您所在的位置: 上海有色 > 有色金属产品库 > 轧辊磨床 > 轧辊磨床百科

轧辊磨床百科

河南科技大学投资建设复合轧辊高新技术项目

2019-01-16 09:34:55

近日,河南科技大学在济源市投资兴建耐高温耐磨损的复合轧辊(环)项目。据介绍,该项目已获国家专利,具有自主知识产权。   该项目以生产具有优质耐高温耐磨性的复合轧辊(环)和相关耐磨材料及其制品为主,由河南科技大学投资兴建,总投资800万元,占地3878平方米,总建筑面积2700平方米。项目获国家专利,拥有自主知识产权,其制作工艺在国内外都处于领先地位,市场竞争力强。目前,该项目已开工建设,预计年底可投产运营。

铝箔车间设计

2019-01-18 09:30:25

铝箔车间设计 (design of aluminium foil workshop)以0.5mm左右厚的铝带坯为原料,经退火、轧制、分卷、剪切等工序,生产铝箔的铝加工厂车间设计。铝箔厚度为0.006~0.2mm,使用宽度一般小于1000mm,通常以倍尺进行生产,最大轧制宽度可达2000mm。以软状态、硬状态供应用户。铝箔的深度加工产品有与纸或塑料薄膜组合而成的复合铝箔,表面压花、着色、印花的花色铝箔和表面涂有耐水、耐油、绝缘等性能涂布剂的涂层铝箔等。根据建厂具体情况,以上产品可以在铝箔车间生产,也可以单独建设铝箔深度加工车间。设计主要内容为:工艺流程选择、设备选择和车间布置。 工艺流程选择 以厚0.5mm左右的铝箔坯料为原料,一般经过退火、初轧、中轧、清洗、合卷、精轧、分卷、退火和剪切等工序生产铝箔成品。现行的铝箔轧制工艺有两种。一种是每道次轧制使用一台轧机的群体式轧制工艺。这种工艺需要的轧机台数多(形成一个轧机群体),轧制中间需要退火和清洗才能生产薄规格铝箔。另一种工艺是将各道次轧制集中在粗、中、精轧机上,可用一台、两台或多台轧机进行生产,一般不需要中间退火和清洗。前者轧机规格小,装备水平较低,建设投资较少,适合于年产几百吨至1~2kt的生产规模。后者轧机规格较大,装备水平高,产品质量和生产效率均很高,适合于年产几千至几万吨的生产规模。铝箔的成品退火,有低温长时间和高温短时间两种制度。低温长时间退火时,铝箔卷上的残余润滑油有充分的时间挥发掉,退火后表面光亮,但需要炉子台数较多。高温短时间退火,一般适用于群体式轧制工艺。生产薄规格铝箔需要叠轧,叠轧前要合卷。合卷工序可单独设置,也可在精轧机上将合卷和精轧一次完成。 叠轧后的铝箔要分卷,分卷的同时可以分切,分切的宽度在200mm以上。铝箔的成品剪切,依厚度的不同,分别在厚规格剪切机、薄规格剪切机上进行。剪切成用户要求的宽度,并缠在规定直径的卷芯上。 设备选择包括铝箔轧机、退火炉、分卷机、剪切机和深度加工设备的选择。 铝箔轧机主要有二辊式、四辊式两类。二辊式轧机,辊身长通常在800mm以下,压下力及张力、厚度的调节由人工控制,仅在采用群体式轧制工艺时选用。四辊可逆式轧机装备水平与二辊式相近,一般只用于铝箔的初轧。四辊不可逆式轧机是20世纪70年代以后铝箔生产使用的主要机型,轧机的辊身长在800mm以上,装备有液压压下、厚度、张力、速度的自动控制系统和板型控制系统,其产品精度和生产效率都很高,可作为铝箔的初、中、精轧机。当生产规模为2~3kt/a时,可选用万能铝箔轧机。这种轧机具有控制方式全、轧制范围宽、换辊速度快等特点,可在一台轧机上完成铝箔的初、中、精轧。 退火炉包括坯料退火炉和成品退火炉。坯料退火炉通常选用带空气循环的箱式退火炉。成品退火的箔材是经过分卷及剪切的小卷,通常选用带空气循环的竖式炉和箱式炉。当炉子台数多时,可选用统一的装出料机构。分卷机用于将叠轧后的铝箔,分成单张铝箔。分卷铝箔的厚度为0.006~0.040mm,分卷机的速度通常为10~20m/s。卷取的张力可随箔卷的直径增大而递减,以调整卷材的松紧度。分卷机可配备上料、开卷装置及自动卸料机构而形成机组。箔材剪切机厚度为0.04~0.2mm的铝箔,使用厚规格剪切机;厚度为0.006~0.04mm的铝箔,使用薄规格剪切机。剪切速度在10m/s以下。剪切机张力可随箔卷直径的变化而调整。深度加工设备 包括铝箔与纸或塑料薄膜复合用的湿式、干式复合机;铝箔涂色、印花用的印花机;压出各种花纹的铝箔压花机等,可根据要求选择。 车间布置结合厂区条件,可配置成长条式、多跨式或有垂直跨的形式。当采用多跨式布置时,主跨为轧机跨。轧机传动侧的副跨配置轧机的电气、液压、润滑、油雾回收等设备。其中,电子计算机及控制设备放在隔开的房间内,液压、润滑设备多放在地下室,油雾回收装置设在室外。轧机非传动侧的辅跨配置退火炉、分卷机、剪切机和成品包装场地。轧辊磨床配置在轧机附近隔开的房间内。铝箔的深度加工部分,可布置在辅助跨隔开的房间内,或布置在另建的密闭厂房内。当大气中含尘量较大时,厂房一般采用全封闭式,用机械通风,屋面设采光罩采光;车间出入口设过廊,车辆在过廊清除泥污后再进入车间。当周围环境洁净时,厂房可按采用自然通风、采光的一般厂房设计。

钢管穿孔技术

2019-03-15 09:13:19

今天在无缝钢管生产过程中,钢管穿孔工艺被广泛应用。     钢管穿孔后,具有中空截面,大量用作输送流体的管道,钢管与圆钢等实心钢材相比,在抗弯抗扭强度相同时,重量较轻,是一种经济截面钢材。     在无缝钢管生产中,穿孔工序的作用是将实心的管坯穿成空心的毛管。     穿孔作为金属变形的第一道工序,穿出的管子壁厚较厚、长度较短、内外表面质量较差,因此叫做毛管。如果在毛管上存在一些缺陷, 经过后面的工序也很难消除或减轻。 所以在钢管生产中穿孔工序起着重要作用。      当今无缝钢管生产中穿孔工艺更加合理,穿孔过程实现了自动化。             斜轧穿孔整个过程可以分为三个阶段              第一个不稳定过程--管坯前端金属逐渐充满变形区阶段,即管坯同轧辊开始接触(一次 咬入)到前端金属出变形区,这个阶段存在一次咬入和二次咬入。 稳定过程--这是穿孔过程主要阶段,从管坯前端金属充满变形区到管坯尾端金属开始离 开变形区为止。 第二个不稳定过程—为管坯尾端金属逐渐离开变形区到金属全部离开轧辊为止。 稳定过程和不稳定过程有着明显的差别, 这在生产中很容易观察到的。 如一只毛管上头 尾尺寸和中间尺寸就有差别,一般是毛管前端直径大,尾端直径小,而中间部分是一致的。 头尾尺寸偏差大是不稳定过程特征之一。 