您所在的位置: 上海有色 > 有色金属产品库 > 氧化铝陶瓷电路板的用途

氧化铝陶瓷电路板的用途

抱歉!您想要的信息未找到。

氧化铝陶瓷电路板的用途专区

更多
抱歉!您想要的信息未找到。

氧化铝陶瓷电路板的用途百科

更多

氧化铝的用途

2017-06-06 17:50:12

氧化铝的用途表现在石油化工、化肥工业中,广泛用作催化剂、催化剂载体。    高性能的活性氧化铝在不定形耐火材料配料中能带来以下好处:提高坯体密度、流动性、强度,提高二次莫来石生成量等,降低加水量和气孔率。此外,活性氧化铝还能做干燥剂,吸水量大、干燥速度快,能再生(400 -500K烘烤)。活性氧化铝属于化学品氧化铝范畴,主要用于吸附剂、净水剂、催化剂及催化剂载体,根据不同的用途,其原料和制备方法不同。    在催化剂中使用的三氧化二铝的通常专称为“活性氧化铝”,它是一种多孔性、高分散度的固体材料,有很大的表面积,其微孔表面具备催化作用所要求的特性,如吸附性能、表面活性、优良的热稳定性等,所以广泛地被用作化学反应的催化剂和催化剂载体。    该纳米氧化铝XZ-L14显白色蓬松粉末状态,晶型是α型。粒径是20nm;比表面积≥50m/g。粒度分布均匀、纯度高、高分散、α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;耐热性强,成型性好,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。由于α相氧化铝也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中。    活性氧化铝具有多孔结构,高比表面积且处于不稳定的过渡态,因而具有较大的活性。活性氧化铝又具有吸附特性,因而用作气体和液体的干燥剂、气体净化的吸附剂、饮水除氟剂、工业污水的颜色和气味消除剂等。当今得到的主要的工业活性氧化铝产品都是靠快速脱水法生产的。活性氧化铝是指经过充分细磨、以原晶尺寸大小1μm的α- Al2O3为基本组成(20%-90%)的煅烧氧化铝。    了解更多有关氧化铝的用途的信息,请关注上海 有色 网。 

超塑性氧化铝陶瓷

2019-01-15 09:49:17

氧化铝陶瓷广泛用作研磨材,切削材、高温材料,加之具有良好的耐磨蚀性、机械强度、硬度和耐磨性,还用于各种机械部件。但原用氧化铝陶瓷由于无塑性,不能像金属材料那样进行加工,可以说属一种很难加工的材料。    近期,日本科学技术厅金属材料研究所开发出一种可进行精密加工的高塑性氧化铝陶瓷。据介绍,这种陶瓷是在高分子中电解质水溶液中分散AI2O3和Zr2O3颗粒,制备料浆,注入多孔质模,加压成坯,加热烧结而成。由于它是一种含有Zr2O3的氧化铝结拼烧结体,Zr2O3氧化铝颗粒处于高分散状态,且结晶呈微细粒,具有良好的超塑性。经测定,在1400℃和1500℃下,以1mm/min的速度进行拉伸形试验,其测定值超过200%。由于它弥补了原有氧化铝陶瓷无塑性的缺陷,使其用途得到进一步拓宽。

