白银的主要应用-接触材料
2018-12-11 11:26:00
电器工业中用银量最大的一项就是电接触材料。 目前,全世界银和银基电接触材料年产量约2900~3000t。世界各国接触材料的牌号已有数百种以上,应有尽有。一方面是由于现代工业对接触材料的要求日益增加的结果,另一方面也和各国自已的资源情况不同有关。一些牌号经过改进,添加某些新的元素,实际上也成了另一种牌号的合金。 由于我国稀土资源丰富,20世纪70年代由本文作者在国内率先开发成功的Ag-Ce0.5 合金得到了广泛的应用 ,从此引发了国内研制一系列的含稀土的银基电接触材料。
散热器用铝合金都有哪些种类
2018-12-27 09:30:05
1.Al6063/ Al6061铝合金
优良的可塑性使之可以挤压的工艺制造型材散热器。几乎可以制造任何形状的散热器,工艺成熟,价格便宜,可加工性能高。
2.铸铝
主要应用于大型不规则外形散热器及设备机柜一体化的散热器。
3.LF/LY系列
主要应用在特殊使用环境的电子设备散热器。使用环境对硬度和防腐蚀性有一定的要求。
目前较多使用的是LY12。
4.纯铝
较多使用于对导热性能要求较高的环境。一般较少使用。删除
散热器用铝合金的种类
2018-12-28 11:21:22
1.Al6063/ Al6061铝合金
优良的可塑性使之可以挤压的工艺制造型材散热器。几乎可以制造任何形状的散热器,工艺成熟,价格便宜,可加工性能高。
2.铸铝
主要应用于大型不规则外形散热器及设备机柜一体化的散热器。
3.LF/LY系列
主要应用在特殊使用环境的电子设备散热器。使用环境对硬度和防腐蚀性有一定的要求。
目前较多使用的是LY12。
4.纯铝
较多使用于对导热性能要求较高的环境。一般较少使用。
浅析国内电子电器用铝的发展概况
2018-12-19 17:39:35
铝合金是日常生活中最为常见的有色金属制品,在工业运用中也最为广泛。如航空航天、海上设备、电子消费品、铸件模具等领域,都有着极为丰富的使用。其中与我们日常生产息息相关的,就是日常消费的电子电器用铝产品。 铝具有优良的电导性,因此常被用于高转矩的电动机中;铝具有良好的热导性,因此在制造热交换器、蒸发器、加热电器、炊事用具、汽车散热器等电器用铝方面的应用也极为广泛。铝属于非电磁性,这一优良特点使其在电器用铝方面开拓了更丰富的用途。 铝的密度约为钢、黄铜密度的1/3,与其他有色金属相比,密度更小,同时,在大多环境下,显示出更加优越的抗腐蚀性。铝合金产品能够进行多种表面处理方式,如阳极氧化、机械抛光、化学抛光、人工打磨抛光、拉丝、喷砂等。 目前,电器用铝、电子用铝的常用合金牌号为1060、3003、5052、6011、6061、6063等,在一些机械配件、汽车功放面板、电源外壳、手机外壳、电机马达外壳、LED屏框、灯罩、摄像头配件等十分常见。 目前,国内铝加工厂家的铝板、铝箔产品丰富多样,已基本覆盖电子电器用铝的各个方面。如明泰铝业的电子铝箔在国内市场热销数年,可对电子电器用铝的1系、3系产品进行表面研磨、抛光、拉丝等处理,使铝板表面光泽度更高,明泰铝业拥有先进的涿神箔轧机,保证铝箔的板型良好,液压控制,配合高精度压力传感器和精准辊缝;2010年引进辽宁机械员立式分切机,采用硬齿面齿轮传动,精准度更高;严格控制加工管理,织构、晶粒组织把控精准。 经过多年稳定发展,国内电子电器用铝市场已趋于稳定,并逐步向高端化、专业化方向发展。作为国内铝加工知名企业,明泰铝业也将继续严控优质发展、提高科学管理,为国内电子电器用铝市场再添辉煌!