造成头部直径大的原因是: 前端金属在逐渐充满变 形区中,金属同轧辊接触面上的摩擦力是逐渐增加的,到完全充满变形区才达到最大值,特 别是当管坯前端与顶头相遇时,由于受到顶头的轴向阻力,金属向轴向延伸受到阻力,使得 轴向延伸变形减小,而横向变形增加,加上没有外端限制,从而导致前端直径大。尾端直径 小,是因为管坯尾端被顶头开始穿透时,顶头阻力明显下降,易于延伸变形,同时横向展轧 小,所以外径小。 生产中出现的前卡、后卡也是不稳定特征之一,虽然三个过程有所区别,但他们都在同 一个变形区内实现的。变形区是由轧辊、顶头、导盘(导板)构成。整个变形区为一个较复杂的几何形状,大致可以认为,横断面是椭圆 形,到中间有顶头阶段为一环形变形区。纵截面上是小底相接的两个锥体,中间插入一个弧 形顶头。 变形区形状决定着穿孔的变形过程,改变变形区形状(决定与工具设计和轧机调整)将导致穿孔变形过程的变化。穿孔变形区中四个区段 Ⅱ区称为穿孔区,该区的作用是穿孔,即由实心坯变成空心的毛管,该区的长度为从金 属与顶头相遇开始到顶头圆锥带为止。这个区段变形特点主要是壁厚压下,由于轧辊表面与 顶头表面之间距离是逐渐减小的,因此毛管壁厚是一边旋转,一边压下,因此是连轧过程,这个 区段的变形参数以直径相对压下量来表示,直径上被压下的金属,同样可向横向流动(扩径)和 纵向流动(延伸)但横向变形受到导盘的阻止作用,纵向延伸变形是主要的。 导盘的作用不仅可以限制横向变形而且还可以拉动金属向轴向延伸,由于横向变形的结果,横截面呈椭圆形。 Ⅲ区称为碾轧区,该区的作用是碾轧均整、改善管壁尺寸精度和内外表面质量,由于顶 头母线与轧辊母线近似平行,所以压下量是很小的,主要起均整作用。轧件横截面在此区段 也是椭圆形,并逐渐减小。 Ⅳ区称为归圆区。 该区的作用是把椭圆形的毛管, 靠旋转的轧辊逐渐减小直径上的压下 量到零,而把毛管转圆,该区长度很短,在这个区变形实际上是无顶头空心毛管塑性弯曲变 形,变形力也很小。 变形过程中四个区段是相互联系的, 而且是同时进行的, 金属横截面变形过程是由圆变 椭圆再归圆的过程,斜轧穿孔运动学 两辊穿孔机运动学  螺旋轧制的速度分析 穿孔机轧辊是同一方向旋转,且轧辊轴相对轧制轴线倾斜,相交一个角度称作前进角。当 圆管坯送入轧辊中,靠轧辊和金属之间的摩擦力作用,轧辊带动圆管坯—毛管反向旋转,由于 前进角的存在,管坯—毛管在旋转的同时向轴向移动,在变形区中管坯—毛管表面上每一点都 是螺旋运动,即一边旋转,一边前进。 表现螺旋运动的基本参数是: 切向运动速度、 轴向运动速度、 和轧辊每半转的位移值 (螺 距)。 首先来讨论轧辊上任意一点的速度,如果轧辊圆周速度为 VR,则可以分解为两个分量 (切向分量和轴向分量)。  VaR=VRCOSβ=πD Nb/60×COSβ切向旋转速度 (1) VtR=VR sinβ=πD Nb/60×Sinβ轴向速度 (2) D所讨论截面的轧辊直径,mm; Nb轧辊转速, rpm;v β咬入角。 在轧制过程中由于坯料靠轧辊带动,轧辊将相应的速度传递给管坯,则管坯速度为: VB=πD Nb/60×COSβ (3) 但实际上轧辊速度和金属速度并非完全相等。 一般金属运动速度小于轧辊速度, 即两者 之间产生滑移,可用滑移系数来表示两者速度,这样 VaR =πD Nb/60×COSβ×ητ (4) VtR=πD Nb/60×sinβ×η0 (5) ητ 切向滑移系数, η0 轴向滑移系数,两者小于 1。 不同的材料有不同的滑移系数,参考如下: 碳钢 η0 = 0.8~1.0 低合金钢 η0 = 0.7 ~ 0.8 高合金钢 η0 = 0.5 ~ 0.7 在生产中最有实际意义的是毛管离开轧辊时的那一点速度,众所周知,出口速度愈大, 即生产率也愈高。为了简化计算,一般假设轧辊出口速度等于 VtR,实际误差包含在滑移系 数中。 毛管离开轧辊一点的轴向滑移系数可用公式(2)求出轴向速度,除以毛管长度得出理论的 穿孔时间,再和实测时间相比,即η0=T 理/T 实.这样确定η0 后,则可计算出毛管离开轧辊的轴 向速度。 螺距在变形中是个可变值,并且随着管坯进入变形区程度增加而增加,这是由于管坯-毛管断面积不断减小而轴向流动速度不断增加所致。 毛管离开轧辊一点的螺距值计算公式为: T=π/2×η0/ητ×d×tgβ穿孔的咬入条件 斜轧穿孔过程存在着两次咬入, 第一次咬入是管坯和轧辊开始接触瞬间, 由轧辊带动管 坯运动而把管坯曳入变形区中,称为一次咬入。当金属进入变形区到和顶头相遇,克服顶头 的轴向阻力继续进入变形区为二次咬入。 一般满足了一次咬入的条件并不见得就能满足二次咬入条件。在生产中我们常常看到, 二次咬入时由于轴向阻力作用,前进运动停止而旋转继续着即打滑。一次咬入条件一次咬入既要满足管坯旋转条件又要满足轴向前进条件。 管坯咬入的力能条件由下式确定: Mt ≥ Mp + Mq + Mi 式中:Mt - 使管坯旋转的总力矩; Mp—由于压力产生的阻止坯料旋转力矩 Mq—由于推料机推力而在管坯后端产生的摩擦力矩 Mi—管坯旋转的惯性矩 如果忽略 Mq、 Mi(值很小)则一般的表达式为: n (Mt + Mp) ≥ 0 (n—轧辊数)前进咬入条件是指管坯轴向力平衡条件,也就是,曳入管坯的轴向力应大于或等于轴向 阻力,其表达式为: n (Tx-Px) + P′ ≥ 0 (7) Tx—每个轧辊作用在管坯上的轴向摩擦力 Px--每个轧辊作用在管坯上正压力轴向分量 P′—后推力 (一般为零) 一次咬入所需旋转条件 下面的公式表明在管坯咬入时力的平衡, 两个重要参数, 摩擦系数和角速度可以通过下 面公式计算。式中: ——轧辊入口锥角 ——咬入角 ——辊喉处的直径减径值若想管坯咬入顺利些,可以将咬入角变大些、轧辊的入口锥角小些,或者通过施加管坯 的推入力和加大轧辊表面的辊花深度。二次咬入条件二次咬入的力能条件 二次咬入中旋转条件比一次咬入增加了一项顶头/顶杆系统的惯性阻力矩,其值很小。 因此二次咬入旋转条件,基本和一次咬入相同。二次咬入的关键是前进条件。 二次咬入时轴向力的平衡条件: n (Tx-Px) -Q′ ≥ Q′—顶头鼻部的轴向阻力 二次咬入所需旋转条件 二次咬入的条件在轴向管坯的推入力要大于顶头和管坯与轧辊之间的摩擦力, 能实现 次咬入的前提是在管坯接触顶头前(x=自由长度) 管坯至少要旋转一周。孔腔形成机理斜轧实心管坯时, 在顶头接触管坯前常易出现金属中心破裂现象, 当大量裂口发展成相 互连接,扩大成片以后,金属连续性破坏,形成中心空洞即孔腔。。在顶头前过早 形成孔腔,会造成大量的内折缺陷,恶化钢管内表面质量,甚至形成废品,因此在穿孔工艺 中力求避免过早形成孔腔。

