您所在的位置: 上海有色 > 有色金属产品库 > 液压油 > 液压油百科

液压油百科

液压钢管规格

2019-03-15 10:05:15

液压钢管,是无缝钢管的其中一种材质,含碳量在0.24—0.32%之间,simn单列是因为是因为五大元素(碳C,硅Si,锰Mn,磷P,硫S)中,硅锰的含量高约为1.10—1.40%。    液压钢管经过酸洗、冷轧、冷拔,然后采用先进的高温热处理技术(NBK状态)表面:光亮、光滑、高精密度、高光洁度,内外壁无氧化层,内外壁精度高,机械性能适应在任何一个角度下进行弯曲,而且可承受高压、冷弯不变形、扩口、压扁、抗拉等要求,做到钢管冷弯不爆裂、无裂痕、且内外壁无氧化层。     液压钢管规格工艺介绍:以DIN2391/EN10305高精度精密液压无缝钢管的成品管作为磷化用钢管,用进口环保型磷化液对钢管进行内外壁磷化,形成黑色磷化保护膜,通过磷化膜中的微孔吸收防锈油作防锈处理,两端封盖作防尘处理。   液压钢管主要特点:钢管颜色:黑中带亮,钢管表面颜色均匀度高,一致性强,外表较为美观,钢管防锈性能好。液压钢管完全可以替代同标准的进口液压无缝钢管液压管和普通钢管的液压钢管规格应用 1、流体用无缝钢管:GB8163-99 2、锅炉用无缝钢管:GB3087-1999   3、锅炉用高压无缝管:GB5310-95(ST45.8-ⅲ型)   4、化肥设备用高压无缝钢管:GB6479-1999   5、地质钻探用无缝钢管:YB235-70   6、石油钻探用无缝钢管:YB528-65   7、石油裂化用无缝钢管:GB9948-88   8、石油钻铤专用无缝管:YB691-70   9、汽车半轴用无缝钢管:GB3088-1999   10、船舶用无缝钢管:GB5312-1999   11、冷拔冷轧精密无缝钢管:GB3639-1999   各种合金管16Mn、27SiMn、15CrMo、35CrMo、12CrMov、20G40Cr,12Cr1MoV,15CrMo钢管按生产工艺不同分为无缝钢管和焊接钢管两类。无缝钢管是由钢锭、管坯或钢棒穿孔制成的无缝的钢管。 液压管重量公式:[(外径-壁厚)*壁厚]*0.02466=kg/米(每米的重量)

油套管

2019-03-18 10:05:23

GB/T 8162油套管尺寸偏差项目 允许偏差外径 管体 D≤101.60mm±0.79mmD≥114.30mm +1.0%         -0.5%接箍 ±1%壁厚 -12.5%重量 单根 +6.5%+3.5%车载量 -1.75螺纹参数允许偏差 品种规格 锥度 螺距 齿高 螺纹角度 螺纹长度 管端倒角 紧密距每英寸 累计 管体螺纹 接箍螺纹圆螺纹油管2 3/8"-5 1/2" 10牙/in +5.208 -2.600 ±0.076 ±0.152 +0.051 -0.102 ±1 2/2 ±1 1/2P +5 -0 ±1 1/2P ±1 1/2P8牙/in +5.208 -2.600 ±0.076 ±0.152 +0.051 -0.102 ±1 2/2 ±1P +5 -0 ±1P ±1P圆螺纹套管 4 1/2"-4 1/2" +5.208 -2.600 ±0.076 ±0.152 +0.051 -0.102 ±1 2/2 ±1P +5 -0 ±1P ±1PP偏梯形螺纹套管 接箍 +4.50 -2.50 ±0.051 ±0.102 ±0.025 - - +5 -0 +1 1/2P-0 +0-1 1/2P管子 完整螺纹 +3.50 -1.50不完整螺纹 +4.50 -1.50油套管机械性能纲级 屈服强度(MPa) 抗拉强度(MPa) 延伸率最低 最低 最低 最低Psi Mpa Psi Mpa Psi Mpa HRC BHNJ-55 55000 379 80000 552 75000 517 - -K-55 55000 379 80000 552 95000 655 - -N-80 80000 552 11000 758 100000 689 - -L-80-1 80000 552 95000 655 95000 655 23 241C-90 90000 621 105000 724 100000 689 25.4 255C-95 95000 655 110000 758 105000 724 - -T-95 95000 655 110000 758 125000 724 25.4 255P-110 110000 758 140000 965 100000 862 - -M-65 65000 448 85000 586 100000 689 22 23580 SS 83000 570 99000 680 100000 689 23 241BG80T 80000 552 110000 758 100000 689 - -BG110T 110000 758 140000 965 125000 862 - -油套管化学成份钢级 C Mn Mo Cr Ni Cu P S Simin max min max min max min maxJ-55                          K-55                          N-80                          L-80-1                          C-90-1                          C-90-2                          C-95                          T-95-1                          T-95-2                          P-110                          M-65                          80 SS                          BG80T                          BG110T                          钢管长度项目 范围1 范围2 范围3油管 6.10-7.32m 8.53-9.75m -套管 4.88-7.62m 7.62-10.36m 10.36-14.63m

油相粘附法(油团聚金)工艺应用实例

2019-02-19 10:03:20

油相粘附又称油聚会金。此工艺的开始研讨成果是加拿大资源开发研讨委员会(CARBAD)创造的。因为金矿资源的不断开发,许多国家的高档次金矿床日见削减,使得从含金低于1g∕t的低档次金矿石、老尾矿堆和含金极低的砂矿中收回细粒金成为往后的首要方针。而如今的重选、浮选法等对低档次砂矿和矿石中的微细金粒收回率都不高,怎么选用预先处理使金富集起来,再用惯例冶金办法冶金已日趋重要。这就是油聚会工艺很快进入黄金选矿范畴的原因。 关于油聚会工艺捕收金的机理,在刘建军等的文章中已有论说。其实质正如浮选作业那样向矿浆中参加异丁基黄药之类的捕收剂,使金粒及其连生体发生疏水性,然后参加中性油,使疏水化的粒子进入油相构成含金聚会物,再选用浮选、筛分等办法取得富集金的油相产品。选用油聚会金工艺,作业进程的要害:一是依据原猜中金属矿藏的品种和数量挑选适合的捕收剂,尽可能使金粒及其连生体预先疏水化,并按捺不含金的其他矿藏使其坚持亲水性,这是完成油团挑选性捕集金的先决条件;二是作业进程坚持较高的拌和强度,使亲水颗粒受流体剪切力的效果从油相中排入水相,以进步油团的挑选性吸附和金的富集比。正因如此,若选用油聚会法处理含硫化矿藏高的质料时,会因硫化矿藏被很多捕集,而导致油团精矿含金档次下降。 J.R.福南德等于1964年选用油聚会法对加拿大魁北克省某含硫化矿低于3%(其间90%为黄铁矿)、含金0.6g∕t的原矿进行了实验。因为原矿中天然金粒度为2~20μm,大部分包裹在黄铁矿中,原矿经蘑矿至85%-0.074mm(200目),向矿浆中参加异丁基黄药,并加中性油拌和使其构成聚会物,经筛分取得的油团精矿捕收了悉数硫化矿藏和单体金,含金档次达35g∕t,金收回率达95%。将此精矿于700~800℃进行氧化焙烧后进化浸出。 广西冶金研讨所对油相粘附捕金的研讨,先后选用了11种人工制造粘附剂,经体系实验后筛选出A型粘附剂,并规划了与之配套运用的振荡粘附槽。此种粘附剂是由石腊、石腊油和蓖麻油等按必定份额调制而成,为习惯不同时节温度改变和其他其体条件的需求,配方可进行恰当调整,使其具有最佳硬度和粘附功能。此粘附剂适用于不含硫化矿藏的矿石和砂矿。当用它处理砂金矿时,经一次选矿金的富集比高达5000~61818倍,油团上金的捕集率可达93.33%~98.32%。工业实验标明:油团精矿含金档次达42272kg∕t,金收回率99.5%,尾矿含金0.054g∕t。

油相粘附法(油团聚金)工艺技术

2019-03-05 10:21:23

油相粘附又称油聚会金。此工艺的开始研讨成果是加拿大资源开发研讨委员会(CARBAD)创造的。因为金矿资源的不断开发,许多国家的高档次金矿床日见削减,使得从含金低于1g∕t的低档次金矿石、老尾矿堆和含金极低的砂矿中收回细粒金成为往后的首要方针。而如今的重选、浮选法等对低档次砂矿和矿石中的微细金粒收回率都不高,怎么选用预先处理使金富集起来,再用惯例冶金办法冶金已日趋重要。这就是油聚会工艺很快进入黄金选矿范畴的原因。 关于油聚会工艺捕收金的机理,在刘建军等的文章中已有论说。其实质正如浮选作业那样向矿浆中参加异丁基黄药之类的捕收剂,使金粒及其连生体发生疏水性,然后参加中性油,使疏水化的粒子进入油相构成含金聚会物,再选用浮选、筛分等办法取得富集金的油相产品。选用油聚会金工艺,作业进程的要害:一是依据原猜中金属矿藏的品种和数量挑选适合的捕收剂,尽可能使金粒及其连生体预先疏水化,并按捺不含金的其他矿藏使其坚持亲水性,这是完成油团挑选性捕集金的先决条件;二是作业进程坚持较高的拌和强度,使亲水颗粒受流体剪切力的效果从油相中排入水相,以进步油团的挑选性吸附和金的富集比。正因如此,若选用油聚会法处理含硫化矿藏高的质料时,会因硫化矿藏被很多捕集,而导致油团精矿含金档次下降。 J.R.福南德等于1964年选用油聚会法对加拿大魁北克省某含硫化矿低于3%(其间90%为黄铁矿)、含金0.6g∕t的原矿进行了实验。因为原矿中天然金粒度为2~20μm,大部分包裹在黄铁矿中,原矿经蘑矿至85%-0.074mm(200目),向矿浆中参加异丁基黄药,并加中性油拌和使其构成聚会物,经筛分取得的油团精矿捕收了悉数硫化矿藏和单体金,含金档次达35g∕t,金收回率达95%。将此精矿于700~800℃进行氧化焙烧后进化浸出。 广西冶金研讨所对油相粘附捕金的研讨,先后选用了11种人工制造粘附剂,经体系实验后筛选出A型粘附剂,并规划了与之配套运用的振荡粘附槽。此种粘附剂是由石腊、石腊油和蓖麻油等按必定份额调制而成,为习惯不同时节温度改变和其他其体条件的需求,配方可进行恰当调整,使其具有最佳硬度和粘附功能。此粘附剂适用于不含硫化矿藏的矿石和砂矿。当用它处理砂金矿时,经一次选矿金的富集比高达5000~61818倍,油团上金的捕集率可达93.33%~98.32%。工业实验标明:油团精矿含金档次达42272kg∕t,金收回率99.5%,尾矿含金0.054g∕t。

铜线拉丝油

2017-06-06 17:50:07

CA-Draw 5100铜线拉丝油是一种水溶性润滑剂,适用于各种铜线的拉制。对于连铸及常规热轧棒料同样适用。铜线拉丝油CA-Draw 5100为在集中供液系统及单机使用而设计,适用于各类过滤系统,可以用喷淋式及浸式拉丝机。特点:*优异的润滑油性能,特别适于拉制粗线中线;使用成本低。*抗氧化性能好。*低泡性,提高拉线速度。*不含氯和硫。*成品表面光亮。典型理化参数原液 外观                        琥珀色透明液体  比重(20℃)                      0.92  pH(3%,蒸馏水配液)               8.9  电导率(3%,蒸馏水配液)           600μ S/cm  折光系数                        1.0使用浓度推荐举: 使用浓度需根椐线材、设备、线径与拉线速度综合选择,根据进线直径推荐使用浓度如下:  铜线类型(线径mm)                  浓度  粗线(8 -----2.4)                       8----12%  中线(2.4-----0.55)                    4----8%  细线(0.55----0.1)                     2----4%*     将折光仪的读数乘以该系数,即得该乳化液的浓度百分比。 在连续退火冷却水系统中,也可使用浓度为0.5~2.0%的CA-Draw 5100水溶液,化气以防止铜线氧化及便于随后放线。 CA-Draw 5100采用208升铁桶装运。储存条件:5~40℃,室内储存。以上是铜线拉丝油的详细信息 想查阅更多关于铜线拉丝油的信息 请关注上海 有色 网

国内液压与气动标准大全(二)

