谈铝轧制润滑油基础
2019-03-01 14:09:46
诗曰:一纪五旬世界史,二轮八载中华情;
上一年汗水铸宏业,今岁大志再起程;
前路或然折并曲,后天只信拼才赢;
春风起处抛坯砖,欢请金珠缀玉龙。
好富顿公司是一家具有150年悠长前史的金属加工光滑介质直销商,咱们触及的范畴也十分广泛,在铝轧制范畴更是一向体现杰出。当今,咱们期望能够在这里和咱们树立一个交流平台,抛砖引玉,修篁待仪;十步芳草,各抒主意,来谈谈铝轧制的方方面面,就让咱们先从根底的部分说起吧。 轧制是铝加工的较重要手法之一。现代铝合金轧材包含板带材,型线材以及管材等,种类规格有数千种,而且还在不断扩大,在宽度方面有3米以上的板材,在厚度方面有0.01mm一下的箔材等。在轧制尤其是板带轧制时需求杰出的光滑以便能够下降冲突力功率耗费,削减轧辊磨损和进步板面质量。要完成杰出的光滑,首要需求分析光滑状况,进而可结合铝轧制特色,来断定光滑要完成的手法,以到达需求光滑的意图。 1,光滑状况 图1是斯特贝克(Stribeck)在1900年提出的光滑状况曲线图1:斯特贝克(Stribeck)曲线
图中的三个区域对应着三种首要光滑状况。在I区,冲突表面被接连的光滑油所离隔,油膜厚度远大于两表面的粗糙度之和,冲突阻力由光滑油的内冲突来决议,即由光滑剂的黏度决议。还可细分为流体动压光滑或许弹性流体动压光滑状况。油品黏度越高,相对速度越快,载荷越低和表面粗糙度越低,越简单呈现动力光滑。 跟着压力添加,油膜变薄到与表面粗糙度在相同数量级时,进入料鸿沟光滑,冲突副表面微凸体间处于触摸状况,是由极性分子构成的鸿沟膜将冲突副(轧辊和轧板)分隔,II和III的区别是,在II区依然由光滑剂的(有机)分子将冲突副分隔,而在III区触摸副表面间隔十分近,温度很高,是有光滑剂中的组分与金属反响构成的无机膜,将冲突副离隔,也称为极压光滑。关于铝轧制光滑,其光滑一般处于动力光滑和鸿沟光滑的混合光滑状体,其冲突系数在0.03-0.10之间,薄膜厚度在0.1-1.0微米之间。 2,动力光滑完成 如上所提在I区的动力光滑首要是依托光滑油的黏度。光滑油的黏度首要与根底油有关,所以动力光滑在很大程度上取决于根底油。一般将根底油分为白腊基,环烷基和芳香基,其功能比较如表1所示。 芳香烃相关的许多物质都是致癌物质,现已有许多资料来报导。所以,根底油的挑选其实首要是在环烷基和白腊基中来挑选。白腊基根底油黏度指数高,稳定性好,为绝大多数油品所选用,由于不期望在温度改变时黏度改变太大,如液压油,淬火油等。致癌物质,但在作为轧制油的根底油上,有不同的考虑。轧制油组分多,环烷基根底油溶解性好,有利于坚持平衡,故期望运用环烷基根底油,更重要的,温度升高,环烷基油黏度下降地更多,这对轧制而言,能够下降咬入困难。但也有选用白腊基的根底油,由于在动力光滑阶段,由于轧制压力十分大,以至于轧辊都发生了弹性变形,因而实际上是处于弹性动力光滑状况,而白腊基的黏压特性更适合这种状况下的光滑。 在所谓老三套的炼油技能(溶剂脱蜡,溶剂精制和白土弥补精制)中,环烷基和白腊基油源有关,现在广泛应用的加氢炼油技能现已摆脱了对油源质量的依托,并使根底油的质量有了明显地进步,如表2所示,加氢处理的根底油的质量得到明显进步,对轧制油的根底油而言,应该优先选用加氢精制的根底油。 3,鸿沟光滑和完成 鸿沟光滑是靠极性分子吸附在表面,构成鸿沟光滑膜来完成光滑的,工件在表面的吸附状况取决于分子的极性,吸附机制有物理吸附,化学吸赞同极压发应如图2所示。 首要构成的是物理吸附,这首要是依托分子间力,它是相对的长程吸附,动力是分子间力,物理吸附与分子的极性有关,但吸附分子没有与金属构成化学键,所以,如图2所示,吸附并不需求活化能,因而很简单完成,但构成物理吸附后,能量下降甚微,阐明吸附膜的光滑强度不高。 假如吸赞同基体金属构成化学键,则会构成化学吸附,如图2所示,化学吸附需求战胜活化能ΔEact1,该活化能值不很大,故在温度恰当状况下即能够进行。经过化学吸附后,有较大的能量下降,吸附膜强度比较大,国内资料上大都称其光滑剂为抗磨剂或许油性剂。
假如温度更高,吸附就有或许战胜如图2所示的较大活化能ΔEact2,光滑剂中的组分和金属完成化学反响,构成光滑膜,该光滑膜来自于光滑剂的分子和金属的一起效果,是一个无机膜,能量下降许多,所以光滑膜强度较高,该膜的构成是根据化学反响构成的,所以,极压光滑也是一种控制性的腐蚀进程。图3是含S光滑剂在光滑进程中所构成的的这物理吸附,化学吸赞同化学反响示意图,能够看出物理吸附是极性吸附,但未构成化学键(虚线);化学吸附则构成了化学键,而化学反响是构成一层无机膜,该光滑膜中不再有有机的光滑剂分子。 4,铝轧制光滑的特色 铝的轧制光滑,相同遵从上述光滑机制。但铝的轧制光滑有其不同于黑色金属轧制的特色。 (1)铝是面心立方金属,4个111密排面,3个110滑移方向,共3x4=12个滑移系,简单发生变形和粘铝;铝是金属,反响性强,与酸碱都可反响;铝的强度较低,外来杂质简单压入表面。归纳这些要素,铝在轧制进程中表面简单呈现缺点,所以表面质量将成为铝轧制光滑较重要方针之一。 (2)轧制进程中由于冲突特别是在前滑区发生的铝粉较多,而铝没有磁性,难以经过磁过滤去除,但铝粉有必要及时去除,不然这些铝粉或许又会压回到表面。所以怎么有用去除轧制进程中发生的铝粉将是轧制光滑中的关键技能。 (3)S是十分有用的光滑材料。硫化物有较大极性首要在表面构成物理吸赞同化学吸附,起到油性剂或抗磨剂效果。部分温度高时,和铁反响构成具有层状结构的FeS无机光滑膜,起到极压光滑效果。但因硫铝反响在铝轧制光滑中一般不运用含S的光滑成分,只能转而次之运用P,如磷酸酯。磷酸酯的吸附机理一般以为能够经过亲核加成构成如图4所示,或许经过酸碱反响,如图5所示。 铝轧制光滑的这些特色,需求在轧制油配方规划中给予充分考虑。 (好富顿公司 陈春怀 2016年3月22日)
纳米金刚石在润滑油中的添加应用
2019-01-25 10:18:59
一种在润滑油中添加的纳米金刚石微粒的表面处理方法,依次包括以下步骤,用高速气流对撞机以高速气流将纳米金刚石粉体对撞超细粉碎,解开团聚;将解开团聚的纳米金刚石微粒加入在有表面改性剂和分散剂的有机溶剂中;利用高速剪切机在上述加入有纳米金刚石微粒的有机溶剂中高速剪切,并利用超声波使有机溶剂中的微气泡内部爆炸即超声空化,使纳米金刚石微粒进一步解开团聚;离心分离出表面改性后的纳米金刚石微粒,用有机溶剂将所述纳米金刚石微粒洗涤后离心分离出纳米金刚石微粒,干燥后得到表面改性后的纳米金刚石微粒。本发明的技术效果在于:细化后的纳米金刚石微粒粒度范围在20~60nm,纳米金刚石微粒的表面改性非常充分。
锑化合物添加剂在润滑油脂中的应用
2019-01-31 11:06:17
锑元素与咱们熟知的磷元素相同,坐落元素周期表的第V主族,也是一具有极压、抗磨特性的元素。用作光滑油脂增加剂的锑化合物可分为两类,一类为无机的锑化合物,如硫代锑酸锑(SbSbS4)、硫化锑(Sb2S3),另一类为有机锑化合物,主要为二烷基二硫代磷酸锑(SbDDP)和二烷基二硫代基锑(SbDDC)。比较不溶性的无机锑化合物,油溶性的有机锑增加剂在光滑油脂中得到了更为广泛的运用。现在商品化的有机锑增加剂主要有美国R.T.Vanderbilt公司出产的Vanlube622(,锑含量11.5%,磷含量9.5%,硫含量18.0%)、Vanlube73(二戊基二硫代基锑,锑含量6.8%,硫含量11.1%)、Vanlube8610(Vanlube73与硫化烯烃的协同混合物,锑含量7.3%,硫含量36.0%),和国产的T352增加剂(二丁基二硫代基锑)。将对无机和有机的锑化合物用作光滑油脂增加剂的根本功能,与其他增加剂的相互效果和相关运用进行了介绍。
一、无机锑化合物的根本功能
表1给出了硫代锑酸锑(SbSbS4)、硫化锑(Sb2S3)在光滑脂中的极压、抗磨功能,以及它们与二硫化钼(MoS2)增加剂的功能比较。从表1能够看出,具有无定性特性的SbSbS4和具有晶状结构的Sb2S3均具有比MoS2好得多的极压和抗磨功能。选用二硫化钼,油品的烧结负荷仅为1372N,选用晶状硫化锑,烧结负荷可达3479N,但无定性的硫代锑酸锑,能够把烧结负荷进步到5880N,体现出最好的极压功能。并且,在低于烧结负荷的载荷下,选用硫代锑酸锑,钢球磨斑直径也十分小,这也是晶状的硫化锑无法比较的。晶状的硫化锑虽然具有与二硫化钼结构类似的层状结构,但其极压、抗磨功能却远不如无定性的硫代锑酸锑。
表1无定性硫代锑酸锑(SbSbS4)和晶状硫化锑(Sb2S3)在光滑脂中的极压、抗磨功能增加剂不同载荷下的磨斑直径/mm392N784N1176N1372N1764N1960N2450N3479N5880NMoS20.330.410.50烧结Sb2S30.330.430.531.66烧结Sb2S40.340.450.500.991.40烧结
注:根底脂是以双酯类根底油稠化而成,增加剂参加量均为5%;四球实验转速为1800rmin,实验时刻10s,钢球为AISI-C-52100铬钢(ASTMD-2596)。
别的,选用与表1类似的实验条件,但把钢球换成极难光滑的AISI-440C不锈钢,也发现硫代锑酸锑具有优异的光滑功能。选用硫代锑酸锑增加剂,在1568N载荷下,磨斑直径仅为0.53mm,但选用商等第的二硫化钼,在784N载荷下,磨斑直径就到达2.43mm,且烧结负荷仅为1176N。
二、硫代锑酸锑与其他增加剂的协同效果
表2给出了硫代锑酸锑与二硫化钼增加剂在光滑脂中的极压、抗磨协同效果数据。从表2能够看出,硫代锑酸锑与二硫化钼增加剂协同,能够有效地下降四球实验的长磨磨斑直径,大幅度进步烧结负荷和负荷磨损指数。清楚明了,这两种增加剂在光滑脂中具有十分好的极压、抗磨协同效果。研讨还标明,硫代锑酸锑与石墨在光滑脂中也具有很好的极压、抗磨协同效果,但这种协同效果要略差于与二硫化钼的协同效果。
表2 硫代锑酸锑与二硫化钼增加剂在光滑脂中的极压、抗磨协同效果增加剂,%SbSbS40107.56.75.03.30MoS2002.53.35.06.710磨斑直径/mm0.810.720.560.520.530.520.63烧结负荷/N1235392049004900490039202450负荷磨损指数/N3239801088108811071049343
注:根底脂是以聚a-烯烃为根底油的二氧化硅光滑脂;丈量烧结负荷和负荷磨损指数按ASTMD-2596办法进行:四球机转速l800rmin,时刻10s。丈量长磨磨斑直径按ASTMD-2596办法进行:四球机转速1200rmin,载荷392N,时刻lh,温度为75℃。所用钢球均为AISI-C-52100钢。
硫代锑酸锑与二硫化钼增加剂的抗磨协同效果也体现在光滑油中,不仅如此,这两种增加剂在光滑油中还具有减摩协同效果,实验成果见表3。从表3能够看出,硫代锑酸锑与二硫化钼增加剂体现出优异的减摩协同效果。
表3 硫代锑酸锑与二硫化钼增加剂在光滑油中的减摩协同效果光滑油组成摩擦系数根底油+0.5%SbSbS40.04根底油+0.25%SbSbS4+0.25%MoS20.01根底油+0.5%MoS20.04
注:根底油品为含有丁二酰亚胺类分散剂的白腊基矿物油。摩擦系数在四球实验机上进行丈量:转速1200rmin,载荷392N运转5min后丈量。
别的,硫代锑酸锑(SbSbS4)与氧化锑(Sb2O3)在锂基光滑脂也体现出必定的极压、抗磨协同效果。例如,在一以矿物油经12-羟基硬脂酸稠化而成的锂基脂中,参加1.0%的硫代锑酸锑或氧化锑,可别离取得3920N和1960N的烧结负荷,但假如一起参加0.8%的硫代锑酸锑和0.2%氧化锑,则可取得4900N的烧结负荷。硫代锑酸锑或其与氧化锑复配,在光滑脂中还具有按捺磨料磨损的功能。这对露天设备和采矿设备的光滑脂(极有或许混入尘埃或矿物性磨粒)而言,该功能具有重要的含义。
三、有机锑增加剂的根本功能
表4列出了二烷基二硫代磷酸锌(SbDDP)在光滑油中的极压功能,及其与二烷基二硫代磷酸锌(ZnDDP)的功能比照。从表4能够看出,SbDDP和ZnDDP的梯姆肯极压功能是与其烷基的巨细相关的,烷基基团越小,极压性越好;跟着烷基基团的增大,SbDDP和ZnDDP的极压功能下降,但SbDDP的功能下降更显着。关于烷基基团较小的二硫代磷酸盐,SbDDP的极压功能要比ZnDDP好,除了2-乙基己基外,其他烷基的SbDDP的极压功能均好于同烷基的ZnDDP。
表4 二烷基二硫代磷酸盐在光滑油中的极压功能及与锌盐的比较烷基基团梯姆肯OK值/N1.0%1.5%2.0%SbZnSbZnSbZn异丙基311222311267异丁基289200333222已基3111333112223112222-乙基已基133133178222222222
