您所在的位置: 上海有色 > 有色金属产品库 > 热油炉

热油炉

热油炉价格

更多
抱歉!您想要的信息未找到。

热油炉厂家

更多
抱歉!您想要的信息未找到。

热油炉百科

更多

油田用隔热油管

2019-03-19 09:03:26

1 油田用隔热油管范围  油田用隔热油管标准规定了油田用隔热油管管料的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书。  2 油田用隔热油管规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差  GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)  GB/T 5777 无缝钢管超声波探伤方法  GB/T 7735 钢管涡流探伤检验方法  GB/T 12606 钢管漏磁探伤方法  API SPEC 5CT 套管和油管规范  3 尺寸及钢级  隔热油管的内层管和外层管均不车螺纹,不带接箍。内层管管端外加厚,外层管为平端管。隔热油管的尺寸规格、钢级和管端形式等应符合表1规定。  表1    外径mm 壁厚mm 钢级 管端形式 长度  m  Ⅰ类长度 Ⅱ类长度  外层管 114.30 6.35 N80-Q 平端 9.5 9.1  114.30 6.88 N80-Q 平端 9.6 9.2  内层管 73.02 5.51 N80-Q 外加厚 9.4 9.0  88.90 6.45 N80-Q 平端 9.5 9.1  基于焊接性能等原因,内、外层管体采用同一材质,且碳当量Ceq<0.6,其计算公式为:  Ceq=C+Mn  6+(Cr+Mo+V)  5+Cr+Mo+V)  5  4 尺寸允许偏差  4.1 外径、壁厚和长度允许偏差应符合表2规定。  4.2 内层管外加厚端尺寸及偏差应符合图1规定。 表2 规格  mm 外径允许偏差 壁厚允许偏差 长度允许偏差  88.9×6.45 114.3×6.35 按API SPEC 5CT 按API SPEC 5CT        +100mm 0  73.02×5.51 114.3×6.88 按API SPEC 5CT 按API SPEC 5CT +50mm -50mm  图1 4.3 内层管和外层管供应长度配比应符合表3规定。  表3 规格  mm Ⅰ类长度 Ⅱ类长度  114.30×6.35 9.5 m 9.1 m  114.30×6.88 9.6 m 9.2 m  73.02×5.51 9.4 m 9.0 m  88.90×6.45 9.5 m 9.1 m  供应配比 ≥90% <10%  内、外层管均应按表3长度分类并按长度分类配套供应,分类包装。  5 油田用隔热油管交货状态  内层管、外层管均应以调质状态交货。  6 油田用隔热油管密实性检验  供方可用涡流探伤或漏磁探伤或超声波探伤等无损探伤方法代替水压试验。无损探伤代替水压试验时,钢管仍应保证达到水压试验所规定的要求。  7 油田用隔热油管管体标记  钢管喷印标记为:厂标 Q/BQB 234-2003 N80-Q 规格 炉号  8 其它技术条件  其他技术条件应符合API SPEC 5CT的有关规定。