氧化铝的用途

2017-06-06 17:50:09

氧化铝,又称三氧化二铝,分子量102,通常称为“铝氧”,是一种白色无定形粉状物,俗称矾土。用途  1. 红宝石、蓝宝石的主成份皆为氧化铝,因为其它杂质而呈现不同的色泽。红宝石含有氧化铁和氧化钛而呈红色,蓝宝石则含有氧化铬而呈蓝色。   2. 在铝矿的主成份铁铝氧石中,氧化铝的含量最高。工业上,铁铝氧石经由Bayer process纯化为氧化铝,再由Hall-Heroult process转变为铝 金属 。   3. 氧化铝是 金属 铝在空气中不易被腐蚀的原因。纯净的 金属 铝极易与空气中的氧气反应,生成一层致密的氧化铝薄膜覆盖在暴露于空气中铝表面。这层氧化铝薄膜能防止铝被继续氧化。这层氧化物薄膜的厚度和性质都能通过一种称为阳极处理(阳极防腐)的处理过程得到加强。   4. 铝为电和热的良导体。铝的晶体形态金刚砂因为硬度高,适合用作研磨材料及切割工具。   5. 氧化铝粉末常用作色层分析的媒介物。   6. 2004年8月,在美国3M公司任职的科学家开发出以铝及稀土元素化合成的合金制造出称为transparent alumina的强化玻璃。   资料刚玉粉硬度大可用作磨料,抛光粉,高温烧结的氧化铝,称人造刚玉或人造宝石,可制机械轴承或钟表中的钻石。氧化铝也用作高温耐火材料,制耐火砖、坩埚、瓷器、人造宝石等,氧化铝也是炼铝的原料。煅烧氢氧化铝可制得γ-Al2O3。γ-Al2O3具有强吸附力和催化活性,可做吸附剂和催化剂。刚玉主要成分α-Al2O3。桶状或锥状的三方晶体。有玻璃光泽或金刚光泽。密度为3.9~4.1g/cm3,硬度9,熔点2000±15℃。不溶于水,也不溶于酸和碱。耐高温。无色透明者称白玉,含微量三价铬的显红色称红宝石;含二价铁、三价铁或四价钛的显蓝色称蓝宝石;含少量四氧化三铁的显暗灰色、暗黑色称刚玉粉。可用做精密仪器的轴承,钟表的钻石、砂轮、抛光剂、耐火材料和电的绝缘体。色彩艳丽的可做装饰用宝石。人造红宝石单晶可制激光器的材料。除天然矿产外,可用氢氧焰熔化氢氧化铝制取。   氧化铝化学式Al2O3,分子量101.96。矾土的主要成分。白色粉末。具有不同晶型,常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。γ-Al2O3属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。   Al2O3+6H+=2Al3++3H2O   Al2O3+2OH-=2AlO2-+H2O目前已公布在建的氧化铝规模外,全国还有拟建氧化铝总规模1992万t接近国外所有拟建(扩建)氧化铝项目的总和。氧化铝工业的迅速发展不同于以往的低水平重复建设,而是上规模、高水平,优化了结构,极大地提升了我国氧化铝工业整体水平和竞争力。

氧化铝陶瓷的特性和分类

2018-09-10 10:45:06

氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为氧化铝陶瓷优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。氧化铝陶瓷的特性:1、硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。2、耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。3、重量轻其密度为3.5g/cm3,仅为钢铁的一半,可大大减轻设备负荷。氧化铝陶瓷分为高纯型与普通型两种:1、高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。2、普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件

氧化铝陶瓷产品概述

2018-12-28 15:58:39

氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为氧化铝陶瓷优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。   氧化铝陶瓷分为高纯型与普通型两种。   1、高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。   2、普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。

氧化铝陶瓷产品

2018-12-20 09:35:44

氧化铝陶瓷是一种以氧化铝(AL2O3)为主体的材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。需要注意的是需用超声波进行洗涤。氧化铝陶瓷是一种用途广泛的陶瓷。因为氧化铝陶瓷优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。  氧化铝陶瓷分为高纯型与普通型两种。  1、高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。  2、普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。

