您所在的位置: 上海有色 > 有色金属产品库 > 氧化铝陶瓷电路板工艺流程

氧化铝陶瓷电路板工艺流程

抱歉!您想要的信息未找到。

氧化铝陶瓷电路板工艺流程专区

更多
抱歉!您想要的信息未找到。

氧化铝陶瓷电路板工艺流程百科

更多

氧化铝的生产工艺流程

2019-01-31 11:05:59

从矿石提取氧化铝有多种办法,例如:拜耳法、烧结法、拜耳-烧结联合法等。拜耳法一直是出产氧化铝的首要办法,其产值约占全世界氧化铝总产值的95%左右。70年代以来,对酸法的研讨已有较大发展,但尚未在工业上运用。拜耳法 系奥地利拜耳(K.J.Bayer)于 1888年创造。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)别离后,下降温度,参加氢氧化铝作晶种,经长期拌和,铝酸钠分化分出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝制品。分出氢氧化铝后的溶液称为母液,蒸腾浓缩后循环运用。 拜耳法的扼要化学反响如下:由于三水铝石、一水软铝石和一水硬铝石的结晶结构不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要供给不同的溶出条件,首要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并增加石灰(3~7%)的条件下溶出。 现代拜耳法的首要发展在于:①设备的大型化和接连操作;②出产进程的自动化;③节约能量,例如高压强化溶出和流态化焙烧;④出产砂状氧化铝以满意铝电解和烟气干式净化的需求。拜耳法的工艺流程见图1。拜耳法的长处首要是流程简略、出资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。 拜耳法出产的经济效果决定于铝土矿的质量,首要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的分量比来表明。由于在拜耳法的溶出进程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),伴随赤泥排出。矿石中每公斤SiO2大约要构成1公斤Al2O3和0.8公斤NaOH的丢失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高档次三水铝石型铝土矿资源逐步削减,怎么使用其他类型的低档次铝矿资源和节能新工艺等问题,已是研讨、开发的重要方向。 烧结法 适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按必定份额混合配料,在反转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2)成的熟料。然后用稀碱溶液溶出熟猜中的铝酸钠。此刻铁酸钠水解得到的NaOH也进入溶液。假如溶出条件操控恰当,原硅酸钙就不会大量地与铝酸钠溶液发作反响,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液通过专门的脱硅进程,SiO2O构成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O沉积(其间x≈0.1),使溶液提纯。把CO2气体通入精制铝酸钠溶液,和参加晶种拌和,得到氢氧化铝沉积物和首要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝制品。水化石榴石中的Al2O3可以再用含Na2CO3母液提取收回。   