包裹而成,而不是由碳酸钙纳米颗粒聚合而成,这与其他微球显着不同。
比照图3a和图3b发现,柠檬酸能够有用地阻挠碳酸钙晶粒的成长,并且柠檬酸的浓度为1.0mol/L时能够促进碳酸钙更好地成球。
经过图2和图3能够看出,在乙醇溶液和柠檬酸溶液中都能制备出描摹较规整的碳酸钙微球,并且跟着无水乙醇和柠檬酸的量的添加,制备的碳酸钙晶粒都有必定程度的减小,阐明两者都能够按捺碳酸钙的成长。
(2)相结构分析图4为图1对应制备碳酸钙的XRD谱图。图4中a对照X射线标准卡片发现与碳酸钙的标准卡片JCPDS47-1743完全契合,阐明制备的碳酸钙是由方解石构成,图4中a和b在29.4°处的峰十分强并且尖利,对应的是碳酸钙的(104)晶面,阐明图4a和b对应的碳酸钙结晶性杰出。
图4中b、c和d在2θ坐落24.9°、27.1°、32.8°、43.9°、50.1°处均呈现球霞石的特征峰(JCPDS33-268),阐明图4b、c和d对应的碳酸钙中均有球霞石存在,并且方解石的峰值逐步减小;球霞石的峰值逐步添加,阐明跟着反响溶液中的无水乙醇含量添加,制备的碳酸钙中的方解石含量逐步削减,球霞石逐步添加,因而,能够揣度乙醇能够按捺方解石的生成,促进球霞石的生成,并且跟着乙醇含量的添加,对方解石的按捺效果添加,进而影响碳酸钙的结晶度。图5为图2和图3对应制备碳酸钙的XRD谱图。图5中a和b是无水乙醇体积分数为50%时别离在0、60℃条件下反响制备的样品的XRD谱图。与图5a对应的碳酸钙是由方解石和球霞石构成不同,图5b对应的碳酸钙是由方解石和文石构成的,估测或许是反响系统温度较高,促进球霞石转化为热安稳性较高的文石,别的,反响系统温度的升高,系统中乙醇的含量下降,按捺效果下降,也促进文石的发作。
图5c和5d是反响系统中添加柠檬酸后制得的碳酸钙的XRD谱图。经过比较发现,柠檬酸的浓度为0.1mol/L时,制备的碳酸钙样品是由方解石构成;而柠檬酸的浓度为1.0mol/L时制备的碳酸钙样品是由方解石和球霞石构成。与未添加柠檬酸时制备的碳酸钙的XRD谱图(图4a)比照,标明柠檬酸的添加会按捺方解石的成长,促进球霞石的成长,然后按捺碳酸钙的结晶,并且跟着柠檬酸含量的添加,对反响系统的按捺效果增大。图6为不同条件下制备的碳酸钙的FTIR谱图。712、874、1417cm-1处呈现的峰是方解石的特征吸收峰,745cm-1是球霞石的特征峰,1455-1490cm-1对错晶碳酸钙的吸收峰。由此可知,图6中a和d对应的碳酸钙微球含有球霞石,这与XRD图的分析成果共同。4个样品中均呈现非晶态碳酸钙的特征吸收峰,阐明乙醇溶液和柠檬酸的参加都在必定程度上按捺了碳酸钙的结晶,促进非晶态碳酸钙的发作,这也契合XRD图得出的定论。样品b中未呈现文石的特征吸收峰,这与XRD得出的定论不太共同,或许是被其他较强的峰掩盖,也或许是在样品制备过程中发作反响。
3、碳酸钙微球的构成机理
在制备碳酸钙的反响中,没有柠檬酸的参加下,氯化钙溶液和碳酸钠溶液一经混合,反响首要生成热安稳性较好的方解石。反响过程中晶核的发作需求较大的能量,晶核的成长速度远远大于构成速度,因而倾向于构成描摹较大,晶面较规整的碳酸钙(图la)。描摹操控剂的参加阻挠了Ca2+和CO32-的有用磕碰,按捺晶核的构成和成长,然后按捺反响的进行,到达操控样品描摹的意图。