注:根底油为SAE90高粘度指数根底油,梯姆肯实验按ASTMI)一2782办法进行。
运用四球实验机比较了商业化的二烷基二硫代磷酸的锑盐和锌盐的抗磨功能。选用的锑盐为Vanlube622(烷基为异丙基),锌盐为T202增加剂。从表5能够看出,Vanlube622具有优异的抗磨功能,其抗磨功能在高载荷条件下更为杰出。异丙基的SbD-DP既具有优异的极压功能,也具有十分好的抗磨功能。
表5 不同烷基基团的二硫代基锑在酯类光滑油中的极压功能不同烷基基团的增加剂梯姆肯OK值/N无增加剂<22乙基,2-庚基,SbDDC400乙基,2-辛基,SbDDC467乙基,2-壬基,SbDDC311异丙基,正辛基,SbDDC356异丙基,正辛基,ZnDDC(与锑盐比较)196异丙基,C14-C18烷基,SbDDC111二戊基,SbDDC(Vanlube73)311
注:根底油为二异辛基癸二酸酯,增加剂的参加量为2.5%。梯姆肯实验按ASTMD一2782办法进行。
不同烷基基团的二烷基二硫基锑(SbDDC)在光滑油中的抗极压体现SbDDC具有优异的梯姆肯和四球极压功能。SbDDC的极压功能与其烷基巨细有关,先是跟着烷基的增大而增强,但在戊基或己基之后,跟着烷基增大,功能下降。戊基或己基的SbDDC极压功能最好。SbDDC增加量对其极压功能的影响。跟着增加量的增加,SbDDC的极压功能逐步增强,在增加量为2.5%~3.0%时,其极压功能最好。
二烷基二硫代基锑在酯类光滑油中的极压功能见表5。从表5能够看出,适宜烷基基团的SbDDC在酯类油中具有十分好的梯姆肯极压功能。表5还列出了异丙基正辛基二硫代基锌(ZnDDC)的数据来作为比较,能够看出,对异丙基正辛基二硫代基盐,ZnDDC的梯姆肯OK值仅为44N,而SbDDC的为356N,显着,SbDDC的梯姆肯极压功能要远优于烷基基团相同的ZnDDC。
关于有机锑盐在光滑脂中的四球抗烧结功能,有文献报导,在一烧结负荷为1235~1568N的根底锂基脂中,参加2.0%商业化的(Vanlube622)或4.0%的二戊基二硫代基锑(Vanlube73)能够取得3920N的烧结负荷。据报导,二烷基二硫代基锑可显着延伸光滑脂的运用寿数。在一以聚a-烯烃或二醚组成油为根底油的脲基脂中,参加二戊基二硫代基锑(Vanlube73),特定条件下的轴承实验标明,轴承寿数超越1000h,而参加其他增加剂,如二烷基二硫代基锌、盐,其轴承寿数不超越200h。二烷基二硫代基锑优异的极压、抗磨功能得益于其与金属表面较低的开端反响温度。
表6给出了有机锑增加剂在光滑油中的抗氧化功能。从表6能够看出,二烷基二硫代磷酸锑(SbDDP)和二烷基二硫代基锑(SbDDC)均具有必定的抗氧化功能。其间,SbDDC的抗氧化功能要优于SbDDP。
表6 二硫代磷酸锑和二硫代基锑在光滑脂中的抗氧化功能增加剂,2.0%压力降/kPa100h300h500h无增加剂186324379SbDDP4896131二戊基SbDDP48103152二戊基SbDDC286296
注:根底脂为2号锂基脂。选用ASTMD一942氧弹实验。
现在,可生物降解光滑油脂开端得到越来越广泛的重视,其间,研讨最多、运用最广的可生物降解根底油为植物油。二烷基二硫代基锑在植物油根底油中具有优异的抗氧化功能。选用宾夕法尼亚微氧化实验点评了一系列抗氧剂在植物油根底油中的抗氧化功能(225℃,40Ul油样,30min),研讨标明,二戊基二硫代基锑(Vanlube73)具有比传统的商业化增加剂(如胺类、酚类和硫磷酸盐类抗氧剂)更好的抗氧化功能。别的,因为二戊基二硫代基锑不含磷元素,可用来分配低磷或无磷内燃机发起机油,削减对汽车尾气催化转换器催化剂的毒害,有利于环境保护。
四、有机锑增加剂与其他增加剂的协同效果
表7给出了二硫代基锑与盐增加剂的极压协同效果。从表7能够看出,二硫代基锑与盐增加剂具有很好的梯姆肯极压协同效果,这种协同效果在锂基脂中更为明显,4%的盐与1%的二烷基二硫代基锑合作,在锂基脂中可取得400N的梯姆肯OK值。
表7 二硫代基锑与盐增加剂在光滑脂中的极压协同效果项目梯姆肯OK值/N锂基脂脲基脂无增加剂67675%盐2221331%SbDDC67674%盐+1%SbDDC400200
注:梯姆肯OK值按ASTMD一2509办法丈量。盐增加剂为含有40%三钾的商业化增加剂,SbDDC为二戊基二硫代基锑(Vanlube73)
二烷基二硫代基锑与有机钼增加剂,如二烷基二硫代磷酸钼(MoDDP)、二烷基二硫代基钼(MoDDC)合作运用,能够取得杰出的运用效果。特别是在CVJ脂中,二烷基二硫代基锑(SbDDC)与二烷基二硫代基钼(MoDDC)复配,具有很好的功能。
MoDDC与SbDDC合作运用,要优于其他增加剂之间的复配,能够一起取得高的烧结负荷和梯姆肯OK值,以及低的磨斑直径和洽的腐蚀操控。并且,选用MoDDC与SbDDC复合增加剂系统,能够用来出产低噪音的光滑脂。
表8给出了ZnDDP、SbDDP和丙三醇所组成的三元极压协同系统。从表8能够看出,当ZnDDP、SbDDP和丙三醇的增加量别离为1.50%、0.25%和0.30%时,光滑脂的梯姆肯0K值都不超越89N(实验样品B、C和D),即便他们两者进行复配,其梯姆肯0K值也均不超越156N(实验样品E、F和G),但当三者复配时,其梯姆肯0K值到达了333N(实验样品H),显着,ZnDDP、SbDDP和丙三醇是一个优异的三元极压协同系统,三者缺一不可。该三元协同系统中的三元醇(丙三醇)具有特殊的效果,是其他醇类(如丙二醇)所无法代替的,假如用丙二醇代替丙三醇,其梯姆肯OK值由333N骤降到低于89N(实验样品H和I)。该三元极压协同系统在含有防锈剂、铜腐蚀按捺剂、抗氧剂、粘附性增强剂和染料的全配方光滑脂中,其抗极压效应根本坚持不变,依然坚持311N的高梯姆肯OK值(实验样品J和K),这阐明该极压协同系统根本不受光滑脂中其他增加剂的搅扰,具有相当好的安稳性。虽然1.5%的SbDDP也具有十分好的极压功能,其梯姆肯OK值可到达356N(实验样品L),但该增加剂报价较贵,并且对铜片具有高腐蚀性,这是无法与ZnDDP、SbDDP和丙三醇所组成的三元极压系统比较拟的。
表8 光滑脂中ZnDDP、SbDDP和丙三醇三元极压协同系统光滑脂组成实验样品ABCDEFGHIJKL根底光滑脂,%10099.7598.5099.7098.2599.4598.2097.9597.9594.6494.3498.5ZnDDP,%001.5001.5001.501.501.501.521.520SbDDP,%00.25000.250.2500.250.250.250.251.5丙三醇,%0000.3000.300.300.30000.300丙二醇,%000000000.30000其他增加剂,%0000000003.593.590梯姆肯OK值/N<89<89<89<89156<89133333<89133311356
注:根底脂为NLGI2号复合锂基脂(根底油40℃粘度为220mm,Is,稠化剂量为l4%)。其他增加剂为防锈剂、铜腐蚀按捺剂抗氧剂粘附性增强剂和染料。
别的,二烷基二硫代基锑还能与光滑脂中染料发作效果,在不同的温度阶段,体现不同的色彩特征,这能够给光滑脂的运用和设备工况监控带来特殊的优点。假如光滑脂体现出非寻常高温条件下的色彩,阐明此刻光滑失效,应该替换光滑脂,或设备发作毛病,应检修设备。例如在一含有2.5%二戊基二硫代基锑(Vanlube73)的制品膨润土极压脂中,参加800ug∕g蓝色染料,跟着温度的升高,色彩可发作如下改变:100℃以下坚持蓝色,120℃时变成暗绿色,140℃时变成紫色;假如把Vanlube73换成2.0%的Vanlube8610(Vanlube73与硫化烯烃的协同混合物),色彩改变又有不同:80℃以下坚持蓝色,100℃时变成绿色,140℃时变成棕色,170℃时变成橙色。这种色彩改变特性也存在于其他类型的光滑脂中,如锂基脂。
五、定论
(一)硫代锑酸锑(SbSbS4)在光滑脂中具有优异的极压、抗磨功能。
(二)硫代锑酸锑(SbSbS4)与二硫化钼增加剂具有优异的极压、抗磨、减摩协同效果。
(三)二烷基二硫代磷酸锑(SbDDP)和二烷基二硫代基锑(SbDDC)为光滑油脂多功能增加剂,具有极压、抗磨和抗氧化功能。
(四)二烷基二硫代基锑(SbDDC)与盐增加剂具有极压协同效果,能够大幅度进步光滑脂的梯姆肯OK值。
(五)二烷基二硫代基锑(SbDDC)与二烷基二硫代基钼具有极压、抗磨、腐蚀按捺等方面的协同效应。
(六)二烷基二硫代磷酸锑(SbDDP)可与二烷基二硫代磷酸锌、丙三醇构成一个安稳的三元极压协同系统,极为有效地进步光滑脂的梯姆肯OK值。
(七)二烷基二硫代基锑(SbDDC)还能与光滑脂中的染料发作反响,用作光滑脂的温度指示剂。
油套管
2019-03-18 10:05:23
GB/T 8162油套管尺寸偏差项目
允许偏差外径
管体
D≤101.60mm±0.79mmD≥114.30mm +1.0% -0.5%接箍
±1%壁厚
-12.5%重量
单根
+6.5%+3.5%车载量
-1.75螺纹参数允许偏差 品种规格
锥度
螺距
齿高
螺纹角度
螺纹长度
管端倒角
紧密距每英寸
累计
管体螺纹
接箍螺纹圆螺纹油管2 3/8"-5 1/2"
10牙/in
+5.208 -2.600
±0.076
±0.152
+0.051 -0.102
±1 2/2
±1 1/2P
+5 -0
±1 1/2P
±1 1/2P8牙/in
+5.208 -2.600
±0.076
±0.152
+0.051 -0.102
±1 2/2
±1P
+5 -0
±1P
±1P圆螺纹套管 4 1/2"-4 1/2"
+5.208 -2.600
±0.076
±0.152
+0.051 -0.102
±1 2/2
±1P
+5 -0
±1P
±1PP偏梯形螺纹套管
接箍
+4.50 -2.50
±0.051
±0.102
±0.025
-
-
+5 -0
+1 1/2P-0
+0-1 1/2P管子
完整螺纹
+3.50 -1.50不完整螺纹
+4.50 -1.50油套管机械性能纲级
屈服强度(MPa)
抗拉强度(MPa)
延伸率最低
最低
最低
最低Psi
Mpa
Psi
Mpa
Psi
Mpa
HRC
BHNJ-55
55000
379
80000
552
75000
517
-
-K-55
55000
379
80000
552
95000
655
-
-N-80
80000
552
11000
758
100000
689
-
-L-80-1
80000
552
95000
655
95000
655
23
241C-90
90000
621
105000
724
100000
689
25.4
255C-95
95000
655
110000
758
105000
724
-
-T-95
95000
655
110000
758
125000
724
25.4
255P-110
110000
758
140000
965
100000
862
-
-M-65
65000
448
85000
586
100000
689
22
23580 SS
83000
570
99000
680
100000
689
23
241BG80T
80000
552
110000
758
100000
689
-
-BG110T
110000
758
140000
965
125000
862
-
-油套管化学成份钢级
C
Mn
Mo
Cr
Ni
Cu
P
S
Simin
max
min
max
min
max
min
maxJ-55
K-55
N-80
L-80-1
C-90-1
C-90-2
C-95
T-95-1
T-95-2
P-110
M-65
80 SS
BG80T
BG110T
钢管长度项目
范围1
范围2
范围3油管
6.10-7.32m
8.53-9.75m
-套管
4.88-7.62m
7.62-10.36m
10.36-14.63m
集中润滑系统概述
2019-01-11 15:44:00