铁质活性滤膜接触氧化除铁原理
2019-01-21 18:04:24
一、前言
在我国地下水除铁技术中,广泛采用曝气接触氧化的除铁方法。曝气接触氧气除铁法,是使曝气地下水中的亚铁离子不经氧化与溶解氧一同进入接触滤层,在滤层的接触催化作用下完成亚铁离子的氧化和截留。天然锰砂除铁是在我国已得到广泛应用的一种接触氧化除铁法;人造锈砂和自然形成的锈砂除铁法,是七十年代在我国实验成功的另一种接触氧化除铁法。
过去,笔者曾对天然锰砂除铁法进行过系统的实验和研究。近些年来,国内外又对以石英砂为载体的人造锈砂和自然形成的锈砂的除铁过程进行了研究。这些研究成果,发展了接触氧化除铁工艺,提高了接触氧化除铁工艺的效能,促进了接触氧化除铁工艺的推广和应用。
人们对于接触氧化除铁机理的认识有一个发展过程。本世纪三十年代开始将软锰矿砂用作地下水的接触氧化除铁滤料以来,人们一直把二氧化锰当作催化剂,这被称作经典理论。早在六十年代初,笔者在研究天然锰砂除铁过程中就发现了“活性滤膜”的接触催化作用,后又经多次模型及生产试验检验证实,终于于1974年正式提出了活性滤膜接触氧化除铁原理,这使认识又深化了一步。近几年,笔者对铁质活性滤膜接触氧化除铁的基本特征又进行了研究。实验表明,新滤料初期皆有一定的除铁能力,但并不持久经过一段时间除铁能力便开始衰竭。滤后水的含铁浓度相应升高;随着运行时间的增长,滤料的除铁能力又逐渐提高,滤后水水质变好,最终滤料具有了稳定的除铁能力。最终具有稳定的除铁能力。最终具有稳定除铁能力的滤料,称为“成熟”的滤料;由新滤料到“成熟”滤料的转化过程,称为滤料的“成熟”过程。事实上,滤料的成熟过程,正是滤料表面铁质活性滤膜的形成和积累的过程。本文将对新滤料的除铁作用、活性滤膜的形成及积累过程,以及成熟滤层中活性滤膜的除铁特征等方面的问题进行探讨。 二、新滤料的除铁作用
用未经曝气的无氧含铁地下水经新滤料层过滤,发现滤层最初都有一定的去除亚铁离子的能力。图1为新天然锰砂去除水中亚铁离子的情况。新石英砂或无烟煤去除亚铁离子的情况,与天然锰砂类似。新滤料能在无氧条件下除铁,表明新滤料对水中的亚铁离子有吸附作用。
新滤料对水中亚铁离子的吸附能力,与滤料的品种有关,表1为几种新滤料在无氧条件下对水中亚铁离子的动态吸附容量。由表1可见,马山锰砂的吸附容量最大,石英矿砂最小。
表1 新滤料对亚铁离子的动态吸附容量滤料品种名称滤料粒径mm水的含铁浓度 mg/l水的pH水温(℃)吸附容量mg/l马山锰砂1.0~1.2514~186.165000锦西锰砂1.0~1.2514~186.161000阳泉无烟煤1.0~1.2514~186.16250黑龙江烟煤1.0~1.2514~186.16250松花江河砂1.0~1.2514~186.16250北戴河石英矿砂1.0~1.2514~186.1624
实验表明,吸附于新滤料表面的亚铁离子,在有溶解氧的情况下,能被氧化为高铁。但是,在新滤料表面生成的高铁氢氧化物,与在成熟滤料表面生成的具有强烈催化活性的铁质滤膜,在性质上有很大不同。首先,在新滤料表面生成的高铁氢氧化物具有非常密实的构造。新滤料层与成熟滤层的对比试验表明,在滤层都截留相同的铁量时(某次试验为2g),成熟滤层的水力阻抗竟比新滤层高40倍。所以,在新滤料表面生成的高铁氢氧化物比成熟滤料表面的活性滤膜要密实得多。其次,在新滤料表面生成的高铁氢氧化物并不具有强烈的接触催化活性。图2为三种新滤料成熟过程的对比试验。由图可见,由于新滤料具有一定的吸附能力,所以过滤初期都有一定的除铁效果,但当它们的吸附容量逐步耗尽,滤后水的含铁浓度便不断升高。随着过滤除铁过程的进行,在滤料表面开始生成具有接触催化活性的铁质滤膜,由于活性滤膜物质在滤料表面的积累,滤料渐趋成熟。滤层出水含铁浓度又开始降低,从而具有峰状特征。试验发现,虽然这三种新滤料的吸附容量有很大差别,但它们的成熟期却基本相同。如果新滤料表面生成的高铁氢氧化物具有接触催化活性。那么吸附容量大的新滤料截留下来的铁质较多,应该能较快地成熟,即具有较短的成熟期,但实际情况并非如此。所以,新滤料表面生成的高铁氢氧化物不具有强烈的接触催化活性,它与成熟滤料表面具有强烈接触催化活性的铁质滤膜物质的性质是不同的。
三、滤料的成熟过程
含铁地下水曝气充氧后,通过新滤料层过滤,由于新滤料具有吸附能力,所以具有一定的除铁能力。与此同时,滤料表面开始成生具有催化活性的铁质滤膜。所以,新滤料在成熟过程中,同时具有吸附除铁和接触氧化除铁两种作用。新滤料过滤初期,接触氧化除铁作用很小,所以以吸附除铁为主。随着滤料吸附能力的消耗,除铁能力降低,滤层出水含铁浓度逐渐增大。另一方面,在滤料表面生成的活性滤膜的除铁能力则不断增大,当活性滤膜除铁能力的增大速率超过了吸附除铁能力的减小速率时,滤层出水含铁浓度便开始出现下降趋势。由于活性滤膜的接触氧化除铁过程是一个自动催化过程,所以滤膜除铁能力的增大具有加速的特征,使滤层出水含铁浓度的变化过程线在峰值后略具上凸的形状,直至出水浓度降至要求值。