当按捺剂的量较多时,进一步阻挠系统反响的进行,进而添加系统的能量,促进很多晶核的发作。因为比表面积较大,因而晶核在成长过程中聚会构成颗粒的集合体,然后构成比表面积较小的球状(图2a、2b和2c)。乙醇溶液对碳酸钙的成长具有按捺效果,乙醇钙的电离才干较强,而乙醇是弱电解质,溶液中存在很多的乙醇分子。估测反响过程中乙醇分子的存在阻挠了Ca2+和CO32-的有用磕碰,而乙醇分子的存在也阻挠了碳酸钙晶核的成长。跟着乙醇浓度的添加,系统中乙醇分子和离子的量添加,阻挠效果增强。而反响温度的添加,促进了乙醇的蒸发,下降了反响系统中乙醇的含量,然后下降了乙醇的按捺效果,加速反响的进行,削减球霞石的发作而构成文石(图2b)。图7为柠檬酸的分子结构图。柠檬酸根离子是一种较强的金属鳌合剂,能与钙离子鳌合,构成安稳的柠檬酸钙,这与乙醇钙的阻挠效应不同。添加柠檬酸后,柠檬酸根离子与钙离子鳌合构成结构安稳,易溶于水的柠檬酸钙,下降了系统中钙离子的浓度。跟着柠檬酸钙的缓慢离解,Ca2+与溶液中游离的CO32-反响生成CaCO3,少数柠檬酸根离子吸附在晶核表面,按捺晶面的进一步成长,然后使溶液中碳酸钙的过饱和度添加。而球霞石是碳酸钙无水结晶中最不安稳的晶型,一般需求更好的表面能和较高的过饱和度才干构成,因而,反响有利于生成球霞石。
跟着柠檬酸浓度的增大,更多的柠檬酸根离子集合到碳酸钙分子周围,下降了晶核构成的能垒,促进碳酸钙晶核的发作,而进一步按捺晶体的成长。因为柠檬酸根离子浓度较大,对碳酸钙晶体成长的按捺效果也更强,终究得到粒径较小的含有很多球霞石晶型的碳酸钙颗粒。又因为柠檬酸根的空间位阻效果较大,因而,制得的球形碳酸钙微粒的分散性较好,粒度散布较会集。
另一方面,初始构成的纳米级碳酸钙小颗粒具有较高的表面能,为了下降表面能,小颗粒极易集合到一同,而初始构成的碳酸钙集合体表面高低不平,在集合体表面凹的部分区域液相相对流速较慢,Ca2+和CO32-简单在该区域富集,较易快速构成许多小晶粒,这些小晶粒经过彼此交融及结构重组完成集合体的表面最小化。而柠檬酸浓度增大时,吸附在碳酸钙表面的柠檬酸量添加,阻挠了Ca2+和CO32-在碳酸钙表面的富集,按捺碳酸钙颗粒的成长,因而,颗粒直径减小(图3b)。图8所示为依据试验分析得出的或许的碳酸钙微球构成机理。
4、结语
(1)别离选用乙醇和柠檬酸作为碳酸钙粒子的结构和描摹的调控剂,发现二者都能经过按捺碳酸钙的成长调控碳酸钙的结晶,然后制备出不同描摹的碳酸钙。
(2)经过改动试验条件发现乙醇和柠檬酸制备碳酸钙的机理不同,乙醇溶液经过下降粒子的活性来按捺碳酸钙的成长速度,而柠檬酸经过与钙离子反响下降溶液中钙离子的浓度来调控碳酸钙的成长速度。
(3)乙醇溶液对碳酸钙描摹的影响较严峻,50%体积分数的乙醇溶液与浓度为1.0mol/L柠檬酸调控下都能制备出描摹杰出的碳酸钙微球,但是在柠檬酸调控下制备的碳酸钙微球描摹愈加规整,粒度也较小,使用规模愈加广泛。
材料来源于碳酸钙微球的制备及其机理。
球形石英砂制备的关键技术在哪里
2019-03-08 12:00:43
高纯石英砂一般指SiO2含量高于99.9%的石英微粉,首要应用在IC的集成电路和石英玻璃职业。因为IC技能的迅猛发展,对高纯石英砂提出了更高的要求,其间包含将高纯石英砂球形化,球形化的石英砂首要应用于电子塑封。而球形化的最大的优点是进步塑封材料的使用性能,下降原材料的本钱。
国内球形石英砂的首要选用的制备办法首要有火焰熔融法、等离子加热炉法、化学合成法、水解法等,现在常用的办法有火焰熔融法、等离子加热炉法。
1、火焰熔融法
现在,国内各出产供应商首要使用火焰熔融的办法来完成石英粉球形化的量产。该技能的关键是加热设备要求有安稳的温度场、易于调理温度规模以及不要对石英粉形成二次污染。
火焰熔融法制备球形石英砂的流程