润滑指在机械设备摩擦副的相对运动表面间加入润滑剂以形成并保持适当的润滑油膜。集中润滑指的是成套供油装置同时或按需对设备润滑点供油。集中润滑的使用可以起到降低摩擦阻力、减少表面磨损、降温冷却、防止腐蚀、减震及密封等作用。 要使摩擦副的磨损小,必须在摩擦副表面保持适当的清洁的润滑油膜,即维持摩擦表面之间恒量供油以形成油膜,这通常是连续供油的较佳特性(恒流量)。 然而,有些部件需油量仅为每小时1~2滴,一般润滑设备按这样要求连续按比例供油是非常困难的。其实过量的供油如同供油量不足是同样有害的(例如,一些轴承在过量供油时会产生附加热量)。大量实验证实,不连续但经常地供油才是较佳的方式。因此,当连续供油成为不合适时,可采用经济的周期系统来实现。这种形式的系统是使定量的润滑油按预定的周期时间对润滑点持续地供油,使摩擦副保持适量的油膜。 一般来说,大部分机器上的摩擦副均适合采用周期润滑系统来润滑。使用连续润滑系统的摩擦副仅限于当机器连续运转,同时负载是很高时,例如:冲床、大型镗床、龙门铣床、滚齿机等。 因此,在对润滑系统的型式选择上,必须记住: 1、在多数情况下,应采用周期润滑系统。 2、过多和过少的润滑油对摩擦副是同样有害的。 3、选用周期润滑系统应使用计量件来控制摩擦副的供油量,选用连续润滑系统应使用控制件来控制摩擦副的供油量。 系统由以下部分组成: 1、润滑泵——按需要提供润滑介质。 2、分配元件——按需定量分配润滑介质。 3、附件——由管道接头、柔性软管(或刚性硬管)、分配块等组成。 4、控制——由电子程控器和压力开关、液位开关等控制元件组成。润滑泵按预定要求周期工作,对润滑泵及系统的开机、关机时间进行控制,对系统的压力,油罐液位进行监控和报警,以及对系统的工作状态进行显示等功能。 集中润滑系统根据润滑介质的不同可以分为润滑油润滑和润滑脂润滑:根据系统分配元件不同可以分为抵抗式润滑系统、容积式润滑系统、递进式润滑系统、油气润滑系统。 无锡瓦尔姆精密机械有限公司自主开发微量控制润滑泵——按需要提供润滑介质,拥有自主知识产权,并为客户提供整体的解决方案。 无锡瓦尔姆精密机械有限公司是润滑系统零部件及系统设计、制造的高科技技术企业。瓦尔姆由从事润滑系统设计资深专家,联合国内知名研究所,共同开发出拥有自主知识产权的一系列润滑控制单元及系统,并为客户提供整体的解决方案。 油脂润滑主要应用于:纺织机械、机床、包装机械、印刷机械、木工机械、塑料机械、锻压机械、自动扶梯等。 油雾冷却润滑主要应用于:机床金属切削加工冷却,板材拉伸成型润滑,高速转轴、旋转齿轮及传动链的润滑,木材烘烤(成型),塑料工业的切割以及灌装食品包装的消毒工序等。
一文了解“润滑之王”氟化石墨合成方法和应用领域
2019-03-08 09:05:26
氟化石墨首要用于各种严苛条件下的高能量密度锂氟电池质料、固体光滑剂、核反响堆材料、医药中间体等,其间,固体光滑剂和锂氟化碳电池电极材料是氟化石墨使用最为广泛的范畴。
尽管氟化石墨的研讨始于一个世纪曾经,但工业化技能一向被美国、日本等少量几个国家把握。近几年,我国部分厂商经过自主研制打破了技能避垒,逐步把握了氟化石墨出产技能,并成功用于工业化出产,产品功用乃至赶超国外。
下面,小编就从组成办法和使用范畴等方面为我们介绍一下氟化石墨。
1、什么是氟化石墨
氟化石墨是石墨碳与氟直接反响而制得的一类层间化合物,其化学结构式可用(CFx)n标明,其间F/C比(x)为不定值,改变区间为0高氟化度石墨具有优秀的热稳定性,是电和热的绝缘体,不受强酸和强碱的腐蚀,光滑功用超越MoS2和鳞片石墨。
由于氟化石墨具有许多优异功用,在军事、航空、航天、冶金、机电、化工及特种材料范畴具有广泛使用,是当时最具经济远景的新式石墨制品。
2、氟化石墨的组成办法
(1)直接组成法
固体碳和气体氟在必定的规模内加热反响,这一工艺其质料只触及固体碳和气体氟两种,外界条件只要温度反响作用的好坏,只和反响物自身和反响条件有关,此是最早的组成办法,也是最老练的工业出产办法。(2)催化组成法
在石墨和氟气的反响体系中,如果有微量的金属氟化物存在时,则在低于正常条件下也能完成氟化,金属氟化物在这里起到了催化作用制得的氟化石墨中,含有微量的金属氟化物,尽管量微,却改变了氟化石墨的性质,特别是导电率进步了一个数量级。
(3)固-固组成法
该法使用固体含氟聚合物和石墨混合,在惰性气体中加热至260℃制得氟化石墨,这一组成办法在安全性上得到改进,但氟化程度较低,产品不均匀。
(4)电解法
将碳素或石墨材料在无水中电解,就可生成新的氟化石墨,即在阳极和阴极之间使循环,这样可以接连地组成氟化石墨,本办法经过操控反响液的浓度、电解温度和导电剂添加量等完成的,但氟化程度较低,产品F/C不均匀,该法的工艺仍在进一步完善之中。
尽管氟化石墨的研讨始于一个世纪曾经,但工业化技能仅仅被美国、日本等少量几个公司把握。近几年,我国一些厂商也逐步把握了氟化石墨出产技能,并成功用于工业化出产。
3、氟化石墨的用处
(1)高能量密度锂氟化碳电池电极材料
氟化石墨具有很好的化学、热压稳定性,表面能极低,电活性极高,适协作高能电池阳极材料CF0.5-0.99的氟化石墨最适合做高能电池阳极材料,含氟量高有利于削减阳极体积,使电池小型化。湖北卓熙氟化股份有限公司电池级氟化石墨
高氟化石墨CF1.1-1.26尽管含氟量高,却由于电阻率过大,需求参加离子导电剂Li。选用低氟化石墨作为锂电池电极材料,原位组成锂氟电极。研讨标明,该反响具有适用温度规模广,放电电动势高且平稳,高能量密度,安全环保,自放电慢,使用寿命可达10年以上。
使用氟气与氦气的混合气体在不同的温度下制备功用化氟化石墨,别离制备出了氟碳比为0.89、0.66和0.47的氟化石墨。成果标明:功用最佳的氟化石墨的氟碳比为0.47,其放电电压最高可到达2.8V,制备的氟碳比为0.89的氟化石墨,其比容量可到达721mA/g。
(2)固体高效光滑剂
高氟化度石墨比原石墨、二硫化钼(MoS2)等具有更高的光滑性,这种高氟化石墨的结构为交织层状,面层碳原子2p电子参加Sp3杂化与氟原子构成共价键,从而使氟化石墨失去了部分导电性。层面的上下表面布满结合着氟原子,由于氟原子的电负性,相邻层面的氟原子之间存在着斥力,使碳层的层距离由石墨的3.35Å扩展至7.08Å,层间能由石墨的39.681kJ/mol降至8.365kJ/mol,因而层面简单滑动,光滑性更强。
试验标明:在高温、高压及高载荷(882kg/cm2)条件下,高氟化石墨依然坚持杰出的光滑功用,因而被称为“光滑之王”。经过电解熔盐KF•2HF制取氟气,再将氟气与石墨在500℃时进行反响,制备出了氟化石墨材料,并对氟化石墨、石墨、二硫化钼进行冲突因数测验。成果发现氟化石墨冲突因数小于石墨和MoS2,证明了氟化石墨的确有优秀的光滑功用。
(3)疏水防油材料
由于氟原子的引进,氟化石墨的表面吉布斯自由能明显下降,层间能十分小,彻底不为水所湿润。氟化石墨是一种最憎水的材料之一,这是由于它的强共价性和C-F健低极化所造成的。比如在白腊上水的接触角为90°-100°,即便是现在最难光滑的聚四氟乙烯,其接触角也只要110°左右,而水对氟化石墨的接触角却高达145°左右,所以氟化石墨可以用作高功用防水剂或疏水材料。
(4)氟化石墨纤维散热材料
氟气与石墨纤维反响制成的氟化石墨纤维,可以用来制作电子测验器的散热材料。(5)吸音材料
氟化石墨涂于有机物的表面可制得吸音材料,用于内燃机及其他尾气排放处,削减噪声污染。(6)脱模剂和研磨剂
氟化石墨的低表面能使它可用于为模铸、胶合板成型、粉末成型、烧结精压及塑料金属模的脱模剂,并可作研磨剂,用于光学器材的研磨。
(7)碱性锌锰电池正极添加剂
氟化石墨还可以碱性锌锰电池的正极添加剂,氟化石墨可以明显地进步电池的放电容量,其最佳的添加剂含量为5%,不同氟化度的氟化石墨添加电池放电容量的起伏也不同,其间含氟量为35%时作用最佳。
油相粘附法(油团聚金)工艺应用实例
2019-02-19 10:03:20
油相粘附又称油聚会金。此工艺的开始研讨成果是加拿大资源开发研讨委员会(CARBAD)创造的。因为金矿资源的不断开发,许多国家的高档次金矿床日见削减,使得从含金低于1g∕t的低档次金矿石、老尾矿堆和含金极低的砂矿中收回细粒金成为往后的首要方针。而如今的重选、浮选法等对低档次砂矿和矿石中的微细金粒收回率都不高,怎么选用预先处理使金富集起来,再用惯例冶金办法冶金已日趋重要。这就是油聚会工艺很快进入黄金选矿范畴的原因。
关于油聚会工艺捕收金的机理,在刘建军等的文章中已有论说。其实质正如浮选作业那样向矿浆中参加异丁基黄药之类的捕收剂,使金粒及其连生体发生疏水性,然后参加中性油,使疏水化的粒子进入油相构成含金聚会物,再选用浮选、筛分等办法取得富集金的油相产品。选用油聚会金工艺,作业进程的要害:一是依据原猜中金属矿藏的品种和数量挑选适合的捕收剂,尽可能使金粒及其连生体预先疏水化,并按捺不含金的其他矿藏使其坚持亲水性,这是完成油团挑选性捕集金的先决条件;二是作业进程坚持较高的拌和强度,使亲水颗粒受流体剪切力的效果从油相中排入水相,以进步油团的挑选性吸附和金的富集比。正因如此,若选用油聚会法处理含硫化矿藏高的质料时,会因硫化矿藏被很多捕集,而导致油团精矿含金档次下降。
J.R.福南德等于1964年选用油聚会法对加拿大魁北克省某含硫化矿低于3%(其间90%为黄铁矿)、含金0.6g∕t的原矿进行了实验。因为原矿中天然金粒度为2~20μm,大部分包裹在黄铁矿中,原矿经蘑矿至85%-0.074mm(200目),向矿浆中参加异丁基黄药,并加中性油拌和使其构成聚会物,经筛分取得的油团精矿捕收了悉数硫化矿藏和单体金,含金档次达35g∕t,金收回率达95%。将此精矿于700~800℃进行氧化焙烧后进化浸出。
广西冶金研讨所对油相粘附捕金的研讨,先后选用了11种人工制造粘附剂,经体系实验后筛选出A型粘附剂,并规划了与之配套运用的振荡粘附槽。此种粘附剂是由石腊、石腊油和蓖麻油等按必定份额调制而成,为习惯不同时节温度改变和其他其体条件的需求,配方可进行恰当调整,使其具有最佳硬度和粘附功能。此粘附剂适用于不含硫化矿藏的矿石和砂矿。当用它处理砂金矿时,经一次选矿金的富集比高达5000~61818倍,油团上金的捕集率可达93.33%~98.32%。工业实验标明:油团精矿含金档次达42272kg∕t,金收回率99.5%,尾矿含金0.054g∕t。
油相粘附法(油团聚金)工艺技术
2019-03-05 10:21:23
油相粘附又称油聚会金。此工艺的开始研讨成果是加拿大资源开发研讨委员会(CARBAD)创造的。因为金矿资源的不断开发,许多国家的高档次金矿床日见削减,使得从含金低于1g∕t的低档次金矿石、老尾矿堆和含金极低的砂矿中收回细粒金成为往后的首要方针。而如今的重选、浮选法等对低档次砂矿和矿石中的微细金粒收回率都不高,怎么选用预先处理使金富集起来,再用惯例冶金办法冶金已日趋重要。这就是油聚会工艺很快进入黄金选矿范畴的原因。
关于油聚会工艺捕收金的机理,在刘建军等的文章中已有论说。其实质正如浮选作业那样向矿浆中参加异丁基黄药之类的捕收剂,使金粒及其连生体发生疏水性,然后参加中性油,使疏水化的粒子进入油相构成含金聚会物,再选用浮选、筛分等办法取得富集金的油相产品。选用油聚会金工艺,作业进程的要害:一是依据原猜中金属矿藏的品种和数量挑选适合的捕收剂,尽可能使金粒及其连生体预先疏水化,并按捺不含金的其他矿藏使其坚持亲水性,这是完成油团挑选性捕集金的先决条件;二是作业进程坚持较高的拌和强度,使亲水颗粒受流体剪切力的效果从油相中排入水相,以进步油团的挑选性吸附和金的富集比。正因如此,若选用油聚会法处理含硫化矿藏高的质料时,会因硫化矿藏被很多捕集,而导致油团精矿含金档次下降。
J.R.福南德等于1964年选用油聚会法对加拿大魁北克省某含硫化矿低于3%(其间90%为黄铁矿)、含金0.6g∕t的原矿进行了实验。因为原矿中天然金粒度为2~20μm,大部分包裹在黄铁矿中,原矿经蘑矿至85%-0.074mm(200目),向矿浆中参加异丁基黄药,并加中性油拌和使其构成聚会物,经筛分取得的油团精矿捕收了悉数硫化矿藏和单体金,含金档次达35g∕t,金收回率达95%。将此精矿于700~800℃进行氧化焙烧后进化浸出。
广西冶金研讨所对油相粘附捕金的研讨,先后选用了11种人工制造粘附剂,经体系实验后筛选出A型粘附剂,并规划了与之配套运用的振荡粘附槽。此种粘附剂是由石腊、石腊油和蓖麻油等按必定份额调制而成,为习惯不同时节温度改变和其他其体条件的需求,配方可进行恰当调整,使其具有最佳硬度和粘附功能。此粘附剂适用于不含硫化矿藏的矿石和砂矿。当用它处理砂金矿时,经一次选矿金的富集比高达5000~61818倍,油团上金的捕集率可达93.33%~98.32%。工业实验标明:油团精矿含金档次达42272kg∕t,金收回率99.5%,尾矿含金0.054g∕t。
为何石墨软石墨烯“硬”
2019-01-04 15:47:49
导读
为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。
石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。
再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。
为何石墨软,石墨烯“硬”?