结构无缝钢管GB-T 8162-1999标准

2019-03-15 09:13:19

结构用无缝管是用于一般结构和机械结构的无缝钢管。结构无缝钢管GB-T 8162-1999标准 第一章 钢管生产概论 1.1 钢管的分类 1.2 钢管的技术要求钢管生产的技术依据 对钢管的尺寸偏差的要求 1.2.3 对钢管的长度要求 1.2.4 外形 1.2.5 重量 不同用途的钢管应各有什么样的技术条件 1.2.7 我公司的主要产品管线管、油管和套管的主要技术要求 1.2.8 钢管技术要求中常用术语 1.2.6 1.3 钢管的主要生产方法 第二章 热轧钢管生产工艺流程 2.1 一般工艺流程 穿孔 2.1.2 轧管 第三章 定减径(包括张减) 2.2 各热轧机组生产工艺过程特点 连续轧管机的几种形式 2.2.2 三辊(斜)轧管机轧管 各机组的异同 2.3 轧钢的几种形式 纵轧 2.3.2 横轧 斜轧 管坯及管坯加热 3.1 管坯准备 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2 管坯库 管坯上料 管坯锯切 环形炉简述 3.2 管坯加热 炉子结构及辅助设备 3.2.3 环形炉自动化系统(资料不全待定) 第四章 穿孔 4.1 二辊斜轧穿孔机及穿孔过程 4.2 斜轧穿孔运动学 4.2.1 两辊穿孔机运动学 2无缝钢管生产技术 4.3 穿孔的咬入条件 4.3.1 4.3.2 一次咬入条件 二次咬入条件4.4 孔腔形成机理 4.5 斜轧穿孔时的金属变形 4.5.1 4.5.2 4.6.1 4.6.3 管坯受力情况 金属变形 4.6 穿孔工具及设计 轧辊 4.6.2 导盘 导板 4.6.4 顶头 4.7 穿孔机调整参数确定 4.8 其他穿孔方法 压力穿孔 推轧穿孔 4.8.3 斜轧穿孔 4.8.1 4.8.2 4.9 力能参数的计算 轧制力 4.9.2 顶头轴向力的确定 4.9.3 斜轧力矩计算 4.9.1 4.10 穿孔机的设备组成 斜轧穿孔机的设备由哪几部分组成? 4.10.2 主传动的方式及特点? 4.10.3 管坯定心机的组成结构? 4.10.4 穿孔机机座(牌坊)有哪几部分组成? 4.10.1 导盘调整方式有哪几种? 4.10.6 三辊定心的作用和结构? 4.10.7 顶杆的冷却形式有哪些? 4.10.8 顶头的使用方式有几种? 4.10.5 4.11 常见工艺问题 内折 4.11.2 前卡 4.11.3 中卡 4.11.1 后卡(镰刀) 4.11.5 链带 4.11.6 壁厚不均 4.11.4 第五章 毛管轧制 5.1 限动芯棒连轧管机(MPM) 工艺描述 5.1.2 MPM 连轧管机的设备结构、平面布置及相关技术参数 5.1.3 MPM 连轧管机组的工作原理和工艺控制 5.1.1 5.1.4 主要设备及参数 目录 3 5.1.5 5.1.6 5.1.7 MPM 连轧管机轧制工具 MPM 连轧机的孔型设计 连轧机组在线检测系统 5.1.8 常见生产事故 5.2 PQF 连轧机组(PREMIUM QUALITY FINISHING) 5.2.1 5.2.2 概述 连轧工艺 5.2.3 PQF 主机说明 5.2.4 脱管机说明 5.2.5 芯棒循环系统 工具准备与更换 5.2.7 常见质量缺陷 5.2.6 5.2.8 连轧基本理论 5.3 新 型 ASSEL 轧 管 机 5.3.1 5.3.2 5.4.1 5.4.2 5.4.3 主要工艺设备 主要调整参数 自动轧管机轧管 Accu-Roll 轧管机轧管 5.4 其他热加工钢管的延伸方法 顶管机顶管 5.4.4 挤压钢管 5.4.5 周期轧管机(皮尔格轧管机)轧管 5.4.6 热扩钢管 第六章 钢管的再加热、定径与减径 钢管的再加热、 6.1 钢管空心轧制理论 6.1.1 6.1.2 6.2.1 6.2.3 6.2.4 张减速度制度原理 CARTAT 系统介绍 6.2 定径工艺 工艺描述 6.2.2 定径机的设备结构、平面布置及相关技术参数 定径机组的工作原理和工艺控制 操作及调整 6.2.5 常见事故处理方法 6.2.6 质量缺陷及控制要点 6.3 张力减径工艺 工艺概述 6.3.2 设备参数及工艺数据介绍 6.3.3 质量检查 6.3.1 关于可调机架 6.3.5 轧制之前的现场检查 6.3.6 工具的准备和更换过程 6.3.7 工艺控制参考 6.3.4 第七章 轧制表的编制 4无缝钢管生产技术 7.1 编制原则和程序 7.1.1 编制原则 7.1.2 编制轧制表的要求 7.1.3 编制轧制表的步骤 7.1.4 轧制表编制方法 7.2 编制方法 7.3 编制实例 第八章 钢管的冷却和精整 8.2 轧管厂精整管排锯 8.2.1 8.2.2 精整锯切机组设备概述 管排锯的切割过程及工艺控制要点 8.2.3 常见切割缺陷的处理方法 8.3 轧管厂精整矫直机 8.3.1 8.3.2 8.3.3 精整矫直机组设备概述 矫直机相关参 矫直原理 8.3.4 矫直机的矫直过程及工艺控制要点 8.3.5 常见矫直缺陷的处理方法 8.3.6 8.4.1 8.4.3 8.5.1 8.5.3 工具管理 8.4 热处理 前言 8.4.2 热处理的定义和意义 热处理基本原理 8.5 无损检测 无损探伤概论 8.5.2 漏磁探伤 涡流(ET)检测 8.5.4 磁粉检测 8.5.5 电磁超声 8.6 人工检查 8.6.1 8.6.2 8.7.1 8.7.2 检查程序 热轧无缝钢管缺陷 质量保证的控制要点简述 8.7 钢管的质量保 质量控制点 8.7.3 工艺文件的编制与执行 8.7.4 其它 第九章 钢管的试验检测 9.1 钢管的力学性能 前 言 9.1.2 金属材料的力学性能 9.1.3 管材工艺性能试验 9.1.1 目录 5 9.2 钢中的各种组织和夹杂物 9.2.1 9.2.2 钢中的各种组织简介 钢中非金属夹杂物含量的测定标准评级图显微检验法 9.2.3 金属平均晶粒度测定方法 9.3.1 直读光谱仪 9.3.2 碳硫分析仪 第四章 4.1 二辊斜轧穿孔机及穿孔过程 穿孔 1886 年德国的曼内斯 今天在无缝钢管生产过程中,穿孔工艺被广泛应用而且非常经济 。 曼兄弟申请了用斜辊穿孔机生产管状断面产品的专利。 专利中描述了金属变形时内部力的作 用和使用两个或多个呈锥形的轧辊进行穿孔,因此被称作曼内斯曼穿孔过程。 