2019-01-15 09:49:29

GB/T 15242.1-1994(2001)液压缸活塞和活塞杆动密封装置用同轴密封件尺寸系列和公差   GB/T 15242.2-1994(2001)液压缸活塞和活塞杆动密封装置用支承环尺寸系列和公差   GB/T 15242.3-1994(2001) 液压缸活塞和活塞杆动密封装置用同轴密封   neq ISO 7425-1:1988ISO 7425-2:1989 件安装沟槽尺寸和公差   GB/T 15242.4-1994(2001) 液压缸活塞活塞杆动密封装置用支承环安装沟槽尺寸和公差   GB/T 15622-1995(2001) 液压缸试验方法   neq JIS B 8354-1985   GB/T 15623.1-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-1:1998,MOD 四通方向流量控制阀试验方法   GB/T 15623.2-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-2:1998,MOD 三通方向流量控制阀试验方法   GB/T 17446-1998 流体传动系统及元件 术语   idt ISO 5598:1985   GB/T 17483-1998 液压泵空气传声噪声级测定规范   eqv ISO 4412-1:1991   GB/T 17484-1998 液压油液取样容器 净化方法的鉴定和控制   idt ISO 3722:1976   GB/T 17485-1998 液压泵、马达和整体传动装置参数定义和字母符号   idt ISO 4391:1983   GB/T 17486-1998 液压过滤器 压降流量特性的评定   idt ISO 3968:1981   GB/T 17487-1998 四油口和五油口液压伺服阀 安装面   idt ISO 10372:1992   GB/T 17488-1998 液压滤芯 流动疲劳特性的验证   idt ISO 3724:1976   GB/T 17489-1998 液压颗粒污染分析 从工作系统管路中提取液样   idt ISO 4021:1992   GB/T 17490-1998 液压控制阀 油口、底板、控制装置和电磁铁的标识   idt ISO 9461:1992   GB/T 17491-1998 液压泵、马达和整体传动装置稳态性能的测定   idt ISO 4409:1986   GB/T 18853-2002 液压传动过滤器 评定滤芯过滤性能的多次通过方法   ISO 16889:1999,MOD   GB/T 18854-2002 液压传动 液体自动颗粒计数器的校准   ISO 11171:1999,MOD   三、行业标准   JB/T 2184-1977 液压元件型号编制方法   JB/T 5120-2000 摆线转阀式全液压转向器   JB/T 5919-1991(2001) 曲轴连杆径向柱塞液压马达安装法兰与轴伸尺寸和标记(一)   JB/T 5920.1-1991(2001) 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列 靠前部分 20~25MPa的轴转马达   JB/T 5921-1991(2001) 液压系统用冷却器基本参数   JB/T 5922-1991 液压二通插装阀图形符号   JB/T 5923-1997 气动 气缸技术条件   neq JIS B83771991   JB/T 5924-1991参照NFPA/T2.6.1M-1974 液压元件压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 5963-1991 二通、三通、四通螺纹式插装阀阀孔尺寸   JB/T 5967-1991(2001) 气动元件及系统用空气介质质量等级   JB/T 6375-1992(2001) 气动阀用橡胶密封圈 尺寸系列和公差   JB/T 6376-1992(2001) 气动阀用橡胶密封圈 沟槽尺寸和公差   JB/T 6377-1992(2001) 气动气口连接螺纹 型式和尺寸   JB/T 6378-1992(2001) 气动换向阀 技术条件   JB/T 6379-1992(2001)参照ISO 6431:1992 缸内径32~320mm的可拆式单杆气缸 安装尺寸   JB/T 6656-1993(2001) 气缸用密封圈安装沟槽型式、尺寸和公差   JB/T 6657-1993(2001) 气缸用密封圈尺寸系列和公差   JB/T 6658-1993(2001) 气动用O形橡胶密封圈沟槽尺寸和公差   JB/T 6659-1993(2001) 气动用O形橡胶密封圈尺寸系列和公差   JB/T 6660-1993(2001) 气动用橡胶密封圈 通用技术条件   JB/T 7033-1993(2001)参照ISO 9110-1: 1990 液压测量技术通则   JB/T 7034-1993 液压隔膜式蓄能器型式和尺寸   JB/T 7035.1-1993 液压囊式蓄能器型式和尺寸 A型   JB/T 7035.2-1993 液压囊式蓄能器型式和尺寸 AB型   JB/T 7036-1993 液压隔离式蓄能器 技术条件   JB/T 7037-1993 液压隔离式蓄能器 试验方法   JB/T 7038-1993 液压隔离式蓄能器 壳体技术条件   JB/T 7039-1993 液压叶片泵 技术条件   JB/T 7040-1993 液压叶片泵 试验方法   JB/T 7041-1993 液压齿轮泵 技术条件   JB/T 7042-1993 液压齿轮泵 试验方法   JB/T 7043-1993 液压轴向柱塞泵 技术条件   JB/T 7044-1993 液压轴向柱塞泵 试验方法   JB/T 7046-1993(2001)参照NFPA/T3.4.7M-1975 液压蓄能器压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 7056-1993(2001) 气动管接头 通用技术条件   JB/T 7057-1993(2001) 调速式气动管接头 技术条件   JB/T 7058-1993(2001) 快换式气动管接头 技术条件   JB/T 7373-1994(2001) 齿轮齿条摆动气缸   JB/T 7374-1994 气动空气过滤器 技术条件   JB/T 7375-1994 气动油雾器 技术条件   JB/T 7376-1994 气动空气减压阀 技术条件   JB/T 7377-1994(2001) 缸内径32~250mm整体式单杆气缸安装尺寸   eqv ISO 6430:1992   JB/T 7857-1995(2001) 液压阀污染敏感度评定方法   JB/T 7858-1995(2001) 液压元件清洁度评定方法及液压元件清洁度指标   JB/T 7938-1999 液压泵站油箱公称容量系列   JB/T 7939-1999 单活塞杆液压缸两腔面积比   eqv ISO 7181:1991   JB/T 8727-1998 液压软管总成   JB/T 8728-1998 低速大扭矩液压马达   JB/T 8729.1-1998 液压多路换向阀 技术条件   JB/T 8729.2-1998 液压多路换向阀 试验方法   JB/T 8884-1999**(JB/Z 347-89) 气动元件产品型号编制方法   JB/T 8885-1999**(ZBJ 22008-88) 液压软管总成技术条件   JB/T 9157-1999 液压气动用球涨式堵头 安装尺寸   JB/T 10205-2000 液压缸 技术条件   JB/T 10206-2000 摆线液压马达   JB/T 10364-2002 液压单项阀   JB/T 10365-2002 液压电磁换向阀   JB/T 10366-2002 液压调速阀   JB/T 10367-2002 液压减压阀   JB/T 10368-2002 液压节流阀   JB/T 10369-2002 液压手动及滚轮换向阀   JB/T 10370-2002 液压顺序阀   JB/T 10371-2002 液压卸荷溢流阀   JB/T 10372-2002 液压压力继电器   JB/T 10373-2002 液压电液动换向阀和液动换向阀   JB/T 10374-2002 液压溢流阀

铝线拉丝油

2017-06-06 17:50:05

铝线拉丝油,是拉丝油的一个品种。拉丝油,用于拉丝、拉拔工艺的高效润滑,具体适用于以下领域:   1、各种丝材、线材的拉丝拉线工艺;   2、电子元器件引出线的铜包钢丝、镀青铜胎圈钢丝、镀铜钢丝的拉拔工艺   3、光面钢丝的拉拔。   拉丝油为棕红色液体,由精制油配以国际上高档合成油,添加高PB值水性极压剂、乳化剂、防锈缓蚀剂、防氧防霉剂等多种助剂,经精湛工艺配制而成。   优异的润滑性能、抗磨性能,提高加工精度、表面光洁度,拉丝模耗量低,有效保护丝材或线材,最大程度的减少划伤等现象的发生;润滑性能、冷却性能、防锈性能、清洗性能——四能一体。能有效的排除 金属 屑、油污、油泥、等切屑,减少胶质堵塞管道的程度;有突出的短期防锈、工序间防锈作用。散热冷却,不燃,安全可靠。属高效节能型产品;   优异的乳化效果,乳化安定性好,调制成的乳化液,无析油,具有良好的润湿性和润滑性,能使被加工机件获得好的表面质量;   有较好的快速消泡作用,属于抑泡型产品;   不含亚硝酸盐等有害物质,无不良的刺激性气味,属环境友好型产品;   本品可代替国外同类产品。使用成本低,加工效率高。不易腐败、稳定性好,使用周期长;   水溶性好,高透明度,易于观察工件动态状况;   经济安全、使用寿命长、不易腐败变质、无油泥废油污染。铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。想要了解更多铝线拉丝油的相关资讯,请浏览上海 有色 网( www.smm.cn )铝频道。

国内液压与气动标准大全(一)

2019-01-15 09:49:29

一、采标情况:   idt或IDT表示等同采用;eqv或MOD表示等效或修改采用;neq表示非等效采用。   二、国家标准   GB/T 786.1-1993(2001*) 液压气动图形符号   eqv ISO 1219-1:1991   GB/T 2346-2003 流体传动系统及元件 公称压力系列   ISO 2944:2000,MOD   GB/T 2347-1980(1997) 液压泵及马达公称排量系列   eqv ISO 3662:1976   GB/T 2348-1993(2001*) 液压气动系统及元件 缸内径及活塞杆外径   neq ISO 3320:1987   GB/T 2349-1980(1997) 液压气动系统及元件 缸活塞行程系列   eqv ISO 4393:1978   GB/T 2350-1980(1997) 液压气动系统及元件 活塞杆螺纹型式和尺寸系列   eqv ISO 4395:1978   GB/T 2351-1993 液压气动系统用硬管外径和软管内径   neq ISO 4397:1978   GB/T 2352—2003 液压传动 隔离式蓄能器 压力和容积范围及特征量   ISO 5596:1999,IDT   GB/T 2353.1-1994 液压泵和马达安装法兰和轴伸的尺寸系列及标记   neq ISO 3019-2:1986 靠前部分:二孔和四孔法兰和轴伸   GB/T 2353.2-1993(2001*) 液压泵和马达 安装法兰与轴伸的尺寸系列和标记(二)   neq ISO 3019-3:1988 多边形法兰(包括圆形法兰)   GB/T 2514-1993 四油口板式液压方向控制阀安装面   eqv ISO 4401:1980   GB/T 2877-1981 二通插装式液压阀安装连接尺寸   GB/T 2878-1993 液压元件螺纹连接 油口型式和尺寸   neq ISO 6149:1980   GB/T 2879-1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差   neq ISO 5597:1987   GB/T 2880-1981 液压缸活塞和活塞杆 窄断面动密封沟槽尺寸系列和公差   GB/T 3452.1-1992 液压气动用O形橡胶密封圈尺寸系列及公差   neq ISO 3601-1:1988   GB/T 3452.2-1987 O形橡胶密封圈外观质量检验标准   GB/T 3452.3-1988 液压气动用O形橡胶密封圈 沟槽尺寸和设计计算准则   neq ISO/DIS 3601-2   GB/T 3766-2001 液压系统通用技术条件   eqv ISO 4413: 1998   GB/T 6577-1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差   neq ISO 6547:1981   GB/T 6578-1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差   neq ISO 6195:1986   GB/T 7932-2003 气动系统通用技术条件   ISO 4414:1998,IDT   GB/T 7934-1987 二通插装式液压阀 技术条件   GB/T 7935-1987 液压元件 通用技术条件   neq NFPA T 310.3   GB/T 7936-1987 液压泵、马达空载排量 测定方法   neq ISO/DP 8426 (1988版)   GB/T 7937-2002 液压气动用管接头及其相关元件公称压力系列   neq ISO 4399:1995   GB/T 7938-1987 液压缸及气缸公称压力系列   neq ISO 3322:1975   GB/T 7939-1987 液压软管总成 试验方法   neq ISO 6605:1986   GB/T 7940.1-2001 气动 五气口气动方向控制阀 靠前部分:不带电气接头的安装面   idt ISO 5599-1:1989   GB/T 7940.2-2001 气动 五气口气动方向控阀 第二部分:带电气接头的安装面   idt ISO 5599-2:1990   GB/T 7940.3-2001 气动 五气口气动方向控制阀 第三部分功能识别编码体系   idt ISO 5599-3:1990   GB/T 8098-2003 液压传动 带补偿的流量控制阀 安装面   ISO 6263:1997,MOD   GB/T 8099-1987 液压叠加阀 安装面   neq ISO 4401-1980   GB/T 8100-1987 板式联接液压压力控制阀(不包括溢流阀)、顺序阀、   neq ISO/DIS 5781(1987) 卸荷阀、节流阀和单向阀 安装面   GB/T 8101-2002 液压溢流阀 安装面   ISO 6264:1998,MOD   GB/T 8102-1987 缸内径8~25mm的单杆气缸安装尺寸   neq ISO 6432:1985   GB/T 8104-1987 流量控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8105-1987 压力控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8106-1987 方向控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8107-1987 液压阀 压差—流量特性试验方法   neq ISO/DIS 4411(1986)   GB/T 9065.1-1988 液压软管接头 连接尺寸 扩口式   GB/T 9065.2-1988 液压软管接头 连接尺寸 卡套式   GB/T 9065.3-1988 液压软管接头 连接尺寸 焊接式或快换式   GB/T 9094-1988(1997) 液压缸气缸安装尺寸和安装型式代号   eqv ISO 6099:1985   GB/T 9877.1-1988 旋转轴唇形密封圈结构尺寸系列 靠前部分 内包骨架旋转轴唇形密封圈   GB/T 9877.2-1988 旋转轴唇形密封圈结构尺寸系列 第二部分 外露骨架旋转轴唇形密封圈   GB/T 9877.3-1988 旋转轴唇形密封圈结构尺寸系列 第三部分 装配式旋转轴唇形密封圈   GB/T 14034-1993 24°非扩口液压管接头连接尺寸   GB/T 14036-1993 液压缸活塞杆端带关节轴承耳环安装尺寸   neq ISO 6982:1982   GB/T 14038-1993(2001) 气缸气口螺纹   neq ISO 7180:1986   GB/T 14039-2002 液压传动 油液 固体颗粒污染等级代号   ISO 4406:1999,MOD   GB/T 14041.1-1993 液压滤芯结构完整性检验方法   neq ISO 2942:1974   GB/T 14041.2-1993 液压滤芯材料与液体相容性检验方法   neq ISO 2943:1974   GB/T 14041.3-1993(2001)液压滤芯抗破裂性检验方法   neq ISO 2941:1974   GB/T 14041.4-1993(2001)液压滤芯额定轴向载荷检验方法   neq ISO 3723:1976   GB/T 14042-1993(2001) 液压缸活塞杆端柱销式耳环安装尺寸   neq ISO 6981:1982   GB/T 14043-1993 液压控制阀安装面标识代号   eqv ISO 5783:1981   GB/T 14513-1993(2001) 气动元件流量特性的测定   neq ISO/DIS 6358(1989)   GB/T 14514.1-1993(2001)气动管接头试验方法   neq JIS 8381-85   GB/T 14514.2-1993(2001)气动快换接头试验方法   neq ISO 6150:1988