油田的稠油热采隔热油管

2019-03-19 11:03:29

Q/BQB 234-2003 油田用隔热油管管料 1 范围 本标准规定了油田用隔热油管管料的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书。 本标准适用于宝山钢铁股份有限公司生产的用于油田的稠油热采隔热油管。2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 5777 无缝钢管超声波探伤方法 GB/T 7735 钢管涡流探伤检验方法 GB/T 12606 钢管漏磁探伤方法 API SPEC 5CT 套管和油管规范3 尺寸及钢级 隔热油管的内层管和外层管均不车螺纹,不带接箍。内层管管端外加厚,外层管为平端管。隔热油管的尺寸规格、钢级和管端形式等应符合表1规定。 表1   外径mm  壁厚mm  钢级  管端形式  长度  m  Ⅰ类长度  Ⅱ类长度  外层管  114.30  6.35  N80-Q  平端  9.5  9.1  114.30  6.88  N80-Q  平端  9.6  9.2  内层管  73.02  5.51  N80-Q  外加厚  9.4  9.0  88.90  6.45  N80-Q  平端  9.5  9.1    基于焊接性能等原因,内、外层管体采用同一材质,且碳当量Ceq 4 尺寸允许偏差 4.1 外径、壁厚和长度允许偏差应符合表2规定。 4.2 内层管外加厚端尺寸及偏差应符合图1规定。表2 规格  mm  外径允许偏差  壁厚允许偏差  长度允许偏差  88.9×6.45 114.3×6.35  按API SPEC 5CT  按API SPEC 5CT         +100mm 0  73.02×5.51 114.3×6.88  按API SPEC 5CT  按API SPEC 5CT  +50mm -50mm    图1 4.3 内层管和外层管供应长度配比应符合表3规定。 表3规格  mm  Ⅰ类长度  Ⅱ类长度  114.30×6.35  9.5 m  9.1 m  114.30×6.88  9.6 m  9.2 m  73.02×5.51  9.4 m  9.0 m  88.90×6.45  9.5 m  9.1 m  供应配比  ≥90%  <10%   内、外层管均应按表3长度分类并按长度分类配套供应,分类包装。5 交货状态 内层管、外层管均应以调质状态交货。6 密实性检验 供方可用涡流探伤或漏磁探伤或超声波探伤等无损探伤方法代替水压试验。无损探伤代替水压试验时,钢管仍应保证达到水压试验所规定的要求。7 管体标记 钢管喷印标记为:厂标 Q/BQB 234-2003 N80-Q 规格 炉号8 其它技术条件 其他技术条件应符合API SPEC 5CT的有关规定。  附加说明: 本标准代替BZJ 234-1998。 本标准与BZJ 234-1998相比主要变化如下: ――增加供货规格范围; ――取消接箍料。 本标准由宝山钢铁股份有限公司制造管理部提出。 本标准由宝山钢铁股份有限公司制造管理部起草。 本标准起草人:杨新亮。 本标准于1998年首次发布。

油田用隔热油管标准Q/BQB 234-2003

2019-03-18 11:00:17

Q/BQB 234-2003 油田用隔热油管管料 1 油田用隔热油管范围  本标准规定了油田用隔热油管管料的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书。  油田用隔热油管标准适用于宝山钢铁股份有限公司生产的用于油田的稠油热采隔热油管。  2 油田用隔热油管规范性引用文件  下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。  GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差  GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)  GB/T 5777 无缝钢管超声波探伤方法  GB/T 7735 钢管涡流探伤检验方法  GB/T 12606 钢管漏磁探伤方法  API SPEC 5CT 套管和油管规范  3 尺寸及钢级  隔热油管的内层管和外层管均不车螺纹,不带接箍。内层管管端外加厚,外层管为平端管。隔热油管的尺寸规格、钢级和管端形式等应符合表1规定。  表1     外径mm  壁厚mm  钢级  管端形式  长度  m   Ⅰ类长度  Ⅱ类长度   外层管  114.30  6.35  N80-Q  平端  9.5  9.1   114.30  6.88  N80-Q  平端  9.6  9.2   内层管  73.02  5.51  N80-Q  外加厚  9.4  9.0   88.90  6.45  N80-Q  平端  9.5  9.1     基于焊接性能等原因,内、外层管体采用同一材质,且碳当量Ceq<0.6,其计算公式为:  Ceq= C+Mn  -------------------------------------------------------------------------------- 6 + (Cr+Mo+V)  -------------------------------------------------------------------------------- 5 + Cr+Mo+V)  -------------------------------------------------------------------------------- 5    4 尺寸允许偏差  4.1 外径、壁厚和长度允许偏差应符合表2规定。  4.2 内层管外加厚端尺寸及偏差应符合图1规定。 表2 规格  mm  外径允许偏差  壁厚允许偏差  长度允许偏差   88.9×6.45 114.3×6.35  按API SPEC 5CT  按API SPEC 5CT         +100mm 0   73.02×5.51 114.3×6.88  按API SPEC 5CT  按API SPEC 5CT  +50mm -50mm     图1 4.3 内层管和外层管供应长度配比应符合表3规定。  表3 规格  mm  Ⅰ类长度  Ⅱ类长度   114.30×6.35  9.5 m  9.1 m   114.30×6.88  9.6 m  9.2 m   73.02×5.51  9.4 m  9.0 m   88.90×6.45  9.5 m  9.1 m   供应配比  ≥90%  <10%     内、外层管均应按表3长度分类并按长度分类配套供应,分类包装。  5 交货状态  内层管、外层管均应以调质状态交货。  6 密实性检验  供方可用涡流探伤或漏磁探伤或超声波探伤等无损探伤方法代替水压试验。无损探伤代替水压试验时,钢管仍应保证达到水压试验所规定的要求。  7 管体标记  钢管喷印标记为:厂标 Q/BQB 234-2003 N80-Q 规格 炉号  8 其它技术条件  其他技术条件应符合API SPEC 5CT的有关规定。  附加说明:  本标准代替BZJ 234-1998。  本标准与BZJ 234-1998相比主要变化如下:  ――增加供货规格范围;  ――取消接箍料。  本标准由宝山钢铁股份有限公司制造管理部提出。  本标准由宝山钢铁股份有限公司制造管理部起草。  本标准起草人:杨新亮。  本标准于1998年首次发布。