氧化铝陶瓷的应用领域

2018-10-25 10:30:13

随着科学技术的发展及制造技术的提高,氧化铝陶瓷在现代工业和现代科学技术领域中得到越来越广泛的应用。1、机械方面:有耐磨氧化铝陶瓷衬砖、衬板、衬片,氧化铝陶瓷钉,陶瓷密封件(氧化铝陶瓷球阀),黑色氧化铝陶瓷切削刀具,红色氧化铝陶瓷柱塞等。2、电子、电力方面:有各种氧化铝陶瓷底板、基片、陶瓷膜、高压钠灯透明氧化铝陶瓷以及各种氧化铝陶瓷电绝缘瓷件,电子材料,磁性材料等。3、化工方面:有氧化铝陶瓷化工填料球,氧化铝陶瓷微滤膜,氧化铝陶瓷耐腐蚀涂层等。4、医学方面:有氧化铝陶瓷人工骨,羟基磷灰石涂层多晶氧化铝陶瓷人工牙齿、人工关节等。5、建筑卫生陶瓷方面:球磨机用氧化铝陶瓷衬砖、微晶耐磨氧化铝球石的应用已十分普及,氧化铝陶瓷辊棒、氧化铝陶瓷保护管及各种氧化铝质、氧化铝结合其他材质耐火材料的应用随处可见。6、其他方面:各种复合、改性的氧化铝陶瓷如碳纤维增强氧化铝陶瓷,氧化锆增强氧化铝陶瓷等各种增韧氧化铝陶瓷越来越多地应用于高科技领域;氧化铝陶瓷磨料、高级抛光膏在机械、珠宝加工行业起到越来越重要的作用;此外氧化铝陶瓷研磨介质在涂料、油漆、化妆品、食品、制药等行业的原材料粉磨和加工方面应用也越来越广泛。

废电路板提金及再利用技术大全

2018-12-05 13:53:44

废电路板的回收是一个新兴行业。随着大量家用电器的报废,废电路板的数量越来越大,其回收利用价值也引起众多投资者关注,成为很有发展前途的产业。 废电路板的成分复杂,回收处理难度大,且电路板在生产过程中加入了大量的有机物质,在废电路板的回收处理过程中稍有不慎就可能对环境产生严重的污染。目前,我国废电路板的回收处理技术还比较落后,开发先进的废电路板处理技术已成为众多技术人员研究的对象。本文拟就目前的废电路板回收处理技术作一介绍和评析。 一、废电路板的组成 废电路板包括废覆铜板(CCL)、废印刷线路板(PCB)、带有集成电路和电子器件的印刷线路板卡(一般称为废电路板)。1.废覆铜板 覆铜板是生产印刷线路板的原材料,主要由基板、铜箔、粘合剂组成。基板的主要材料是合成树脂和增强材料,其中合成树脂主要有酚醛树脂、环氧树脂、聚四氟乙烯等,增强材料一般有纸质和布质两种。 基板的表面是铜箔,铜箔采用机械加工和电积法生产,目前以电积法生产为主,铜箔厚度一般为18μm、25μm、35μm、70μm、和105μm。铜箔用粘合剂牢固地粘覆在基板上,就形成了覆铜板。 目前我国大量使用的覆铜板有酚醛纸质覆铜板、环氧纸质覆铜板、环氧玻璃布覆铜板、聚四氟乙烯覆铜板、聚酰亚胺柔性覆铜板,其中中档以上的民用电器、仪器仪表采用环氧(纸质或玻璃布)覆铜板,用量较大。中低档次的民用电器多用酚醛纸质的覆铜板。 废覆铜板是在生产过程中产生的残次品、边角料,由于表面有压制的铜箔而呈现黄色,一般称之为黄板。废覆铜板含铜量不一,低的约15%,高的可达70%以上,是一种回收铜的重要资源。2. 废印刷线路板 印刷线路板简称PCB。通常把在绝缘材上按预订设计制成印制线路、印制原件或两者组合而成的导电图形称之为印制电路,把在绝缘基材上提供元器件之间电气连接的导电图形称之为印制线路。印制电路或印制线路的成品板即称为印刷线路板。 印刷线路板主要用于给集成电路等各种电子元器件固定装配提供支撑、实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘等,同时为自动锡焊提供阻焊图形,为元器件插装、检查、维修提供识别字符和图形。 我们能见到的电子设备几乎都有PCB,如计算器、电脑、通讯电子设备、军用武器系统等,只要有集成电路等电子元器件,它们之间的电气互连都要用到 PCB。常见的电脑板卡基本上是环氧树脂玻璃布基双面印制线路板,其中一面是插装元件,另一面为元件脚焊接面,焊点一般很有规则。 印刷线路板在生产过程中产生的残次品就是我们常说的废印刷线路板,因主要呈绿色,因此又称为绿板。在制作印刷线路板时,尽管一部分铜已经被腐蚀掉,而使印刷线路板的含铜量比覆铜板要低,但是印刷线路板仍然是回收铜的资源之一。3. 废电路板卡 废电路板卡主要来自各种报废的电器,种类很多,常见的有绿板和黄板,其中绿板主要是从废电视机、电脑、通讯设备中拆解下来的,价值较高;黄板则主要是从录音机、音响设备、洗衣机、空调中拆解下来的,价值较低。 废电路板卡的成分比较复杂,除印刷线路板之外,还含有集成电路和各种电子元器件,主要成分是二氧化硅、铜箔、铅、锡、铁微量的贵金属和塑料、树脂、油漆等有机物质,因此处理难度比废覆铜板、废印刷线路板的处理难度大。