液压同步技术在冶金行业的应用

2019-01-03 09:36:54

在工业或者军工设备上有很多场合要求两个或多个液压缸同步动作,于是产生了液压系统同步问题的要求,根据工况要求和投资成本可以使用多种液压同步的控制方案。 1. 多个普通节流阀或者调速阀同时使用 使用在同步要求不是很高或者同步功能可以通过机械结构进行缓冲的场合,特点是控制简单,投资成本非常低。比如某厂的板坯翻转台就使用这种控制方案,由于其用于线外设备,且对同步要求不是很高,达到基本同步即可满足工艺参数(见图1)。而且这种同步控制方式成本非常低,达到了既满足工艺动作要求,又满足投资成本控制的要求,非常合适此类场合的使用选择。 2. 使用分流集流阀 分流集流阀又称速度同步阀,是分流阀、集流阀、单向分流阀、单向集流阀的总称。它们在液压系统中,可使同一系统中的2—4个相同的执行元件,无论负载大小如何,均能达到速度同步的运行目的。自调式分流集流阀是在分流集流阀基础上,增加了流量、压力自调节能力,使得该阀可以适应大的流量、压力变化范围和大的偏载工作条件。如某钢厂包盖提升机构液压控制如图2。 3. 使用同步马达 如某炼钢厂转炉裙罩提升控制,转炉裙罩是一个非常庞大的结构件,与其他设备还有配合要求,因此对其提升的同步有一定的要求,特别是要求可靠性比较高,一旦控制功能发生故障,将会引起严重的后果和巨大的经济损失。为了达到高可靠性,这里优先选择机械原理的同步控制方案,因此比例伺服阀加位置传感器的同步控制方法这里不合适;由于此设备运动过程中与其他设备还有配合要求,因此同步要求比较高,所以普通的分流集流阀在这里精度达不到要求。为了满足上述的工艺动作要求,使用同步马达在这里比较合适。使用精度合适的同步马达可以满足设备的同步控制要求,同时机械同步大大确保了设备的可靠性,确保生产线能够顺利运行,避免生产事故和不可估量的经济损失。 4. 使用同步马达配合普通小型换向阀 在对同步要求较高的时候,而又不愿意增加投资成本,就可以采用另外一种简单可靠的同步控制系统,他的原理是正常情况下使用同步马达保持同步,在油缸的位置传感器检查的同步误差超过设计值的时候,打开小型同步阀对油缸进行微量的调整,使油缸回到同步状态中。如某钢厂生产线使用的同步顶升系统见图4。此系统顶升力量近百吨,顶升的目标是液态钢水,且每动作一次就要求保持位置在40分钟,如此长的保压时间,难免两个油缸产生误差,一般的传统控制方式采用两个比例阀单独控制两个带位置传感器的油缸,保压过程中产生不同步时,系统采取控制相对应的比例阀来调整油缸的方式,但是这种方式成本较高,且无法避免软件故障带来的事故停产和其他经济损失,如果发生液态钢水外溢将会发生重大事故,为了达到高可靠性,又能够控制设备投资成本,改成如图4所示的系统后,不仅降低了成本,同时完全实现了原同步控制的要求。 5. 使用伺服阀配合液压缸位置传感器 这种控制方式控制的系统同步精度非常高,能够时刻保持同步,而且频响可以达到较高的水平;但是投资成本非常高并且控制方式比较复杂。除非设备要求较高的状态,不推荐使用。如图5所示某生产线使用的同步振动系统。此系统对应的两个油缸要求完全同步,且两个油缸件基本没有机械刚度,同时,两个油缸作高速高频往复运动,工艺要求每时每刻两个油缸均保持相同的转态。对这类要求非常苛刻的同步控制,只有采用下图的控制方式来实现。 6.其他 当然近年来又出现了一些新的控制技术如北京某公司开发的数字液压技术来实现同步控制,达到了很高的水平,但是业绩有限且成本难于控制,此类技术还有待于更近一步的研究和大家的关注。 总之,液压同步控制的方案非常多,具体使用过程中应该根据实际的工艺动作要求,安装可靠性的要求和投资成本的预算等多方面因素最终确定具体的控制方案。

煤-油聚团选金设备

2019-02-15 14:21:10

吸附设备是煤-油聚团选金新工艺完结工业使用的最中心设备。已规划和选用的设备有下行式串级型搅拌吸附设备(Down stream multistage stirring tank,简称DSMST)和偏疼提高管凹型歪斜筛环流式吸附床(Gas一lift loop reactor with eccentric tube and inclined sieve,简称EILR),以满意操作功能好和出资费用低的要求。    1)下行式串级型搅拌吸附设备(DSMST)    下行式串级型搅拌吸附设备的结构如图1所示。在所规划的DSMST吸附设备中,使用桨叶发生的抽力将浆相和煤一油聚团从混合室上端进口吸入混合室,混合相从槽底出口经提高管排出,从而使煤一油聚团散布均匀,并且无需空气提高设备就能完结浆相或火油聚团的级间传递。把一个搅拌室分红多槽,一起削减槽与槽之间的返混,浆相在搅拌槽内的活动趋向柱塞流,浆相和火油聚团各微元有更多的平等时机进行触摸和吸附别离。    设备级间筛分设备能够使通过上一级槽子吸附的浆相进入下一级槽子进行吸附,一起使煤一油聚团保留在本来的槽内,进行恣意次数的循环。该进程以半回流方法进行。级间筛分设备由提高管和Z型筛组成,省去了紧缩气体和振荡机械系统。混合相的提高量由提高管的高度调理。Z型筛筛网孔径应在煤-油聚团直径和矿粉直径之间。实验结果标明,以筛分替代浮选,能使工艺流程缩短,设备简化。[next]    从DSMST吸附设备与全混式高速搅拌吸附槽的吸附功能比较可知,在矿的含金档次为4.0~5.5g/t条件下,1L的全混式高速搅拌吸附槽在搅拌速度为1400r/min时,金的回收率为84.0%;3.6L的DSMST在搅拌速度为580r/min时,金的回收率为84.0%~85.5%。    DSMST吸附设备的扩大功能列于表1。表1  DSMST吸附设备的扩大功能(间歇操作)吸附槽容积/L处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率/%0.50.15605.720.9483.60.50.156010.651.6184.950143093.68050146093.580.6     通过30kg/h级接连工作,三槽串联吸附,每槽吸附时刻0.5h。榜首槽吸附量达90%以上,第二、三槽吸附量只占总量的百分之几。流量为0.6~2.1m3/h时,金的回收率到达80%以上,渣中金档次可降至0.9g/t。吸附总时刻可缩短至1h(而化炭浆法搅拌吸附时刻长达28h)。经60余次循环后,载金聚团进行焙烧,金档次达2559g/t,富集600倍以上。经接连化实验证明,DSMST吸附设备具有扩大功能好、出资费用低和功率高级特色。    2)偏疼提高管凹型歪斜筛环流式吸附床(EILR )    EILR吸附床,如图2所示。它归于气体提高式触摸器。为了便于气体一起完结物料的搅拌和运送使命,置中心管于偏疼方位。当接连操作时凹型歪斜筛替代溢流口,使浆相溢出而使煤一油聚团停留床内。EILR吸附床内部无滚动部件,结构简略,制作成本低,操作修理便利。该吸附床扩大实验标明,当尺度从40mm×600mm扩大到800mm×3000mm,操作方法从接连改为接连时,金的吸附回收率从83.6%改变到82.4%~83.3%,扩大功能杰出。曾用该设备在中科院化冶所进行了吨级接连性实验,金的吸附回收率达85%。[next]    在接连操作条件下EILR吸附床与DSMST吸附设备的吸附功能如表5.3.2所示。从表2能够看出,EILR吸附床与DSMST吸附设备吸附功能附近,但EILR吸附床结构简略、出资费用低、操作和修理便利,应该为煤一油聚团选金的首选设备。表2  EILR吸附床与DSMST吸附设备吸附功能比较吸附槽类型处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率DSMST50L143016.84.181.5DSMST50L146016.83.882.9EILRФ800mm×3000mm403014.93.184EILRФ800mm×3000mm406014.8384.6

铝合金汽车板材和管材液压成形工艺

2018-12-29 11:29:07

普通冲压工艺加工铝合金表面质量差,成品率低(只有70%左右),不能满足车身零件高精度、高可靠性、高效率和低缺陷制造的要求。汽车车身零件的液压成形技术在欧美、日韩等发达国家的汽车产业中获得了大量应用,设备最高压力达到了400 MPa,加工出铝合金汽车发动机罩内外板、车门内外板及翼子板等覆盖件已装车应用。大型铝铸件、液压成形部件是奥迪A8的两项核心技术。铝合金汽车板材和管材液压成形工艺如图4。    与冲压工艺相比,液压成形工艺的优势如下     (1)减小毛坯尺寸,节约材料。     (2)提高成形极限,减少成形道次。     (3)零件的表面质量和尺寸精度大幅提高。     (4)降低配套模具数量和成本。     (5)减少后续机械加工和组装焊接量。     (6)可以成形形状复杂、变形程度大、整体性要求高的零件。     这项技术在国外已成为汽车轻量化的主流技术,并朝着集成化、快速化、大型化、精确化等方面发展。虽然国内在大吨位样机研制方面已经取得成功,如1 600 t和1 050 t板材液压成形设备,但是在国内推广应用铝板液压成形技术还存在着以下主要难点。     (1)基于铝板液压成形设计知识的欠缺。提供给设计人员的液压成形知识不系统、不全面,造成我国设计人员无法或根本不能够考虑到液压成形技术在轻量化结构件上的应用。     (2)面向液压成形技术的铝板材料成形性和零件质量控制体系的研究不足。多数面向普通冲压成形的铝板材料成形性和零件质量控制研究的结果并不适用于液压成形技术。     (3)诸多的工装模具及超高压液压源系统面向产业化的关键技术有待突破。     (4)以铝板液压成形为核心的全系统联动的装备研究不完善。由于上述原因,面向产业化的并联动作系统并未得到实际的应用,工装和模具开发成型难度大、调试周期长,因而成本较高,在国内车型仍鲜见应用。

谈铝轧制润滑油基础

2019-03-01 14:09:46

诗曰:一纪五旬世界史,二轮八载中华情;  上一年汗水铸宏业,今岁大志再起程; 前路或然折并曲,后天只信拼才赢; 春风起处抛坯砖,欢请金珠缀玉龙。   好富顿公司是一家具有150年悠长前史的金属加工光滑介质直销商,咱们触及的范畴也十分广泛,在铝轧制范畴更是一向体现杰出。当今,咱们期望能够在这里和咱们树立一个交流平台,抛砖引玉,修篁待仪;十步芳草,各抒主意,来谈谈铝轧制的方方面面,就让咱们先从根底的部分说起吧。    轧制是铝加工的较重要手法之一。现代铝合金轧材包含板带材,型线材以及管材等,种类规格有数千种,而且还在不断扩大,在宽度方面有3米以上的板材,在厚度方面有0.01mm一下的箔材等。在轧制尤其是板带轧制时需求杰出的光滑以便能够下降冲突力功率耗费,削减轧辊磨损和进步板面质量。要完成杰出的光滑,首要需求分析光滑状况,进而可结合铝轧制特色,来断定光滑要完成的手法,以到达需求光滑的意图。    1,光滑状况    图1是斯特贝克(Stribeck)在1900年提出的光滑状况曲线图1:斯特贝克(Stribeck)曲线   图中的三个区域对应着三种首要光滑状况。在I区,冲突表面被接连的光滑油所离隔,油膜厚度远大于两表面的粗糙度之和,冲突阻力由光滑油的内冲突来决议,即由光滑剂的黏度决议。还可细分为流体动压光滑或许弹性流体动压光滑状况。油品黏度越高,相对速度越快,载荷越低和表面粗糙度越低,越简单呈现动力光滑。    跟着压力添加,油膜变薄到与表面粗糙度在相同数量级时,进入料鸿沟光滑,冲突副表面微凸体间处于触摸状况,是由极性分子构成的鸿沟膜将冲突副(轧辊和轧板)分隔,II和III的区别是,在II区依然由光滑剂的(有机)分子将冲突副分隔,而在III区触摸副表面间隔十分近,温度很高,是有光滑剂中的组分与金属反响构成的无机膜,将冲突副离隔,也称为极压光滑。关于铝轧制光滑,其光滑一般处于动力光滑和鸿沟光滑的混合光滑状体,其冲突系数在0.03-0.10之间,薄膜厚度在0.1-1.0微米之间。      2,动力光滑完成    如上所提在I区的动力光滑首要是依托光滑油的黏度。光滑油的黏度首要与根底油有关,所以动力光滑在很大程度上取决于根底油。一般将根底油分为白腊基,环烷基和芳香基,其功能比较如表1所示。  芳香烃相关的许多物质都是致癌物质,现已有许多资料来报导。所以,根底油的挑选其实首要是在环烷基和白腊基中来挑选。白腊基根底油黏度指数高,稳定性好,为绝大多数油品所选用,由于不期望在温度改变时黏度改变太大,如液压油,淬火油等。致癌物质,但在作为轧制油的根底油上,有不同的考虑。轧制油组分多,环烷基根底油溶解性好,有利于坚持平衡,故期望运用环烷基根底油,更重要的,温度升高,环烷基油黏度下降地更多,这对轧制而言,能够下降咬入困难。但也有选用白腊基的根底油,由于在动力光滑阶段,由于轧制压力十分大,以至于轧辊都发生了弹性变形,因而实际上是处于弹性动力光滑状况,而白腊基的黏压特性更适合这种状况下的光滑。    在所谓老三套的炼油技能(溶剂脱蜡,溶剂精制和白土弥补精制)中,环烷基和白腊基油源有关,现在广泛应用的加氢炼油技能现已摆脱了对油源质量的依托,并使根底油的质量有了明显地进步,如表2所示,加氢处理的根底油的质量得到明显进步,对轧制油的根底油而言,应该优先选用加氢精制的根底油。  3,鸿沟光滑和完成    鸿沟光滑是靠极性分子吸附在表面,构成鸿沟光滑膜来完成光滑的,工件在表面的吸附状况取决于分子的极性,吸附机制有物理吸附,化学吸赞同极压发应如图2所示。  首要构成的是物理吸附,这首要是依托分子间力,它是相对的长程吸附,动力是分子间力,物理吸附与分子的极性有关,但吸附分子没有与金属构成化学键,所以,如图2所示,吸附并不需求活化能,因而很简单完成,但构成物理吸附后,能量下降甚微,阐明吸附膜的光滑强度不高。    假如吸赞同基体金属构成化学键,则会构成化学吸附,如图2所示,化学吸附需求战胜活化能ΔEact1,该活化能值不很大,故在温度恰当状况下即能够进行。经过化学吸附后,有较大的能量下降,吸附膜强度比较大,国内资料上大都称其光滑剂为抗磨剂或许油性剂。   假如温度更高,吸附就有或许战胜如图2所示的较大活化能ΔEact2,光滑剂中的组分和金属完成化学反响,构成光滑膜,该光滑膜来自于光滑剂的分子和金属的一起效果,是一个无机膜,能量下降许多,所以光滑膜强度较高,该膜的构成是根据化学反响构成的,所以,极压光滑也是一种控制性的腐蚀进程。图3是含S光滑剂在光滑进程中所构成的的这物理吸附,化学吸赞同化学反响示意图,能够看出物理吸附是极性吸附,但未构成化学键(虚线);化学吸附则构成了化学键,而化学反响是构成一层无机膜,该光滑膜中不再有有机的光滑剂分子。  4,铝轧制光滑的特色    铝的轧制光滑,相同遵从上述光滑机制。但铝的轧制光滑有其不同于黑色金属轧制的特色。    (1)铝是面心立方金属,4个111密排面,3个110滑移方向,共3x4=12个滑移系,简单发生变形和粘铝;铝是金属,反响性强,与酸碱都可反响;铝的强度较低,外来杂质简单压入表面。归纳这些要素,铝在轧制进程中表面简单呈现缺点,所以表面质量将成为铝轧制光滑较重要方针之一。    (2)轧制进程中由于冲突特别是在前滑区发生的铝粉较多,而铝没有磁性,难以经过磁过滤去除,但铝粉有必要及时去除,不然这些铝粉或许又会压回到表面。所以怎么有用去除轧制进程中发生的铝粉将是轧制光滑中的关键技能。    (3)S是十分有用的光滑材料。硫化物有较大极性首要在表面构成物理吸赞同化学吸附,起到油性剂或抗磨剂效果。部分温度高时,和铁反响构成具有层状结构的FeS无机光滑膜,起到极压光滑效果。但因硫铝反响在铝轧制光滑中一般不运用含S的光滑成分,只能转而次之运用P,如磷酸酯。磷酸酯的吸附机理一般以为能够经过亲核加成构成如图4所示,或许经过酸碱反响,如图5所示。  铝轧制光滑的这些特色,需求在轧制油配方规划中给予充分考虑。    (好富顿公司 陈春怀 2016年3月22日)