由 R.C 斯蒂菲尔发明的导板使得穿孔后的毛管长度得到增加。 后来狄舍尔发明了导盘, 使穿孔效率得到更大提高。 1970 年出现了锥形辊的穿孔机 , 在 它比以前的穿孔机在金属的 变形上有明显的改进。 在无缝钢管生产中,穿孔工序的作用是将实心的管坯穿成空心的毛管。穿孔作为金属变 形的第一道工序,穿出的管子壁厚较厚、长度较短、内外表面质量较差,因此叫做毛管。如 果在毛管上存在一些缺陷, 经过后面的工序也很难消除或减轻。 所以在钢管生产中穿孔工序 起着重要作用。 当今无缝钢管生产中穿孔工艺更加合理,穿孔过程实现了自动化。 斜轧穿孔整个过程可以分为三个阶段 第一个不稳定过程--管坯前端金属逐渐充满变形区阶段,即管坯同轧辊开始接触(一次 咬入)到前端金属出变形区,这个阶段存在一次咬入和二次咬入。 稳定过程--这是穿孔过程主要阶段,从管坯前端金属充满变形区到管坯尾端金属开始离 开变形区为止。 第二个不稳定过程—为管坯尾端金属逐渐离开变形区到金属全部离开轧辊为止。 稳定过程和不稳定过程有着明显的差别, 这在生产中很容易观察到的。 如一只毛管上头 尾尺寸和中间尺寸就有差别,一般是毛管前端直径大,尾端直径小,而中间部分是一致的。 头尾尺寸偏差大是不稳定过程特征之一。 造成头部直径大的原因是: 前端金属在逐渐充满变 形区中,金属同轧辊接触面上的摩擦力是逐渐增加的,到完全充满变形区才达到最大值,特 别是当管坯前端与顶头相遇时,由于受到顶头的轴向阻力,金属向轴向延伸受到阻力,使得 轴向延伸变形减小,而横向变形增加,加上没有外端限制,从而导致前端直径大。尾端直径 小,是因为管坯尾端被顶头开始穿透时,顶头阻力明显下降,易于延伸变形,同时横向展轧 小,所以外径小。 生产中出现的前卡、后卡也是不稳定特征之一,虽然三个过程有所区别,但他们都在同 一个变形区内实现的。变形区是由轧辊、顶头、导盘(导板)构成。见图 4-1。 从图中可以看出,整个变形区为一个较复杂的几何形状,大致可以认为,横断面是椭圆 形,到中间有顶头阶段为一环形变形区。纵截面上是小底相接的两个锥体,中间插入一个弧 形顶头。 变形区形状决定着穿孔的变形过程,改变变形区形状(决定与工具设计和轧机调整)将 导致穿孔变形过程的变化。穿孔变形区大致可分为四个区段,如图 4-2 所示 。 Ⅰ区称之为穿孔准备区, (轧制实心圆管坯区)。Ⅰ区的主要作用是为穿孔作准备和顺 8 无缝钢管生产技术 利实现二次咬入。这个区段的变形特点是:由于轧辊入口锥表面有锥度,沿穿孔方向前进的 管坯逐渐在直径上受到压缩, 被压缩的部分金属一部分向横向流动, 其坯料波面有圆形变成 椭圆形,一部分金属轴向延伸,主要使表层金属发生形变,因此在坯料前端形成一个“喇叭 口”状的凹陷。此凹陷和定心孔保证了顶头鼻部对准坯料的中心,从而可减小毛管前端的壁 厚不均。穿孔变形区中四个区段 Ⅱ区称为穿孔区,该区的作用是穿孔,即由实心坯变成空心的毛管,该区的长度为从金 属与顶头相遇开始到顶头圆锥带为止。这个区段变形特点主要是壁厚压下,由于轧辊表面与 顶头表面之间距离是逐渐减小的,因此毛管壁厚是一边旋转,一边压下,因此是连轧过程,这个 区段的变形参数以直径相对压下量来表示,直径上被压下的金属,同样可向横向流动(扩径)和 纵向流动(延伸)但横向变形受到导盘的阻止作用,纵向延伸变形是主要的。 导盘的作用不仅可 第四章 穿孔 9 以限制横向变形而且还可以拉动金属向轴向延伸,由于横向变形的结果,横截面呈椭圆形。 Ⅲ区称为碾轧区,该区的作用是碾轧均整、改善管壁尺寸精度和内外表面质量,由于顶 头母线与轧辊母线近似平行,所以压下量是很小的,主要起均整作用。轧件横截面在此区段 也是椭圆形,并逐渐减小。 Ⅳ区称为归圆区。 该区的作用是把椭圆形的毛管, 靠旋转的轧辊逐渐减小直径上的压下 量到零,而把毛管转圆,该区长度很短,在这个区变形实际上是无顶头空心毛管塑性弯曲变 形,变形力也很小。 变形过程中四个区段是相互联系的, 而且是同时进行的, 金属横截面变形过程是由圆变 椭圆再归圆的过程4.2.1 斜轧穿孔运动学 两辊穿孔机运动学 4.2.1.1 螺旋轧制的速度分析 穿孔机轧辊是同一方向旋转,且轧辊轴相对轧制轴线倾斜,相交一个角度称作前进角。当 圆管坯送入轧辊中,靠轧辊和金属之间的摩擦力作用,轧辊带动圆管坯—毛管反向旋转,由于 前进角的存在,管坯—毛管在旋转的同时向轴向移动,在变形区中管坯—毛管表面上每一点都 是螺旋运动,即一边旋转,一边前进。 表现螺旋运动的基本参数是: 切向运动速度、 轴向运动速度、 和轧辊每半转的位移值 (螺 距)。 首先来讨论轧辊上任意一点的速度,如果轧辊圆周速度为 VR,则可以分解为两个分量 (切向分量和轴向分量)。 10 无缝钢管生产技术管 坯 轴 轧辊轴线线下VaR=VRCOSβ=πD Nb/60×COSβ切向旋转速度 (1) VtR=VR sinβ=πD Nb/60×Sinβ轴向速度 (2) 式中 D所讨论截面的轧辊直径,mm; Nb轧辊转速, rpm;v β咬入角。 在轧制过程中由于坯料靠轧辊带动,轧辊将相应的速度传递给管坯,则管坯速度为: VB=πD Nb/60×COSβ (3) 但实际上轧辊速度和金属速度并非完全相等。 一般金属运动速度小于轧辊速度, 即两者 之间产生滑移,可用滑移系数来表示两者速度,这样 VaR =πD Nb/60×COSβ×ητ (4) VtR=πD Nb/60×sinβ×η0 (5) 式中:ητ 切向滑移系数, η0 轴向滑移系数,两者小于 1。 不同的材料有不同的滑移系数,参考如下: 碳钢 η0 = 0.8~1.0 低合金钢 η0 = 0.7 ~ 0.8 高合金钢 η0 = 0.5 ~ 0.7 在生产中最有实际意义的是毛管离开轧辊时的那一点速度,众所周知,出口速度愈大, 即生产率也愈高。为了简化计算,一般假设轧辊出口速度等于 VtR,实际误差包含在滑移系 数中。 毛管离开轧辊一点的轴向滑移系数可用公式(2)求出轴向速度,除以毛管长度得出理论的 穿孔时间,再和实测时间相比,即η0=T 理/T 实.这样确定η0 后,则可计算出毛管离开轧辊的轴 向速度。 螺距在变形中是个可变值,并且随着管坯进入变形区程度增加而增加,这是由于管坯- 第四章 穿孔 11 毛管断面积不断减小而轴向流动速度不断增加所致。 毛管离开轧辊一点的螺距值计算公式为: T=π/2×η0/ητ×d×tgβ 式中:d毛管直径 4.3 穿孔的咬入条件 斜轧穿孔过程存在着两次咬入, 第一次咬入是管坯和轧辊开始接触瞬间, 由轧辊带动管 坯运动而把管坯曳入变形区中,称为一次咬入。