之后,滤层出水的含铁浓度便稳定在很低的数值,它表明滤料已趋于成熟。这样,可以把滤料的成熟过程分为三个阶段,第一阶段为新滤料的吸附除铁作用占优势,称为吸附段;第二阶段为铁质活性滤膜的催化除铁作用占优势,并具有加速进行的特征,称为加速催化段;第三阶段表现为铁质活性滤膜的稳定催化除铁作用,称为稳定催化段,如图3。稳定催化除铁过程连续进行相当时间,滤料最终完全成熟。完全成熟的滤料表面被铁质活性滤膜覆盖而发黄,故常称为锈砂。滤料的吸附容量不同,它们的成熟过程也有差别;吸附容量小的滤料,吸附阶段比较短,且滤层出水浓度变化过程线的峰值也较大;吸附容量大的滤料,吸附阶段比较长,出水峰值也较小。当滤料的吸附容量较大,而地下水的含铁浓度又较小时,出水浓度峰值有可能降至水质标准要求值以下,这时滤池一投产便能供应合格的水质。
我们在图2所示条件下,还进行了北戴河石英矿砂、松花江河砂、黑龙江烟煤等滤料的成熟试验,试验结果与图2基本一致。上述六种滤料的吸附段和加速催化段的总长度,大致为4~5d,此时滤层出水含铁浓度都能降至0.3mg/l以下,但出水水质尚不够稳定,7d后则皆能稳定地除铁。
综上所述,滤料品种不同,只对除铁初期的出水水质有影响,基本上不影响滤料的成熟期和成熟滤料的除铁性能,即对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用是没有区别的,这就为在接触氧化除铁工艺中采用石英砂、河砂、无烟煤等廉价滤料提供了理论依据,经济意义是很大的。但是,吸附容量大的滤料,如天然锰砂,在除铁初期出水水质较好,这在实用上是有重要意义的。石英砂、无烟煤等吸附容量小的滤料,投产初期出水水质差,需采取改善水质和加速滤料成熟的措施,是其缺点。
有人用滤料表面铁质的附着指数(附着于100mg滤料表面的铁质的mg数)作为滤料成熟的指标。前已述及,由于不同滤料具有不同的吸附容量,而在滤料表面吸附氧化的铁质并不具有催化活性。吸附容量大的滤料,在除铁初期就使附着指数达到相当数值,但这时滤料并不具有相应的“成熟”程度。所以,用附着指数作为滤料成熟的指标,对吸附容量不同的滤料不是普遍适用的。
人们习惯于以除铁滤层出水含铁浓度降至饮用水水质标准(0.3mg/l)以下作为滤料成熟的标志。由于滤层都是在一定的条件下进行工作的,这就使“成熟”与具体的工况有关,而不具有统一的标准,难于相互比较,所以也是不完善的。
我们认为,以单位滤料表面积所具有的接触氧化反应速度常数或滤层的接触催化活性系数作为滤料成熟的指标比较合理。
四、铁质活性滤膜的化学组成及其催化的基本特征
在去除亚铁离子的过程中,滤料表面上逐渐形成了铁质活性滤膜。在一个过滤周期里,如果滤膜在滤料表面上的附着量大于反冲洗中的剥落里,滤料表面上的铁质便增多,这使滤料颗粒逐渐变大。对含铁浓度较高的地下水除铁水厂,能观察到明显的滤层增厚和造粒现象,有的水厂,滤料使用一年,部分滤料的粒径可由0.6~2.0mm增大到5~6mm,体积增加几倍乃至几十倍,成为锈球。这种锈球湿时为棕黄色,表面上附着一层疏松的铁质氢氧化物(滤膜)。洗去滤膜,锈球表面光滑且有一定强度。剖开锈球,内部棕黑相间,为年轮状,比较密实。锈球内多有一个由细滤料构成的小的核心,但也有没有核心全由铁质组成的。
将由佳木斯水厂取来的锈球焙烧后,测得其中含Fe2O388%,SiO28%,此外还含有Ca、Mg、Mn等多种元素。锈球外部疏松的铁质滤膜的化学成分,与锈球相同。根据锈球形成的过程,可以断定内部那样密实的物质是由滤料表面这种疏松的铁质滤膜长期积累逐渐形成的。
我们还对新鲜滤膜和锈球内部物质进行了差热和热失重分析,测出它们的化学组成如表2。新鲜滤膜的试样为生产滤池反冲洗水沉淀下来的铁泥(测定前已存放一天)。由表2可见,铁质滤膜与锈球内部物质虽然化学成份相同,但化学组成却有不少差异。通过比较可以看出,由滤料表面铁质滤膜积累成锈球内部物质的过程,是结晶水逐渐脱离的过程,外观上则由疏松到密实。
为了了解滤膜与锈球内部物质催化活性的差别。进行了下面的对比试验。一支滤管装入附有新鲜滤膜的锈球作滤料,另一支滤管装入洗去滤膜的锈球作滤料,使它们在相同的条件下进行除铁试验。
表2 铁质活性滤膜的化学组成试样名称化学组成新鲜滤膜Fe2O3·5H2O或Fe(OH)3·H2O锈球内部物质Fe2O3·H2O或FeOOH新鲜滤膜Fe2O3·6H2O或Fe(OH)3·2H2O图4为试验结果。由图可见,有新鲜滤膜的锈球,降铁效果良好。而洗去滤膜的锈球则除铁效果很差,并且具有与新滤料相同的特征,它表明只有锈球表面疏松的滤膜物质才具有催化活性,而锈球内总密实的物质则没有催化活性。滤料表面这种具有催化活性的疏松的铁质滤膜,称为铁质活性滤膜。
地下水含铁浓度14mg/l;溶解氧浓度7~8mg/l;滤速10m/h。