煤-油聚团选金原理

2019-01-25 15:49:15

煤一油聚团法选金的基础是用油将亲油性的煤浸润而形成煤、油聚团。在一定酸度和充分搅拌的条件下,亲油的金颗粒从矿浆中有选择性地被俘获到煤、油团聚物中。这些团聚物可循环吸附新鲜矿浆中的金粒直至很高的载金量,然后同矿浆分离。载金聚团再用湿法或火法处理选金。    煤聚团是用中性油作为桥联液,亲油性的煤粒被浸润而互相聚集成团。控制表面活性剂的加入量可以调节聚团的大小和稳定性。煤一油聚团与金粒和脉石之间存在着由动量差、重力差、范得华力和静电斥力所造成的排斥势垒,也存在着相互间的疏水结合能。利用金粒与脉石两者间存在疏水作用能的差别,使得金粒而不是脉石被煤-油聚团吸附。    在选择性地使金疏水化和降低金粒与煤-油聚团之间的作用势垒的同时,用化学方法抑制脉石等杂质的疏水性就会扩大金粒与脉石等杂质的吸附行为的差异。金粒表面的疏水化预处理通常是加入一些表面活性剂,例如黄药和黑药,使金的表面形成一层疏水膜。    煤-油聚团的选金速率是取决于煤-油聚团与含裸露金的矿粒之间的碰撞频率和碰撞能量。碰撞频率主要由含裸露金的矿粒的浓度和运动速度所决定;碰撞能量则由含裸露金的矿粒的质量和相对运动速度所决定,增加搅拌强度,能使矿粒运动加快,也使金粒表面受到擦洗而增大吸附速率。    由于金粒和煤-油聚团的向心力不同,金粒又以一定速率从煤一油聚团上脱落,最后达到动态平衡。此外,原矿的磨矿粒度,原矿中细泥的含量和铁含量等均会影响浆相与煤-油聚团的接触。对矿砂进行脱泥除铁预处理,能够显著提高金的吸附速率和回收率。

煤-油聚团法选金简述

2019-02-15 14:21:10

与炭浆法比较,煤一油聚团法具有无环境污染,出资费用少和出产成本低的长处。煤-油聚团技能在20世纪70年代首要使用于煤泥的收回,后来使用于金的提取。该办法现已发展到可用于砂金、脉金、老尾矿、尾渣和碳质金矿的处理。处理低档次金矿时,载金聚会物富集金的才能可达1~5kg/t;处理高档次金矿时,载金聚会物富集金可达10~15kg/t,金收回率为62%~95%。    在工艺中起附聚金效果的是煤一油聚团。煤和油的挑选影响聚团性质,也影响金的收回率。一般来说,要求煤的灰粉小于7%,有较高的挥发性,且硬度较大。经实验以长焰煤和气煤较好。油以零号柴油、润滑油、变压器油等中性油较好。对油的要求是芳烃含量较高,一般在23%以上,密度约0.84g/cm3,沸点在200℃左右。    煤粉与油的适宜份额是聚团的要害,一起也影响金的收回率。煤和油份额不同,成团粒度不一样。用油量多则聚团粒度大,表面积小,附载金的才能弱。较小的,均匀的聚团能得到更高的聚金率。实验证明,一般聚团粒度以30~60目,最大粒度不超越2mm较好。    煤-油聚团的用量关系到金的收回率和工艺的经济指标,并且与矿石性质有关。煤-油聚团用量添加,金的收回率也随之增高,但终究趋于平衡。考虑到经济指标与产品载金量,一般挑选聚团用量为矿样的20%~25%。    在工艺过程中一般运用硅酸钠作为脉石按捺剂,以按捺聚团中搀杂的脉石灰粉,进步整体聚金功率。工艺吸附设备和煤金聚团枯燥焙烧设备是煤一油聚团选金新工艺完成工业使用的最中心设备。我国规划选用的是固、固一液系统抽吸式串级型拌和吸附设备和偏疼提高管凹型歪斜筛吸附床。    煤金聚团处理流程有枯燥焙烧法和溶剂洗脱法。枯燥焙烧法有接连操作办法和接连操作办法。接连枯燥焙烧设备由进料器、回转窑、焙灰收集器、驱动设备、温度操控设备等组成。焙灰金丢失小于1%。溶剂洗脱工艺可将煤金聚团中的明金和连生体金洗脱下来,然后可削减煤金聚团中微细粒金的焙烧丢失,但煤金聚团中的包体金仍需要用焙烧办法处理。终究取得的金灰进行非化浸出或直接熔炼。

铝材除油洗白剂的日常管理维护

2018-12-26 10:38:45

A、按建浴浓度配制槽液,充分搅拌溶解即可使用(配槽时将桶内液体摇匀倒出)。   B、随着处理工件数量的增加,使用时间延长和工件带走槽液等原因,槽液的有效成分和液面会有所下降,如果表面油污不多及槽液不是太脏,可以及时补充OY-123铝材除油洗白剂;如果槽液比较脏,而且有一定的油污,建议槽液全部更换。   C、如果都采用本品进行油污及氧化皮的清洁时,建议配置两个同样的OY-123铝材清洗槽,一个作为除油用,一个作为洗白用,这样可以解决单槽出现的严重污染问题。删除

铝合金表面酸性除油方法

2019-03-11 13:46:31

酸性除油处理也是一种被广泛选用的除油办法。酸性除油剂的首要特点是对铝合金表面腐蚀少,除油速度快。这种除油剂最经济的制造办法是在硫酸溶液中增加少数和OP乳化剂,也能够直接到商场上去购买酸性除油剂来运用。  酸性除油剂一般由无机酸或有机酸、表面活性剂、缓蚀剂及渗透剂等组成。酸性除油也是金属表面常用的除油办法,酸性除油的特点是不需要加温,在常温情况下即可有杰出的除油作用。近年来一些酸性除油增加剂的开发,使酸性除油得到了广泛使用,一起酸性除油还具有除锈功用。选用酸性除油时,酸的浓度不该过高,避免造成对工件的腐蚀及对设备的腐蚀。酸性除油剂常用的酸类有硫酸、磷酸、硝酸、柠檬酸等。表面活性常用OP-10、平平加、磺酸等。关于铝合金不能选用等含卤酸。在酸性除油剂中增加磷酸有利于清洗进程的进行。在除油剂中还应参加缓蚀剂,常用的缓蚀刻有乌洛托品、等。氟化物是酸性除油剂中最常用的渗透剂,氟化物的参加能显着加强其除油作用,还可下降酸浓度,进步除油功率。在铝合金工件的酸性除油配方中氟化物参加量不能过多,否则会腐蚀钛挂具,一起过多的氟化物也会使铝合金表面经除油后光泽下降。在铝合金的酸性除油配方中一般以的方式参加,参加量以1g/L左右为宜。一起还应参加适量的、硝酸盐以避免对钛的蚀刻,并可减缓对铝合金的腐蚀。  酸性除油一般都是在常温的情况下进行的,假如加热到40℃左右可显着进步除油作用,常温除油时作业缸可选用硬PVC,加热除油时应选用PP制造。酸性除油溶液的加热使用特氟龙加热器。  酸性除油剂中用量不能太多,否则会腐蚀钛挂具,并影响铝表面性状。铝离子浓度太高会影响低温除油作用,但能够经过进步氟化物或硝酸的浓度来得到改进。  铝合金酸性除油剂能够选用硫酸阳极氧化、化学抛光等的废酸来制造,以做到废物利用,也可下降成本。如不考虑对废酸的再利用,酸性除油剂也可选用磺酸加少数来制造,这样能够使除油溶液的酸度很低,不管是对工件或是设备的腐蚀性都会很低。

液压气动缸筒用精密内径无缝钢管

2019-03-19 09:03:26

液压和气动缸筒用精密内径无缝钢管(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。液压气动缸筒用精密内径无缝钢管标准要遵守。

国际投行浇油超级铜牛显形

2018-12-17 09:42:58

超级铜牛越走越稳。市场浓厚的看涨氛围,使得LME期铜区区200美元的回调幅度也难以看到,上周五价格大涨104美元,返身重新冲击4500美元/吨;而国内方面,铜现货价更是连续数日站在了4万元大关之上,周一沪铜也是跳空高开,主力合约0603收盘39790元/吨,涨270元。   国储方面连续两周未有拍卖动作,给了国内市场一定的做多信心。虽然有传言称国储在LME的空头头寸已经移仓远月,但是其场外期权问题还没有得到解决,而且国储目前正在将前几次拍卖会中流拍的库存铜调往上海地区销售,这又给了投资者较大的想象空间。铜价更加易涨难跌。   连日来的铜市走势充分证明,作为目前已经成为一个投资符号的铜市,吸引了越来越多人的注意。不过国内外两个市场表现迥异:在海外市场,越来越多的机构和资金看好这个市场的金融属性,推动铜价持续强劲;而在中国,则吸引了越来越多的投资者,包括很多原本对金属一窍不通的个人,看到高高挂在天上的铜价垂涎三尺,试图参加到这个巨赌游戏中来。上周五的跳空大涨,是对后者最好的警告。   国际著名投行美林证券在其欧美金属和矿业报告中将铜、铝、铂金等金属价格预期上调,并预计商品供需紧张局面明年仍将持续。报告称,没有迹象显示中国需求放缓,而且OECD领先经济指标显示发达国家市场需求出现加速。在其季度报告中,美林将明后两年的铜价预测上调32%,分别从1.25美元/磅和1.10美元/磅调升至1.65美元/磅和1.45美元/磅。    而最新公布的高盛集团研究报告更是语不惊人死不休,其预计,2006年三个月期铝价格为每吨2300美元,较此前估计上调逾500美元,而对三个月期铜价格的预估则几乎大增2000美元至4750美元。预计2005年全球产量缺口为14万吨,而原本预期为少量供过于求。这一预测价格大大超出人们的预期,从而推动周五铜价一路上行。   摒除一切屏蔽我们视线的信息和喧嚣,我们只看价格,可以说铜市正稳稳地行进在超级牛市周期当中,LME期铜下一个目标位就在4500美元,国内3月合约,也将向40500稳步迈进.

铝带箔轧机轧制油再生装置

2019-03-08 12:00:43

铝带箔轧机在出产进程中选用轧制油(基础油为火油)作为冷却和润滑剂,轧制油在循环进程中会遭到重油(如液压油)的污染,跟着重油含量的添加,将会使产品表面在退火时构成黄斑,现在国内尚无较好的处理计划,只能对整个油箱的油进行替换。本项目设备就是针对去除轧制油中重油而规划开发的工艺技能与环境保护配备。     本设备的技能原理是使用轧制油中各组分物化特性的不同,经过选用真空精馏的办法别离轧制油与重油;选用背压和流量调理相结合的操控手法处理物料运送精度问题;选用细管制、多管程、大进口的计划处理气相轧制油冷凝问题;选用多级多点连锁报警保护方法保证设备安全;选用壳装规划便于设备和保护。     本设备具有运转方法灵敏、运转成本低、规划紧凑、自动化程度高和安防办法完善等特色;再生后的轧制油质量(初馏点≥205℃、终馏点≤280℃、重油含量≤0.1%)满意轧机用油标准。首台设备2005年4月应用于美国铝业(上海)有限公司,再生轧制油理化功能彻底满意轧机用油标准,且各项功能指标到达世界先进水平。     本设备可广泛用于铝带箔加工厂,是出产高质量、高附加值产品的有用质量操控手法,不只提高了产质量量,减少了新油的使用量,一起变废为宝,提高了厂商的环境保护、清洁出产与循环经济水平。设备现在在国内尚无先例,仅有欧洲极少数轧机出产厂具有规划制作才能,属填补国内空白项目。

气动缸筒用精密内径和液压无缝钢管

2019-03-18 11:00:17

气动缸筒用精密内径和液压无缝钢管标准(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。以上气动缸筒用精密内径和液压无缝钢管是常用的无缝钢管标准。