当金属进入变形区到和顶头相遇,克服顶头 的轴向阻力继续进入变形区为二次咬入。 一般满足了一次咬入的条件并 不见得就能满足二次咬入条件。在生产中我们常常看到, 二次咬入时由于轴向阻力作用,前进运动停止而旋转继续着即打滑。 4.3.1 一次咬入条件 一次咬入既要满足管坯旋转条件又要满足轴向前进条件。 管坯咬入的力能条件由下式确定: Mt ≥ Mp + Mq + Mi 式中:Mt - 使管坯旋转的总力矩; Mp—由于压力产生的阻止坯料旋转力矩 Mq—由于推料机推力而在管坯后端产生的摩擦力矩 Mi—管坯旋转的惯性矩 如果忽略 Mq、 Mi(值很小)则一般的表达式为: n (Mt + Mp) ≥ 0 (n—轧辊数) (6) 前进咬入条件是指管坯轴向力平衡条件, 也就是, 曳入管坯的轴向力应大于或等于轴向 阻力,其表达式为: n (Tx-Px) + P′ ≥ 0 (7) 式中:Tx—每个轧辊作用在管坯上的轴向摩擦力 Px--每个轧辊作用在管坯上正压力轴向分量 P′—后推力 (一般为零) 一次咬入所需旋转条件 下面的公式表明在管坯咬入时力的平衡, 两个重要参数, 摩擦系数和角速度可以通过下 面公式计算。 (8) 式中: ——轧辊入口锥角 ——咬入角 ——辊喉处的直径减径值 12 无缝钢管生产技术 若想管坯咬入顺利些,可以将咬入角变大些、轧辊的入口锥角小些,或者通过施加管坯 的推入力和加大轧辊表面的辊花深度。 4.3.2 二次咬入条件 二次咬入的力能条件 二次咬入中旋转条件比一次咬入增加了一项顶头/顶杆系统的惯性阻力矩,其值很小。 因此二次咬入旋转条件,基本和一次咬入相同。二次咬入的关键是前进条件。 二次咬入时轴向力的平衡条件: n (Tx-Px) -Q′ ≥ 0 (9) 式中:Q′—顶头鼻部的轴向阻力 二次咬入所需旋转条件 二次咬入的条件在轴向管坯的推入力要大于顶头和管坯与轧辊之间的摩擦力, 能实现二 次咬入的前提是在管坯接触顶头前(x=自由长度) 管坯至少要旋转一周。 式中:d B——管坯直径 4.4 孔腔形成机理 斜轧实心管坯时, 在顶头接触管坯前常易出现金属中心破裂现象, 当大量裂口发展成相 互连接,扩大成片以后,金属连续性破坏,形成中心空洞即孔腔。见图 4-5。在顶头前过早 形成孔腔,会造成大量的内折缺陷,恶化钢管内表面质量,甚至形成废品,因此在穿孔工艺 中力求避免过早形成孔腔。 图 4-5 孔腔示意图 影响孔腔形成的主要因素有: 变形的不均匀性(顶头前压缩量) 第四章 穿孔 13 不均匀变形程度主要决定于坯料每半转的压缩量(称为单位压缩量),生产中指顶头前 压缩量。 顶头前压缩量愈大则变形不均匀程度也愈大, 导致管坯中心区的切应力和拉应力增 加,从而容易促进孔腔的形成。一般用临界压缩量来表示最大压缩量值的限制,压缩量小于 临界压缩量则不容易或不形成孔腔。 椭圆度的影响 穿孔过程中在管坯横断面上存在着很大的不均匀变形, 椭圆度愈大, 则不均匀变形也愈 大。 按照体积不变定律可知, 横向变形愈大则纵向变形愈小, 将导致管坯中心的横向拉应力、 切应力以及反复应力增加,加剧了孔腔的形成趋势 单位压缩次数的影响 在生产中主要指管坯从一次咬入到二次咬入过程中管坯的旋转次数, 次数的增多就容易 形成孔腔。 钢的自然塑性 钢的自然塑性由钢的化学成分、 金属冶炼质量以及金属组织状态所决定, 而组织状态又 由管坯加热温度和时间所影响。一般来说塑性低的金属,穿孔性能差,容易产生孔腔。 4.5 4.5.1 斜轧穿孔时的金属变形 管坯受力情况 图 4-6 显示管坯的受力情况,图中显示 F 为轧辊方向(平面)的力,为压应力,在接触 点的位置显示为最大。中心部位(导盘方向)显示为拉应力,理论上在导盘的中心部位受力 为最大。因为管坯的不断旋转,同一部位的受力情况不断变化,导致中心部位的金属受到交 变应力的作用,中心产生疏松,形成孔腔。 图 5 金属受理分析图 4.5.2 金属变形 斜轧穿孔过程中存在着两种变形,即基本变形(或宏观变形)和附加变形(称不均匀变形) 基本变形是指外观形状的变化, 这种变形是可以直观的, 如由实心圆管坯变成空心的毛 图 4-6 4.5.2 金属变形 金属变形 基本变形完全是几何尺寸的变化, 与材料的性质无关, 而且基本变形取决于变形区的几 14 无缝钢管生产技术 何形状(由工具设计和轧机调整所决定)。 附加变形指的是材料内部的变形, 是直观不到的变形, 附加变形是由于材料中内应力所 引起的,是增大材料的变形应力,引起材料中产生的缺陷,所以在实际生产中如何来减小附 加变形是很重要的。 4.5.2.1 基本变形 基本变形即延伸变形,切向变形和径向变形(壁厚压缩)。这三种变形都是宏观变形, 表示外观形状和尺寸变化。基本变形可用下式表示: 径向应变增量:  r = ln 纵向(延伸)应变增量: s1 s0 l = ln 切向(圆周)应变增量: l1 l0 t = ln 4.5.2.2 附加变形 2  ( D1  s1 ) D0 附加变形包括有扭转变形, 纵向剪切变形等, 附加变形是由于金属各部分的变形不均匀 产生的,附加变形会带来一系列的后果,如造成变形能量增加,以及由于附加变形所引起的 附加应力,容易导致毛管内外表面上和内部产生缺陷等。 纵向剪切变形主要是由于顶头的轴向阻力所造成的, 一方面轧辊带动管材轴向流动, 而 顶头要阻止金属轴向流动, 最终导致各金属轴向流动有差异, 可是各层金属又是互相联系的, 是一个整体,所以在各层金属间必然产生附加变形和附加应力,特别是和轧辊、顶头直接接 触的表面层金属 ,由图中可看出,附加变形更大些,因此毛管内外表面很容易出现缺陷或 者使管坯表面原有的缺陷发展扩大。 切向剪变形往往是造成毛管内外表面产生缺陷原因之一 (如裂纹、 折迭、 离层等缺陷) 。 4.6 穿孔工具及设计 穿孔机工具主要包括:轧辊、顶头和导板(导盘)。这些工具是直接参与金属变形的。 除此之外,还包括顶杆、毛管定位叉、导管、导槽等部件。 工具的尺寸和形状要求合理,这样才能保证穿出高质量的毛管,保证穿孔过程的稳定、 生产率高、低能耗、工具耐磨性高、使用寿命长的要求。 4.6.1 轧辊 穿孔机轧辊形状主要有盘式辊、桶形辊和锥形辊,盘式辊很少使用,常用的是桶形辊和 第四章 穿孔 15 锥形辊。 从大体的形状来看, 桶形辊和锥形辊度一般是由两个锥形段组成的, 即入口锥和出口锥。 如果细分的话, 入口锥又可以分为一段式和两段式, 两段式是为了改善咬入条件和减少从车 次数。