首要出产设备包含:粉料定量运送体系、燃气量操控和混合设备、气体燃料高温火焰喷、冷却收回设备等。
其成球原理为:高温火焰喷喷出1600-2000℃的高温火焰,当粉体进入高温火焰区时其角形表面吸收热量而呈熔融状况,热量进一步被传递到粉体内部,粉体颗粒彻底呈熔融状况。
在表面张力的效果下,物体总是要趋于安稳状况,而球形则是最安稳状况,然后到达产品成球意图。
粉体颗粒能否被熔融取决于两方面:
一是火焰温度要高于粉体材料的熔融温度,这就要挑选适宜的气体燃料;二是确保粉体颗粒熔融所需求的热量。
t=βωd,式中t为粉体颗粒在火焰中到达熔融所需求的时刻;β为材料的相关系数,如比热、导热系数、密度等;ω为火焰的相关系数;d为粉体颗粒粒径。
依据粉体颗粒在火焰中到达熔融所需求的时刻和粉体颗粒在火焰中的速度,得到所需火焰的长度尺度,经过调理燃气量操控设备到达要求。
2、等离子加热炉法
热等离子体也叫部分热力学平衡等离子体,其首要特征是等离子体中部分的电子温度、离子温度以及气体温度简直共同。电弧等离子体、高频等离子体以及感应等离子体都归于热等离子体。
选用高频等离子体熔融法制备球形石英粉,温度规模适中、操控平稳、产值高,可到达较高球化率,因而是一种较适宜的出产办法。
其原理与工艺与火焰熔融法相似,首要是将高温热源变为等离子体发生器。
高频等离子体熔融法制备球形石英粉
作业气为压缩空气,作业气量为10m3/h。高频等离子体发生器输入功率为100kW,发生4000℃-7000℃的高温气体作为热源,将二氧化硅粉体经过给料器从顶部运送到等离子反应炉弧区内,粉体受热熔化和气化,经特制的骤冷器进行淬冷,再经重力搜集,旋风搜集(微米级)和布袋集尘(纳米级),在1s-2s内,就可得到球状微米级和纳米级SiO2粉体。
球形熔融硅微粉
首要设备有:等离子体发生器、粉体运送器、等离子反应炉、冷却收回设备、旋风搜集器、布袋搜集器。
球形碳酸钙制备方法及研究进展!
2019-03-06 10:10:51
碳酸钙按形状分为无规矩体、纺锤形、针形、球形、链锁形、片形、偏三角形和菱形六面体形、无定形等,不同形状的碳酸钙,其应用范畴和功用也各不相同。图1 不同晶型碳酸钙晶SEM相片
因为球形碳酸钙有杰出的滑润性、流动性、涣散性和耐磨性等特性,故而被广泛应用在橡胶、涂料油漆、油墨、医药、牙膏和化妆品等范畴。
01 球形碳酸钙制备办法及研讨进展
球形碳酸钙的组成办法多以液相法为主,依据反响机理的不同又可将其划分为三种反响体系:Ca(OH)2-H2O-CO2反响体系、Ca2+-H2O-CO32-反响体系和Ca2+-R-CO32-反响体系(R为有机质)。
(1)Ca(OH)2-H2O-CO2反响体系——碳化法
该反响体系是以Ca(OH)2水乳液作为钙源,用CO2碳化制得碳酸钙。Ca(OH)2一般由天然碳酸钙锻烧成生石灰,然后经消化得到,碳酸钙锻烧的烟道气经净化作为碳化反响的CO2来历。
碳酸钙晶体的成长与描摹的构成首要发生在碳化阶段,可经过反响温度、Ca(OH)2浓度、CO2流量、晶体成长抑制剂等要素加以操控,制得球形碳酸钙产品。
研讨进展:
①向兰等选用间歇碳化法(管式气体散布器)组成了均匀粒径0.1μm左右的超细球形碳酸钙;选用小气泡及CO2含量较高的混合气体有利于构成超细碳酸钙,参加少数添加剂如ZnCl2、MgCl2或EDTA(乙二胺四乙酸)可显着改动碳酸钙粒子的描摹和巨细。