2019-01-03 09:37:04
为什么石墨那么软,而石墨烯又表现得那么“硬”呢?浙江大学信息电子工程学院副教授林时胜介绍说,其实这里涉及两个不同的概念,一个是强度,这是力学概念,一个是硬度,属于物理概念。
石墨烯的“硬”,是指强度高,衡量强度的指标是杨氏模量,根据杨氏模量的高低可以把物质分为硬物质和软物质。石墨烯的模量非常高,可达1T帕(压强单位),是材料里最高的,所以石墨烯是硬物质,可以说是很硬。相应的像橡胶这些,模量只有几千帕,就是软物质,很软。
材料力学上有刚度、强度、韧度、硬度等不同物理概念,这与我们通常讲的硬与软有区别。从通俗意义上说,石墨烯的“硬”指的是石墨烯的强度很好,就是它抗断裂的能力很强,这也和它的韧性很好有关系,因为容易延展而不断裂。模量就是代表了材料能被拉伸的容易程度。
再说石墨的软,这是物理概念,指的是硬度。硬度的衡量,是用一种材料去破坏另一种材料,被破坏的硬度就小。石墨的片层之间是范德华力,非常弱,只要用固体去划它,都能把它的片层错开,所以石墨很容易被破坏,就是说石墨很软。
铜线拉丝油
2017-06-06 17:50:07
CA-Draw 5100铜线拉丝油是一种水溶性润滑剂,适用于各种铜线的拉制。对于连铸及常规热轧棒料同样适用。铜线拉丝油CA-Draw 5100为在集中供液系统及单机使用而设计,适用于各类过滤系统,可以用喷淋式及浸式拉丝机。特点:*优异的润滑油性能,特别适于拉制粗线中线;使用成本低。*抗氧化性能好。*低泡性,提高拉线速度。*不含氯和硫。*成品表面光亮。典型理化参数原液 外观 琥珀色透明液体 比重(20℃) 0.92 pH(3%,蒸馏水配液) 8.9 电导率(3%,蒸馏水配液) 600μ S/cm 折光系数 1.0使用浓度推荐举: 使用浓度需根椐线材、设备、线径与拉线速度综合选择,根据进线直径推荐使用浓度如下: 铜线类型(线径mm) 浓度 粗线(8 -----2.4) 8----12% 中线(2.4-----0.55) 4----8% 细线(0.55----0.1) 2----4%* 将折光仪的读数乘以该系数,即得该乳化液的浓度百分比。 在连续退火冷却水系统中,也可使用浓度为0.5~2.0%的CA-Draw 5100水溶液,化气以防止铜线氧化及便于随后放线。 CA-Draw 5100采用208升铁桶装运。储存条件:5~40℃,室内储存。以上是铜线拉丝油的详细信息 想查阅更多关于铜线拉丝油的信息 请关注上海
有色
网
铝线拉丝油
2017-06-06 17:50:05
铝线拉丝油,是拉丝油的一个品种。拉丝油,用于拉丝、拉拔工艺的高效润滑,具体适用于以下领域: 1、各种丝材、线材的拉丝拉线工艺; 2、电子元器件引出线的铜包钢丝、镀青铜胎圈钢丝、镀铜钢丝的拉拔工艺 3、光面钢丝的拉拔。 拉丝油为棕红色液体,由精制油配以国际上高档合成油,添加高PB值水性极压剂、乳化剂、防锈缓蚀剂、防氧防霉剂等多种助剂,经精湛工艺配制而成。 优异的润滑性能、抗磨性能,提高加工精度、表面光洁度,拉丝模耗量低,有效保护丝材或线材,最大程度的减少划伤等现象的发生;润滑性能、冷却性能、防锈性能、清洗性能——四能一体。能有效的排除
金属
屑、油污、油泥、等切屑,减少胶质堵塞管道的程度;有突出的短期防锈、工序间防锈作用。散热冷却,不燃,安全可靠。属高效节能型产品; 优异的乳化效果,乳化安定性好,调制成的乳化液,无析油,具有良好的润湿性和润滑性,能使被加工机件获得好的表面质量; 有较好的快速消泡作用,属于抑泡型产品; 不含亚硝酸盐等有害物质,无不良的刺激性气味,属环境友好型产品; 本品可代替国外同类产品。使用成本低,加工效率高。不易腐败、稳定性好,使用周期长; 水溶性好,高透明度,易于观察工件动态状况; 经济安全、使用寿命长、不易腐败变质、无油泥废油污染。铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。想要了解更多铝线拉丝油的相关资讯,请浏览上海
有色
网(
www.smm.cn
)铝频道。
铜合金挤压润滑和冷却技术
2019-05-29 18:30:55
铜合金揉捏光滑和冷却技能 铜合金揉捏时一次变形盆很大,金属健坯与揉捏工其触摸面上的单位正压力极高.在此条件下.变形金脚的表面更新效果加重,从而使金属枯结东西的现象严该,铜合金揉捏时光滑剂的效果是尽可能地使表面干冲突转变为鸿沟冲突。在揉捏过程中,为了进步揉捏制品的表面质量,改进和延伸揉捏东西的运用寿命以及下降揉捏力削减能址耗费,应对揉捏东西进行光滑口揉捏时运用光滑剂的效果是:尽可能地改进金属与揉捏简、揉捏摸、穿孔针等揉捏东西的冲突条件,削减表面千冲突,这不仅能够进步揉捏制品的质盆和东西的运用寿命,并且因为下降了揉捏东西对金属的冷却效果,使金属的活动不均匀性削减。铜合金外摩接对全属压力制作的影响 当受压力效果的两个相互触摸的物体,其触摸表面发作相对运动,或有相对运动走势时.它们之间就发生一种阻止相对运动的效果力,这种现象称为外尽擦.这种阻力叫做库擦力。 铜合金外冲突对金属压力制作的影响主要有以下几个方面: (1)添加了战胜卑攘力的附加变形功.使作业应力添加,能盆耗费进步。 (2)引起应力与变形的不均匀散布.下降产质量盆。 (3)因为率擦生热.使东西表面祖度升高.下降了东西的强度,一起便东西磨损,形响东西运用寿命及制品表面质盆和尺度精度。
二硫化钼的润滑特性
2019-01-29 10:09:51
二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟的优点,被誉为“固体润滑之王”而被广泛应用。
作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。
二硫化钼以S—Mo—S的三明治式夹层相迭加。层内,S—Mo间以极性键紧密相连。层间,S—S间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399个良好的滑移面。
二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。
除此外,它还具备有许多良好的润滑特性。
(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。
(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。
(3)耐真空:航天器在500km以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下的润滑性能比在空气中的润滑性能还要好。在1.3×10-2μPa真空度下,二硫化钼擦涂膜的摩擦系数降至0.0016,比在空气中的0.1低了很多。在1.3μPa真空、8000r/min、0.2MPa条件下工作的二硫化钼溅射膜轴承,其工作寿命已超过1500h。
(4)抗辐射:油脂在放射性辐照下会因分子交联而失效。而二硫化钼膜在7×108伦琴强辐射辐照后,比辐照前润滑性能几乎没受影响。二硫化钼在辐照前,静摩擦系数为0.13~0.14,动摩擦系数为0.11~0.12,磨损为306.1×10-3cm3;在辐照后则分别为:0.13,0.11和382.3×10-3cm3。这是二硫化钼在原子工业中被广泛应用的主要原因。
(5)耐腐蚀:二硫化钼稳定的化学性能使它具备了耐酸、耐碱、耐腐蚀的优点,这为二硫化钼与其他润滑剂合用创造了条件。[next]
(6)速度适应范围宽:二硫化钼在很低或很高转速下,都具良好润滑效能。而油脂润滑剂在低速下会出现“粘-滑”或“冷焊”;高转速下,又会因润滑膜破裂而失效。
鉴于二硫化钼这些良好的润滑特性,从1940年开始应用至今,发展迅猛。美国和前苏联的研究起步早,应用广泛;而日本也已有七个生产和推销二硫化钼的公司。我国对二硫化钼的研究起步较晚,1958年开始研究,1963年上海井岗山化工厂开始生产,截至1986年,我国每年生产二硫化钼粉150t,而年需要量已达400t。西北有色金属研究院研究成的“二硫化钼润滑剂制备新工艺”于1987年已通过中国有色金属工业总公司主持的鉴定,按此工艺1987年在栾川县钼业公司和1992年在西北有色金属研究院分别新建的,年生产能力为l00t的生产线已正式投入了生产,它将缓解我国对二硫化钼供不应求的局面。其标准见下表。
表 二硫化钼(润滑级)质量标准
生产厂家等级主要成份含量(%)MoS2
≥酸不溶物Fe
≤MoS3
≤水
≤油
≤C
≤酸度中国专业标准
ZBG12022-90一级品981.50①0.30 0.50 5合格品962.50①0.70 0.50 5西北有色金属研究院企业标准0#990.10②0.100.10 0.21#980.20②0.150.10 0.2国际贸易标准非微粉98.00.40①0.130.05微0.031.100.5微粉98.00.40①0.130.200.150.201.103.0克莱迈克斯(Climax)化工产品标准
CC-3D72年非微粉产品98.20.35①0.150.010.00.031.000.01标准98.20.50①0.200.050.050.051.500.05微粉产品98.00.35①0.150.030.00.251.200.55标准98.00.50①0.200.050.050.401.500.59沪Q/HG11-85-820#98 1#97 2#96 辽Q240/800#990.02①0.06 1#990.02①0.04 2#980.05①0.1 栾川钼业公司企业标准0#990.100.200.050.201.000.2 1#980.200.300.10.451.000.5 2#970.400.400.10.501.501.0 3#960.500.400.10.501.501.0
①不溶物;②SiO2。
二硫化钼不仅是“固体润滑之王”而且还是石油产品精炼加工中的良好脱硫催化剂。
不管作润滑剂或催化剂,对产品所含MoS2纯度要求都很高。
由含MoS2纯度较低的钼精矿,生产成高纯度的二硫化钼粉,其生产工艺繁多,各工厂都有各自的特色,不尽相同,其研究归类也互不统一。笔者将它们归纳进两个大类:合成法与天然法进行介绍。
漫画简介石墨烯!