实验表明,新鲜的铁质活性滤膜的催化活性最强,随着时间的延长,铁质滤膜逐渐老化,其催化活性也逐渐减退。实验是用成熟滤料进行的,实验结果如图5。由图可见,停运几天以后,成熟滤料的除铁效能已大大降低,表明铁质滤膜会随时间逐渐老化而丧失其催化活性。锈球内部的密实物质,正是由老化的铁质滤膜长期积累而成。所以,滤料表面铁质活性滤膜的催化作用只有在连续的除铁过程中才能实现。滤料表面的铁质活性滤膜在过滤除铁过程中得到新的补充,从而在原来的滤膜上不断覆盖上新的滤膜,这使滤膜始终保持新鲜而具有很高的催化活性。旧的滤膜则逐渐老化丧失催化活性,久之便成为滤料表面密实的附着物。滤料表面的铁质活性滤膜的不断更新,是锈砂接触氧化除铁过程正常进行的必要条件。已经明了,铁质活性滤膜接触氧化除铁的过程,首先是滤膜离子交换吸附水中的亚铁离子,可表示如下:
Fe(OH)3·2H2O+Fe2+= Fe(OH)2(OFe) ·2H2O++H+
当水中有溶解氧时,被吸附的亚铁离子在活性滤膜的催化下迅速地水解和氧化,从而使催化剂得到再生,反应生成物又作为催化剂参与反应,所以铁质活性滤膜接触氧化除铁是一个自动催化过程。
Fe(OH)2(Ofe) ·2H2O+1/4·O2+9/2 ·H2O= 2Fe(OH)3·2H2O+ H+
收集反冲洗水中的铁泥进行分析,发现其中基本上不含亚铁化合物。它表明被活性滤膜吸附的亚铁离子能被迅速地氧化为高铁。
按照铁质活性滤膜接触氧化除铁是一个自动催化过程的概念,在过滤除铁过程中被截留于滤层中的铁质由于具有催化作用,应能使滤层的接触氧化除铁能力得到提高。情况确实如此。图6为除铁过程中,水的含铁浓度沿滤层深度方向分布的变化情况。其中曲线1为滤层反冲洗后1小时的浓度分布情况,曲线2为反冲洗后36小时的情况。由图可见,曲线2较曲线1的位置上移,表明随着铁质在滤层中的积累,滤层的接触氧化除铁能力有明显的提高,它证实了铁质活性滤膜接触氧化除铁是自动催化过程的结论。
五、成熟滤层的接触氧化除铁速率
水中的亚铁离子在成熟滤层中被去除,经历以下诸步骤:亚铁离子由水中向滤料表面扩散;亚铁离子被滤料表面的活性滤膜吸附;被吸附的亚铁离子水解并被氧化,生成高铁氢氧化物——铁质活性滤膜。上述诸步骤中,反应速度最慢者将成为除铁速率的控制步骤。实验表明,亚铁离子向滤料表面扩散可能是除铁速率的控制因素。实验还表明,滤料上活性滤膜只以外表面吸附水中的亚铁离子。根据菲克定律,亚铁离子向滤膜表面扩散时,扩散速率与水中和滤膜表面的亚铁离子浓度差(C-C’)成正比,与滤膜表面的边界层厚度σ成反比。如果将扩散速率作为除铁速率,并认为C’很小可忽略不计,则
-dc/dt=DS/D(C-C’)≈DS/σ·C (1)
式中 t——时间,t=ml/u;
l——滤层的厚度;
m——滤层孔隙度;
u——滤速;
D——扩散系数;
S——单位体积滤层中滤膜的外表面积,S=6a(1-m)/d;
d——滤料粒径;
a——滤料的形状系数;
σ——边界层厚度;
C’——滤膜表面上的亚铁离子浓度。
将上列各参数代入式(1)得
-dc/dι=βC (2)
β=6Dam(1-m)/ σdu (3)
式中β称为滤层的接触催化活性系数。
当水在滤层中呈层流状态流动时,可以认为边界层厚度为一定值(σ=const),由式(3)可知,这时滤层的催化活性系数与滤速的一次方成反比例关系。
当水在滤层中呈紊流状态流动时可近似地认为边界层厚度与滤速成反比例关系,
σ=a/u (4)
式中 a为比例系数。将式(4)代入式(3),得
β=6Dam(1-m)/ad (5)
即紊流时,除铁效果与滤速无关,这可以看作与滤速的零次方成反比。
当水在滤层中低于层流和紊流之间的过渡区时,可以认为滤层的催化活性系数与滤速的p次方成反比,
β=6Dam(1-m)/bdup (6)
式中 b为比例系数;而0
由雷诺数可判别水在滤层中的流态。雷诺数按下式计算
Re=pdu/6μa(1-m) (7)
则Re上述滤层除铁速率与滤料粒径以及滤速的关系,笔者早在天然锰砂除铁的研究中已经通过实验得到。现在,我们又从理论上作出了论证。
设亚铁离子在滤膜上的反应速率(吸附、氧化、水解)与表面上的亚铁离子浓度成正比,所以滤膜表面上的除铁速率为
-Dc/dt=KSC’ (8)
式中 K——单位面积滤膜上的反应速度常数。
当除铁过程稳定时,表面反应速率与扩散速率相等,即
KSC’=DS/σ(C-C’) (9)
从而得 C’=C/(1+Kσ/D) (10)
将式(10)代入式(8),得
-Dc/dl=[K/(1+Kσ/D)]·[6am(1-m)/du·C] (11)
比较式(11)和式(2),可知
β=[K/(1+Kσ/D)]·[6am(1-m)/du] (12)
由上式可知,β随K的增大而增大,所以两者都可用作判断滤料成熟程度的指标。
六、几点结论
1.通过对天然锰砂、石英砂、河砂、无烟煤等多种滤料的实验,发现新滤料对水中铁离子有吸附作用,吸附容量因滤料种类而异,但吸附于新滤料表面的铁质氧化后并不具有催化性能。新滤料的吸附容量大,过滤初期除铁水质较好。