铝材冲压分析及冲压油选择要点

2019-01-09 11:26:51

通常是先加工成铸造品、锻造品以及箔、板、带、管、棒、型材等后,再经冷弯、锯切、钻孔、拼装、上色等工序而制成。    铝元素的化学性质相对比较活泼,容易与酸、碱发生化学反应从而出现腐蚀、锈点、发黑、发霉。铝材质目前在汽车发动机、变速器、航空设备和其它机械设备行业被广泛使用,因此对铝材冲压加工专用冲压油的需求日益增长,冲压油产品提供了铝材加工时速度和大进料比所要求的良好润滑性和冷却性,可延长刀具的使用寿命。    综合上面所述,铝及其合金冲压油的选择非常重要,必须保证良好的润滑性、冷却性、过滤性和防锈性,因此可用于铝及其合金加工的冲压油与普通的冲压油有所不同,选择一款合适的冲压油是十分必要的。    铝材冲压油的选择    冲压拉伸油属于金属加工油,适用于超高强度拉伸成型、拉管冲压成型及冲剪、拉削等。冲压拉伸油分为:水溶性冲压拉伸油、金属冲压拉伸油、铝材冲压拉深油。    1、冲压拉伸油的润滑性:这是拉延油较重要性能,润滑性不好,会导致工件破裂、板材与金属产生烧结、产品出现划伤,模具磨损严重,降低模具寿命。    2、冲压拉伸油的冷却性:冲压加工产生热量的原因很多,模具与材料间的摩擦热及材料塑性变形热都以加工热的形式表现出来。特别是加工形状复杂的零件或塑性变形阻力大的材料时,产生的热量更大,长时间连续进行这种加工时,要是不除去或不抑制这种热量,热量就蓄积到模具上,使模具温度继续上升,模具进一步膨胀,凸模与凹模之间的间隙就会减少,摩擦及施加给材料上的应力就会增大,局部产生高温,导致润滑膜破裂,从而造成烧结、拉伤和破裂等故障。在这种情况下,通过使用水溶性冲压油剂,能够抑制产生的热量,特别是高速连续动作加工和高速连续自动化加工领域以及不锈钢的拉深加工或易拉罐的高速加工等,多使用冷却性好的水容性冲压油剂。    3、冲压拉伸油的防锈性:冲压加工后的零件,一般要原封不动放置很长时间,为了使其在放置期间不生锈,要求拉延油具有良好的防锈性。因为冲压加工用润滑油吸附性很强,在金属表面保持着难以破坏的油膜,所以一般就具有防锈效果。但其效果的大小是根据润滑油的性质和加工条件的不同而不同,另外也根据零件放置环境不同而不同,因此在环境恶劣和存放时间长时,对油品防锈性要求更高。    4、冲压拉伸油的带油焊接性:为了简化工序提高生产效率,要求拉延油具有不必清洗可以带油焊接的性能。有时由于拉延油的附着,在焊接的地方生锈。有的油在焊接时产生有害气体以及影响焊接强度。冲压加工后带油焊接时不发生上述问题,这对拉延油来说是非常重要的。    5、冲压拉伸油的脱脂性(易清洗性):附着在冲压件上拉延油,通过采用确实可以洗净的洗涤剂和洗涤方法来进行清洗时,洗涤成本低廉,并且用很短时间就能脱脂,这也是重要特性之一。冲压件清洗不干净,会影响后工序的喷漆和电镀。    6、冲压拉伸油的操作性:冲压加工前,把拉延油涂刷到加工板材上的操作需要时间和劳力,有损于生产效率,因此这个操作容易进行也成为对拉延油要求的一个性质。特别是对于大尺寸零件,这个性质尤为重要,如果从操作性来看,应尽量采用低粘度的拉延油。    对于冲压成型加工来说,在冲压过程中会产生大量的热量,热量可使工件发生变形,严重影响到工件的精度。因此选择冲压油时既要考虑润滑和冷却性能外还要考虑到冲压油的极压抗磨,如选择的切削极压抗磨性能过低,那么材质可能造成成型不佳的效果。因此对于精冲压成型或超精冲压成型加工选用极压抗磨性能好的冲压油。    在冲压油的选择方面除了要考虑冲压油的润滑性、冷却性等性能外,还要考虑冲压油的防锈性、成本和易维护等方面的性能。冲压油易选用粘度相对较低的基础油加入减磨添加剂,这样既可达到润滑减摩,也可有很好冷却和易过虑性。但是冲压油存在的问题是闪点低,在冲压成型时温度高,易变形,危险系数较高,而且挥发快,用户使用成本相应变高,因此在条件允许的景况下尽量选用抗压抗磨性高的冲压油。    铝材冲压油的使用与维护    (1)铝材冲压油应贮存于阴凉干燥处并保持容器密闭,避免水与杂质的混入,贮存温度不要超出60°C。    (2)为确保冲压效果,不能和其它油脂混合使用,严禁混入其它杂物。

实际生产中如何降低硅微粉的吸油值?

2019-01-18 11:39:34

在高聚物基料中添加硅微粉填料,不仅可降低高分子材料成本,还可提高材料的尺寸稳定性,并赋予材料抗压、抗冲击、耐腐蚀、阻燃、绝缘性等特殊的物理化学性能。 如何提高硅微粉在高聚物中的流动性,降低其粘度,提高整体填充率一直是行业内比较热门的研究方向,而降低硅微粉的吸油值有助于提高其在高聚物中的流动性。 吸油值也称树脂吸附量,表示填充剂对树脂吸收量的一种指数。在实际应用中,大多数填料用吸油值这个指标来大致预测填料对树脂的需求量。吸油值不同,则粉体填料的粒度、比表面积、分散性、润湿程度、吸附性能不同,从而影响粉体与高聚物作用的相容性,所以吸油值直接影响材料质量、性能及用途。图1 粉体吸收油的两种主要形态 吸油值与粉体的大小、形状、分散与凝聚程度、比表面积及颗粒的表面性质有关。但由于硅微粉主要作为填充料用于相关行业,对粒径的要求很高,故通过增大粒径来降低比表面积从而降低吸油值的方式有一定的局限性。因此,由图1可知,如何减少硅微粉颗粒表面和空隙的油(树脂)是降低其吸油值的关键。 第一 实验原料 天然石英原矿分别通过球磨、振动磨、气流磨分级系统制作的平均粒径在2.5-3.0μm的超细硅微粉; 平均粒径为20±0.5μm硅微粉成品及其产生的布袋除尘粉; 三种平均粒径为20±0.5μm的硅微粉(普通硅微粉、铝酸酯改性剂改性后的硅微粉、硅烷偶联剂改性后的硅微粉)。 第二 研磨设备对硅微粉吸油值的影响 表1 不同研磨分级设备生产硅微粉粒径分布及吸油值由表1可知,球磨机、振动磨和气流磨所得硅微粉样品的平均粒径差别不大,故可认为三者因粒径引起的吸油值变化不大。但三者的吸油值检测结果为:气流磨>球磨机>振动磨,主要是振动磨硅微粉样品在整个体系中粗细微粉分布较好,细颗粒较好的填充中粗颗粒之间,增大了整个体系的填充性,使得分布在颗粒空隙中的油减少,从而整体降低了整个系统的吸油值。 表2 不同研磨分级设备生产硅微粉的振实密度由表2可知,振动磨硅微粉样品的振实密度最高,进一步验证良好的粒径分布可有效降低粉体间的空隙率,提高粉体填充性。 第三 原有粉体系统中添加微粉对硅微粉吸油值的影响 表3 硅微粉成品及布袋除尘粉粒径分布表3为20±0.5μm硅微粉成品和其生产过程中布袋产生的除尘粉的粒径分布,图2为硅微粉成品中按不同比例添加布袋除尘粉引起的吸油值变化(此举为模拟生产过程中调节风门和分级频率控制旋风收集和布袋除尘出料比)。图2 硅微粉成品中添加布袋除尘粉引起的吸油值变化 由图2可知,当布袋除尘粉添加量控制在4%左右时,能够有效填充硅微粉成品中颗粒与颗粒产生的空隙,从而降低系统吸油值。但随着布袋除尘粉的持续增加,系统吸油值迅速升高,这是因为在硅微粉成品颗粒填充饱和后,新的布袋除尘粉之间又形成新的颗粒间隙,同时微粉粒径较小,比表面积较大,表面能升高,其表面也具有较高的吸油能力,造成系统吸油值升高。 在实际生产中,可通过调节分级频率和风门大小来控制硅微粉颗粒大小比例,从而降低硅微粉成品的整体吸油值。 第四 改性剂对硅微粉吸油值的影响图3 不同硅微粉在电子显微镜下的分散状况 图3为平均粒径为20±0.5μm硅微粉、铝酸酯改性剂改性后的硅微粉、硅烷偶联剂改性后的硅微粉在电子显微镜下的照片,由图可知,硅微粉分散性大小为硅烷偶联剂改性后的硅微粉>铝酸酯改性剂改性后的硅微粉>平均粒径为20±0.5μm硅微粉。 表4 不同改性硅微粉产品的吸油值表4为平均粒径为20±0.5μm硅微粉、铝酸酯改性剂改性后的硅微粉、硅烷偶联剂改性后的硅微粉吸油值对比:平均粒径为20±0.5μm硅微粉>铝酸酯改性剂改性后的硅微粉>硅烷偶联剂改性后的硅微粉。 改性剂可降低硅微粉表面吸附油脂的能力,减少粉体团聚产生的粒子间空隙,从而降低粉体吸油值,且硅烷偶联剂对硅微粉的改性效果较为明显。 第五 结论 (1)采用振动磨分级系统生产的硅微粉的填充性较气流磨和球磨机较高,故其吸油值最低。 (2)硅微粉成品中添加一定比例的微粉可有效减少粉体系统颗粒间隙,从而降低产品吸油值。在实际生产中,可根据生产不同粒径的粉体,调节分级频率和风门大小,有效改变所产生布袋除尘粉的量,从而提高旋风收集产品的吸油值。 (3)改性剂对粉体吸油值影响明显,其中又以硅烷偶联剂对硅微粉改性效果最佳。在实际生产过程中,需要根据不同行业需求,选择不同的硅烷偶联剂。