钨铜合金的特点

2019-05-27 10:11:36

特色1.电阻焊电极归纳了钨和铜的优势,耐高温、耐电弧烧蚀、强度高、比严重、导电、导热性好,易于切削制作,并具有发汗冷却等  钨铜特性,因为具有钨的高硬度、高熔点、抗粘附的特色,常常用来做有必定耐磨性、抗高温的凸焊、对焊电极。2.电火花电极针对钨钢、耐高温超硬合金制造的模具需电蚀时,普通电极损耗大,速度慢。而钨铜高的电腐蚀速度,低的损耗率,准确的电极形状,优秀的制作功能,能确保被制作件的准确度大大提高。3.高压放电管电极高压真空放电管在作业时,触头材料会在零点几秒的的时间内温度升高几千摄氏度。而钨铜高的抗烧蚀功能、高  耐性,杰出的导电、导热功能给放电管安稳的作业供给必要的条件。4.电子封装材料既有钨的低胀大特性,又具有铜的高导热特性,其热胀大系数和导电导热功能够经过调整材料的成分而加以改动。修改本段物理功能钨铜合金归纳了金属钨和铜的优势,其间钨熔点高(钨熔点为3410℃,铜的熔点1080℃),密度大(钨密度为19.34g/cm,铜的密度为8.89/cm3) ;铜导电导热功能优越,钨铜合金(成分一般规模为WCu7~WCu50)微观安排均匀、耐高温、强度高、耐电弧烧蚀、密度大;导电、导热功能适中,广泛应用于军用耐高温材料、高压开关用电工合金、电制作电极、微电子材料,做为零部件和元器件广泛应用于航天、航空、电子、电力、冶金、机械、体育器材等职业。