2.实验表明,对亚铁离子氧化起催化作用的是除铁过程在滤料表面上自然形成的铁质活性滤膜,其形成速度一般与滤料种类无关。铁质活性滤膜的化学组成为Fe(OH)3·2H2O。实验证实,铁质活性滤膜接触氧化除铁过程是:水中亚铁离子先被滤膜吸附,然后被氧化和水解,生成新的活性滤膜,并作为新的催化剂参与反应,所以活性滤膜除铁是一个自动催化反应过程。实验表明,除铁过程中截留于滤层中的铁质,能使滤层的接触催化能力增大。
3.实验表明,新滤料的“成熟”过程,就是铁质活性滤膜在滤料表面逐步积累的过程。成熟滤料的除铁过程,实质上就是滤料表面铁质活性滤膜的除铁过程。对成熟滤料而言,不同品种的滤料作为铁质活性滤膜的载体,其作用基本上是没有区别的。滤料的成熟过程可分为吸附段、加速催化段和稳定催化段等三个区段。建议以单位滤料表面积上的反应速度常数K或滤层的接触催化活性系数β作为判别滤料成熟的指标。
4.实验研究表明,新鲜的铁质活性滤膜的催化活性最强,但随时间滤膜逐渐脱水老化,其催化活性也逐渐减弱,所以,滤料表面活性滤膜的催化作用只有在连续的过滤除铁过程中才能实现。
5.实验证实,滤层的接触氧化除铁速率由亚铁离子向滤膜表面的扩散速度控制。从扩散定律出发,理论推导出滤层除铁速率公式。
安全滑触线钢铝复合接触轨
2019-01-11 15:44:03
安全滑触线钢铝复合接触轨由轻质的导电铝轨本体和非常耐磨的不锈钢接触面构成。轨身由高强度耐腐蚀铝合金(6101-T6)挤压而成。接触面是连续的6mm厚的不锈钢带。不锈钢带同导电铝轨机械复合,以确保它们之间的金属结合,从而保证铝和不锈钢带间的较小的接触电阻。20℃时,复合轨的直流电阻不超过8.5毫欧/米。复合轨供货长度为15米,每根3000A接触轨的重量约为218kg,长度为15m。 在标准正线接触轨是按照标定距离3~5米置于绝缘支架装置之上的(托架定位的允许公差±10毫米)。注:在特殊地段,如车站处、转折处、弯道处、坡道处或膨胀接头处,绝缘支架装置之间的距离应不小于3m。 安全滑触线钢铝复合接触轨普通接头适用于固定连接相邻接触轨并传导电流。复合轨的连接孔和鱼尾板都有较小的公差,这样在相互配合时可以保证只有很小的或者几乎没有任何相互移动。接触轨接缝部位要求安装平齐,保证覆不锈刚带一侧安装平齐,不允许有高低不平,或扭转现象,安装精度为0.5mm。 膨胀接头的设计使得其可以适应因环境温度变化引起的热胀冷缩、电流引起的温升、日照和复合轨的移动。膨胀接头组件要求与相邻行车轨之间接触面对齐,保证列车受电靴的平滑通过。 安全滑触线膨胀接头长1975mm,在直线段,膨胀接头应尽量安装在两个支架装置的中心部位,较少膨胀接头的每一端距支架装置的距离不小于400mm。弯道段中设置膨胀接头,则会使绝缘支架及膨胀接头受到很大的张力。膨胀接头的滑动块会因为这一额外张力而加速磨损,绝缘支架也会很快磨损。 所以一般不在弯道处设置膨胀接头。在特殊情况下,也会出现半径小于300m的弯道必须设置膨胀接头的情况,此时膨胀接头依然能起到作用,可是会使膨胀接头张开及闭合的张力转移作用于绝缘支架上。鉴于锚固之间的距离,这一点应引起重视。 安全滑触线电连接用中间接头除了连接两根独立的钢铝复合轨外还用于将外部电流引入到接触轨。每个中间接头可以连接8~12根240mm2的导线。导线必须留有足够余量,避免向复合轨施加额外的力,从而阻碍复合轨在纵向的移动。 安全滑触线端部弯头按照正线和车场线分为两种,正线弯头长度为5.2m,端部弯头两端的高度差126mm;车场线弯头长度为3.4m,端部弯头两端的高度差129mm,端部弯头同接触轨之间采用普通接头连接。其作用是为了保证列车在额定速度运行时,受电靴能够平滑的接触和脱离复合轨。
钨铜的应用
2019-05-27 10:11:36
钨铜是一种由高纯度钨粉和纯度高塑性好的高导电性铜粉结合,经过静压成型,高温烧结,熔融技术精制而成而成的复合金属材料。杰出的导电性、热膨胀小、高温不软化,高强度,高密度,高硬度。 电火花制作电极前期选用铜或石墨电极,廉价但不耐烧蚀,现在基本上已被钨铜电极代替。钨铜电极的优势是耐高温、高温强度高、耐电弧烧蚀,并且导电导热功能好,散热快。使用会集在电火花电极、电阻焊电极和高压放电管电极。电制作电极特点是种类规格繁复,批量小而总量多。作为电制作电极的钨铜材料应具有尽可能高的致密度和安排的均匀性,特别是细长的棒状、管状以及异型电极。 电制作电极用钨铜合金在电火花制作开展开端的较长时期内,遍及选用铜和铜合金作为制作电极。尽管铜和铜合金多少钱低廉、使用方便,可是因为铜及铜合金电极不耐电火花烧蚀,导致电极耗费大,制作精度差(有时需进行屡次制作)。跟着模具精度和许多难制作材料部件用量的不断添加,以及电火花制作技术的日益老练,钨铜材料作为电火花制作电极的用量日积月累。选用钨铜材料的电制作电极,不只使被制作模具及部件的精度进步,并且电极丢失小,制作效率高,乃至一次即可完结产品的粗制作和精制作。作为电制作电极的钨铜材料应具有尽可能高的致密度和安排的均匀性,特别是一些细长棒材、管料以及异型电极,假如选用惯例的办法制取,则技术非常冗杂,材料利用率很低
空调器用铜管技术要求,内螺纹铜管知识概括
2019-03-06 11:05:28