环保型铝箔上光油的研制与应用

2019-02-28 10:19:46

包装印刷用铝箔(常分0.2mm~0.25mm的硬铝箔和0.07mm~0.09mm的软铝箔)上光油,又称罩光油和OP维护剂。本文侧重论述和介绍彻底选用国产原材料,研制出的归于环保型上光油的常温固化、耐高温固化及光固化三大类型的五个种类的材料组成、配方规划和运用成果。    铝箔上光油的主要任务    铝箔上光油的主要任务是,将现已完结一切单一印刷或多色套印的精包装印刷的半成品,再涂布一层维护层。其意图是进一步促进包装印刷制品表面光泽、漂亮、耐酸、碱等,一起又要维护已印刷的图文墨膜。不只增加了印刷制品的表面硬度,还具有必定的柔韧性,也能前进包装印刷正品率,前进产品包装的高附加价值。    从铝箔上光油的用途上,咱们现已知道了它的主要任务。但人们在其运用范围上,仅仅将常温固化类光油用于食品包装上居多,特别是近三年来,时兴的在啤酒封口(顶)包装标识上更是色彩斑斓。一般耐高温121~160℃的上光油用于蒸煮的饮料罐厅、烟包和药品包装上。    跟着国家药品包装容器(材料)标准到现在(2004年6月1日)施行,传统的检测根据GB12255-90仅有规格、蒸腾物、黏合剂涂布量差异、热封强度、维护层的耐热性等五项,开端被YBB00132002(药品包装用复合膜、袋公例)所替代。这不只标志着我国包装制品,特别是药品包装制品同国际标准的接轨,一起也标志着传统的上光油产品的完结。环保型铝箔上光油的面世,更标志着新的上光油产品的开端。其产品的开发根据:    一是:(1)辨别红外光谱;(2)外观;(3)隔绝功能(水蒸气和氧气);(4)机械功能;(5)复合袋的热合强度(双层和多层);(6)溶剂残留量;(7)袋的耐压功能(三边封袋和其他袋);(8)袋的下跌功能(袋与内装物总质量和下跌高度);(9)溶出物实验:①重金属;②易氧化物;③不蒸腾物;(10)微生物极限(一般复合膜、袋;外用药复合膜、袋等)(11)反常毒性。    二是:YBB00132002规则了(1)复合膜系指各种塑料与纸、金属或其他塑料经过黏合剂组合而构成的膜,其厚度一般不大于0.25mm;(2)复合袋系将复合膜经过热合的办法而制成的袋,按制袋方式可分为三边封袋、中封袋、风琴袋、自立袋、拉链袋等。并且明文规则了复合膜的分类、隔绝功能、机械功能、下跌功能、微生物极限目标、尺度偏差等。笔者环绕着环保和同国际市场接轨,除物理丈量外,又增加了理化目标的丈量。一起由于曩昔溶剂总残留量为30mg/m2,现改为10mg/m2和残留定量3.0mg/m2。结合先选用硫代硫酸钠滴定液(0.01mol/L)滴定至近结尾时,参与的淀粉指示液0.25ml,持续滴定至无色,另取水空白液同法操作,二者耗费滴定液之差不得过1.5ml的严苛约束。加上上光油能在180-250℃,10秒不变色、不褪色、不掉色、不侧光(既有因热又有因光,既因软化点过高,又有因导电引起的)。一起还应契合以下技能要求:(1)保色功能好,经必定温度枯燥图文不搬迁、不泛黄、不变色或油墨墨膜不掉块;(2)有必定的光亮度、结实度,胶粘带粘拉不掉落;(3)同白色印刷油墨或五颜六色油墨及底油触摸时应有必定的亲和性;(4)固量高而黏度小,透明度高,特别是流滑润爽性好;(5)上光油成膜后本领模切,不伤刀,并本领压花、打孔等机械冲击。    铝箔上光油的根本组成    环保型铝箔包装上光油的根本组成是:树脂、溶剂、填料、助剂。现在常温铝箔包装上光油的系统中多以热塑性树脂为主,而一般耐高温(120-160℃)铝箔上光油的系统中则选用热塑性树脂,再增加少数热固性树脂或树脂,但耐高温(180-250℃)铝箔包装上光油系统里则以热固性树脂并兼有树脂。其树脂的挑选有:酸树脂、硝化纤维素、聚酰胺树脂、天然松香改性树脂、酚醛树脂、有机硅树脂、聚酮树脂、基树脂等等。其溶剂的配比则以醇、酯、酮为主,辅之。助剂类有流平剂、滑爽剂和微量的光稳定剂及热稳定剂等。    现在,关于常温固化的铝箔上光油树脂除以上介绍的外,在环绕彻底无毒的一起,大多挑选软化点较高的聚酰胺树脂同的硝化纤维素或同聚酮及萜烯树脂组成,也有选用乙烯树脂同硝化纤维素等组成,以防在必定温度下回粘。而溶剂的挑选和配伍则以气味小,多元混合溶剂以完成上光油在涂布成膜进程的蒸腾梯度平衡(表里一齐干)。至于助剂的挑选则以实惠价廉为主,以确保同质的上光油到达不同的涂布面积(量),一起在相同的涂布量时,完成较低本钱和为了操控较低的溶剂总残留量和残留两。例如混合溶剂的组成(配方):47.14,35.35,工业乙醇17.51,作为上光油的稀释剂。比现遍及单一选用溶剂的长处是:铝箔包装印刷上的溶剂气味小,溶剂残留量少,成膜枯燥速度快,附着牢度好,光油光泽度高而稀料溶剂本钱低。    在一般耐高温121-160℃乃至180℃的铝箔包装上光油则以改性松香酯同硝化纤维素或高软化点聚酰胺树脂或选用硝化纤维素参与基树脂等组成。也有选用软化点高的热塑性酸树脂增加氯醋树脂等组成的。现在耐高温(180-250℃乃至更高的上光油)铝箔包装上光油以热固性树脂同树脂及硅树脂等接枝混合组成。为了操控易氧化物常常引进稳定剂。为了操控反常毒性的生成,凡在树脂、溶剂、助剂乃至颜、染料分子中呈现O、H、Cl等字样一概不予选用。氧化物的理论学说是:(1)元素和氧化合而成的化合物。这儿所说的氧化物是指氧以单个原子参与结合而构成的离子型或共价型氧化物。此外,还有过氧化物、超氧化物、臭氧化物、有机氧化物(如)等,同一元素能够有价态不同的氧化物。如:二氧化硫SO2和三氧化硫SO3;氧化亚铜Cu2O和氧化铜CuO,制备办法有:①单质或化合物在空气中或纯氧中焚烧,可得到常见氧化物;②在赤热的温度下,用水蒸气将单质氧化成氧化物;③用硝酸作氧化剂可把某些元素氧化成氧化物;④氢氧化物的脱水或碳酸盐、硝酸盐的热分化;⑤向盐溶剂中加碱,以除掉沉积氢氧化物或氧化物,然后进行脱水枯燥;⑥用复原剂复原高氧化态氧化物,可得到低氧化态的氧化物。(2)金属或非金属和氧化合而成的化合物。同一元素能够有几种价数不同的氧化物。例如CO和二氧化碳CO2和氧化铜CuO;一氧化铁FeO,三氧化二铁Fe2O3和四氧化三铁Fe3O4等。氧化物可分为酸性氧化物、碱性氧化物、氧化物和慵懒氧化物等。    为了完成结实的附着力,在该产品系统中除了严把溶解度、氢键力、表面张力、沸点及蒸腾速度和蒸腾速率的一起,适量引进潮湿助剂,有利于上光油与印刷图文墨膜的亲合性。其意图就是要绕过技能的壁垒约束,完成铝箔上光油(维护剂)的科学化和规范化。铝箔上光油的出产工艺    原材料棗投入溶剂棗投入树脂棗开机涣散溶解棗助剂增加棗刮样棗测验。    铝箔上光油的配方举例:    耐高温铝箔上光油(配方一)检测陈述    附注:1.别离于160℃和200℃条件出产运用该产品(批量涂布,见表一),其间2为归纳记载);    2.地址:河南凯迪药包材料有限公司    3.时刻:2004年6月6日上午(测验日期相同);    4.检测根据:GB12255-90;    5.铝箔选用0.024×140mm的素铝箔(PTP);    6.药用铝箔检测记载(见表一)。    表一药用检测记载    1.蒸腾物的测定    取100mm×100mm两片    目标:≤4mg/0.02m2    枯燥前分量(mg)1109.30    枯燥后分量(mg)1109.30    蒸腾物(mg/0.02m2)丈量成果0.20鉴定合格    2.上光油涂布量差异丈量    取100mm×100mm五片称重    檫去上光油分量差值即为涂布量,求出平均值    各片涂布量与平均值的差,即为涂布量差异    目标:12.5%    原始分量(mg)①547.30②546.60③554.50④549.45⑤552.10    除掉上光油分量(mg/m2)①531.70②530.80③538.20④533.40⑤535.90    涂布量(g/m2)①15.60②15.80③16.30④16.05⑤16.20    涂布量平均值(g/m2)15.99    涂布量差异丈量成果①-2.43%②-1.18%③1.93%④0.37%⑤0.31%鉴定合格    热封强度目标:≥5.88N/15mm丈量成果鉴定    10.10合格    维护层耐热性目标:200℃,0.2Mpa无显着粘落丈量成果鉴定    无合格    阐明的是:笔者先后在江苏省镇江市江州医药精包装股份有限公司别离将送达的耐高温上光油(配方1-5)在180-250℃枯燥3-8秒后,对易氧化物的理论目标进行了四次丈量,成果是:配方1为0ml,配方2为0.7ml,配方3为0ml,配方4为0.8ml,配方5为0.7ml(以上是二者耗费滴定液之差数)。    除此之外,笔者选用耐高温上光油参与着色剂(染料、色浆)作为一般铝箔包装印刷油墨和耐高温铝箔包装印刷油墨进行试印成果,其印刷墨膜均能到达YBBOO132002所规则的检测要求。并能与DIC的产品相媲美,且本钱仅是DIC的三分之二。    结语    跟着主动、省力、高速、精密、优质的铝箔包装印刷及涂布上光油(维护剂)的开展,针对市面上铝箔上光油“水平面趋同”效应的呈现,高本钱及残留有害物带来的坏处都逐个显现出来,加上没有构成集合效应,上光油技能水平和该产品层次难以有用地得到前进。    纵观全球市场经济一体化,质和量应该说是一枚的两个面。由于当今科学理论不只造就了新的包装印刷材料,并且也造就了铝箔包装印刷上光油的新产品,一起也造就了新一轮的科学根底理论知识的更新。咱们只要在市场竞争中权衡利弊,才干将国产铝箔上光油的产品推行、运用到极限;只要做好售前的产品查询、介绍和售后运用技能的终端盯梢效劳,才干遭到国表里包装印刷用户的喜爱;只要用先进的科学,才干长时间而有用辅导我国铝箔包装(印刷)上光油产品技能的前进!

煤-油聚团选金工艺特点与流程

2019-02-15 14:21:10

1)煤一油聚团法具有如下特色:    ①关于细粒金(≤5μm)和粗粒金(300-500μm)均具有较高的金收回率;用该法不仅能收回重选法不能收回的极细粒金,并且较粗粒的金也可收回。    ②该工艺可用于处理化法难以处理的渗透性差或含碳质高的低档次金矿。    ③该工艺操作时刻仅30min,比炭浆法的10~30h缩短许多。    ④流程简略,出资费用低。    ⑤药剂耗费少,出产本钱低。    ⑥最重要的是,该办法不运用或,可大大削减环境污染。.    下行式串级型拌和吸附设备能满意煤一油聚团法选金高剪切力和拌和均匀的要求,两级操作作用相当于国外文献所报道的四级全混型吸附槽的操作功能。偏疼提高管凹型歪斜筛环流式吸附床进一步简化了设备结构、下降出资和操作本钱。煤金聚团技能的开展,将从现在首要处理氧化型金矿过渡到处理难选冶的低档次、微细粒或杂乱硫化型金矿。为此,需求进一步开发优秀的表面活性剂、新的载体材料和抑制剂、液相氧化预处理等先进技能。    2)工艺流程    实践证明,该工艺特别习惯于收回单体解离金、连生金和微细粒金。工艺习惯规模广,特别对石英脉氧化矿、贫硫化物石英脉原生矿作用最佳,金收回率达95%以上。对金易解离的多金属低硫石英脉金矿习惯性杰出,并可替代混法收回明金。对一般低档次石英脉金矿和微细粒金的收回率达80%以上。    煤一油聚会法选金的工艺流程如下图所示。

纳米金刚石在润滑油中的添加应用

2019-01-25 10:18:59

一种在润滑油中添加的纳米金刚石微粒的表面处理方法,依次包括以下步骤,用高速气流对撞机以高速气流将纳米金刚石粉体对撞超细粉碎,解开团聚;将解开团聚的纳米金刚石微粒加入在有表面改性剂和分散剂的有机溶剂中;利用高速剪切机在上述加入有纳米金刚石微粒的有机溶剂中高速剪切,并利用超声波使有机溶剂中的微气泡内部爆炸即超声空化,使纳米金刚石微粒进一步解开团聚;离心分离出表面改性后的纳米金刚石微粒,用有机溶剂将所述纳米金刚石微粒洗涤后离心分离出纳米金刚石微粒,干燥后得到表面改性后的纳米金刚石微粒。本发明的技术效果在于:细化后的纳米金刚石微粒粒度范围在20~60nm,纳米金刚石微粒的表面改性非常充分。

铝型材表面油痕和水印缺陷的产生及避免方法

2018-12-25 10:08:21

铝型材表面油痕的特性反映:  铝型材时效前油渍不擦干净在时效后在铝材表面产生水印,氧化后呈暗斑且有一定深度。  铝型材表面油痕产生原因:  (一):成品锯锯切油渍留在铝型材两头,搬(抬)料时手套不干净甚至粘有石墨灰。  (二):铝型材拉伸时手套脏拿料过长,锯切未去掉。  (三):中间理料时手套脏,留“印记”。  (四):挤压设备工具漏滴油迹(行车,吊装带)  铝型材表面油痕消除办法:  (一):铝材生产过程中理料,抬搬料时手套要干净,有油迹要及时擦掉。  (二):拉伸铝材时拿料要适当。  (三):理料,抬搬料时的手套和拉伸拿料,加棒时的手套要分开。  (四):设备,工具注意漏油,垫纸垫条吊带等要干净。  铝型材表面水印的特性反映:  铝型材表面出现银灰色湿状印斑,随氧化碱洗的强度增加而减淡或消失。  铝型材表面水印产生原因:  铝型材表面局部沾水淋雨,经型材表面淬火氧化层细微小孔渗入铝基体,形成三羟铝石,随水份停留时间长短而现明淡,如果水中有杂质(盐,亚硝酸等)会产生腐蚀斑。  铝型材表面水印消除办法:  (一):沾水的铝型材要第一时间擦干,在时效前必须擦干,  (二):条件充许的话适当增加碱冼时间和氧化膜厚度。  最后总结:  油渍和水渍只要在铝型材不沾灰尘时效前及时擦拭干净就不会产生油痕和水印,关键在于培养良好的操作习惯和品质意识,除此无他。曾经发生用油性纸作型材衬垫在自效后沾满油痕的低级质量事故,望各位借鉴。

铝制件的碱蚀处理与钢铁件除油有何区别?

2019-01-15 09:49:20

铝制件的碱蚀与钢铁件的除油是截然不同的。首先是铝本身不耐强碱,为此,碱蚀前需在弱碱性盐的溶液中,或有机溶液中先进行除油,待制件表面油污基本除尽后,再在强碱中进行闪蚀,否则铝的表面会受到过腐蚀。    铝制件的碱蚀主要是为除去制件表面的氧化膜,在除去氧化膜的同时,油污也被一起带起,但碱蚀时间需在数秒至数十秒钟内完成。钢铁件的除油是除油溶液直接与钢铁件表面的油污作用,但与钢铁件表面的氧化层不起反应,即除油溶液对钢铁件无腐蚀,可以大胆地浸泡在碱液中,无需时时检查。

铝制件的碱蚀处理与钢铁件除油有何区别

2019-01-11 15:44:03

铝制件的碱蚀与钢铁件的除油是截然不同的。首先是铝本身不耐强碱,为此,碱蚀前需在弱碱性盐的溶液中,或有机溶液中先进行除油,待制件表面油污基本除尽后,再在强碱中进行闪蚀,否则铝的表面会受到过腐蚀。    铝制件的碱蚀主要是为除去制件表面的氧化膜,在除去氧化膜的同时,油污也被一起带起,但碱蚀时间需在数秒至数十秒钟内完成。钢铁件的除油是除油溶液直接与钢铁件表面的油污作用,但与钢铁件表面的氧化层不起反应,即除油溶液对钢铁件无腐蚀,可以大胆地浸泡在碱液中,无需时时检查。