②陈先勇等选用间歇鼓泡碳化法,在碳化温度为20℃左右、灰乳密度为1.07(d)的条件下,参加少数复合添加剂PBTCA(2-磷酸基-1,2,4-三羧酸)和CTAB(十六烷基三甲基化铵),可制得粒度散布均匀、涣散性好、均匀粒径为40nm左右的球形碳酸钙。
③赵风云等以一种出产球形纳米碳酸钙的喷发-乳化新式组合式碳化反响器,在小型试验设备上,选用正交试验的办法,断定出粒度散布窄的球形纳米碳酸钙的最佳反响条件为:温度15℃,氢氧化钙浆液质量浓度65g/L,气液体积比5:1,在完结小试的基础上,建成了年产60吨纳米碳酸钙的中试试验设备,并成功制备出均匀粒径80nm球形纳米碳酸钙。图2 球形纳米碳酸钙中试出产线
④谷丽等以石灰石为质料,选用间歇鼓泡碳化法制备纳米球形碳酸钙,在反响温度为20-40℃,石灰乳浓度为86g/L,空塔气速为0.114m/s时,晶形操控剂参加量为1%时,可得到涣散性较好、粒度散布较均匀纳米球形碳酸钙。
碳化反响开端后,在不同时刻参加同一剂量的同一种晶形操控剂,制得碳酸钙的晶形和粒径不尽相同,晶形操控剂参加的时刻越早,所得到的球形碳酸钙晶体的描摹越好、粒径越小。
图3 纳米球形碳酸钙工艺流程
⑤申小清等用硅酸钠为晶形操控添加剂,经过石灰乳碳化工艺制备了颗粒尺度为40-50nm的球形超细碳酸体,添加剂最佳用量为0.7-1.5%。
(2)Ca2+-H2O-CO32-反响体系——复分化法
该体系是将含Ca2+的溶液与含CO32-的溶液在必定条件下混合反响来制备碳酸钙。依据质料的不同又分为氯化钙钙-碳酸钙法、氯化钙-苏打法(苏尔维法)、石灰-苏打法等。
一般经过添加剂来操控产品的粒径和晶体结构。用Ca2+-H2O-CO32-反响体系反响体系能够得到20-100nm的碳酸钙。
研讨进展:
①方卫民等选用复分化法将必定量的无水Na2CO3和CaCl2别离溶解于适量水中,经过参加少数添加剂乙二胺四乙酸二钠和磷酸氢二钠,制备出了均匀粒径为50-70nm的球形碳酸钙。
②雷鸣等经过有机聚合物聚磺酸钠PSSS对碳酸钙粒子的调制效果,成功制备出了均匀粒径为5μm的球形碳酸钙。
③谢英惠等运用缓冲剂氯化钠和结晶成长中止剂调理碳酸钙的描摹,选用复分化法制备出了球形碳酸钙。
(3)Ca2+-R-CO32-反响体系——微乳液法和凝胶法
该反响体系是经过有机介质R来调理Ca2+和CO32-的传质,然后到达操控晶体成核成长的意图。依据有机介质R品种的不同可分为微乳液法和凝胶法两类。
微乳液法选用的有机介质一般为液体油,而凝胶法选用的是有机凝胶。这类共聚物具有2个亲水链段(耦合链段与促溶链段),能够定向吸附于无机-水界面。
带有特定功用团的共聚物可能与金属离子及表面活性剂相互效果而在溶剂中构成较为杂乱的有序集合结构。这些特性使得双亲水嵌段共聚物在调控无机粒子描摹方面显示出共同的长处。
(4)其他
①袁可等将基酸-甘酸和废渣经过简略的酸碱中和反响,制备出了超微细球形碳酸钙,其纯度和白度均达96%以上,成团微粒为纳米级,二次团粒结构的粒径散布在1-3μm之间,经过pH或物理和化学的涣散,可便利的调控其微观尺度。
②赖永华等运用甘酸与渣的首要成分Ca(OH)2反响生成可溶性的甘酸钙,过滤除掉不溶杂质。在气升式高效反响器中,向甘酸钙溶液通入CO2进行碳化反响,洗刷后制得超微细球形碳酸钙膏体。选用该超微细球形碳酸钙膏体替代配方中的悉数粉体制备水性涂料,不光能够下降涂料的质料本钱和出产本钱,还能够简化涂料的出产操作、削减粉尘污染。
表1 超微细球形碳酸钙性能目标02 国外球形碳酸钙出产及研讨现状
国外开发的低光泽纸专用球形碳酸钙具有白度高、易涣散、油墨吸收性杰出、粒径散布窄等优秀特性,其2-5μm的粒子占比约为67%,晶体形状为较规矩球形。