根据毛管扩径量的需求,出口锥也可以分为一段式和两段式,两段式用于大扩径量的 机组。 另外,有的轧辊在入口锥和出口锥之间采用过渡带即轧制带,有的则没有。轧制带的作 用是防止两锥相接处形成尖锐棱角,这种棱角在穿孔时会使毛管外表面产生划伤。 轧辊的特征尺寸指轧辊最大直径和辊身长,轧辊最大直径和辊身长度是根据轧辊长度、 轧制速度、咬入条件、轧制产品规格、电能消耗、轧辊重车次数等因素确定。 轧辊直径增加, 则咬入条件改善、 轧制速度提高、 轧辊重车次数增加、 轧辊的利用率高, 但同时也增加了轧制压力和电能消耗。 4.6.1.1 轧辊的入口锥角和出口锥角 轧辊的入口锥角和出口锥角? 轧辊入口锥的角度大小决定管坯能否顺利咬入和积累足够的力以克服顶头阻力使管坯 穿成毛管。相关的文献指出,入口锥角在 2~40 之间,一般情况下将轧辊的入口锥设计成两 段,第一段的角度在 1~30 之间,为的是保证管坯的咬入,第二段的角度在 3~60 之间,为 的是防止形成孔腔。 轧辊的出口锥角在 3~40 之间,这取决于管坯的扩径量,扩径量越大,角度越大。 4.6.1.2 轧辊的入口锥和出口锥长? 轧辊的入口锥和出口锥长? 确定轧辊入口锥和出口锥的长度首先为了校核轧辊的长度是否满足毛管咬入和扩径的 要求,其次为在生产中合理使用轧辊。 轧辊入口锥长的计算公式为: 轧辊出口锥长的计算公式为: 注:DB-管坯直径; E-轧辊距离; DR-毛管直径; αe—轧辊入口锥段的空间角,可以近似等于轧辊入口锥角; αa—轧辊出口锥段的空间角,可以近似等于轧辊出口锥角。 4.6.2 导盘 导盘的作用是封闭孔型。导盘设计要素主要有:接触弧半径和厚度。见图 4-7。 16 无缝钢管生产技术 图 4-7 4.6.2.1 导盘的轮廓 导盘的轮廓是由一般有两个半径入口半径 R2、 出口半径 R1 组成, 根据经验我们可以确 定其值的大小: R2=(0.66~0.70)*DB 入口半径: R1=(0.8~0.87)*DB 出口半径: 4.6.2.2 导盘厚度 到盘厚度由最小轧辊距离和导盘与轧辊的最小间隙决定。大小为: B=(0.8~1.0)* DB 注:DB-管坯直径 4.6.3 导板 导板的设计原则是:一种管坯需要设计一种导板,如果是用一种管坯生产不同尺寸的毛 管,可以只设计一种导板。 导板的纵剖面形状应与轧辊辊形相对应,也有入口锥、压缩带和出口锥组成。导板入口 锥主要起到引导管坯的作用,使管坯中心线对准穿孔中心线。当管坯与上、下导板接触时, 它起着限制管坯椭圆度的作用。 限制椭圆度是为了避免过早形成孔腔, 同时促进金属的纵向 延伸。导板的出口锥起限制毛管横变形,并控制毛管轧后外径的作用。 压缩带是过渡带,它不在导板的中间,而是向入口方向移动,移动值一般在 20~30mm, 也有到 50mm 的。 移动的目的是: 可以减小管坯在顶头上开始碾轧时的椭圆度和减小导板的 轴向阻力,提高穿孔速度。 导板的入口锥角一般等于轧辊入口锥角或比轧辊入口锥角大 10~20,出口锥角一般等 于轧辊的出口锥角或比轧辊的出口锥角小 0.50~10。 导板的横断面形状是个圆弧形凹槽, 这是为了便于管坯和毛管旋转。 凹槽的圆弧可做成 单半径或双半径的。 导板的长度由变形区长度决定,压缩带宽度一般为 10~20mm. 导板的厚度根据轧辊距离来确定, 以薄壁毛管为设计对象。 适应薄壁管的导板一定适应 第四章 穿孔 17 厚壁管的生产。 4.6.4 顶头 顶头的种类按冷却方式来分,有内水冷、内外水冷、不水冷顶头(穿孔过程和待轧时间 内都不冷却,主要指生产合金钢用的钼基顶头): 按顶头和顶杆的连接方式来分,有自由连接和用连接头连接顶头。 按水冷内孔来分,有阶梯形、锥形和弧形内孔顶头。内孔与外表面之间的壁厚有等壁和 不等壁两种。 按顶头材质分,有碳钢、合金钢和钼基顶头。 从扩径段分:有 2 段式、3 段式、4 段式。扩径率小于 20%用 2 段式顶头,大于 20%用 3 或 4 段式顶头。 为延长顶头的使用寿命, 应通过加强冷却水的压力来提高顶头在孔型中顶头的冷却, 尤 其是顶头的前部。使用内水冷主要是为了降低顶头内部温度,应尽可能降到最低水平,冷却 水压应保证在 10~15 bar。 影响顶头寿命的因素: 管坯材质,合金含量越高,变形抗力越大,顶头寿命越低; 顶头化分和热处理工艺,热处理工艺决定顶头寿命。 穿孔时间和管坯长度,穿孔时间越长,顶头温度越高,顶头越容易变形和损坏。 顶头在穿孔过程中,顶头承受着交变热应力、摩擦力及机械力的作用,力的大小影响顶 头的寿命。顶头过分磨损会划伤毛管内表面,粘钢后产生内折。 顶头一般是轧制的、 锻造的或者是铸钢的。 搬运顶头时应保护表面的氧化层, 避免脱落, 否则影响使用寿命。 更换标准是: 顶头头部磨损,磨损带长度超过 5mm,破损面积超过 30cm2. 穿孔段出现裂纹;裂纹长度超过 60mm,宽度在 1.0mm 左右。 粘钢,有粘钢就该更换。 剔废的顶头原则上不能重复使用,若重车,需要再次热处理。 4.6.4.1 计算过程: 计算过程: 下面以 2 段式顶头举例说明设计过程,设计的前提是必须已知轧辊的尺寸和管坯直径、 毛管直径、毛管壁厚及咬入角。 ——确定轧制带处(HP)的辊距(E) 辊距(E)的大小取决于: 材料的钢级 管坯的直径 毛管壁厚 下面是一些常见钢中的辊距值(E) E = 0.84 to 0.9 * DB = 84 to 90 %, usual 86 – 89 % 碳钢: E = 85 ~ 90 %, 87 ~ 90 % 低合金钢: E = 88 ~ 91 %, 88 ~ 90 % 高合金钢 确 定轧辊的入口长度(Le)和出口长度(La),计算它们是为了验证其长度是否超过 18 无缝钢管生产技术 轧机的设计长度,公式见前面轧辊设计部分。 如果计算的结果是入口长度(Le) 或出口长 度(La) 比轧辊现有的相应部分大的话就得加大轧辊间距(E)或者增加入口锥角和出口锥 角 ——确定顶头直径(Dd) ——毛管与顶头的间隙值(CH),目前仍以经验值或经验公式为主 ——确定顶头坪滑段的长度(LGT2) 平滑段的作用是均匀壁厚的偏差, 长度至少要保证毛管能够转一周并加上保险系数。 即 SF—平滑系数 1.2 ~2, 通常为 1.5 --咬入角 LGT2 必须小于顶头过 HP 处的长度, 否则的话减小系数值。 平滑段的角度 似等于轧辊的出口锥角 ——确定顶头穿孔段末端的直径(DR) 近 ——计算顶头前伸量 Ld1 顶头前伸量的大小影响着穿孔的过程和毛管的质量.