2019-03-08 09:05:26
石墨烯被称为“黑金”,又被称为“新材料之王”,是现在发现的最薄、强度最大、导电导热功能最强的一种新式纳米材料,极有或许掀起一场席卷全球的颠覆性新技术新产业革新。
石墨烯的制备上,多晶薄膜有望未来1-2年内完成产业化使用,单晶石墨烯工业组成办法仍未找到,因而间隔产业化还很悠远。低成本的使用氧化还原法出产石墨烯粉体,一起可以使用CVD法出产出层数可控、大面积的石墨烯薄膜是未来研究要点,也是推进职业开展的要害点。而在使用层面,未来被看好的范畴是锂离子电池、柔性显现、太阳能电池和超级电容器。
煤-油聚团选金设备
2019-02-15 14:21:10
吸附设备是煤-油聚团选金新工艺完结工业使用的最中心设备。已规划和选用的设备有下行式串级型搅拌吸附设备(Down stream multistage stirring tank,简称DSMST)和偏疼提高管凹型歪斜筛环流式吸附床(Gas一lift loop reactor with eccentric tube and inclined sieve,简称EILR),以满意操作功能好和出资费用低的要求。 1)下行式串级型搅拌吸附设备(DSMST) 下行式串级型搅拌吸附设备的结构如图1所示。在所规划的DSMST吸附设备中,使用桨叶发生的抽力将浆相和煤一油聚团从混合室上端进口吸入混合室,混合相从槽底出口经提高管排出,从而使煤一油聚团散布均匀,并且无需空气提高设备就能完结浆相或火油聚团的级间传递。把一个搅拌室分红多槽,一起削减槽与槽之间的返混,浆相在搅拌槽内的活动趋向柱塞流,浆相和火油聚团各微元有更多的平等时机进行触摸和吸附别离。 设备级间筛分设备能够使通过上一级槽子吸附的浆相进入下一级槽子进行吸附,一起使煤一油聚团保留在本来的槽内,进行恣意次数的循环。该进程以半回流方法进行。级间筛分设备由提高管和Z型筛组成,省去了紧缩气体和振荡机械系统。混合相的提高量由提高管的高度调理。Z型筛筛网孔径应在煤-油聚团直径和矿粉直径之间。实验结果标明,以筛分替代浮选,能使工艺流程缩短,设备简化。[next] 从DSMST吸附设备与全混式高速搅拌吸附槽的吸附功能比较可知,在矿的含金档次为4.0~5.5g/t条件下,1L的全混式高速搅拌吸附槽在搅拌速度为1400r/min时,金的回收率为84.0%;3.6L的DSMST在搅拌速度为580r/min时,金的回收率为84.0%~85.5%。 DSMST吸附设备的扩大功能列于表1。表1 DSMST吸附设备的扩大功能(间歇操作)吸附槽容积/L处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率/%0.50.15605.720.9483.60.50.156010.651.6184.950143093.68050146093.580.6
通过30kg/h级接连工作,三槽串联吸附,每槽吸附时刻0.5h。榜首槽吸附量达90%以上,第二、三槽吸附量只占总量的百分之几。流量为0.6~2.1m3/h时,金的回收率到达80%以上,渣中金档次可降至0.9g/t。吸附总时刻可缩短至1h(而化炭浆法搅拌吸附时刻长达28h)。经60余次循环后,载金聚团进行焙烧,金档次达2559g/t,富集600倍以上。经接连化实验证明,DSMST吸附设备具有扩大功能好、出资费用低和功率高级特色。 2)偏疼提高管凹型歪斜筛环流式吸附床(EILR ) EILR吸附床,如图2所示。它归于气体提高式触摸器。为了便于气体一起完结物料的搅拌和运送使命,置中心管于偏疼方位。当接连操作时凹型歪斜筛替代溢流口,使浆相溢出而使煤一油聚团停留床内。EILR吸附床内部无滚动部件,结构简略,制作成本低,操作修理便利。该吸附床扩大实验标明,当尺度从40mm×600mm扩大到800mm×3000mm,操作方法从接连改为接连时,金的吸附回收率从83.6%改变到82.4%~83.3%,扩大功能杰出。曾用该设备在中科院化冶所进行了吨级接连性实验,金的吸附回收率达85%。[next] 在接连操作条件下EILR吸附床与DSMST吸附设备的吸附功能如表5.3.2所示。从表2能够看出,EILR吸附床与DSMST吸附设备吸附功能附近,但EILR吸附床结构简略、出资费用低、操作和修理便利,应该为煤一油聚团选金的首选设备。表2 EILR吸附床与DSMST吸附设备吸附功能比较吸附槽类型处理矿重/kg停留时刻/min原矿档次/(g·t-1)渣档次/(g·t-1)金吸附回收率DSMST50L143016.84.181.5DSMST50L146016.83.882.9EILRФ800mm×3000mm403014.93.184EILRФ800mm×3000mm406014.8384.6
石墨新材料:石墨产业发展的康庄大道
2019-03-07 11:06:31
日前,内蒙古石墨工业展开联盟树立大会成功举行,与会专家们针对全国石墨工业,特别是内蒙古石墨工业展开进行了观念论述。“现在,厦门大学以及全国几家闻名高校、石墨高新技能厂商已与内蒙古矿业集团达到开始意向,将充分使用内蒙古石墨资源优势和矿业集团工业优势,组成内蒙古石墨烯研讨院与石墨新材料研讨中心,全面协作展开石墨烯、石墨新材料范畴工业研制,树立石墨烯、石墨新材料产研一体化新业态协作形式和政府引导、使用带动、产学研用紧密结合的展开机制,活跃打造国家级石墨新材料工业展开研制渠道。”厦门大学工业技能研讨院院长卢英华在近来举行的内蒙古石墨工业展开联盟树立大会上如是说。
内蒙古矿业集团作为内蒙古石墨工业展开联盟的牵头单位,别离与厦门大学工业技能研讨院、姑苏中材非金属矿工业设计研讨院有限公司、内蒙古金彩实业集团、内蒙古元亨石墨矿业有限公司等8家单位签订了协作协议书。
在联盟树立大会上,针对全国石墨工业,特别是内蒙古石墨工业展开,工信部原材料工业司副巡视员吕桂新、内蒙古自治区政府副秘书长曹晓斌及内蒙古矿业集团党委副书记、总经理苏日勒格别离论述了各自的观念。工信部原材料工业司副巡视员吕桂新:
进步石墨采选、深加工技能水平
石墨是一种极为重要的非金属矿产,其加工制品广泛使用于冶金、机械、核能、兵器以及节能环保、电子信息、高端配备等范畴,各国政府都非常注重石墨资源的维护、开发和使用。近年来,跟着石墨烯新材料的研讨开发和工业化使用的打破,石墨作为一种战略资源的位置愈加凸显。
我国天然石墨资源储量丰厚。经过多年的尽力,我国在推动石墨资源开发和下流深加工方面获得了长足的前进和可喜的效果。可是,现在国内石墨工业展开与先进发达国家比较还有较大距离,存在着资源使用率较低、深加工水平不高、技能立异才能缺乏和工业链条短等问题。我国石墨资源优势并没有展开成工业优势、科技优势和经济优势,国内石墨工业依旧是大而不强,亟待经过以商场主导和政府引导相结合的方法来破解工业展开中的难点问题。
工信部高度注重石墨工业展开,近年来出台了多项方针措施,包含拟定并施行了石墨职业准入办理办法,树立了包含石墨在内的要点非金属矿计算系统,使用技能改造专项资金支撑石墨深加工,促进进步石墨深加工水平,进步石墨烯粉体质料高纯石墨的质量。工信部联合国家发改委和科技部联合发布的《关于加速石墨烯工业立异展开的若干意见》,清晰了2020年末前石墨烯工业展开方针、要点和路线图,并安排了石墨烯新材料效果鉴定和工业化推广使用。
内蒙古石墨资源储量大,矿石档次高、产品质量优,在石墨挖掘加工方面,具有必定的资源优势和工业根底。近年来,内蒙古依托一批科技归纳实力强的高校、科研机构和大厂商,在石墨工业技能研制和石墨烯产品开发使用方面获得了一系列效果。内蒙古应捉住内蒙古石墨工业联盟树立的机会,凝集各方面力气,瞄准石墨烯等前沿材料研制,坚持需求牵引与立异驱动相结合,环绕工业链构树立异链,加强职业共性关键技能研制和推广使用,着力补短板、调结构,推动供应侧结构性变革,把石墨工业打造成为一个有规划、有科技含量、有竞赛实力的新式工业,助力内蒙古经济增加和工业结构调整。
一同,内蒙古石墨工业展开联盟要充分发挥渠道的效果,做好石墨职业展开的支撑效劳;辅导和协助厂商执行好《石墨职业准入条件》,推动工业方针与国土资源、环保、安监、金融等方针的联动,使石墨工业真实成为绿色工业;加强知识产权维护,为石墨职业展开供给支撑;做好政府与厂商、厂商与厂商之间的信息沟通,活跃向政府提出好的方针和主张,引导厂商加强自律,营建公正的商场竞赛环境。
工信部将自始自终地支撑包含内蒙古在内的石墨资源富集区域进一步进步石墨采选、深加工出产技能,展开石墨烯新材料,促进石墨工业转型晋级。
内蒙古自治区政府副秘书长曹晓斌:
为石墨工业展开发明良好环境
内蒙古石墨工业展开联盟承载着自治区石墨工业展开的重担,内蒙古各级政府和部门将支撑联盟展开,为其营建良好环境。
跟着工业4.0脚步的加速,以石墨为引领的新材料工业现已到来。而跟着石墨对全球经济、科技、国防、环境等各范畴展开的影响越来越大,加速展开石墨工业已是大势所趋。
现在,内蒙古已探明的天然石墨资源储量位居全国前列,具有展开石墨工业得天独厚的优势。近年来,内蒙古瞄准前沿科技,活跃展开了石墨烯、石墨新材料等工业建造,并获得了显着成效。
依据《关于加速石墨烯工业立异展开的若干意见》要求,内蒙古自治区“十三五”规划提出“活跃展开战略性新式工业,做大做强新材料工业”的战略部署。现在,内蒙古自治区关于树立国家石墨新材料演示基地,以及石墨新材料工业基地建造方案已上报国家发改委。
内蒙古石墨工业展开联盟的树立,对引领内蒙古石墨工业展开,推动内蒙古资源优势向工业优势和经济优势转化具有重要意义。
往后,内蒙古将以联盟为渠道,以加速自治区石墨工业展开、抢抓工业转型为要点,全面推动内蒙古石墨烯、石墨新材料工业展开壮大。
对此,特提出以下三点期望:
一是搭建起内蒙古石墨工业立异渠道,发挥科技立异优势,不断会聚各方力气。要面向国际科技前沿和国家严重需求,活跃安排产、学、研、用联合攻关,注重技能立异,着力完善石墨全工业链,加速推动自治区石墨工业高端化、一体化、集约化展开。
二是搭建起内蒙古石墨工业引领渠道,立异安排办理架构,将工业上下流紧紧地凝集到一同,树立活跃可行的科研投入和效果转化机制,以及严重科研效果奖赏机制。要立异出资形式,招引更多的社会本钱投入到内蒙古石墨工业展开中来,推动内蒙古石墨工业展开。
三是搭建起内蒙古石墨工业展开效劳渠道。探究效劳展开新形式,加强石墨工业相关信息和数据的搜集、分析及发布,完善标准系统,做好信息沟通,为石墨职业展开供给全方位支撑。一同,要长于把老练完善的效劳展开形式推而广之,进一步助力内蒙古其他工业展开。
内蒙古矿业集团总经理苏日勒格:
石墨新材料成为展开的要点板块
石墨工业作为当时引领绿色工业的重要动能,已成为抢占科技立异制高点、加速经济转型、完成工业晋级的重要途径。客观而言,我国虽然是国际石墨贮存、出产、消费大国,但从整个工业展开链条看,仍以天然石墨输出为主,处在工业展开的最低端,高端产品少、归纳效益差的局势亟待改进,怎么维护好、使用好、发挥好这一战略性优势,已成为推动工业展开的难点地点。总书记高度重视石墨工业展开,屡次环绕工业研制、建造等方面进行调研辅导,并活跃为展开国际间工业协作穿针引线,这为内蒙古展开石墨工业供给了重要遵从和刚强动力。与此一同,面临石墨商场需求不断扩大、产品细分不断深化的客观局势,石墨工业在从头洗牌、立异打破中也迎来了可贵的严重机会。