烧结法的首要化学反响如下:   烧结:   Al2O3+Na2CO3─→Na2O·Al2O3+CO2   Fe2O3+Na2CO3─→Na2O·Fe2O3+CO2   SiO2+2CaCO3─→2CaO·SiO2+2CO2   TiO2+CaCO3─→CaO·TiO2+CO2   熟料溶出:   Na2O·Al2O3+4H2O─→2NaAl(OH)4(溶解)   Na2O·Fe2O3+2H2O─→Fe2O3·H2O↓+2NaOH(水解)   脱硅:   1.7 Na2SiO3+2NaAl(OH)4─→Na2O·Al2O3·1.7SiO2·nH2O↓+3.4NaOH   3 Ca(OH)2+2NaAl(OH)4+x Na2SiO3─→ 3CaO·Al2O3·x SiO2·(6-x)H2O↓+2(1+x)NaOH   分化:   2NaOH+CO2─→Na2CO3+H2O   NaAl(OH)4─→Al(OH)3↓+NaOH 我国烧结法出产氧化铝的首要技能成就是:在熟料烧成中选用低碱比配方,在熟料溶出工艺中选用二段磨料和低分子比溶液,以按捺溶出时的副反响丢失,使熟猜中Na2O和Al2O3的溶出率别离到达94~96%和92~94%。Al2O3的总收回率约90%,每吨氧化铝的Na2CO3的耗费量约95公斤。烧结法可以处理拜耳法不能经济地使用的低档次矿石,其铝硅比可低至3.5,质料的归纳使用较好,有其特征。 拜耳-烧结联合法 可充分发挥两法长处,扬长避短,使用铝硅比较低的铝土矿,求得更好的经济效果。联合法有多种形式,均以拜耳法为主,而辅以烧结法。按联合法的意图和流程衔接办法不同,又可分为串联法、并联法和混联法三种工艺流程。 ① 串联法是用烧结法收回拜耳法赤泥中的Na2O和Al2O3,于处理拜耳法不能经济使用的三水铝石型铝土矿。扩展了质料资源,削减碱耗,用较廉价的纯碱替代烧碱,并且Al2O3的收回率也较高。 ② 并联法是拜耳法与烧结法平行作业,别离处理铝土矿,但烧结法只占总出产能力的10~15%,用烧结法流程转化发生的NaOH弥补拜耳法流程中NaOH的耗费。 ③ 混联法是前两种联合法的归纳。此法中的烧结法除了处理拜耳法赤泥外,还处理一部分低档次矿石。 我国依据本国的铝矿资源特征,发展出多种氧化铝出产办法。50年代初就已用烧结法处理铝硅比只要3.5的纯一水硬铝石型铝土矿,创始了具有特征的氧化铝出产系统。用我国的烧结法,可使Al2O3的总收回率到达90%;每吨氧化铝的碱耗(Na2CO3)约90公斤;氧化铝的SiO2含量下降到0.02~0.04%;并且在50年代现已从流程中归纳收回金属镓和使用赤泥出产水泥。60年代初建成了拜耳烧结混联法氧化铝厂,使Al2O3总收回率到达91%,每吨氧化铝的碱耗下降到60公斤,为高效率地处理较高档次的一水硬铝石型铝土矿创始了一条新路。我国在用单纯拜耳法处理高档次一水硬铝石型铝土矿方面也积累了不少经历。 依据物理特性的不同,电解用氧化铝可分为三类:砂状、粉状和中间状(表1)。 表1  不同类型工业氧化铝的物理性质现在铝工业正研发和选用砂状氧化铝,由于这种氧化铝具有较高的活性,简单在冰晶石溶液中溶解,且可以较好地吸收电解槽烟气中的氟化氢,有利于烟气净化。 炼铝用氧化铝的化学组成一般如下:   Al2O3    >98.35%    Fe2O3    0.01~0.04%   SiO2    0.01~0.04%   TiO2      <0.005%   ZnO    0.003~0.02%  CaO      0.007~0.07%   Na2O    0.3~0.65%   V2O5      <0.003%   P2O5    <0.003%       Cr2O3      <0.002%   灼减     0.2~1.5%