油田油管

2019-03-18 11:00:17

1 油田油管范围   油田油管标准规定了油田用隔热油管管料的尺寸、外形、重量、技术要求、试验方法、检验规则、包装、标志和质量证明书。   油田油管标准适用于宝山钢铁股份有限公司生产的用于油田的稠油热采隔热油管。   2 油田油管规范性引用文件   下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。   GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差   GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法)   GB/T 5777 无缝钢管超声波探伤方法   GB/T 7735 钢管涡流探伤检验方法   GB/T 12606 钢管漏磁探伤方法   API SPEC 5CT 套管和油管规范   3 尺寸及钢级   隔热油管的内层管和外层管均不车螺纹,不带接箍。内层管管端外加厚,外层管为平端管。隔热油管的尺寸规格、钢级和管端形式等应符合表1规定。   表1      外径mm  壁厚mm  钢级  管端形式  长度  m    Ⅰ类长度  Ⅱ类长度    外层管  114.30  6.35  N80-Q  平端  9.5  9.1    114.30  6.88  N80-Q  平端  9.6  9.2    内层管  73.02  5.51  N80-Q  外加厚  9.4  9.0    88.90  6.45  N80-Q  平端  9.5  9.1       基于焊接性能等原因,内、外层管体采用同一材质,且碳当量Ceq<0.6,其计算公式为:   Ceq= C+Mn   --------------------------------------------------------------------------------  6 + (Cr+Mo+V)   --------------------------------------------------------------------------------  5 + Cr+Mo+V)   --------------------------------------------------------------------------------  5     4 尺寸允许偏差   4.1 外径、壁厚和长度允许偏差应符合表2规定。   4.2 内层管外加厚端尺寸及偏差应符合图1规定。  表2 规格  mm  外径允许偏差  壁厚允许偏差  长度允许偏差    88.9×6.45 114.3×6.35  按API SPEC 5CT  按API SPEC 5CT         +100mm 0    73.02×5.51 114.3×6.88  按API SPEC 5CT  按API SPEC 5CT  +50mm -50mm       油田油管   4.3 内层管和外层管供应长度配比应符合表3规定。   表3  规格  mm  Ⅰ类长度  Ⅱ类长度    114.30×6.35  9.5 m  9.1 m    114.30×6.88  9.6 m  9.2 m    73.02×5.51  9.4 m  9.0 m    88.90×6.45  9.5 m  9.1 m    供应配比  ≥90%  <10%       内、外层管均应按表3长度分类并按长度分类配套供应,分类包装。   5 交货状态   内层管、外层管均应以调质状态交货。   6 密实性检验   供方可用涡流探伤或漏磁探伤或超声波探伤等无损探伤方法代替水压试验。无损探伤代替水压试验时,钢管仍应保证达到水压试验所规定的要求。   7 管体标记   钢管喷印标记为:厂标 Q/BQB 234-2003 N80-Q 规格 炉号   8 其它技术条件   其他技术条件应符合API SPEC 5CT的有关规定。      附加说明:   本油田油钢管标准代替BZJ 234-1998。   本油田油钢管标准与BZJ 234-1998相比主要变化如下:   ――增加供货规格范围;   ――取消接箍料。

40cr圆钢

2019-03-18 11:00:17

40cr圆钢成分:碳0.37~0.45%,硅0.17~0.37%,锰0.5~0.8,铬0.8~1.1% 退火硬度:小于207HBS 正火硬度:小于250HBS 钢材调质处理:试样直径:25mm,850度淬火加热油淬,520度回火后:抗拉1000兆帕,屈服800兆帕,延伸9%,断面收缩45%,冲击韧性588.3千焦/平方米 。

铝型材行业高能耗与高污染的原因

2018-12-28 14:46:54

①熔炼和回收:目前铝熔炼炉中电炉占5%,油炉占91%,燃气炉占4%,造成重熔生产1吨挤压圆锭的油耗比工业发达国家的高55.17%,而实际铸锭(轧制扁锭与挤压圆锭)的平均熔炼能耗比工业发达国家的高得多。另外,铝熔炼炉能耗的总体状况还是处于中低水平。   ②铸造、轧制和挤压:缺乏高档次产品;小机台多,挤压装备较落后,效率低;装备的自动化程度低,无法实现等温快速挤压,生产精密型材;模具质量欠佳。   ③表面处理: 表面处理是铝加工过程中的高耗电、高耗水、高污染的环节。   节能减排成为当今铝加工企业迫切需要解决的问题,本文从熔铝炉、保温炉、挤压机棒炉、氧化处理污泥深加工利用等方面出发,提出一些新方法和策略,从而使铝加工企业达到节能减排和清洁生产的目的。