研讨标明:3.5μm低光泽纸专用球形碳酸钙在涂猜中的最佳用量在40-50%之间,此刻能够获得较低的纸页光泽度,较高的印刷光泽度和高的光泽度差。与其他无光纸用颜料比较,运用球形碳酸钙可获得光学目标、物理性能及印刷适性之间的平衡,而且不会发生印刷斑驳。
因而,球形碳酸钙是一种出产低光泽涂布纸的优秀颜料,能够替代现行涂料配方中的几种颜料,提凹凸光泽涂布纸质量,下降出产的杂乱性,将会有宽广的市场前景。
现在,碳化法制备球形碳酸钙是出产厂商和科研院所重视和研讨的要点,别的也有一些厂商经过湿法超细研磨制备出了椭圆形碳酸体材料。未来,对粒子巨细和描摹的有用调控将成为碳酸钙被广泛应用的关键技术。
碳酸钴制备超细球形钴粉的工艺探讨
2018-12-10 14:19:22
碳酸钴制备超细球形钴粉的工艺探讨.pdf
稀土用途
2017-06-06 17:50:03
稀土用途 稀土的用途十分广泛。只要在一些传统产品中加入适量的稀土,就会产生许多神奇的效果。目前,稀土已广泛应用于冶金、石油、化工、轻纺、医药、农业等数十个
行业
。稀土钢能显著提高钢的耐磨性、耐磨蚀性和韧性;稀土铝盘条在缩小铝线细度的同时可提高强度和导电率;将稀土农药喷洒在果树上,即能消灭病虫害,又能提高挂果率;稀土复合肥即能改善土壤结构,又能提高农产品
产量
;稀土元素还能抑制癌细胞的扩散。 由于稀土元素在光、磁、电领域能够产生特殊的能量转换、传输、存储功能,因而,通过对稀土原料的加工,已形成稀土永磁材料、稀土发光材料、稀土激光材料、稀土贮氢材料、稀土光纤材料、稀土磁光存储材料、稀土超导材料、稀土原子能材料等一批新型功能材料。这些材料因为无污染、高性能而被称为“绿色材料”,它们已经或将要在电子信息、汽车尾气净化、电动汽车以及空间、海洋、生物技术、生理医疗等领域发挥巨大的作用。 稀土有净化环境的功能。汽车尾气净化催化剂是稀土应用量最大的项目之一。电子信息
产业
的发展给稀土在高新技术领域应用带来高潮。由于稀土元素具有特殊的电子层结构,可以将吸收到的能量转换为光的形式发出。利用这一特性制成的稀土荧光材料可用于计算机显示器及各种显示屏和荧光灯。以彩电为代表的家电产品广泛应用了稀土的荧光、抛光、永磁、功能陶瓷、玻璃添加剂等多种功能材料,带动了80年代稀土开发应用;90年代以来,以计算机为代表的电子信息产品飞速发展,这些产品除用上述稀土材料外,还有稀土贮氢、磁光、超磁致伸缩等功能材料,直接拉动了世界稀土生产的增长。 以稀土制造的永磁材料,磁性能高出普通永磁材料4到10倍,尤其钕铁硼永磁体是目前发现磁性能最高的永磁材料,被称为超级磁体和当代永磁之王。由于此类材料具有超乎寻常的功能,使电子信息设备在不断提高性能的同时,也实现了轻、薄、小型化。稀土永磁材料还在各类电机、核磁共振仪器、磁悬浮列车等领域有着精妙的应用,并被确定为电动汽车主发动机的首选材料。有专家
预测
,未来几年内,如果稀土永磁材料得到良好的应用,仅材料产值就将达35亿美元,其辐射产值将达到数千亿美元。 稀土贮氢材料贮存密度大于液氢,体积却只有普通钢瓶的六分之一。目前应用最为成功的是镍氢电池, 其等体积充电容量是目前广泛使用的镍镉电池的2倍,且没有记忆效应和镉的污染;与锂离子电池相比,又具备价低、安全性能好的优势,被各国科技和
产业
界称为“绿色电池”,已大量应用于便携式电器、移动电话等无线电子设备,并可望成为下世纪电动汽车的电源。 稀土用途愈来愈广泛,稀土也将会在更多的场合被使用。 以上是稀土用途介绍,更多信息请详见上海
有色金属
网。