烃油捕收剂对辉钼矿捕收机理及其在硫化钼矿石浮选实践中的应用

2019-02-19 12:00:26

烃油与辉钼矿间吸附机理,可从它们之间表面力的性质类似,表面能的巨细相近来解说。福克斯(Fowkes)将液体表面张力按力的类型分解为离子间静电力、偶竭力、氢键力、色散力等。他发现烃油表面张力仅含色散力(范德华-伦敦力)。如第一节工艺矿藏学所述,辉钼矿的“面”为MoS2层间分子键开裂面,表面力也为范德华力的残键。两者表面力的性质共同。另据J·赖亚材料,烃油的表面能为3.0×10-2J/m2,不论是实测或核算,该值都共同。而西村允报导辉钼矿“面”上表面能为2.4×10-2J/m2,两者巨细很挨近。因此,按吸附理论,烃油极易物理吸附在辉钼矿的“面”上。而高表面能、极性的水介质与辉钼矿“面”的性质悬殊,难于吸附在该“面”上。     烃油是石油的提炼物(尽管也有由煤、等加工的产品,但并不多见),不溶于水,它们不是单一化合物,而是粹进程里被分割成的类似(而非相同)分子馏分的混合物。烃油大体分为以下几类,见表1所列。 表1  石油分馏产品名    称成    份沸点石  油  醚C5H12~C7H1640~100汽      油C6H14~C12H26100~200火油、柴油C13H28~C15H38200~275润  滑  油C16H34~C20H42275~400凡  士  林C10H38~C22H46 石     蜡C20H42~C24H50 沥     青 残余物     烃油成分杂乱,首要含有三个类型:开链烃(脂肪烃、白腊烃)、下烃和芳烃。并组成以下的几种方式: ∣ ∣ ∣   ∣ ∣   —C—C—C—……—C—C— 正构烷烃或烯烃 ∣ ∣ ∣   ∣ ∣            ∣ ∣             —C—C—       ∣ ∣   ∣ ∣   ∣   —C—C—…—C—C—…—C— 异构烷烃或烯烃 ∣ ∣   ∣ ∣   ∣                 \ /                     C          ∣ ∣   ∣    / \  ∣ ∣   —C—C——C—…—C——C—C—C— 环烷烃 ∣ ∣   ∣   ∣   ∣ ∣ ∣      C   C                   \ /                     C                         随石油产地不同,各种烃的份额也不同:大庆石油以开链烃为主;玉门石油以环烷烃为主,属烷-环混合型;独联体巴库石油属环烷型;印尼石油属芳烃型……。     石油还含不定量的极性有机物(含有氧、硫或氮…),精粹时,它们大部分已被脱除。但天然火油中还或多或少残留有少数极性杂质和不饱满烃,这将对烃油的捕收作用发作严重影响。     用作辉钼矿捕收剂的烃油一般为火油、柴油和光滑油。我国则简直全用火油。     国产火油区分为溶剂火油、航空火油、拖拉机火油及灯用火油多种。其间,除含许多开链的白腊烷烃外,往往还含一定量的环烃、芳烃和烯烃。用作辉钼矿捕收剂的首要为拖拉机火油和灯用火油。     拖拉机火油按石油部标准(石油SY1052-60试)其馏程为110~180℃10%;≯190℃ 50%;而90%馏分≯275℃,98%馏分≯300℃。     灯用火油沸点规模为180~315℃,最高有时可达350℃,按国标GB253-64,灯用火油不含有裂化馏分。270℃馏出量不小于70%,干点不大于310℃。[next]     国产柴油可分轻柴油、重柴油两大类:     轻柴油分10号、0号、-10号、-25号、-35号五个牌号,它适用作高速柴油机的燃料。它们都要求50%馏份的馏出温度水大于300℃,除此五个牌号,还有直馏轻柴油,它50%馏份的馏出温度不该大于290℃,还有专用柴油,它50%馏份的馏出温度不该大于280℃。     重柴油按国标GB445-64,可分作10号与20号两种。按石油部标准SY1072-64还有30号重柴油。首要目标为十六烷值、粘度、凝固点。     光滑油按用处可分为喷气机光滑油、航空光滑油、汽油机光滑机油、紧缩机油、冷冻机油、汽缸油、机械油、外表油等十五组。其牌号按运动粘度的均匀厘伯数区分,机械油分作10、20、30、40、50、70、90号七种,质量按国标GB443-64来要求。     C.H.克罗欣和B.H.科瓦连科对捕收辉钼矿的烃油作了对照。C.H.克罗欣把火油加到矿藏表面测定的触摸角见表2。不同浓度烃油对辉钼矿触摸角影响见图1。 表2  各种烃油对辉钼矿触摸角影响药     剂接   触   角 (度)蒸馏水59.552.0初馏火油60.3150℃馏分火油63.1150~180℃馏分火油73.2180~220℃馏分火油76.0>220℃馏分火油84.5变压器油73.0机油CB78.0机油CY78.0 图1  不同馏分火油的触摸角 注:图内数据系火油分馏温度     对含MoS20.2%的钼矿石浮选,各种烃油捕收辉钼矿的作用见图2。图2  不同烃油对辉钼矿浮选的影响     显着,火油中低馏分(沸点小于150~180℃)不具备捕收的功能,而高馏分(沸点180~220℃)捕收作用显著。变压器油与机油的功能和高馏分火油类似。它们能够改进辉钼矿表面的疏水性,使触摸角显着增加。 日本和田正美也研讨了各馏分火油对辉钼矿、黄铁矿浮选的影响。他所用试样如表3~表5所列。[next] 表3  试样化学成分(%)试样号MoS2FeSSiO2Al2O3A B8.18 1.445.99 5.718.89 4.7371.41 80.935.84 4.34                     表4  试样粒度组成粒级 (目) 含量 (%) 试样+100100~150150~200200~270270~400-400A B35.6 0.323.0 29.17.5 14.313.1 25.88.4 13.212.4 17.3 表5  火油各馏分含量与性质沸点(℃)<150150~180180~200200~220220~235>235算计产率(%) 密度(g/cm3) 折射率η122.53 0.670 1.430013.62 0.770 1.434731.70 0.871 1.439043.91 0.794 1.44511.29 0.802 1.44886.95 0.809 1.4519100.00 0.789 1.4427     在PH=6.4~6.6,矿浆温度15.7~17℃时,对试料A增加1400g/t,对试料B增加660g/t,各种馏分火油别离浮选5min,浮选成果见图3及图4。     由图可见,与其它文献报导共同,依然是高馏分火油对辉钼矿分选作用好。 火油中极性成份对捕收辉钼矿的影响较大。朱玉霜、朱建光材料报导了这一影响,见表6。 图3  各种馏分火油的浮选作用(试样A)  图4  各种馏分火油的浮选作用(试样B) 表6  烃油成份对辉钼疏水性的影响烃油称号与水触摸表面张力 (×10-2N/m)碘值酸值触摸角(度)“面”上“棱”上变压器油 火油 机油(V型)45 30 298.70 11.23 11.970.63 0.82 1.6550 45 5060 65 78     显着,随烃油不饱满成份或酸性成分的增加,辉钼矿“面”的触摸角不度,但“棱”触摸角显着上升。 C.H.克罗欣也研讨了火油极化后对辉钼矿触摸角的影响。见表7。显着,火油经极化后在辉钼矿表面吸附加强,使辉钼矿触摸角显着进步。B.H.科瓦连科的研讨也证明,烃油对辉钼矿的捕收作用,随其间极性物含量和双键数量的增加而进步。其原因或许在于极性物质与辉钼矿“棱”的极性吸附,起到强化捕收的作用.[next] 表7  极化对火油捕收功能的影响药    剂极化前 触摸角(度)极化处理极化后 触摸角(度)非极性火油62.0加热10%单体硫处理76.8加热5%单体硫处理76.8150℃馏分火油63.1加热5%Na2S处理68.1180~220℃馏分火油76.0加热5%Na2S处理83.5     阿迈克斯(Amax)公司的F. J.史密特(Smit)等人将根底油料与柴油混合,制造出一系列混合浮选油。选用40种不同混合油作捕收剂进行选别辉钼矿的实验,还与公司选厂常用的Amoco和Texaco油浮选成果进行了比照。成果表明,高分子根底油料和低分子稀释油的双组分混合物是一个比单组分油更好的辉钼矿捕收剂。研讨还发现,由环烷烃根底油混合的浮选油,用以捕收辉钼矿获得了较好的成果,而以芳香油料混合的浮选油捕收作用就较差。几种常用油的用量对辉钼矿浮选的影响见图5。 图5  几种常用烃油对浮选辉钼矿影响     各种烃油有不同的温度-密度-粘度联系,所以,粘度指数、或粘度-密度常数是油分子特性指数。几种烃油的粘度-密度常数见表8。 表8  烃油结构与粘度-密度常数类别白腊烃环烷烃芳香烃粘度-密度常数0.798~0.8130.842~0.8560.918~0.980     研讨发现,在粘度-密度常数为0.84(即由环烷烃根底油制造的混合油)邻近,辉钼矿的收回率最高。粘度-密度常数太大(芳烃段)作用也欠好。这与卡兹波特逊(Cuthbertson)观测成果(见图6)共同。可是,也有人以为芳烃比白腊烃或环烷烃对辉钼矿捕收力更强。对此,F.J.史密特以为这与根底油性质不清有关。图6  粘度与重常数(烃油品种)对辉钼矿收回率的影响     F. J.史密特引荐的代用油为一种低粘度油(如柴油)中增加30%、或更高份额的环烷烃光滑油的混合油。环烷烃油料的混合物比白腊烃、芳烃的混合油作用更好。这或许与环烷烃分子更易湿润和吸附在辉钼矿表面有关。但,也有人的研讨发现芳烃比白腊烃或环烷烃好。史密特以为这与油切当性质不清有关。     F. J.史密特的研讨最终引荐的代用油为一种低粘度油,如柴油在增加30%或更高些环烷烃光滑油的混合油。环烷烃油料的 混合物比白腊烃或芳烃的混合油作用好,与环烷烃的分子易湿润及粘附在辉钼矿表面有关。     杨家杖子矿务局钼选厂对重蜡、重芳烃的研讨成果与F. J.史密特相反,正构烷烃或芳烃对辉钼矿捕收才干较火油强。[next]     天然火油是由烷烃、环烃、芳烃组成。重蜡又称液体白腊,它是火油与尿素(络合法)在240~280℃脱出的产品。其间,正构烷烃占90%以上(成份列于表9),浮选成果见表10。但经分子筛处理后(简直只剩正构烷烃),浮选作用又会下降。重芳烃系轻柴油中提取240~280℃馏分,其间,芳烃约占90%。实验产品系北京石化总厂出产,对岭前矿钼矿石所作重蜡-芳烃比照实验,成果见表11。显着,选用重蜡比火油捕收辉钼矿,粗选收回率进步1%~2%;芳烃对辉钼矿捕收作用与重蜡挨近。 表9  石油五石重蜡组分分析试样C12烷以下C13烷C14烷C15烷C16烷C17烷C18烷C19烷C20烷试样1(%) 试样2(%)微 2.968.73 9.6119.27 18.8122.20 21.6121.35 20.3815.87 16.27/ 7.933.7 2.47微 /   表10  火油-重蜡浮选辉钼矿作用比照试料编号药剂用量(g/t)精矿含钼(%)钼收回率(%)收回率进步起伏(%)火油重蜡试料1 0.11%Mo 16003.6393.101.1201603.4894.22试料2 0.11%Mo15505.2884.521.3301555.3685.85 表11  重蜡-芳烃粗选作用对照表捕收剂药剂量(g/t)浮选目标(%)目标比照2#油重蜡重芳烃原矿档次精矿档次钼收回率精矿档次钼收回率重  蜡 重芳烃100 80130 00 1300.117 0.1182.32 2.4893.92 93.81+0.16-0.11     L.D.戴维(Daivid)选用碳原子11的芳烃,替代烯料油捕收辉钼矿,获得了杰出作用,他引荐的芳烃为异丙基荼和荼,实验成果列于表12。在相同加油量时,比燃料油钼收回率上升3.5%~3.8%。 表12  几种烃油捕收功能比照实验号烃油品种增加量(g/t)MoS2收回率(%)1异丙基荼45488.32荼45488.63蒸汽油45487.54燃料油45484.8     杨家杖子矿务局也曾用精荼替代火油作辉钼矿捕收剂,获得较好的作用。这些研讨与杨家杖子重芳烃优于火油定论共同,与F. J.史密特研讨相冲突‘     火油组分中亚甲基(—CH2一)与甲基(—CH3)之比CH2:CH3越大,火油浮选活性越高。     50年代起,国外就研讨了高能辐射火油以进步捕收性的研讨。1968年,使用辐射剂量为0.6×105rad/h的PX-r-30型辐射源,在最佳辐射剂量(1~3)×103Gy条件下辐射火油。将辐射过的火油用于分选辉钼-石英。成果发现,用辐射过的火油比没辐射的火油,辉钼矿的收回剂进步8%。据以为,高能射线的辐射化学作用能使许多烃类(饱满烃、不饱满烃;环烃、芳烃)的大部分变得更为杂乱,发作二聚或多聚作角,低分子烃就转化为长碳链的高分子化合物。而火油中高沸点化合物含量越高,火油烃里的亚甲基与甲基比值(nCH2:nCH3)越大,火油的浮选活性就越高。     烃油捕收剂与起泡剂用量有一个合理配比问题,见图7。当只加2#油而不加火油时,产品钼和铁收回率都较高而档次较低,显着,辉钼矿与黄铁矿分选欠安。随火油份额上升,产品铁收回率显着下降,钼收回率略下降后趋饱满,钼档次显着上升,显着分选好转。当火油点95%时,产品含MoS2由31.17%上升到62.89%。由图可见火油份额超越80%后,产品铁含量剧减,MoS2档次猛升。[next] 图7  火油2#油混合百分数对浮选影响     可是,浮选实践中,火油份额加大,泡沫稳定性显着下降,操作发作困难。     合理的火油、2号油份额应经过实践断定,金堆城约为2:1;栾川钼矿约为1.5~1:1;1:1~0.75。后者的火油份额显着太小。     烃油与辉钼矿吸附杰出,在选矿流程里,许多烃油吸附在辉钼矿表面,而富集进钼精矿。有材料报导,选钼进程所加烃油,75%在右进入了钼精矿。李文科等人也曾用蒸馏法测定金堆城二选厂所产钼精矿的油、水含量,见表12。同期流程考察测定钼精矿产率为0.18~0.20%,每吨原矿烃油增加量为220~250g/t。这样,可算出每吨干钼精矿上的油平衡。 表12  辉钼矿油水含量试样编号含水量(%)含油量(%)水油总量(%) 10.074.034.10枯燥后的钼精矿20.175.625.79 30.206.807.00 42.736.359.08精矿滤饼512.017.9119.92     增加烃油量:250g/t÷0.19%=131.5kg/t     滤并烃油量:1000×7.91%÷(100%-19.92%)=98.8kg/t     精矿(滤并)上烃油散布率:98.8÷131.5=75.1%     显着,计算值与材料报导共同。     烃油沸点100~275℃,在钼精矿脱水、枯燥时,仅有一部分烃油挥发掉,残留在钼精矿中的部分,在氧化焙烧时才干最终焚烧脱除。