氧化铝陶瓷制作工艺

2019-01-02 09:41:33

氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650-1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下:   一、粉体制备:   将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm微米以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,一般为重量比在10-30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150-200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。   欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。   二、成型方法:   氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍:   1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长度与直径之比不大于4∶1的物件。成型方法有单轴向或双向。压机有液压式、机械式两种,可呈半自动或全自动成型方式。压机最大压力为200Mpa.产量每分钟可达15~50件。由于液压式压机冲程压力均匀,故在粉料充填有差异时压制件高度不同。而机械式压机施加压力大小因粉体充填多少而变化,易导致烧结后尺寸收缩产生差异,影响产品质量。因此干压过程中粉体颗粒均匀分布对模具充填非常重要。充填量准确与否对制造的氧化铝陶瓷零件尺寸精度控制影响很大。粉体颗粒以大于60μm、介于60~200目之间可获最大自由流动效果,取得最好压力成型效果。12后一页

浅析氧化铝陶瓷增韧技术

2019-03-07 11:06:31

氧化铝陶瓷是氧化物中最安稳的物质 , 具有机械强度高 、高的电绝缘性与低的介电损耗等特色, 在航天 、航空、纺织、建筑等方面 ,具有宽广的运用远景。可是,因为它高脆性和均匀性差等丧命缺点 ,影响了陶瓷零部件的运用安全性 ,因而,进步氧化铝陶瓷的耐性是亟待解决的重要问题。氧化铝陶瓷为何如此脆呢? 金属材料很简单发作塑性变形,原因是金属键没有方向性。而在陶瓷材料中,原子间的结合键为共价键和离子键,共价键有显着的方向性和饱满性,而离子键的同号离子挨近时斥力很大,所以首要由离子晶体和共价晶体组成的陶瓷,滑移系很少,一般在发作滑移曾经就发作开裂。 为了削减氧化铝基陶瓷材料的脆性 ,除了选用先进的制备工艺外 ,还需要在氧化铝陶瓷的增韧技能方面展开广泛及深化的研讨。现在 ,该研讨首要会集在以下几个方面。相变增韧 把相变作为陶瓷增韧的手法并取得显着效果是从部分安稳氧化锆进步抗热震性的研讨开端的。因为氧化锆相变的本身特色,氧化锆增韧氧化铝陶瓷,被证明具有较好的增韧效果 。现在 , 根据相变增韧的 ZTA 已可用作许多零部件的结构材料。 