氧化铝陶瓷制作工艺

2019-01-02 09:41:33

氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下:   一、粉体制备:   将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量比在10-30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150-200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。   欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。   二、成型方法:   氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍:   1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。成型方法有单轴向或双向。压机有液压式、机械式两种,可呈半自动或全自动成型方式。压机最大压力为200Mpa.产量每分钟可达15~50件。由于液压式压机冲程压力均匀,故在粉料充填有差异时压制件高度不同。而机械式压机施加压力大小因粉体充填多少而变化,易导致烧结后尺寸收缩产生差异,影响产品质量。因此干压过程中粉体颗粒均匀分布对模具充填非常重要。充填量准确与否对制造的氧化铝陶瓷零件尺寸精度控制影响很大。粉体颗粒以大于60μm、介于60~200目之间可获最大自由流动效果,取得最好压力成型效果。12后一页

氧化铝陶瓷制作工艺简介

2019-01-15 09:51:35

氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650— 1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85 瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。   配方组成   在95瓷中普遍采用CaO、MgO、SiO2以及过渡金属和稀土金属氧化物为添加剂。它能在较低温度下烧成,在呈微结构中一般会有10%(体积) 的玻璃相和次晶相,在CaO-Al2O3_SiO2系相图中,较低共溶相温度为1495℃,当瓷料组成中SiO2/CaO比 2.16时,则刚玉将与莫来石和钙长石共存。   MgO-Al2O3-SiO2系的优点是耐酸性好,结构中晶粒细小,但烧结温度要比CaO-Al2O3-SiO2偏高几度。引入物Y2O3、La2O3与之复合,可进一步降低烧成温度。   CaO-MgO-Al2O3-SiO2系兼具烧成温度低和晶粒小,组织结构较致密,抗酸碱腐蚀能力较强的特点。   95瓷还可添加BaO、BaO-Al2O-SiO2系具有瓷体表面光洁度好,耐酸碱腐蚀性好,体积电阻率高等优点。以Cr2O3、MnO2、TiO2等过渡金属氧化物作为添加剂,便生成着色95瓷,具有烧结温度低,机械强度高,耐磨性和金属封接性能好等特点。   75瓷中加入高岭土、膨润土、BaCO3、方解石、滑石、菱镁矿等作为添加物,它有两类,一类是以SiO2为主要添加物的瓷料,其主晶相除刚玉外,尚有一定量的莫来石相;另一类加入少量CaO,MgO,BaO等碱土金属氧化物,这类瓷料中的晶相仍以刚玉为多,莫来石热爱少。   性能优异的黑色氧化铝陶瓷是引入过渡元素Fe、Co、Ni、Cr、Mn、Ti、V等生成的。如在氧化铝瓷料中加入3%-4%上述部分过渡元素的混合物,即可烧制黑色氧化铝陶瓷。   配方实例   几种95瓷、75瓷的实用配方:   95瓷:   1# 煅烧Al2O393.5%、SiO21.28%、CaCO33.25%、1#苏州土1.29%   2# 煅烧Al2O394%、烧滑石3%、1#苏州土3%   3# 煅烧Al2O394%、烧滑石4%   75瓷:   1# 煅烧Al2O365%、1#苏州土24%、膨润土2%、BaCO34%、方解石3%、生滑石2%   2# 煅烧Al2O365%、1#苏州土25%、BaCO3 4%、方解石3%、生滑石3%   3# 煅烧Al2O350%、1#苏州土10%、膨润土7%、BaCO35%、方解石3%、生滑石5%   4# 煅烧Al2O370%、1#苏州土10%、膨润土7%、BaCO35%、方解石3%、生滑石5%

超塑性氧化铝陶瓷

2019-01-15 09:49:17

氧化铝陶瓷广泛用作研磨材,切削材、高温材料,加之具有良好的耐磨蚀性、机械强度、硬度和耐磨性,还用于各种机械部件。但原用氧化铝陶瓷由于无塑性,不能像金属材料那样进行加工,可以说属一种很难加工的材料。    近期,日本科学技术厅金属材料研究所开发出一种可进行精密加工的高塑性氧化铝陶瓷。据介绍,这种陶瓷是在高分子中电解质水溶液中分散AI2O3和Zr2O3颗粒,制备料浆,注入多孔质模,加压成坯,加热烧结而成。由于它是一种含有Zr2O3的氧化铝结拼烧结体,Zr2O3氧化铝颗粒处于高分散状态,且结晶呈微细粒,具有良好的超塑性。经测定,在1400℃和1500℃下,以1mm/min的速度进行拉伸形试验,其测定值超过200%。由于它弥补了原有氧化铝陶瓷无塑性的缺陷,使其用途得到进一步拓宽。

阳极氧化铝单板生产工艺流程

2019-01-14 13:50:25

阳极氧化铝单板工艺流程不同于普通涂漆工艺,它通过电流使导电的酸性电解液电解,使构成阳极的铝金属表面发生氧化,在铝表面自然生长出一层厚而致密的氧化铝保护膜,这层氧化膜并不是附加层,不会剥落。氧化膜透明无色,微晶结构为六角形蜂窝状,既可采用铝本色凸显强烈的金属感,又可在微孔中均匀着色赋予幕墙绚丽的色彩,极大的拓宽应用视界。  性能:标准厚度氧化膜(3um)的阳极氧化铝单板室内使用长期不变色,不腐蚀,不氧化,不生锈。加厚氧化膜(10um)的阳极氧化铝单板可使用于室外,可长期暴露于太阳光线下不变色。

氧化铝陶瓷产品概述

2018-12-28 15:58:39

氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为氧化铝陶瓷优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。   氧化铝陶瓷分为高纯型与普通型两种。   1、高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。   2、普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。

氧化铝陶瓷产品

2018-12-20 09:35:44

氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为氧化铝陶瓷优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。  氧化铝陶瓷分为高纯型与普通型两种。  1、高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。  2、普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。

氧化铝陶瓷的特性和分类

2018-09-10 10:45:06

氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为氧化铝陶瓷优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。氧化铝陶瓷的特性:1、硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。2、耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。3、重量轻其密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。氧化铝陶瓷分为高纯型与普通型两种:1、高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。2、普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件