炭黑的三种制造工艺

2019-01-07 07:51:16

炭黑的生产方法主要有炉法、槽法、热裂法三种。 炉法 由天然气或高芳烃油料在反应炉中经不完全燃烧或热解生成炭黑,此种炭黑称为炉黑,是炭黑品种中产量最大、品种最多的一类。炉黑与槽黑及热裂黑的显著区别是,其粒子的熔结或聚结程度可根据不同用途来调节。所以,同一粒径范围的炉黑,又分为若干不同结构的衍生品种。另外,炉黑的含氧量通常比槽黑低(少于1%),表面呈中性或弱碱性。炉黑生产的特点是,燃料在反应炉中燃烧,提供原料裂解所需的热量。燃烧和裂解过程同时发生。根据所用原料形态的不同,炉黑生产可分为气炉法和油炉法两种。气炉法所用原料和燃料均是天然气。油炉法的燃料可以是天然气、焦炉气,也可以是液态烃,原料则选用高芳烃油料,如乙烯焦油和蒽油等。在炉黑生产工艺流程(见图)中,反应炉是核心设备。生产不同品种的炉黑需采用不同结构尺寸的反应炉。空气和燃料在反应炉中燃烧,原料经雾化后喷入燃烧的火焰中,经高温热解生成炭黑。炭黑悬浮于燃余气中形成烟气。烟气经急冷后送空气预热器、油预热器进一步降温,最后送入袋滤器,分离出的炭黑送到造粒机中造粒,然后在干燥机中干燥。 槽法 以天然气为主要原料,以槽钢为火焰接触面而生产炭黑,此种炭黑称为槽黑。与炉黑及热裂黑相比,其粒子较细而比表面积较大。同时,由于采用特定的生产方式,其表面受到氧化,含有较多的含氧官能团而呈酸性。这类炭黑粒子的聚结程度较低。因含有较多的含氧官能团,可延缓橡胶的硫化速度,提高聚烯烃的耐候性以及赋予油墨良好的流动性和印刷性能。 热裂法   以天然气、焦炉气或重质液态烃为原料,在无氧、无焰的情况下,经高温热解生成炭黑,称为热裂黑。它是炭黑品种中比表面积最低的一类,基本上以单个球形粒子存在,不熔结或聚结成聚集体,其表面含氧量亦很少(0.1%~0.3%)。热裂黑主要有三个品种:中热裂黑、不污染的中热裂黑和细热裂黑。中热裂黑的氮吸附比表面积为6~10m2/g,细热裂黑则为10~15m2g。

电磁熔炉在锌合金压铸中的应用

2019-01-08 17:01:42

电磁熔炉采用电磁感应加热技术对金属(镁、铝、锌合金)进行熔解再加工设备; 我公司对锌合金电磁熔炉系列产品、专用配件的开发、制造全面完善;现有电磁中央熔解炉,压铸机电磁熔炉(所有压铸机电磁熔炉均可订做,包括富来的双室双温炉)、电磁熔炉专用球墨钳锅,316L不锈钢复合钳锅(抗熔蚀、抗膨胀停机无需打料);产品质量可长达数年无故障,为客户省钱省心。 电磁熔炉的几大特点:全安、节能、环保、便捷稳定。 安全 电磁机芯产生20KHZ-25KHZ交流电流,通过电磁线盘生成相应交变磁场,金属(钳锅)切割 磁力线而自身感应生热(非接触性加热),绝缘回路高阻抗:设备进行接地安全性达100%; 设备外壳无高温且能用手触摸,温度在60℃左右。 节能 电磁加热设备热效应95%左右,热效率99%; 比燃油炉省40%以上,较高可达60%; 比电热炉省20%左右,但与电热管放入钳锅内比相等。 每年能给客户节省3万以上。 环保 电磁熔炉无燃烧、无排放;打造低温环保车间,给员工一个干净、舒适的工作环境。 便捷稳定 安装现场只要电线电源到位即可,设备技术十分成熟,故障率低且维修简单方便。 新厂房安装电磁熔炉,无需铺设管道、安装风管及排风设备,可省下上百万的工程费用,缩短工厂完工工期,而且环保可一次性通过。

铝电解槽主动冷却技术—为铝厂错峰弹性生产和节能减排提供解决方案!