本文空调器用铜管技能要求,对空调器用内螺纹铜管的品种、技能要求、实验办法、查验规矩和标志、包装、运送及储存做了全面归纳,供空调出产厂商参阅运用。
一、引证标准
GB/T 5121-1996
GB/T 5231-1985
GB/T 6397-1986
GB/T 228-1987
GB/T 242-1997
GB/T 244-1997
JIS H3300-1997
GB/T 246-1997
GB/T 8888-1988
GB/T 17791-1999
GB/T 5248-1998
铜及铜合金化学分析办法;加工铜一化学成份和产品形状;
金属拉伸实验试样;金属拉伸实验办法;金属管、扩口实验办法;
金属管曲折实验办法;铜和铜合金无缝铜管;金属管压扁实验办法;
重有色金属加工产品的包装、标志、运送和储存。
金属管清洁度实验办法;铜及铜合金元缝管涡流探伤办法;
二、术语,下列术语和界说适用于本标准
(1)圆度 同一垂直面铜管最大外径与最小外径的差值。
(2)米克重 每 1m 长度内螺纹铜管或许光管的质量。单位:克每米(g/m)(3)清洁度 铜管每平方米内表面积残留物质量。单位: 克每平方米(g/㎡)
(4)内螺纹铜管 外表面润滑,内表面具有必定数量、必定规矩螺纹的铜管。
(5)均匀厚度 指内螺纹铜管按称重法算出相应公称外径的无缝光管的壁厚值。
(6)圆度 同一垂直面铜管最大外径与最小外径的差值(管材任一端面上丈量的最大与最小直径之差)
三、产品分类与命名
1 产品分类
热交换器用铜管的品种及牌号见表 1。 2 表 1 铜管的品种及牌号 GB/T8895 直销方法 铜管品种 铜材称号 牌号 纯铜或许无 直料(L)/ 卷料(LWC) 光管/ 氧铜 内螺纹管 磷脱氧铜 TP2 (Y2)、 软(M) C1220T (OL) Cu-DHP T2 硬(Y)、 半硬 C1100T 轻软质 状况 牌号 状况 软质(O) Cu-ETP ISO1190-1 JISH3300 牌号
2 产品型号命名如下:
(1)卷料内螺纹铜管标识
示例1:内螺纹铜管,外经Φ 9.52mm、底壁厚 0.27mm、齿高 0.16mm、齿数 70、螺旋角 18 度、 直销方法(LWC),牌号 TP2,铜管直销状况 M,履行标准 GB1527。 符号为:内螺纹铜管 Φ 9.52×0.27×LWC 0.16×70×18 TP2M GB1527。
示例2:内螺纹铜管,外经Φ 9.52mm、底壁厚 0.27mm、齿高 0.16mm、齿数 70、螺旋角 18 度、 直销方法(LWC),牌号 C1100T,铜管直销状况 OL,履行标准 JISH 3300。 符号为:内螺纹铜管
(2)卷料光身铜管标识
示例3:光身铜管,外径Φ 9.52mm、壁厚 0.45mm、方法 LWC,牌号 T2,铜管的状况 M,履行标准 GB/T 8895。 3 符号为:光身铜管Φ 9.52×0.45×LWC T2 M GB/T 8895 。
示例4:光身铜管,外径Φ 9.52mm、壁厚 0.32mm、直销方法 LWC,牌号 C1100,铜管的状况 OL,履行标准 JIS3300。 符号为:光身铜管Φ 9.52×0.45×LWC C1100 OL JISH 3300。
四、技能要求
1 外观要求
(1)表里表面要求
管材的表里表面无针孔、裂缝、起皮、气泡、粗拉道、搀杂、海绵、铜粉、积碳层、绿锈、脏污、水珠和严峻的氧化膜(内螺纹铜管内表面齿型均匀、无划伤)。表里表面色彩要求不得呈(灰)黑色、蓝色,呈细微灰黑色时不能被擦除,不能有油污流出。用气吹表里表面不得有粉沫,且吹后表面不得变成白色。不允许存在显着的划伤、凹坑和斑驳等缺点。
(2)管才质量
管材不该有分层和显着呈暗裂状粗燥感。
2 工艺功能要求
(1)压扁实验 调查压扁后的试样,试样不该有肉眼可见的细小裂纹。
(2)扩口实验 铜管进行扩口实验时,从铜管的端部切取恰当的长度作实验,实验成果应契合表 5 的规 定。
(3)管内清洁度表 6 规则 表 6 铜管清洁度 牌号 T2、TP2 外径/㎜ ≤15 >15 清洁度/(mg/㎡) ≤25 ≤38 扩口率/% 30% 35% 冲锥 60° 60° 成果 试样不该发生肉眼可见的裂纹和 裂口 圆度/㎜ ≤0.30 ≤0.40 5
(4)力学功能与晶粒度 铜管力学功能与晶粒度应契合表 7 的规则。 表 7 铜管力学功能与晶粒度 GB/T8895 直销方法 直料(L)/ 卷料(LWC) 铜管品种 牌号 光管/内 螺纹管 T2 M TP2 C1220T (OL) 220~255 状况 牌号 C1100T 状况 轻软质 220~255 0.015~0.040 JISH3300 抗拉强度 MP 均匀晶粒度㎜
(5)曲折实验 铜管在弯心直径为铜管公称外径 1.5 倍的条件下,曲折 180?一次不该发生皱折和裂纹。
(6)涡流探伤查验办法 一切铜管都有必要通过涡流探伤检测。喷墨符号有必要清晰可见。喷墨的长度为 500mm 左右。 喷墨沿铜管圆周散布,且不少于 2/3 圆周。涡流探伤伤点不多于 5 个/1000m。 注:涡流探伤查验喷墨长度与喷墨符号,涡流探伤按 0.3mm 标准孔进行。