废电路板提金及再利用技术大全

2018-12-05 13:53:44

废电路板的回收是一个新兴行业。随着大量家用电器的报废,废电路板的数量越来越大,其回收利用价值也引起众多投资者关注,成为很有发展前途的产业。 废电路板的成分复杂,回收处理难度大,且电路板在生产过程中加入了大量的有机物质,在废电路板的回收处理过程中稍有不慎就可能对环境产生严重的污染。目前,我国废电路板的回收处理技术还比较落后,开发先进的废电路板处理技术已成为众多技术人员研究的对象。本文拟就目前的废电路板回收处理技术作一介绍和评析。 一、废电路板的组成 废电路板包括废覆铜板(CCL)、废印刷线路板(PCB)、带有集成电路和电子器件的印刷线路板卡(一般称为废电路板)。1.废覆铜板 覆铜板是生产印刷线路板的原材料,主要由基板、铜箔、粘合剂组成。基板的主要材料是合成树脂和增强材料,其中合成树脂主要有酚醛树脂、环氧树脂、聚四氟乙烯等,增强材料一般有纸质和布质两种。 基板的表面是铜箔,铜箔采用机械加工和电积法生产,目前以电积法生产为主,铜箔厚度一般为18μm、25μm、35μm、70μm、和105μm。铜箔用粘合剂牢固地粘覆在基板上,就形成了覆铜板。 目前我国大量使用的覆铜板有酚醛纸质覆铜板、环氧纸质覆铜板、环氧玻璃布覆铜板、聚四氟乙烯覆铜板、聚酰亚胺柔性覆铜板,其中中档以上的民用电器、仪器仪表采用环氧(纸质或玻璃布)覆铜板,用量较大。中低档次的民用电器多用酚醛纸质的覆铜板。 废覆铜板是在生产过程中产生的残次品、边角料,由于表面有压制的铜箔而呈现黄色,一般称之为黄板。废覆铜板含铜量不一,低的约15%,高的可达70%以上,是一种回收铜的重要资源。2. 废印刷线路板 印刷线路板简称PCB。通常把在绝缘材上按预订设计制成印制线路、印制原件或两者组合而成的导电图形称之为印制电路,把在绝缘基材上提供元器件之间电气连接的导电图形称之为印制线路。印制电路或印制线路的成品板即称为印刷线路板。 印刷线路板主要用于给集成电路等各种电子元器件固定装配提供支撑、实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘等,同时为自动锡焊提供阻焊图形,为元器件插装、检查、维修提供识别字符和图形。 我们能见到的电子设备几乎都有PCB,如计算器、电脑、通讯电子设备、军用武器系统等,只要有集成电路等电子元器件,它们之间的电气互连都要用到 PCB。常见的电脑板卡基本上是环氧树脂玻璃布基双面印制线路板,其中一面是插装元件,另一面为元件脚焊接面,焊点一般很有规则。 印刷线路板在生产过程中产生的残次品就是我们常说的废印刷线路板,因主要呈绿色,因此又称为绿板。在制作印刷线路板时,尽管一部分铜已经被腐蚀掉,而使印刷线路板的含铜量比覆铜板要低,但是印刷线路板仍然是回收铜的资源之一。3. 废电路板卡 废电路板卡主要来自各种报废的电器,种类很多,常见的有绿板和黄板,其中绿板主要是从废电视机、电脑、通讯设备中拆解下来的,价值较高;黄板则主要是从录音机、音响设备、洗衣机、空调中拆解下来的,价值较低。 废电路板卡的成分比较复杂,除印刷线路板之外,还含有集成电路和各种电子元器件,主要成分是二氧化硅、铜箔、铅、锡、铁微量的贵金属和塑料、树脂、油漆等有机物质,因此处理难度比废覆铜板、废印刷线路板的处理难度大。