内蒙古矿业集团作为自治区直属的资源型龙头厂商,承载着做大做强全区资源工业的重担。近些年,集团依照“资源工业化和资源本钱化偏重”的展开战略,环绕“工业布局考究效益、工业建造坚持效益、厂商经营遵守效益、厂商办理效劳效益”的展开理念,全力推动石墨新材料等7大工业板块建造,施行了总规划1300亿元的出资方案,财物总规划超越400亿元,正在朝着“实力杰出、业态高端、办理规范、国内一流”的千亿元级矿业厂商快速跨进。特别是石墨工业作为集团展开的要点板块,紧跟全球工业展开趋势,环绕打造自治区石墨工业中心力气、推动自治区资源优势高效转化的方针,以全区已探明优质石墨资源为根底,以国内尖端科研机构为依托,以集团多元化工业展开为支撑,发动施行了“2212”石墨新材料工业展开战略,即整合2个石墨资源,建造2个石墨工业园区,组成1个石墨工业展开联盟,树立2个石墨新材料科研机构。
内蒙古矿业集团新班子就任后,针对内蒙古大鳞片石墨资源在国内外的优势,活跃策划石墨新材料工业,坚持资源整合和工业展开偏重,并把石墨新材料作为集团公司七大工业板块的要点加以施行。本年7月,集团公司安排协作方内蒙古金彩实业集团、内蒙古元亨石墨矿业公司在深化证明和调研的根底上,先后对我国运载火箭研讨院、我国航天万源集团、姑苏中材非矿院、常州第六元素、江苏石墨烯研讨院、厦门大学、厦大石墨烯研讨院、厦大工业技能研讨院等单位进行了仔细调查。8月3日,其在福建省新式科技工业促进中心、厦大工业技能研讨院等理事单位的推动下,拜会了中科院院士、厦门大学田中群教授,并将内蒙古阿拉善盟大鳞片石墨部分样品送达厦大石墨烯研讨院进行检测和研讨。内蒙古石墨工业展开联盟从8月3日动议到举行树立大会,只用了两周的准备时刻。会议旨在推动各位理事单位和会员单位活跃参与内蒙古石墨工业协作,解内蒙古石墨工业展开布局及下一步展开协作要点;活跃推动矿业集团石墨新材料、石墨烯使用工业快速展开,为内蒙古经济结构调整和工业转型晋级做出应有奉献。
此次,内蒙古石墨工业展开联盟的树立标志着从研制、出产、加工到买卖为一体的石墨全工业链结构已开始构成,使内蒙古石墨工业展开掀开了簇新的华章。下一步,联盟将在一心一意搞好效劳、仔细做好和谐的一同,会同联盟一切理事单位、会员单位,着力整合优质石墨资源,树立石墨深加工基地;着力在科技立异上求打破,经过整合各类科研力气,切实加强石墨工业根底研讨、前沿技能研讨和使用技能研讨,引领全国石墨工业技能展开,促进产、学、研、用深度交融,全力进步效果转化功率;着力在构建完好工业链条上见实效,经过打造立异链,带动建造工业链,全面进步石墨工业技能含量,占据石墨工业价值链高端,依托科技前进做精做细内蒙古石墨工业;经过举行高峰论坛、学术交流、协作对接等活动,进一步进步工业位置,营建愈加稠密的工业展开环境。
到现在,各项工作正在稳步推动,石墨资源整合、工业园区建造、研讨中心组成都已获得实质性发展。
石墨烯真神奇
2019-03-07 10:03:00
近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。
日前,在深圳举行的第十九届我国世界高新技能效果交易会上,石墨烯作为独具特色的新材料再次引起人们的重视,成为这个国内最大规划、最具影响力的科技展会上一个耀眼的“明星”。石墨烯到底有哪些奇特之处,能为人们带来什么惊喜?记者采访了相关专家。
人类正行进在以硅为首要物质载体的信息年代,下一个量子年代,石墨烯很或许锋芒毕露
和金刚石相同,石墨是碳元素的一种存在方式。风趣的是,因为原子结构不同,金刚石是地球上自然界最坚固的东西,石墨则成了最软的矿藏之一,常做成石墨棒和铅笔芯。
科学家介绍说,石墨烯是从石墨材料中剥离出来,只由一层碳原子构成、按蜂窝状六边形摆放的平面晶体。浅显地讲,石墨烯就是单层石墨。一块厚1毫米的石墨大约包括300万层石墨烯;铅笔在纸上悄悄划过,留下的痕迹就或许是好多层石墨烯。
这种只要一个原子厚度的二维材料,一向被以为是假定性的结构,无法独自安稳存在。直至2004年,两位英国科学家成功地从石墨中别离出石墨烯,证明了其可以独自存在,并因而一起获得2010年诺贝尔物理学奖。
据我国电科55所所长、微波毫米波单片集成和模块电路要点试验室主任高涛博士介绍,石墨烯共同的结构让它具有更导电、更传热、更坚固、更透光等优异的电学、热学、力学、光学等方面的功能。轻浮、强韧、导电、导热……石墨烯这些特性赋予人们许多幻想空间。
石墨烯的特色首先是薄,可谓现在世界上最薄的材料,只要一个原子那么厚,约0.3纳米,是一张A4纸厚度的十万分之一、一根头发丝的五十万分之一。与此一起,石墨烯比金刚石更硬,透光率高达97.7%,是世界上最坚固又最薄的纳米材料。
一起,它又能导电。石墨烯的电子运转速度达1000千米/秒,是光速的1/300,十分合适制造下一代超高频电子器材。石墨烯仍是传导热量的高手,比最能导热的银还要强10倍。
石墨烯的特性,也体现得很“好玩”。比方当一滴水在石墨烯表面翻滚时,石墨烯能敏锐地“察觉”到纤细的运动,并发生继续的电流。这种特性给科学家供给了一种新思路——从水的活动中获取电能。比方,在雨天可以用涂有石墨烯的雨伞进行发电,或许可以做成活络的传感器材等。
“人类阅历了石器、陶器、铜器、铁器年代,正行进在以硅为首要物质载体的信息年代;而下一个量子年代哪种材料将锋芒毕露呢?很或许是石墨烯。”浙江大学高分子科学与工程学系教授高明说。
未来电动轿车运用石墨烯电池,花两三分钟就或许把电充溢
因为石墨烯的奇特功能,加上制备简洁、研讨视角多维,其运用潜力巨大、适用职业广大,成为抢眼的材料“新星”一点不古怪。石墨烯从发现到现在仅10余年的时刻,已获得了许多令人震慑的研讨效果,称得上是人类历史上从发现到运用最快的材料。
高明说,从材料化学视点看,石墨烯会带来资源、环境、化工、材料、动力、传感、交通机械、光电信息、健康智能、航空航天等范畴的改动或革新。我国石墨矿储量丰厚,约占全世界的75%,其高效开发将引起碳资源及我国大资源战略的新定位、新考虑、新规划。
石墨烯的工业化出产则将促进化工、机械、智造、自控等职业的技能前进。石墨烯的增加可以发生多功能复合材料,用来制造高功能电池、电容器。石墨烯传感器可以在生物检测、光电勘探方面大显神通,石墨烯及其它二维材料的异质叠合材料可制造高功能晶体管。
可以说,石墨烯技能将对咱们的吃、穿、住、行、用、玩都发生影响。石墨烯复合膜阻氧阻水功能好,可前进食物保质期;石墨烯纤维可制成发热服饰和医疗保健用品;石墨烯电热膜电热转化效率高,可逐渐替代暖气供热;石墨烯系列材料可用于轿车、火车等交通工具,石墨烯导热膜可用于手机高效散热……
石墨烯另一个被寄予厚望的运用范畴是电能贮存。它的优势在于充电速度快,并且可以重复运用几万次。但现在石墨烯存储的电量不如电池多,还无法存储足够多的电能。未来,跟着充电设备的日益完善和相关技能的前进,电动轿车运用石墨烯电池,花两三分钟就或许把电充溢。
我国电科55所微波毫米波单片集成和模块电路要点试验室副主任孔月婵博士介绍说,石墨烯的电子运转速度是硅的十倍,由石墨烯制造的高频器材理论上作业频率可以到达硅的十倍乃至上百倍。石墨烯引发的技能很或许从人们常见的小小芯片开端。
此外,科研人员已完结柔性衬底晶体管的研发,正在测验柔性通讯电路的研发。未来不管是可以折叠的显现屏幕,仍是可以植入人体的可穿戴设备,都或许靠这样的石墨烯器材来完成。
高涛以为,即便在试验室条件下,石墨烯的奇特功能仍然没有彻底释放出来。因为技能层面还存在着不少应战,真实大面积运用还有很长的路要走。但经过加强需求和研讨的结合,不断在石墨烯材料的制备和器材研发方面获得重要打破,发明更多更新更具颠覆性的运用,石墨烯这种新一代战略性新式材料将会极大改动人们的生发日子。
国内石墨烯研讨与国外底子同步,有望在不久的将来构成石墨烯工业
石墨烯一向是世界上的研讨热门,并在不断升温。近几年来,全球石墨烯相关的论文和发明专利简直呈指数式增加,不只各类优异的物理化学功能被猜测、证明,并且由此生宣布许多详细的研讨方向。
据了解,许多国家正在抢夺石墨烯技能的制高点。欧盟石墨烯旗舰方案以石墨烯传感为首要研讨方向,美国正在测验使用石墨烯完成通讯的柔性化并获得了明显的效果,韩国继续支撑石墨烯柔性显现的研讨并制备出了演示产品。
高涛说,整体来讲,世界上石墨烯各项优异功能正逐渐从试验室研讨向产品运用过渡,一起一些潜在的功能或运用还在不断被开掘。但这个工程化是一个长时间而困难的进程,给我国完成赶超世界水平、占据技能制高点带来了绝好的机会。
高明以为,现在国内石墨烯研讨与国外底子同步,一些方面有原创和引领性效果。国内研讨侧重化学和材料,国外更偏机理和器材。国内石墨烯的研讨在理论研讨方面可说是已完成与世界先进水平“并跑”,论文、专利不管数量仍是质量都具有很强的世界竞争力。到2016年3月,我国石墨烯的专利总数占全世界的56%。与此一起,国家赞助了很多有关石墨烯的基础研讨项目,开始构成了政府、科研机构和厂商协同立异的产学研协作对接机制。
例如,清华大学开宣布米级石墨烯单晶薄膜的快速制备技能;我国电科55所研宣布了世界上最快的柔性石墨烯晶体管;浙江大学纳米高分子团队则经过近十年研讨,开宣布了石墨烯纤维、石墨烯接连拼装膜、石墨烯超轻气凝胶及石墨烯无纺布等。
受访专家指出,各个方向不断呈现令人惊喜的研讨效果,让人们对石墨烯的未来充溢等待。但整体来讲,石墨烯技能成熟度还比较低。关于石墨烯的开展,其限制要素或许说难点,首要在材料制备技能、全新规划理念和二维控制技能等方面。其间,高品质、大批量的石墨烯质料问题暂时没有底子处理,还需要进行很多技能攻关。有些技能如单层氧化石墨烯、石墨烯单晶等在试验室制备成功了,但完成工程化、接连性、低成本、高效安稳制备还有较长的路要走。只要真实高品质的石墨烯量产了,颠覆性运用才会呈现。
不过科学家们也比较达观,近两年石墨烯的可控低成本制备技能已获得了打破性开展,有望在不久的将来构成石墨烯工业。
煤-油聚团选金原理
2019-01-25 15:49:15
煤一油聚团法选金的基础是用油将亲油性的煤浸润而形成煤、油聚团。在一定酸度和充分搅拌的条件下,亲油的金颗粒从矿浆中有选择性地被俘获到煤、油团聚物中。这些团聚物可循环吸附新鲜矿浆中的金粒直至很高的载金量,然后同矿浆分离。载金聚团再用湿法或火法处理选金。 煤聚团是用中性油作为桥联液,亲油性的煤粒被浸润而互相聚集成团。控制表面活性剂的加入量可以调节聚团的大小和稳定性。煤一油聚团与金粒和脉石之间存在着由动量差、重力差、范得华力和静电斥力所造成的排斥势垒,也存在着相互间的疏水结合能。利用金粒与脉石两者间存在疏水作用能的差别,使得金粒而不是脉石被煤-油聚团吸附。 在选择性地使金疏水化和降低金粒与煤-油聚团之间的作用势垒的同时,用化学方法抑制脉石等杂质的疏水性就会扩大金粒与脉石等杂质的吸附行为的差异。金粒表面的疏水化预处理通常是加入一些表面活性剂,例如黄药和黑药,使金的表面形成一层疏水膜。 煤-油聚团的选金速率是取决于煤-油聚团与含裸露金的矿粒之间的碰撞频率和碰撞能量。碰撞频率主要由含裸露金的矿粒的浓度和运动速度所决定;碰撞能量则由含裸露金的矿粒的质量和相对运动速度所决定,增加搅拌强度,能使矿粒运动加快,也使金粒表面受到擦洗而增大吸附速率。 由于金粒和煤-油聚团的向心力不同,金粒又以一定速率从煤一油聚团上脱落,最后达到动态平衡。此外,原矿的磨矿粒度,原矿中细泥的含量和铁含量等均会影响浆相与煤-油聚团的接触。对矿砂进行脱泥除铁预处理,能够显著提高金的吸附速率和回收率。