(7)化学成份 铜管的化学成分应契合表 8 的规则,一般情况下能够只丈量 Cu+Ag 确保铜管原料。
五、查验办法
1 外观质量 以目视进行查验。
2 结构尺度 结构尺度用相应精度的东西进行查验。
3 功能要求
(1)压扁实验 铜管的压扁实验按 GB/T246 的规则。
(2)清洁度实验 铜管清洁度参照 GB/T
(3)力学功能 6 17791 实验办法进行。 力学功能实验的其他测验办法按 GB228-2002 履行。
(4)均匀晶粒度 铜管的均匀晶粒度参照 YB/T5148、YS/T 347 和 GB6394 进行。
(5)扩口实验 铜管的扩口实验按 GB/T242 的规则。
(6)曲折实验 铜管的曲折实验按 GB/T244 的规则。
(7)米克重 取 1m 左右长度铜管将两端口磨平后,用卷尺丈量长度,用 1mg 精度的天平称重,核算单 位长度的分量,即为米克重;缺乏 1m 的定尺铜管将两端口磨平后,用游标卡尺丈量长度,用 1mg 精度的天平称重,按份额核算单位长度的分量,即为每米克重。
(8)化学成分分析 铜管的化学成分分析按 GB/T5121 的规则。
六、标志、包装、运送、储存 标志、包装、运送、储存应契合 GB/T 8888 的规则。
1 标志
(1)在查验合格的铜管标签上应标示如下标志:供方技能监督部分的检印、合金牌号、规格、直销状况、批号、出产日期、缺点点数、毛重、毛重、履行标准、出产供应商称号、本卷材料的总长度和净分量等。
(2)铜管的包装图示标志及储运标志应按 GB/T 8888 的规则履行。
2 包装
(1)铜管应按照规则的要求进行包装,包装方法用求悉数用通明塑料纸(塑料胶纸)包装,并在最初部位作显着的标识。
(2)直管包装应契合 GB/T 8888 的规则。
3 运送、储存
(1)铜管在运送的过程中不受雨、雪的影响及受潮。
(2)产品应储存在枯燥、通风杰出的仓库中。
(3)铜管运送、储存应契合 GB/T8888 的规则。
钛标准—压力容器用钛及钛合金焊丝
2018-12-18 10:15:53
JB/T 4745—2002 附录D(规范性附录)压力容器用钛及钛合金焊丝 D.1 范 围 D.1.1 本附录适用于钛制压力容器的钨极气体保护焊用钛及钛合金填充丝和熔化极气体保护焊用钛及钛合金焊丝。D.1.2 本附录适用于压力容器用国产钛材的焊接,也可适用于相应进口钛材的焊接。D.1.3 本附录规定了钛及钛合金焊丝(包括焊丝和填充丝)的要求、试验方法、检验规则和标志、包装等。 D.2 合同内容 本附录所列焊丝的订货合同应包括下列内容:a) 焊丝的牌号、状态、直径;b) 产品形式(直段或无支架卷);c) 对残余元素是否有要求;d) 订货重量;e) 本标准及附录的编号;f) 其他需要说明的事项。 D.3 要 求 D.3.1 牌号、状态、直径与产品形式D.3.1.1 焊丝的牌号、状态、直径及其允许偏差应符合表D.1的规定。表D.1 钛焊丝牌号、状态、直径及其允许偏差牌号 状态 直径mm 直径允许偏差mmSTA0R 冷加工态(Y)真空退火态(M) 0.8,1.0,1.2,1.6,2.02.4,3.2,4.0,4.8 ±0.05(直径<4.0)±0.1(直径≥4.0)STA1R STA2R STA3R STA9R STA10R D.3.1.2 焊丝的产品形式分直段和无支架卷两种。D.3.1.3 直段供货的焊丝长度及允许偏差为915mm±6mm,长度有其他要求时应协议解决。D.3.2 熔炼方法和化学成分D.3.2.1 用于制作焊丝的铸锭应采用真空自耗电弧炉熔炼,熔炼次数不得少于两次。D.3.2.2 焊丝的化学成分应符合表D.2的规定。表D.2 钛焊丝化学成分牌号 主 要 成 分% 杂 质 元 素% 残 余 元 素≤ %Ti Mo Ni Pd Fe O C N H 单个 总和STA0R 余 — — — ≤0.10 ≤0.10 ≤0.03 ≤0.015 ≤0.005 0.05 0.20STA1R 余 — — — ≤0.20 ≤0.10 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA2R 余 — — — ≤0.20 0.10-0.15 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA3R 余 — — — ≤0.30 0.15-0.25 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA9R 余 — — 0.12~0.25 ≤0.20 ≤0.10 ≤0.03 ≤0.020 ≤0.008 0.05 0.20STA10R 余 0.2~0.4 0.6~0.9 — ≤0.30 ≤0.12 ≤0.03 ≤0.020 ≤0.008 0.05 0.20注:当合同中未特别指明时,残余元素包括AL、V、Sn、Mo、Zr、Ni、Cu、Si、Y(该牌号中含有主要成分元素应除去)。