2019-01-08 17:01:35

铝的应用有助于轻量化和节能减排,但电解铝也是高耗能的产业。在中国,2016年仅电解铝耗电量就占到全社会用电量的约7.25%。同时令人惋惜的是,在铝电解生产过程中,输入电解槽的能量中有约50%的能量以废热形式散失掉了。其中,烟气排放约占35%,电解槽上部结构约占8%,电解槽侧部约占35%,底部阴极约占22%。提高电解铝生产中的能效水平,既是国家节能减排的迫切要求,也是企业提高运营效率,实现可持续发展的努力方向。挪威科纳斯科技公司(Cronus Technology AS)经过10多年的努力,开发了独特的铝电解槽余热回收和主动冷却系统,可为电解铝工业节能减排和弹性生产提供新的思路和高效解决方案。 该技术利用了热管原理。热管是热传输装置,是超级热导体。热管结合了热传导和流体相变原理,热管中工作液体可以在液态和气态之间进行转换,其导热能力是铜的1000倍。铝电解槽主动冷却系统包括四个主要部分:油站、集热器、控制系统和管道。油站中的低温导热油通过管道首先进入到烟气系统的集热器中,对烟气进行冷却,并收集烟气中的热量;之后进入电解槽侧部的集热器,收集电解槽侧壁的热量;然后进入热交换器,将收集的热量进行转换或者利用;经过冷却的油再进入到油站,完成一个循环。电解槽侧部集热器是等温的,不存热应力。通过螺栓固定在电解槽侧壁的摇篮架中间,外面有保温层,防止热损失。 通过控制导热油的流速,就可以控制电解槽的散热速度。从而可以控制槽帮厚度和电解槽的热平衡。 这样,就能给电解槽提供一个稳定、可控的工作环境,使其生产不受季节变化的影响。在电解槽焙烧启动的时候,主动冷却系统有助于改善电解槽槽壳的升温速度,从而降低槽壳以及耐火材料的热膨胀,从而延长电解槽的寿命。 此外,主动冷却系统为调节电流强度和电解槽产量提供可能性。在需要提高产量时,可以强化电流,同时提高冷却速度,防止电解槽过热;在需要降低产量的时候,可以降低电流强度,同时调低冷却速度(冷却速度可以为零),此时的集热器可以起到保温作用(因为外面的保温层),也能防止电解槽过冷。 正常生产情况下(不调节产量),该技术可以回收总散失热量的大约40%。据估算,中国目前有大约55000台电解槽,2016年原铝产量约为3200万吨,电耗约4334亿度,热损失约2167亿千瓦时。假设国内电解铝行业都使用此项技术,可以回收的总热量约866亿千瓦时,大致相当于1.7亿城乡居民的电耗;可减少二氧化碳排放约6500万吨,相当于2300万辆汽车的排放。这将是一个巨大的节能减排的潜力所在。当然,实际节能效果还取决于回收热能的再利用途径和效率。 从电解槽回收的热量为清洁能源,可以有多种用途和能源转化方式。包括用于煤电厂发电,对蒸汽轮机的给水进行加热;社区供热、制冷;低温发电;以及工厂加热物料等。余热利用方式可以根据电解铝厂自身的产业链配套、所在地区的产业布局、地理特点等因素有不同的能源再利用模式。 该技术经过了10多年的研发、试验和不断改进。2014年4月,在迪拜铝业的一台电解槽上安装了这套系统。目前已经连续平稳运行超过3年,没有出现任何问题。槽帮控制和监测,热量回收,系统的安全性和稳定性已经得到验证。但因为这台电解槽是整个系列中的一台,尚未能验证其强化电流,调节产量的实际效果。下一步,这项技术期待能在节能减排挑战较大、产能较大的中国铝行业中率先实现产业化。目前,科纳斯科技公司正在中国与潜在的合作伙伴进行交流洽谈,一方面推广该系统的热量回收功能,另一方面进一步开发和完善该系统用于调节铝产量、实现弹性生产的功能。 科纳斯科技公司认为,该项技术在中国电解铝行业应用有多重意义及价值。 首先,对利用这一系统回收的热量进行多种形式的综合利用,可以减少企业的整体燃煤和能源消耗,提高能效,降低企业运行成本。 其次,降低煤耗能耗的同时,也相应的降低了碳排放,缓解电解铝企业面临的越来越大的环保压力。 第三,在正常情况下,通过控制电解槽热平衡,从而可以强化电流,将每台电解槽的产量提高20%。 第四,在需要减产限产的时候,还能通过控制电解槽热平衡,降低电流强度,实现不停槽减产20%左右。这将避免停槽减产和重新启动给企业带来的经济损失和电解槽寿命损失。更重要的是减少停槽带来的固废的产生,减少重新启槽和非正常调整期产生的无组织污染物排放和温室气体排放,降低环境污染。 总之,企业可以按照环保政策要求,在不停槽的情况下实现限产或错峰生产。也可以根据铝价和成本核算情况,随时自主调节产量,实现弹性生产,优化生产组织,提高适应性。相关部门也可以通过控制系统,对电解槽限产情况进行实时监测。