黄铜板挤压润滑剂的选择
2019-05-29 18:23:00
黄铜板揉捏光滑剂的挑选 因为黄铜板揉捏制作具有高沮、高速、高压力等特色,挑选适宜的光滑剂具有特别重要的含义.在挑选揉捏光滑剂时。应该注走以下基本要求: (1)对尽擦表面尽可能有最大的活性,以确保构成完好、健壮的光滑层。 所谓光滑剂的活性.便是光滑荆中的极性分子在康擦表面构成健壮的保护层才能。光滑剂的猫度越小,活性越小.则光滑层决裂的可能性越大。 (2)有满意的猫度,以使润淆层有满意的厚度。 有必要指出,随漪钻度的添加,一起也会使光滑剂质点的活性下降,所以钻度要恰当.并非越高越好。 (3)对黄铜板揉捏东西及变形金属有必定的化学稳定性.防止腐蚀东西和变形金属表面。 (4)有恰当的闪点,防止在开端揉捏时嫩烧,下降光滑效果。 (5)嫩烧后的灰分要少,并有·定的化学稳定性,削减揉捏制品表里表面的污染。 一般在黄铜板揉捏时,金属表面残留的光滑剂在高沮下会招烧,假如残留下的灰渣较多,又难以去除.特别是与金属起化学反应时,这将使揉捏制品表面质量大大下降。 (6)冷却性能好,对揉捏东西有必定的冷却效果,削减金属活动不均匀性和提离工其的运用寿命。 (7)黄铜板揉捏光滑剂自身发生的气体,不应该对人体和环境发生有害效果.改锌劳动条件。 (8)制作和运用方便,多少钱低廉,成本低。 一般在挑选运用黄铜板揉捏光滑剂时,一些条件和要求住往不能一起满意.能够依据详细加工状况灵敏决议。
煤-油聚团法选金简述
2019-02-15 14:21:10
与炭浆法比较,煤一油聚团法具有无环境污染,出资费用少和出产成本低的长处。煤-油聚团技能在20世纪70年代首要使用于煤泥的收回,后来使用于金的提取。该办法现已发展到可用于砂金、脉金、老尾矿、尾渣和碳质金矿的处理。处理低档次金矿时,载金聚会物富集金的才能可达1~5kg/t;处理高档次金矿时,载金聚会物富集金可达10~15kg/t,金收回率为62%~95%。 在工艺中起附聚金效果的是煤一油聚团。煤和油的挑选影响聚团性质,也影响金的收回率。一般来说,要求煤的灰粉小于7%,有较高的挥发性,且硬度较大。经实验以长焰煤和气煤较好。油以零号柴油、润滑油、变压器油等中性油较好。对油的要求是芳烃含量较高,一般在23%以上,密度约0.84g/cm3,沸点在200℃左右。 煤粉与油的适宜份额是聚团的要害,一起也影响金的收回率。煤和油份额不同,成团粒度不一样。用油量多则聚团粒度大,表面积小,附载金的才能弱。较小的,均匀的聚团能得到更高的聚金率。实验证明,一般聚团粒度以30~60目,最大粒度不超越2mm较好。 煤-油聚团的用量关系到金的收回率和工艺的经济指标,并且与矿石性质有关。煤-油聚团用量添加,金的收回率也随之增高,但终究趋于平衡。考虑到经济指标与产品载金量,一般挑选聚团用量为矿样的20%~25%。 在工艺过程中一般运用硅酸钠作为脉石按捺剂,以按捺聚团中搀杂的脉石灰粉,进步整体聚金功率。工艺吸附设备和煤金聚团枯燥焙烧设备是煤一油聚团选金新工艺完成工业使用的最中心设备。我国规划选用的是固、固一液系统抽吸式串级型拌和吸附设备和偏疼提高管凹型歪斜筛吸附床。 煤金聚团处理流程有枯燥焙烧法和溶剂洗脱法。枯燥焙烧法有接连操作办法和接连操作办法。接连枯燥焙烧设备由进料器、回转窑、焙灰收集器、驱动设备、温度操控设备等组成。焙灰金丢失小于1%。溶剂洗脱工艺可将煤金聚团中的明金和连生体金洗脱下来,然后可削减煤金聚团中微细粒金的焙烧丢失,但煤金聚团中的包体金仍需要用焙烧办法处理。终究取得的金灰进行非化浸出或直接熔炼。
铝材除油洗白剂的日常管理维护
2018-12-26 10:38:45
A、按建浴浓度配制槽液,充分搅拌溶解即可使用(配槽时将桶内液体摇匀倒出)。
B、随着处理工件数量的增加,使用时间延长和工件带走槽液等原因,槽液的有效成分和液面会有所下降,如果表面油污不多及槽液不是太脏,可以及时补充OY-123铝材除油洗白剂;如果槽液比较脏,而且有一定的油污,建议槽液全部更换。
C、如果都采用本品进行油污及氧化皮的清洁时,建议配置两个同样的OY-123铝材清洗槽,一个作为除油用,一个作为洗白用,这样可以解决单槽出现的严重污染问题。删除
铝合金表面酸性除油方法
2019-03-11 13:46:31
酸性除油处理也是一种被广泛选用的除油办法。酸性除油剂的首要特点是对铝合金表面腐蚀少,除油速度快。这种除油剂最经济的制造办法是在硫酸溶液中增加少数和OP乳化剂,也能够直接到商场上去购买酸性除油剂来运用。 酸性除油剂一般由无机酸或有机酸、表面活性剂、缓蚀剂及渗透剂等组成。酸性除油也是金属表面常用的除油办法,酸性除油的特点是不需要加温,在常温情况下即可有杰出的除油作用。近年来一些酸性除油增加剂的开发,使酸性除油得到了广泛使用,一起酸性除油还具有除锈功用。选用酸性除油时,酸的浓度不该过高,避免造成对工件的腐蚀及对设备的腐蚀。酸性除油剂常用的酸类有硫酸、磷酸、硝酸、柠檬酸等。表面活性常用OP-10、平平加、磺酸等。关于铝合金不能选用等含卤酸。在酸性除油剂中增加磷酸有利于清洗进程的进行。在除油剂中还应参加缓蚀剂,常用的缓蚀刻有乌洛托品、等。氟化物是酸性除油剂中最常用的渗透剂,氟化物的参加能显着加强其除油作用,还可下降酸浓度,进步除油功率。在铝合金工件的酸性除油配方中氟化物参加量不能过多,否则会腐蚀钛挂具,一起过多的氟化物也会使铝合金表面经除油后光泽下降。在铝合金的酸性除油配方中一般以的方式参加,参加量以1g/L左右为宜。一起还应参加适量的、硝酸盐以避免对钛的蚀刻,并可减缓对铝合金的腐蚀。 酸性除油一般都是在常温的情况下进行的,假如加热到40℃左右可显着进步除油作用,常温除油时作业缸可选用硬PVC,加热除油时应选用PP制造。酸性除油溶液的加热使用特氟龙加热器。 酸性除油剂中用量不能太多,否则会腐蚀钛挂具,并影响铝表面性状。铝离子浓度太高会影响低温除油作用,但能够经过进步氟化物或硝酸的浓度来得到改进。 铝合金酸性除油剂能够选用硫酸阳极氧化、化学抛光等的废酸来制造,以做到废物利用,也可下降成本。如不考虑对废酸的再利用,酸性除油剂也可选用磺酸加少数来制造,这样能够使除油溶液的酸度很低,不管是对工件或是设备的腐蚀性都会很低。
紫铜带挤压润滑时的工艺要求
2019-05-29 18:29:42
紫铜带揉捏光滑时的技术要求 紫铜带揉捏加工过程中,光滑东西时的光滑部位要严格控制,假如光滑部位不妥.光滑剂挑选欠好,会形成揉捏制品内部灰液、增加揉捏缩尾、制品表面发生气泡等缺点。 紫铜带揉捏光滑时的技术要求 紫铜带揉捏东西的润淆,要依照工其的光滑部位和挑选恰当的光滑剂.依据加工技术要求进行光滑。来削减东西表面的干球擦。进步揉捏东西的运用寿命。 (1)穿孔针光滑。每次揉捏循环后要进行穿孔针表面光滑,涂改要均匀,初次运用新穿孔针时.要用光滑剂涂改针体表面并用净布重复擦洗,保证针体充分润清。 (2)紫铜带揉捏模光滑。揉捏过程中,可挑选性地对揉捏模孔进行光滑。穿孔针和揉捏模光滑时,关于H62Ji'b59-1等低沮合金,涂层要辞而均匀.避免揉捏侧品发生气泡块陷。 (3)揉捏筒一般不光滑,但对难揉捏合金,高退、高强合金有针对性选用合理的光滑剂来润淆揉捏筒内毯,如石皿和玻瑞润清剂等。 (4)紫铜带揉捏垫片的光滑。制止光滑揉捏垫片端面,避免增加揉捏缩尾。为削减康探,便于垫片的别离,能够光滑揉捏垫片的外日。 (5)油质液体光滑荆运用在全润扮揉捏时(如立式小揉捏机》,能够用别子将光滑荆涂改在工其的表面,不含石里的液体光滑剂也能够用喷嘴喷涂。· (6)润清办法能够选用在净布上(石楠布),涂上光滑剂来娜拭揉捏东西,紫铜带也能够选用石油沥青或其他光滑剂直接润清东西表 面。光滑剂涂改要均匀.特别是对揉捏一些黄铜温沮度较低的黄 铜)合金等,要求涂改层薄而均匀,避免呈现揉捏制品气泡、起皮等缺点。
粉体:石墨术语大全
2019-01-04 15:47:49
石墨素有黑金之称,广泛应用于电子、汽车、医药、航空航天、海洋和核能等领域,是极其重要的的战略性资源。
一、天然石墨
天然石墨是富碳有机物在高温高压的地质环境长期作用下转变而成的,是大自然的恩赐。天然石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。
二、人造石墨
广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。
三、晶质石墨
晶质石墨(鳞片石墨),矿石结晶好,晶体粒径大于1μm,属六方晶系,呈层状结构,具有良好的耐高温、导电、导热、润滑、可塑及耐酸碱等性能。
将鳞片石墨按固定碳含量分为四类:高纯石墨,高碳石墨,中碳石墨,低碳石墨。
高纯石墨:石墨的含碳量≥99.9%。
高碳石墨:94.0≤石墨的含碳量
中碳石墨:80.0≤石墨的含碳量
低碳石墨:50.0≤石墨的含碳量
四、隐晶质石墨
隐晶质石墨(土状石墨、无定形石墨、微晶石墨),晶体粒径大于1μm,只有在电子显微镜下才能观察到其晶型。矿石可选性差,工业应用范围较小。
五、可膨胀石墨
可膨胀石墨(酸化石墨),由天然晶质鳞片石墨,经酸性氧化剂处理后得到的一种石墨层间化合物,亦称为石墨酸、酸化石墨、氧化石墨。
六、膨胀石墨
可膨胀石墨在一定的温度下可以迅速膨胀为膨胀石墨。
七、柔性石墨
膨胀石墨具有良好的可塑性、柔韧延展性和密封性。膨胀石墨可进一步加工制成纸、箔等制品,具有不同于普通石墨的柔韧性,称为柔性石墨。
八、氟化石墨
氟化石墨是层间化合物的一种,它具有两种稳定的化合物形态:一种为聚单氟碳,另一种为聚单氟二碳。
九、胶体石墨
胶体石墨分为水基胶体石墨(锻造石墨乳),油基胶体石墨,硅基胶体石墨等。
水基胶体石墨:由高纯超细石墨粉、水、高温黏结剂、悬浮液、分散剂和涂膜增强剂等组成。其生产分为提纯、超细粉碎、配置、包装等工序。
油基胶体石墨与硅基胶体石墨的生产工艺与水基胶体石墨基本相同。
十、石墨乳
石墨乳是将高纯超细石墨粉加入液体中并呈分散状态。
十一、等静压石墨
等静压石墨是指采用等静压成型方式生产的石墨材料。由于成型过程中通过液体压强均匀不变施压,制得的石墨材料性质优异,具有:成型规格大;坯料组织结构均匀;密度高,强度高;向同性(特性与尺寸、形状、取样方向无关)等优点,因此等静压石墨也称为“各向同性”石墨。
十二、浸硅石墨
目前仅德、美、俄生产。该产品是一种在宽温度区内具有高硬度和高机械强度、耐磨、耐腐蚀、润滑性好的新材料。与碳化硅制品相比,最大的特点是成品率高,价格较低廉。
十三、球形石墨
球形石墨是以优质高碳天然鳞片石墨为原料、采用先进加工工艺对石墨表面进行改性处理,生产的不同细度,形似椭圆球形的石墨产品。
十四、纳米石墨
纳米石墨是采用特殊的生产设备,先进的检测仪器,生产出的高纯、高碳纳米级石墨粉,经润滑、润滑油、拉丝、导电、油墨等行业应用,效果极佳。
非金属石墨性质和用途
2019-03-07 09:03:45
石墨是碳的同素异构体之一,密度2100-2300kg/m’,莫氏硬度1-2.石墨矿藏属六方晶系,层状结构,同一网层中碳原子距离为1.42A,层与层之距离离为3.354A.层间以分子键衔接,具有杰出的天然疏水性.