烃油捕收剂-对辉钼矿捕收机理及其在硫化钼矿石浮选实践中的应用

2019-02-19 12:00:26

烃油与辉钼矿间吸附机理,可从它们之间表面力的性质类似,表面能的巨细相近来解说。福克斯(Fowkes)将液体表面张力按力的类型分解为离子间静电力、偶竭力、氢键力、色散力等。他发现烃油表面张力仅含色散力(范德华-伦敦力)。如第一节工艺矿藏学所述,辉钼矿的“面”为MoS2层间分子键开裂面,表面力也为范德华力的残键。两者表面力的性质共同。另据J·赖亚材料,烃油的表面能为3.0×10-2J/m2,不论是实测或核算,该值都共同。而西村允报导辉钼矿“面”上表面能为2.4×10-2J/m2,两者巨细很挨近。因此,按吸附理论,烃油极易物理吸附在辉钼矿的“面”上。而高表面能、极性的水介质与辉钼矿“面”的性质悬殊,难于吸附在该“面”上。     烃油是石油的提炼物(尽管也有由煤、等加工的产品,但并不多见),不溶于水,它们不是单一化合物,而是粹进程里被分割成的类似(而非相同)分子馏分的混合物。烃油大体分为以下几类,见表1所列。 表1  石油分馏产品名    称成    份沸点石  油  醚C5H12~C7H1640~100汽      油C6H14~C12H26100~200火油、柴油C13H28~C15H38200~275润  滑  油C16H34~C20H42275~400凡  士  林C10H38~C22H46 石     蜡C20H42~C24H50 沥     青 残余物     烃油成分杂乱,首要含有三个类型:开链烃(脂肪烃、白腊烃)、下烃和芳烃。并组成以下的几种方式: ∣ ∣ ∣   ∣ ∣   —C—C—C—……—C—C— 正构烷烃或烯烃 ∣ ∣ ∣   ∣ ∣            ∣ ∣             —C—C—       ∣ ∣   ∣ ∣   ∣   —C—C—…—C—C—…—C— 异构烷烃或烯烃 ∣ ∣   ∣ ∣   ∣                 \ /                     C          ∣ ∣   ∣    / \  ∣ ∣   —C—C——C—…—C——C—C—C— 环烷烃 ∣ ∣   ∣   ∣   ∣ ∣ ∣      C   C                   \ /                     C                         随石油产地不同,各种烃的份额也不同:大庆石油以开链烃为主;玉门石油以环烷烃为主,属烷-环混合型;独联体巴库石油属环烷型;印尼石油属芳烃型……。     石油还含不定量的极性有机物(含有氧、硫或氮…),精粹时,它们大部分已被脱除。但天然火油中还或多或少残留有少数极性杂质和不饱满烃,这将对烃油的捕收作用发作严重影响。     用作辉钼矿捕收剂的烃油一般为火油、柴油和光滑油。我国则简直全用火油。     国产火油区分为溶剂火油、航空火油、拖拉机火油及灯用火油多种。其间,除含许多开链的白腊烷烃外,往往还含一定量的环烃、芳烃和烯烃。用作辉钼矿捕收剂的首要为拖拉机火油和灯用火油。     拖拉机火油按石油部标准(石油SY1052-60试)其馏程为110~180℃10%;≯190℃ 50%;而90%馏分≯275℃,98%馏分≯300℃。     灯用火油沸点规模为180~315℃,最高有时可达350℃,按国标GB253-64,灯用火油不含有裂化馏分。270℃馏出量不小于70%,干点不大于310℃。[next]     国产柴油可分轻柴油、重柴油两大类:     轻柴油分10号、0号、-10号、-25号、-35号五个牌号,它适用作高速柴油机的燃料。它们都要求50%馏份的馏出温度水大于300℃,除此五个牌号,还有直馏轻柴油,它50%馏份的馏出温度不该大于290℃,还有专用柴油,它50%馏份的馏出温度不该大于280℃。     重柴油按国标GB445-64,可分作10号与20号两种。按石油部标准SY1072-64还有30号重柴油。首要目标为十六烷值、粘度、凝固点。     光滑油按用处可分为喷气机光滑油、航空光滑油、汽油机光滑机油、紧缩机油、冷冻机油、汽缸油、机械油、外表油等十五组。其牌号按运动粘度的均匀厘伯数区分,机械油分作10、20、30、40、50、70、90号七种,质量按国标GB443-64来要求。     C.H.克罗欣和B.H.科瓦连科对捕收辉钼矿的烃油作了对照。C.H.克罗欣把火油加到矿藏表面测定的触摸角见表2。不同浓度烃油对辉钼矿触摸角影响见图1。 表2  各种烃油对辉钼矿触摸角影响药     剂接   触   角 (度)蒸馏水59.552.0初馏火油60.3150℃馏分火油63.1150~180℃馏分火油73.2180~220℃馏分火油76.0>220℃馏分火油84.5变压器油73.0机油CB78.0机油CY78.0 图1  不同馏分火油的触摸角 注:图内数据系火油分馏温度     对含MoS20.2%的钼矿石浮选,各种烃油捕收辉钼矿的作用见图2。图2  不同烃油对辉钼矿浮选的影响     显着,火油中低馏分(沸点小于150~180℃)不具备捕收的功能,而高馏分(沸点180~220℃)捕收作用显著。变压器油与机油的功能和高馏分火油类似。它们能够改进辉钼矿表面的疏水性,使触摸角显着增加。 日本和田正美也研讨了各馏分火油对辉钼矿、黄铁矿浮选的影响。他所用试样如表3~表5所列。[next] 表3  试样化学成分(%)试样号MoS2FeSSiO2Al2O3A B8.18 1.445.99 5.718.89 4.7371.41 80.935.84 4.34                     表4  试样粒度组成粒级 (目) 含量 (%) 试样+100100~150150~200200~270270~400-400A B35.6 0.323.0 29.17.5 14.313.1 25.88.4 13.212.4 17.3 表5  火油各馏分含量与性质沸点(℃)<150150~180180~200200~220220~235>235算计产率(%) 密度(g/cm3) 折射率η122.53 0.670 1.430013.62 0.770 1.434731.70 0.871 1.439043.91 0.794 1.44511.29 0.802 1.44886.95 0.809 1.4519100.00 0.789 1.4427     在PH=6.4~6.6,矿浆温度15.7~17℃时,对试料A增加1400g/t,对试料B增加660g/t,各种馏分火油别离浮选5min,浮选成果见图3及图4。     由图可见,与其它文献报导共同,依然是高馏分火油对辉钼矿分选作用好。 火油中极性成份对捕收辉钼矿的影响较大。朱玉霜、朱建光材料报导了这一影响,见表6。 图3  各种馏分火油的浮选作用(试样A)  图4  各种馏分火油的浮选作用(试样B) 表6  烃油成份对辉钼疏水性的影响烃油称号与水触摸表面张力 (×10-2N/m)碘值酸值触摸角(度)“面”上“棱”上变压器油 火油 机油(V型)45 30 298.70 11.23 11.970.63 0.82 1.6550 45 5060 65 78     显着,随烃油不饱满成份或酸性成分的增加,辉钼矿“面”的触摸角不度,但“棱”触摸角显着上升。 C.H.克罗欣也研讨了火油极化后对辉钼矿触摸角的影响。见表7。显着,火油经极化后在辉钼矿表面吸附加强,使辉钼矿触摸角显着进步。B.H.科瓦连科的研讨也证明,烃油对辉钼矿的捕收作用,随其间极性物含量和双键数量的增加而进步。其原因或许在于极性物质与辉钼矿“棱”的极性吸附,起到强化捕收的作用.[next] 表7  极化对火油捕收功能的影响药    剂极化前 触摸角(度)极化处理极化后 触摸角(度)非极性火油62.0加热10%单体硫处理76.8加热5%单体硫处理76.8150℃馏分火油63.1加热5%Na2S处理68.1180~220℃馏分火油76.0加热5%Na2S处理83.5     阿迈克斯(Amax)公司的F. J.史密特(Smit)等人将根底油料与柴油混合,制造出一系列混合浮选油。选用40种不同混合油作捕收剂进行选别辉钼矿的实验,还与公司选厂常用的Amoco和Texaco油浮选成果进行了比照。成果表明,高分子根底油料和低分子稀释油的双组分混合物是一个比单组分油更好的辉钼矿捕收剂。研讨还发现,由环烷烃根底油混合的浮选油,用以捕收辉钼矿获得了较好的成果,而以芳香油料混合的浮选油捕收作用就较差。几种常用油的用量对辉钼矿浮选的影响见图5。 图5  几种常用烃油对浮选辉钼矿影响     各种烃油有不同的温度-密度-粘度联系,所以,粘度指数、或粘度-密度常数是油分子特性指数。几种烃油的粘度-密度常数见表8。 表8  烃油结构与粘度-密度常数类别白腊烃环烷烃芳香烃粘度-密度常数0.798~0.8130.842~0.8560.918~0.980     研讨发现,在粘度-密度常数为0.84(即由环烷烃根底油制造的混合油)邻近,辉钼矿的收回率最高。粘度-密度常数太大(芳烃段)作用也欠好。这与卡兹波特逊(Cuthbertson)观测成果(见图6)共同。可是,也有人以为芳烃比白腊烃或环烷烃对辉钼矿捕收力更强。对此,F.J.史密特以为这与根底油性质不清有关。图6  粘度与重常数(烃油品种)对辉钼矿收回率的影响     F. J.史密特引荐的代用油为一种低粘度油(如柴油)中增加30%、或更高份额的环烷烃光滑油的混合油。环烷烃油料的混合物比白腊烃、芳烃的混合油作用更好。这或许与环烷烃分子更易湿润和吸附在辉钼矿表面有关。但,也有人的研讨发现芳烃比白腊烃或环烷烃好。史密特以为这与油切当性质不清有关。     F. J.史密特的研讨最终引荐的代用油为一种低粘度油,如柴油在增加30%或更高些环烷烃光滑油的混合油。环烷烃油料的 混合物比白腊烃或芳烃的混合油作用好,与环烷烃的分子易湿润及粘附在辉钼矿表面有关。     杨家杖子矿务局钼选厂对重蜡、重芳烃的研讨成果与F. J.史密特相反,正构烷烃或芳烃对辉钼矿捕收才干较火油强。[next]     天然火油是由烷烃、环烃、芳烃组成。重蜡又称液体白腊,它是火油与尿素(络合法)在240~280℃脱出的产品。其间,正构烷烃占90%以上(成份列于表9),浮选成果见表10。但经分子筛处理后(简直只剩正构烷烃),浮选作用又会下降。重芳烃系轻柴油中提取240~280℃馏分,其间,芳烃约占90%。实验产品系北京石化总厂出产,对岭前矿钼矿石所作重蜡-芳烃比照实验,成果见表11。显着,选用重蜡比火油捕收辉钼矿,粗选收回率进步1%~2%;芳烃对辉钼矿捕收作用与重蜡挨近。 表9  石油五石重蜡组分分析试样C12烷以下C13烷C14烷C15烷C16烷C17烷C18烷C19烷C20烷试样1(%) 试样2(%)微 2.968.73 9.6119.27 18.8122.20 21.6121.35 20.3815.87 16.27/ 7.933.7 2.47微 /   表10  火油-重蜡浮选辉钼矿作用比照试料编号药剂用量(g/t)精矿含钼(%), ,钼收回率(%)收回率进步起伏(%)火油重蜡试料1 0.11%Mo 16003.6393.101.1201603.4894.22试料2 0.11%Mo15505.2884.521.3301555.3685.85 表11  重蜡-芳烃粗选作用对照表捕收剂药剂量(g/t)浮选目标(%)目标比照2#油重蜡重芳烃原矿档次精矿档次钼收回率精矿档次钼收回率重  蜡 重芳烃100 80130 00 1300.117 0.1182.32 2.4893.92 93.81+0.16-0.11     L.D.戴维(Daivid)选用碳原子11的芳烃,替代烯料油捕收辉钼矿,获得了杰出作用,他引荐的芳烃为异丙基荼和荼,实验成果列于表12。在相同加油量时,比燃料油钼收回率上升3.5%~3.8%。 表12  几种烃油捕收功能比照实验号烃油品种增加量(g/t)MoS2收回率(%)1异丙基荼45488.32荼45488.63蒸汽油45487.54燃料油45484.8     杨家杖子矿务局也曾用精荼替代火油作辉钼矿捕收剂,获得较好的作用。这些研讨与杨家杖子重芳烃优于火油定论共同,与F. J.史密特研讨相冲突‘     火油组分中亚甲基(—CH2一)与甲基(—CH3)之比CH2:CH3越大,火油浮选活性越高。     50年代起,国外就研讨了高能辐射火油以进步捕收性的研讨。1968年,使用辐射剂量为0.6×105rad/h的PX-r-30型辐射源,在最佳辐射剂量(1~3)×103Gy条件下辐射火油。将辐射过的火油用于分选辉钼-石英。成果发现,用辐射过的火油比没辐射的火油,辉钼矿的收回剂进步8%。据以为,高能射线的辐射化学作用能使许多烃类(饱满烃、不饱满烃;环烃、芳烃)的大部分变得更为杂乱,发作二聚或多聚作角,低分子烃就转化为长碳链的高分子化合物。而火油中高沸点化合物含量越高,火油烃里的亚甲基与甲基比值(nCH2:nCH3)越大,火油的浮选活性就越高。     烃油捕收剂与起泡剂用量有一个合理配比问题,见图7。当只加2#油而不加火油时,产品钼和铁收回率都较高而档次较低,显着,辉钼矿与黄铁矿分选欠安。随火油份额上升,产品铁收回率显着下降,钼收回率略下降后趋饱满,钼档次显着上升,显着分选好转。当火油点95%时,产品含MoS2由31.17%上升到62.89%。由图可见火油份额超越80%后,产品铁含量剧减,MoS2档次猛升。[next] 图7  火油2#油混合百分数对浮选影响     可是,浮选实践中,火油份额加大,泡沫稳定性显着下降,操作发作困难。     合理的火油、2号油份额应经过实践断定,金堆城约为2:1;栾川钼矿约为1.5~1:1;1:1~0.75。后者的火油份额显着太小。     烃油与辉钼矿吸附杰出,在选矿流程里,许多烃油吸附在辉钼矿表面,而富集进钼精矿。有材料报导,选钼进程所加烃油,75%在右进入了钼精矿。李文科等人也曾用蒸馏法测定金堆城二选厂所产钼精矿的油、水含量,见表12。同期流程考察测定钼精矿产率为0.18~0.20%,每吨原矿烃油增加量为220~250g/t。这样,可算出每吨干钼精矿上的油平衡。 表12  辉钼矿油水含量试样编号含水量(%)含油量(%)水油总量(%) 10.074.034.10枯燥后的钼精矿20.175.625.79 30.206.807.00 42.736.359.08精矿滤饼512.017.9119.92     增加烃油量:250g/t÷0.19%=131.5kg/t     滤并烃油量:1000×7.91%÷(100%-19.92%)=98.8kg/t     精矿(滤并)上烃油散布率:98.8÷131.5=75.1%     显着,计算值与材料报导共同。     烃油沸点100~275℃,在钼精矿脱水、枯燥时,仅有一部分烃油挥发掉,残留在钼精矿中的部分,在氧化焙烧时才干最终焚烧脱除。