生产中应避免在顶头的前部形成空 腔 ,这样有利于减轻毛管内表面的缺陷。但起决定性的影响内表面缺陷的因素有顶头前直 径减径率和管坯接触顶头前转动的次数。换句话说,顶头前直径减径率的参考极限值如下: 碳钢 低合金钢 高合金钢 ——自由段长度 (GL), 机关批从接触轧辊到顶头前的长度,必须保证管坯转一周。 GF1 to 1.5 如果轧辊之境与管坯直径的比值较大的话, GF 可以取值范围为 0.8 to 1 所以顶头位置(Ld1)为: 顶头前伸量的值至少要大于 40mm,系数 GF 通常影响顶头位置和 顶头前的压下量。 ——确定顶头长度(Ld) 第四章 穿孔 19 顶头再 HP 后长度(Ld2)计算公式如下: 所以顶头长(Ld)为 —— 确定顶头鼻部的直径(F) 一般情况下 F = 0.25 to 0.30 * Dd (Dd圆弧半径为: 圆弧半径值 (Rd) 范围在 300~ 900 mm 之间. 的 限值。 4.6.4.2 顶头计算过程(2 段式顶头) 顶头计算过程( 段式顶头) ——给定 2 段式顶头的圆弧半径值不要取上 ——计算 辊距 E 177,2 mm (选择直径压下率为 88.6 % of DB, 见附表 1 ) 入口锥长度 出口锥长度 顶头与毛管的间隙 20 无缝钢管生产技术 Clearance: CH10 mm (见附表 2) 桶形棍—— CH (锥形辊取值比桶形辊大) 平滑段长度 故取 确定平滑段开始处的直径 自由工作段长度(咬入段) 选择 GF 1.05 顶头前伸量 顶头在 HP 点后的长度 顶头长 核查顶头前伸量 第四章 穿孔 21 核查实际的咬入系数 F=0.2*165 F= 33mm 22 无缝钢管生产技术 附表 1: ——直径压下率 ——径壁比 附表 2: CH 壁厚 第四章 穿孔 23 4.7 穿孔机调整参数确定 现代的穿孔机在整个机组中承担的变形量愈来愈大。 表示穿孔变形的参数有: 直径扩径 率、延伸系数、轧制带处的压下量、顶头前压下量。 直径扩径率 一般在 3~40%的范围内,锥形辊穿孔机的扩径率明显高于桶形辊穿孔机。扩径率大, 容易产生内外表面缺陷或恶化壁厚不均,因此最好采用等径或小扩径穿孔。图 4-8 显示锥形 辊与桶形辊扩径值的比较。 图 4-8 扩径值比较 延伸系数 延伸系数大意味着毛管壁厚薄。管坯直径愈大,在同一壁厚下,延伸系数愈大。随着锥 形辊穿孔机的的广泛使用,以 180 机组为例,穿孔毛管的最小壁厚可以达到 8mm。 轧制带处的压下量 它表示管坯直径在轧制带处的变化量,取值范围在 9~12%,穿孔薄壁管取大值,厚壁 管取小值。 它表示管坯直径从一次咬入点到二次咬入点的变化量, 它的大小决定管坯的二次咬入效 果,过大又容易形成钢管内折缺陷。 穿孔机主要的调整参数有轧辊距离、顶头前伸量、导板(导盘)距离、前进角的大小和 轧辊转速(导盘速度)。 调整的基本原则是毛管几何尺寸满足轧管机组的要求,壁厚均匀且内外表面良好。 调整的方法可以参考下表(表中没有涉及到前进角的调整): 24 无缝钢管生产技术 原 因 辊 减小 增加 减小 增加 增加 减小 - - 距 导 - - - - 距 顶 前 量 - - 增加 减小 增加 减小 - - 多增加 多减小 (增加) (减小) 壁厚稍微厚 壁厚稍微薄 壁厚太厚 壁厚太薄 外径太大 外径太小 外径稍微大 外径稍微小 外径、壁厚都太大 外径、壁厚都太小 外径太大、壁厚太小 外径太小、壁厚太大 如何确定轧辊距离? -(减小) -(增加) 减小 增加 - - - - -(增加或减小) -(增加或减小) 多增加 多减小 轧辊距离指的是两个轧辊的轧制带之间的距离, 它是重要的调整参数之一。 确定轧辊距 离(E)的前提条件是应明确: ——管坯材质 ——管坯直径 ——毛管壁厚 下列数据为标准数据: E=(0.84~0.90)*DB 碳钢: 通常为(0.86~0.89)*DB 低合金钢: E=(0.85~0.90)*DB 通常为(0.87~0.90)*DB 高合金钢: E=(0.88~0.91)*DB 通常为(0.88~0.90)*DB 一般情况下,厚壁管上限值为 0.93*DB,薄壁管取下限。 如何确定导盘距离? 导盘距离与轧辊距离的比值决定着轧件在变形区中的椭圆度,而椭圆度又影响毛管质 量、咬入条件、轴向滑移、穿孔速度、扩径量、轧卡及毛管尺寸控制等。特别是对毛管质量 (穿孔合金钢管)影响更为明显,椭圆度越大,毛管内表面出现裂纹的可能性越大,过早形 成空腔的可能性越大。 生产中, 导盘距离总是大于轧辊距离, 二者比值即椭圆度系数, 一般在 1.07~1.15 之间, 穿孔厚壁管和合金管时取小值。 确定导盘距离可按椭圆度系数推导: A=(1.07~1.15)*E 注:A—导盘距离 E—轧辊距离 导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即 第四章 穿孔 25 直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。 如何确定顶头前伸量? 顶头前伸量的测量方法是, 将顶头/顶杆深入到轧辊之间, 测量顶头头部到轧辊轧制带 之间的距离。 确定顶头前伸量的步骤如下: Ld1=Le-X X=π*DB*tan(β)*FE 注:Ld1—顶头前伸量 Le—轧辊入口锥长 β—前进角 FE—系数,取值范围在 1~1.5 之间 顶头前伸量和轧辊距离有着密切的联系,顶头前伸量增加,顶头前压下量减小,相反顶 头前伸量减小,顶头前压下量增加。 顶头前伸量调整在生产中有着重要意义。 因为顶头前伸量的大小和毛管质量、 咬入条件、 轴向滑移、穿孔速度、轧卡以及毛管尺寸控制等都有关。 什么是扩展值?如何确定顶头与毛管的间隙量? 毛管内径与顶头之差叫做扩展值, 计算扩展值是选择顶头直径的重要依据, 不同壁厚毛 管的扩展值是不同的, 不同形式的穿孔机扩展值变化的规律也不一样。 影响扩展值的因素还 有:变形区椭圆度、穿孔温度、钢种等。 扩展值用 CH 表示,大小为: CH=DH-2*SH-Dd 使用锥形辊穿孔机的扩展值 CH 值与桶形辊穿孔机的扩展值 CH 关系是: CHctp=1.5*CH CH 的经验值计算方法是: CH=(0.09+0.076*DB)-(0.007+0.0013*DB)*SH 注:DB—毛管外径 SH—毛管壁厚 Dd—顶头直径 如何计算穿孔的轧制时间? 