纯氧化锆在1000 ℃邻近有固相改变 : 正方相( t) →单斜相( m) ,归于马氏体改变 ,将发作 3%~5 %的体积胀大 。当裂纹扩展进入含有 t-ZrO2 晶粒的区域时 ,在裂纹顶级应力场的效果下 ,在裂纹顶级构成进程区,即进程区内的 t -ZrO2 将发作t→m相变,因而除发作新的开裂表面而吸收能量外 , 还因相变时的体积效应( 胀大) 而吸收能量。一起因为进程区内t→m 相变粒子的体积胀大而对裂纹发作压应力,阻挠裂纹扩展。 相对而言, 便是进步了材料的裂纹顶级临界应力强度因子——开裂耐性。将 ZrO2 的 t→ m 相变韧化效果及因为 t →m相变而派生出来的显微裂纹韧化与剩余应力韧化效果引进氧化铝基体,可使耐性得到显着进步。 至今停止, 运用部分安稳氧化锆的相变增韧是最为成功的增韧办法之一 , 可是因为许多脆性材料并不必定具有这种有利于增韧的相变,并且还受温度的影响较大,所以这种增韧办法还不能得到遍及运用。 晶须 、纤维和碳纳米管增韧 相对于氧化铝基陶瓷的相变增韧, 运用晶须和纤维增韧是一种比较有发展出路的增韧技能。晶须在拔出和开裂时 ,都要耗费必定的能量, 有利于阻挠裂纹的扩展。进步晶须强度和下降晶须弹性模量有利于材料耐性进步 ; 增大晶须尺度( 长度 、半径和长径比) 能进步晶须增韧效果。 在陶瓷基体中加入定向或取向或无序排布的纤维,可取得高强度和高耐性的陶瓷复合材料, 这已成为氧化铝陶瓷范畴的发展方向之一。为了到达纤维复合增韧的意图,纤维与基体材料之间有必要满意 2 个条件: ①起增强效果的纤维弹性系数有必要高于氧化铝陶瓷基体的弹性系数;②纤维与基体之间有必要是相容的。 颗粒弥散增韧 陶瓷材料的机械功能能够经过添加颗粒金属相得以进步,在脆性陶瓷中引进延性金属相被证明也是一种很有出路的增韧办法。金属粒子作为延展性第二相引进陶瓷基体内,不只改进了陶瓷的烧结功能,并且能够以多种方法阻挠陶瓷材料中裂纹的扩展,使得复合材料的抗弯强度和开裂耐性得以进步 。 当其形状是颗粒状时, 增韧机制首要是裂纹偏转;而金属的塑性变形则首要发作于金属呈纤维、薄片等形状存在的复合材料中。陶瓷与金属间化合物都是可用于高温运用的材料。 经过细化基体晶粒和裂纹屏蔽效果 , 耗散裂纹行进的动力 ,到达增韧意图 。虽然效果不如纤维和晶须 ,但工艺简便易行 , 且成本低 ,只需颗粒的品种、巨细、含量等参数挑选恰当 ,增韧效果仍是非常显着的。纳米技能增韧 纳米材料与纳米技能方面的研讨有可能使陶瓷增韧技能取得性打破。一方面 ,纳米陶瓷因为晶粒的细化 , 晶界数量会大大添加,一起纳米陶瓷的气孔和缺点尺度减小到必定尺度就不会影响到材料的微观强度 ,成果可使材料的强度、耐性大大添加 。另一方面 ,在陶瓷基体中引进纳米涣散相并进行复合, 不只可大起伏进步其强度和耐性 ,显着改进其耐高温功能。 因而 ,氧化铝陶瓷纳米化及纳米复合现在已成为改进其开裂耐性的最重要途径之一。 纳米复相陶瓷的强韧化机理 , 首要经过以下几个效应表现: ①弥散相的引进有效地按捺了基质晶粒的成长和减轻了晶粒的反常长大 ;②弥散相或弥散相周围存在部分应力 ,使晶粒细化而削弱主晶界的效果 ; ③纳米粒子高温控制位错运动 , 使高温力学功能如硬度 、强度及抗蠕变性得到改进。