石墨具有一系列的优秀特性,主要有如下几点.
1.耐高温石墨是已知的最耐高温的非金属材料之一,最高温度可达3800℃在高温条件下,石墨丢失最小.把各种材料在7000℃高温下烧lOs石墨丢失0.8%,碳化硅丢失1.7%,高铝刚玉丢失8.2%,最耐高温的金属氧化物—氧化错丢失12.9%。由此可见,石墨的耐高温功能是很杰出的.
2.导电性和导热性石墨的导电性尽管不能与铜、铝等金属相匹敌,但与一般材料比较,其导电性是适当高的,如比不锈钢高4倍,比碳素钢高2倍.但石墨的热导率和一般的金属不同,跟着温度的升高,导热系数下降,在极高的温度下,石墨趋于绝缘状况.因而,在超高温条件下,石墨的绝缘功能是很牢靠的。3.光滑性 石墨的摩擦系数小于0.1,鳞片越大,摩擦系数越小,光滑功能越好。
4.化学安稳性在常温下,石墨具有杰出为化学安稳性,耐酸碱和有机溶剂的腐蚀.但石墨的伉氧化能力差,450℃开端氧化,因而石墨及其制品不应在氧化气氛中运用.
5.特珠的抗热震功能 石墨的热膨胀系数很小,能抗骤冷骤热的化.当温度俄然发生变化时,不会发生裂纹.
6.可塑性 石墨具有杰出的可塑性,可碾成透光薄片.
因为石墨具有上述优秀功能,因而在冶金、机械、电气、化工、纺织,国防等工业邹门获得了广泛使用,主要用处如下:
1.耐火材料 石墨在冶金工业顶用来作石墨柑埚.在炼钢工业中作钢锭保沪剂、镁碳砖、冶金沪内衬等,用量约占石墨产值的25%以上。
2.导电材料 在电气工业中石墨广泛用来作电极、电刷、碳棒、碳管、垫圈及显像管涂层等.此外,石墨还可作低温超导材料,高功率电池电极等.在这一方面,石墨遇到人工石书的应战,因为人工石墨中有害杂质的数量能够操控,且纯度高、报价低.尽管如此,因为电气工业的迅速发展以及天然鳞片石里的优秀性质,因而天然石墨消耗量仍是逐年添加。
3.光滑材料和耐磨材料石墨在机械工业中常作光滑荆(拔丝、拉管).光滑油往往不能在高速、高温、高压下作业,而石墨耐磨材料能够在-200-2000℃温度和高速滑动(l00m/s)下使用.许多运送蚀腐介质的设备广泛选用石墨材料制成活塞环、密封圈和轴承,它们工作时勿需加光滑油。
4.铸造 天然石墨最大的用处是用于铸造,用量占石墨总产址的1/3以上。
5.封腐蚀材杆石墨具有杰出的化学安稳性.通过特殊加工的石墨具有耐腐蚀、导热性好、浸透率低一级特色,很多用于热交换器、反响槽、凝缩器、焚烧塔、吸收塔、冷却器,加热器和过滤器等。在石油、化工、湿法冶金、酸碱出产、合成纤维、造纸等工业部门得到广泛使用。
6.国防和原子能工业石墨具有优秀的中子减速性,最早在原子反响堆中作减速剂.作为原子反响堆中的减速材料应具有高熔点、安稳、耐腐蚀等特色,而石墨完全能满意上述要求.在国防工业中,石墨复合材料可用来作固沐燃料火箭的喷嘴、的奔锥、宇肮设备零件、隔热材料和防辐射材料。
除上述用处外,石墨还可作除垢剂、抛光剂、颜料等。
国际投行浇油超级铜牛显形
2018-12-17 09:42:58
超级铜牛越走越稳。市场浓厚的看涨氛围,使得LME期铜区区200美元的回调幅度也难以看到,上周五价格大涨104美元,返身重新冲击4500美元/吨;而国内方面,铜现货价更是连续数日站在了4万元大关之上,周一沪铜也是跳空高开,主力合约0603收盘39790元/吨,涨270元。 国储方面连续两周未有拍卖动作,给了国内市场一定的做多信心。虽然有传言称国储在LME的空头头寸已经移仓远月,但是其场外期权问题还没有得到解决,而且国储目前正在将前几次拍卖会中流拍的库存铜调往上海地区销售,这又给了投资者较大的想象空间。铜价更加易涨难跌。 连日来的铜市走势充分证明,作为目前已经成为一个投资符号的铜市,吸引了越来越多人的注意。不过国内外两个市场表现迥异:在海外市场,越来越多的机构和资金看好这个市场的金融属性,推动铜价持续强劲;而在中国,则吸引了越来越多的投资者,包括很多原本对金属一窍不通的个人,看到高高挂在天上的铜价垂涎三尺,试图参加到这个巨赌游戏中来。上周五的跳空大涨,是对后者最好的警告。 国际著名投行美林证券在其欧美金属和矿业报告中将铜、铝、铂金等金属价格预期上调,并预计商品供需紧张局面明年仍将持续。报告称,没有迹象显示中国需求放缓,而且OECD领先经济指标显示发达国家市场需求出现加速。在其季度报告中,美林将明后两年的铜价预测上调32%,分别从1.25美元/磅和1.10美元/磅调升至1.65美元/磅和1.45美元/磅。 而最新公布的高盛集团研究报告更是语不惊人死不休,其预计,2006年三个月期铝价格为每吨2300美元,较此前估计上调逾500美元,而对三个月期铜价格的预估则几乎大增2000美元至4750美元。预计2005年全球产量缺口为14万吨,而原本预期为少量供过于求。这一预测价格大大超出人们的预期,从而推动周五铜价一路上行。 摒除一切屏蔽我们视线的信息和喧嚣,我们只看价格,可以说铜市正稳稳地行进在超级牛市周期当中,LME期铜下一个目标位就在4500美元,国内3月合约,也将向40500稳步迈进.
一张图了解人造石墨及其石墨化
2019-01-03 09:37:11
天然石墨VS人造石墨,谁才是动力电池真正的宠儿?
2019-01-03 09:36:39
近几年,下游新能源汽车市场的繁荣拉动了锂离子电池需求的增长,负极材料作为锂离子电池的四大关键材料之一,也迎来了更广阔的市场。而在负极材料中石墨类碳材料占据最主要市场。天然石墨负极VS人造石墨负极石墨负极材料分为人造石墨和天然石墨,二者结构相近,物理化学性质相同,但在实际应用中有较大差异,那么天然石墨和人造石墨究竟谁是锂离子电池的宠儿?定义(1)天然石墨石墨属复六方双锥晶类,呈六方板状晶体,常见单形有平行双面、六方双锥、六方柱,但完好晶形少见,一般呈鳞片状或板状,集合体呈致密块状、土状或球状。天然石墨的种类较多,根据结晶形态不同,工业上将天然石墨分为致密结晶状石墨、鳞片石墨和隐晶质石墨三类。我国主要有鳞片石墨和隐晶质石墨两大类。天然石墨负极材料一般采用采用天然鳞片晶质石墨为原料。(2)人造石墨一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料。人造石墨的骨料分为煤系、石油系以及煤和石油混合系三大类。其中煤系针状焦以及石油焦应用最广:一般来讲,高比容量的负极采用针状焦作为原材料,普通比容量的负极采用价格便宜的石油焦作为原料,沥青作为粘结剂。理化性质在理化性质方面,天然石墨与人造石墨既有共性,也存在性能上的差异。如天然石墨与人造石墨都是热和电的良导体,但对于相同纯度和粒度的石墨粉体来说,天然鳞片石墨的传热性能和导电性能最好、天然微晶石墨次之,人造石墨最低。两者性能有着各自的优缺点,应用领域也有所不同。天然石墨克容量较高、工艺简单、价格便宜,但吸液及循环性能差一些;人造石墨工艺复杂些、价格贵些,但循环及安全性能较好。微观形貌从上图中就可以看出天然石墨和人造石墨在形貌上的区别。天然石墨大小颗粒不一,粒径分布广,未经处理的天然石墨是不能作为负极材料直接使用的,需要经过一系列的加工后才能使用。而人造石墨在形貌以及粒径分布上就一致多了,一般认为,天然石墨的容量高,压实密度高,价格也比较便宜,但是由于颗粒大小不一,表面缺陷较多,与电解液的相容性也比较好,价格也会贵一些。生产制备天然石墨负极材料是采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表面等工序处理制得,其高结晶度是天然形成的。人造石墨是将骨料和粘结剂进行破碎、造粒、石墨化、筛分而制成。基本的工序流程是一致的。某厂人造石墨制备流程动力电池更加宠爱人造石墨目前市场上负极材料主要以人造石墨与天然石墨为主,受益于动力电池的强劲需求,人造石墨以其可靠性和安全性成为了负极材料的市场主流。中国负极材料市场结构变动我国负极材料市场产量结构变化(吨)天然石墨和人造石墨负极材料性能不同,在实际应用中也会产生较大差别。根据最近几年负极材料市场结构和产量结构的变化可以看出,2013年,中国负极材料市场天然石墨占据主导。2014年以后,在负极材料市场的争夺中,更适用于动力电池的人造石墨市场占比超过天然石墨,并且逐年递增。预计未来几年,受新能源汽车应用影响,人造石墨占比将继续上升:目前国内新能源汽车锂电池所采用的负极材料大多使用人造石墨,新能源汽车在国家政策的扶持下呈爆发式增长阶段,带动动力电池的大幅增长,未来几年动力电池将是拉动人造石墨产量大幅上升的主要引擎。
石墨烯基础科研现状
2019-01-04 09:45:43
石墨烯从其诞生至今不过10年光景。2004年为石墨烯科学研究的萌芽阶段,随后即进入快速成长阶段;从2008年开始,尤其是在2010年石墨烯发明者获得了诺贝尔奖之后,关于石墨烯的基础科研工作开展得如火如荼。
下文从专利分布、研究机构分布、研究领域分布和主要研究成果等方面梳理目前石墨烯的基础科研动向。
一、专利分布
目前全球共有超过200个机构和1000多名研究人员从事石墨烯技术的开发和研究,其中包括三星、IBM等科技巨头。我们通过最近几年的专利申请情况对目前石墨烯的研究进展进行概览。从专利申请总量来看,2010年以来全球石墨烯专利申请总量呈爆发式增长;2012年全球石墨烯专利申请量已经达到3500个,可见目前全球范围内正在掀起石墨烯研究与开发的高潮。
从石墨烯专利申请国别分布来看,2013年全球石墨烯专利申请量最大的是中国,其次为美国、韩国和日本。在石墨烯相关论文方面,欧盟排名第一,2013年共发表了7800篇论文;就国别而论,依然是中国排名第一,共发表了6649篇论文。
总体而言,目前中国已经处在石墨烯研究的前沿阵地;但是,从研究深度和创新性而言,非常核心的技术和创新性技术中国仍未掌握。二、研究机构分布
从事石墨烯研究的机构比较广泛,包括学术研究机构、企业、个人和政府层面。比较普遍的研究模式是学术研究机构与企业的合作,例如韩国三星与韩国成均馆大学合作对石墨烯的制备基础方法和应用开展研究。
从研究机构专利数量口径看,在前十名中,有4家机构来自韩国,4家来自中国,2家来自美国。并且,6家机构都是科研院所或独立科研机构,4家为企业。其中,专利数量最多的是韩国三星电子,其专利申请数量为210个,占全球总量的7.3%,其研究范围涵盖了石墨烯制备方法和在显示屏、锂电池领域的应用;其次为韩国成均馆大学、浙江大学、IBM、清华大学等。三、研究领域分布
从石墨烯研究领域分布看,全球研究热点主要在材料的导电性、导热性、石墨烯的制备研究、纳米材料研究等。
中国石墨烯研究热点主要分布石墨烯纳米复合材料、石墨烯制备、石墨烯电极等方向。我们统计了前20位主要研究机构的重点研究领域,发现研究热点分布于:(1)复合材料;(2)碳纳米管;(3)电容器;(4)传感器;(5)晶体管;(6)透明电极;(7)锂电池;(8)燃料电池。上述研究大多属于石墨烯应用,而关于石墨烯的制备改进工艺或者大规模量产石墨烯的基础研究非常少。
四、最新研究成果
在石墨烯制备方面,最新的研究成果是在生成单晶石墨烯的方法上,目前有两种方法已经能获得直径约为1mm的单晶石墨烯和直径为25px的单晶石墨烯,但是这两种方法各有优劣。
在石墨烯应用方面,最新的研究成果包括把作为光敏元件(PD)的光增益提高到了原来的约1000倍、提高柔性湿度传感器的响应时间等。在锂电池、半导体、传感器、无线通讯、电容器、电子元件、海水淡化等多个领域都有重大突破。
在众多最新研究成果中,属于中国研究机构的成果依然稀少,印证了前文中我们提到的,虽然中国在专利申请和论文发表方面在国际领先,但是在真正的研究前沿方面距离美国、日本和韩国等国家仍有一定差距。