浅析氧化铝陶瓷增韧技术

2019-03-07 11:06:31

氧化铝陶瓷是氧化物中最安稳的物质 , 具有机械强度高 、高的电绝缘性与低的介电损耗等特色, 在航天 、航空、纺织、建筑等方面 ,具有宽广的运用远景。可是,因为它高脆性和均匀性差等丧命缺点 ,影响了陶瓷零部件的运用安全性 ,因而,进步氧化铝陶瓷的耐性是亟待解决的重要问题。氧化铝陶瓷为何如此脆呢? 金属材料很简单发作塑性变形,原因是金属键没有方向性。而在陶瓷材料中,原子间的结合键为共价键和离子键,共价键有显着的方向性和饱满性,而离子键的同号离子挨近时斥力很大,所以首要由离子晶体和共价晶体组成的陶瓷,滑移系很少,一般在发作滑移曾经就发作开裂。 为了削减氧化铝基陶瓷材料的脆性 ,除了选用先进的制备工艺外 ,还需要在氧化铝陶瓷的增韧技能方面展开广泛及深化的研讨。现在 ,该研讨首要会集在以下几个方面。相变增韧 把相变作为陶瓷增韧的手法并取得显着效果是从部分安稳氧化锆进步抗热震性的研讨开端的。因为氧化锆相变的本身特色,氧化锆增韧氧化铝陶瓷,被证明具有较好的增韧效果 。现在 , 根据相变增韧的 ZTA 已可用作许多零部件的结构材料。 纯氧化锆在1000 ℃邻近有固相改变 : 正方相( t) →单斜相( m) ,归于马氏体改变 ,将发作 3%~5 %的体积胀大 。当裂纹扩展进入含有 t-ZrO2 晶粒的区域时 ,在裂纹顶级应力场的效果下 ,在裂纹顶级构成进程区,即进程区内的 t -ZrO2 将发作t→m相变,因而除发作新的开裂表面而吸收能量外 , 还因相变时的体积效应( 胀大) 而吸收能量。一起因为进程区内t→m 相变粒子的体积胀大而对裂纹发作压应力,阻挠裂纹扩展。 相对而言, 便是进步了材料的裂纹顶级临界应力强度因子——开裂耐性。将 ZrO2 的 t→ m 相变韧化效果及因为 t →m相变而派生出来的显微裂纹韧化与剩余应力韧化效果引进氧化铝基体,可使耐性得到显着进步。 至今停止, 运用部分安稳氧化锆的相变增韧是最为成功的增韧办法之一 , 可是因为许多脆性材料并不必定具有这种有利于增韧的相变,并且还受温度的影响较大,所以这种增韧办法还不能得到遍及运用。 晶须 、纤维和碳纳米管增韧 相对于氧化铝基陶瓷的相变增韧, 运用晶须和纤维增韧是一种比较有发展出路的增韧技能。晶须在拔出和开裂时 ,都要耗费必定的能量, 有利于阻挠裂纹的扩展。进步晶须强度和下降晶须弹性模量有利于材料耐性进步 ; 增大晶须尺度( 长度 、半径和长径比) 能进步晶须增韧效果。 在陶瓷基体中加入定向或取向或无序排布的纤维,可取得高强度和高耐性的陶瓷复合材料, 这已成为氧化铝陶瓷范畴的发展方向之一。为了到达纤维复合增韧的意图,纤维与基体材料之间有必要满意 2 个条件: ①起增强效果的纤维弹性系数有必要高于氧化铝陶瓷基体的弹性系数;②纤维与基体之间有必要是相容的。 颗粒弥散增韧 陶瓷材料的机械功能能够经过添加颗粒金属相得以进步,在脆性陶瓷中引进延性金属相被证明也是一种很有出路的增韧办法。金属粒子作为延展性第二相引进陶瓷基体内,不只改进了陶瓷的烧结功能,并且能够以多种方法阻挠陶瓷材料中裂纹的扩展,使得复合材料的抗弯强度和开裂耐性得以进步 。 当其形状是颗粒状时, 增韧机制首要是裂纹偏转;而金属的塑性变形则首要发作于金属呈纤维、薄片等形状存在的复合材料中。陶瓷与金属间化合物都是可用于高温运用的材料。 经过细化基体晶粒和裂纹屏蔽效果 , 耗散裂纹行进的动力 ,到达增韧意图 。虽然效果不如纤维和晶须 ,但工艺简便易行 , 且成本低 ,只需颗粒的品种、巨细、含量等参数挑选恰当 ,增韧效果仍是非常显着的。纳米技能增韧 纳米材料与纳米技能方面的研讨有可能使陶瓷增韧技能取得性打破。一方面 ,纳米陶瓷因为晶粒的细化 , 晶界数量会大大添加,一起纳米陶瓷的气孔和缺点尺度减小到必定尺度就不会影响到材料的微观强度 ,成果可使材料的强度、耐性大大添加 。另一方面 ,在陶瓷基体中引进纳米涣散相并进行复合, 不只可大起伏进步其强度和耐性 ,显着改进其耐高温功能。 因而 ,氧化铝陶瓷纳米化及纳米复合现在已成为改进其开裂耐性的最重要途径之一。 纳米复相陶瓷的强韧化机理 , 首要经过以下几个效应表现: ①弥散相的引进有效地按捺了基质晶粒的成长和减轻了晶粒的反常长大 ;②弥散相或弥散相周围存在部分应力 ,使晶粒细化而削弱主晶界的效果 ; ③纳米粒子高温控制位错运动 , 使高温力学功能如硬度 、强度及抗蠕变性得到改进。