合同中未注明时,不提供残余元素的分析结果。D.3.2.3 用户从产品上取样进行化学成分复验时,成品分析的允许偏差列于表D.3。表D.3 钛焊丝成品化学成分分析允许偏差成分元素 规定成分范围% 成品分析允许偏差%Mo 0.2~0.4 ±0.03Ni 0.6~0.9 ±0.03Pd 0.12~0.25 ±0.02Fe ≤0.10或≤0.20 ±0.05≤0.30 ±0.10O ≤0.10 ±0.020.10~0.15 ±0.02≤0.25 +0.03C ≤0.03 +0.01N ≤0.015或≤0.02 +0.01H ≤0.005或≤0.008 +0.002单个残余元素 ≤0.05 +0.02D.3.3 低倍检查 焊丝的横向低倍组织上不应有裂纹、折叠、气孔、分层、缩尾、金属或非金属夹杂物及其他影响使用的缺陷。 3.4 表面与宏观质量 3.4.1 焊丝表面应清洁,无氧化色,不应有裂纹、起皮、折叠、起刺、斑疤和夹杂等,不应有润滑剂和其他外来物质的污染,以及其他影响使用的缺陷。 3.4.2 焊丝应满足在自动或半自动焊接设备中均匀送进的要求。 3.4.3 成卷供货的焊丝缠绕时不应有波浪形、死弯、重叠、并可无阻碍地自由退绕,外端头应有标记,以使方便的找出。 D.4 试验方法 D.4.1 焊丝化学成分仲裁分析方法按GB/T 4698的规定进行。D.4.2 焊丝的尺寸、重量应使用相应精度的量具测量。D.4.3 焊丝的低倍组织检验参照GB/T 5168的规定进行。D.4.4 焊丝的表面与宏观质量的检查采用目视进行。 D.5 检验规则 D.5.1 检查和验收D.5.1.1 焊丝应由供方技术监督部门检验,保证焊丝质量符合本标准的规定,并填写质量证明书。D.5.1.2 需方对收到的焊丝,应按本标准的规定进行复验,如复验结果与本标准规定不符时,应在收到产品之日起6个月内向供方提出。D.5.2 组批焊丝应成批提交检验,每批应由同一牌号、熔炼炉号、制造方法、状态和规格的产品组成。D.5.3 检验项目 每批焊丝均应进行化学成分、尺寸、代倍及表面与宏观质量的检验。D.5.4 取样位置和取样数量D.5.4.1 每批焊丝由成品上任取一个试样进行气体(N、H、O、C)含量的分析,其他成分的含量以原铸锭的分析结果报出。当所使用的铸锭没有分析过残余元素含量时,还应从同一锭号的成品丝材中任意取一个试样进行残余元素的分析。不注明可不分析残余元素。D.5.4.2 每批焊丝任取两卷(或根)分别在每根的两端各取一个试样进行横向低倍组织检查,检验不合格时,该批产品为不合格。D.5.4.3 焊丝应逐根(卷)进行尺寸、表面与宏观质量的检查。D.5.5 重复试验 在化学成分分析检验中,如果有一个分析结果不合格,则从该批焊丝中取双倍试样进行该不合格项目的复验。复验结果若仍有一个不合格,则该批焊丝为不合格。 D.6 标志、包装、运输、储存 D.6.1 产品标志 在已检验的每件(卷)焊丝上应牢固地扎上一个标牌,标牌上应注明牌号、状态、规格、熔炼炉号、批号、净重、生产厂名称(或标识)、本标准呈等。D.6.2 包装、包装标志、运输、储存D.6.2.1 焊丝按标准重量包装时,其实际净重与所示标准重量的差值应在标准重量的10%内,标准重量可按供方习惯,也可双方协议。D.6.2.2 成卷交货的焊丝,无支架卷的内、外直径和卷的宽度可按供方习惯,也可双方协议。D.6.2.3 每件(卷)焊丝用聚乙烯薄膜套好、扎紧后,用木箱包装。产品装箱时,箱内应衬以防潮纸,箱内各件之间须用软材料填实、固定。不同批号的焊丝不得装入同一箱内。D.6.2.4 产品装箱后,在包装箱外壁上应有一清晰、牢固的标记,标记内容有:产品名称、牌号、本标准号、锭号、批号、规格、净重、生产厂名称等。D.6.2.5 产品的其他包装、包装标志、运输和储存等应符合GB/T 8180的规定。D.6.3 质量证明书 每批产品应附有质量证明书。质量证明书应包括产品名称、牌号、锭号、批号、状态、规格、数量(件数、毛重、净重)、合同号、本标准号、生产厂名称与地址、各项分析检验的结果、技术监督部门的印记、检验员印鉴、检查日期、包装日期。 D.7 说明 压力容器用钛及钛合金焊丝也可按GB/T 3623—1998的焊丝技术要求订货,但焊丝的化学成分应符合本附录的要求。 .
江铜集团铜材公司成功研制铜铝复合接触线
2019-01-16 11:51:35
江铜集团铜材公司为提高市场竞争力,在科技发展、自主创新和新产品开发方面勇于创新,今年与江西理工大学成功研制出铜铝复合接触线,这是该公司继双零线、镀锡线、037毫米中拉退火线之后的又一新型高附加值产品。 铜铝复合接触线是由银铜和铝线复合而成,主要用于磁悬浮铁路机车供电项目,其中15公里的试验线在今年3月份得到了使用方的充分肯定。日前,该公司又接到4千米的订单,正抓紧生产。 铜铝复合接触线的研制成功,标志着铜材公司依靠自主创新使产品结构得到了优化和升级,也为今后该公司研制出更多的高附加值产品积累了宝贵的经验。