穿孔的轧制时间的多少往往表示一个机组的能力大小, 斜轧穿孔机的工作时间由下面公 式计算: 式中 Dw—轧辊的工作直径; 26 无缝钢管生产技术 L1-变形区长―; L0-毛管长; n—轧辊转速; η0-轴向滑移系数; β-前进角(轧辊倾角) 如何选择轧辊的前进角? 前进角及轧辊轴线与轧制线在水平面内的夹角。选择的范围在 8~150 之间,常用的角 度为 10~120。。前进角的选择影响以下几方面: 前进角越大,毛管的出口速度越大,轧制时间相应减少,可以提高机组的节奏,还可以 降低工具消耗; 前进角越小,管坯咬入条件越好,原因是管坯与轧辊的接触面积增大,摩擦力增大的缘 故。 前进角的大小决定轧制力的大小,角度越大,轧机负载越大。若在一个轧辊上使用不同 直径的管坯(不同孔型),角度随管坯直径增加而减小。 4.8 其他穿孔方法 管坯的穿孔方式有压力穿孔,推轧穿孔和斜轧穿孔。 4.8.1 压力穿孔 压力穿孔是在压力机上穿孔, 这种穿孔方式所用的原料是方坯和多边形钢锭。 工作原理 是首先将加热好的方坯或钢锭装入圆形模中 (此圆形模带有很小的锥度),然后压力机驱 动带有冲头的冲杆将管坯中心冲出一个圆孔。 这种穿孔方式变形量很小, 一般中心被冲挤开 的金属正好填满方坯和圆形模的间隙,从而得到几乎无延伸的圆形毛管,延伸系数最大不超过 1.1。 4.8.2 推轧穿孔 推轧穿孔是在推轧穿孔机上穿孔,这种穿孔方式是压力穿孔的改进。把固定的圆锥形模 改成带圆孔型的一对轧辊。这对轧辊由电机带动方向旋转(两个轧辊的旋转方向相反),旋 转着的轧辊将管坯咬入轧辊的孔型, 而固定在孔型中的冲头便将管坯中心冲出一个圆孔。 为 了便于实现轧制,在坯料的尾端加上一个后推力(液压缸),因此,叫做推轧穿孔。 这种穿孔方式使用方坯,传出的毛管较短,变形量很小,延伸系数一般不大于 1.1。 推轧穿孔的优点如下: 坯料中心处于全应力状态,过程是冲孔和纵轧相结合,不会产生二辊斜轧的内折缺陷, 毛管内表面质量好,对坯料质量要求较低; 冲头上的平均单位压力比压力穿孔小 50%左右,因而工具消耗较小; 穿孔过程中主要是坯料的中心部分金属变形, 使中心粗大而疏松的组织很好的加工而致 密化,同时在压应力作用下,毛管内外表面不易产生裂纹。 生产率比压力穿孔高,可达每分钟两支; 以上两种穿孔多生产特殊钢种的无缝钢管,现存的机组很少,因变形量很小,毛管短且 厚, 因而在热轧无缝钢管机组中要设置斜轧延伸机, 将毛管的外径和壁厚减小并使管子延长。 第四章 穿孔 27 另外容易产生较大的壁厚不均。 4.8.3 斜轧穿孔 这种穿孔方式被广泛的应用于无缝钢管生产中, 一般使用圆管坯, 靠金属的塑性变形加 工来形成内孔,因而没有金属的损耗。 斜轧穿孔机的分类 斜轧穿孔机按照轧辊的形状可分为锥形辊穿孔机、 盘式穿孔机和桶形辊穿孔机。 按照轧 辊的数目分又可分为二辊斜轧穿孔机和三辊斜轧穿孔机。 锥形辊穿孔机、 桶形辊穿孔机 是当今广泛使用的主要机组, 锥形辊穿孔机的历史较短, 具有更多优点。比较如下: 桶形辊穿孔机的轧辊可以上下和左右布置,而锥形辊穿孔机的轧辊只能上下布置; 桶形辊穿孔机的轧辊由两个锥形组成,锥形辊穿孔机的轧辊由一个锥形组成; 桶形辊穿孔机的轧件速度变化为小-大-小, 锥形辊穿孔机的轧件速度随轧辊直径的增 加从小逐步增大; 毛管在孔型中的宽展,锥形辊穿孔机要小些,更有利金属轴向延伸变形,附加变形小,毛 管内表面质量好,壁厚精度较桶形辊穿孔机高; 锥形辊穿孔机的延伸系数比桶形辊穿孔机大, 更适合穿孔薄壁毛管, 使得轧管机组的机 架数目可以减少; 斜轧穿孔机不管轧辊的形状如何不同, 为了保证管坯曳入和穿孔过程的实现, 都由以下 三部分组成:穿孔锥(轧辊入口锥),辗轧锥(轧辊出口锥)和轧辊压缩带——由入口锥到 出口锥之过渡部分。 二辊式穿孔机和三辊式穿孔机的特点? 二辊式穿孔机主要有带导辊的穿孔机、 带导板的穿孔机和带导盘的穿孔机, 带导辊的穿 孔机一般不常用,只用于穿孔软而粘的有色金属,如铜管、钛管等。带导板的穿孔机具有孔 型封闭好、接触变形区长、穿出的毛管壁厚可以更薄的特点而仍然得到重视;带导盘的穿孔 机越来越得到发展,它的特点是: 生产率高,这是由于 主动导盘对轧件产生轴向拉力作用,导致毛管轴向速度增加。最快 可以达到 3~4 支/分; 由于导盘的轴向力作用,使管坯咬入容易一些,减少了形成管端内折的可能性,也可以 提高壁厚的精度; 导盘比导板有较高的耐磨性,从而减少了换工具的时间并提高了工具寿命; 三辊式穿孔机的特点是: 由于三个辊呈等边三角形布置,因而在变形中管坯横断面的椭圆度小; 由于三个辊都是驱动的,仅存在顶头上的轴向力,因而穿孔速度较快,但顶头上的轴向 阻力比二辊式大; 在轧制实心管坯时,由于管坯始终受到三个方向的压缩,加上椭圆度小,一般在管坯中 心不会产生破裂,即形成孔腔,从而保证了毛管内表面质量。这种变形方式更适合穿孔高合 金钢管。三个轧辊穿孔时坯料和顶头容易保正对中,因此毛管几何尺寸精度高,即毛管横断 面壁厚偏差小。 因穿孔薄壁毛管时容易形成尾三角,使毛管尾端卡在轧辊辊缝中,更适合穿孔中厚壁毛管。 28 无缝钢管生产技术 4.9 4.9.1 力能参数的计算 轧制力 计算总轧制压力,首先要确定接触面积。 4.9.1.1 变形区长度的确定 变形区的长度是入口断面到出口断面的距离。如图 4-9 所示。考虑送进角 α 时,变形区 长度按 4.1 式计算[11]。 图 4-9 穿孔时的变形区图示 l = l1 + l 2 = ( d p  dH 2tgα 1 ) cos α + ( dm  dH ) cos α 2tgα 2 d 其中: p 入口断面上的管坯直径, mm ; d m 出口断面上的毛管直径, mm ; d H 轧辊之间的最小距离, mm ; (4.1) α 1 ——轧辊的入口錐母线倾角,度 α 2 ——轧辊的出口錐母线倾角,度 α ——送进角,度。 4.9.1.2 接触面宽度的确定 在斜轧穿孔时,沿变形区长度,接触表面的宽度是变化的。任一断面的接触宽度 b [12], 如图 4-10 所示。 第四章 穿孔 29 图 4-10 穿孔时的接触面积 b= (4.2) 式中: D ——该断面上的轧辊直径; d ——该断面上的坯料直径; r ——径向压下量; 1 上式中的径向压下量 r ,根据图 4-1。对各个区域分别按下列公式计算。 对于区域Ⅰ, r 表示坯料在 k 转中两相邻断面半径之差 1 r = s tan α 1 对于区域Ⅱ, r 表示坯料在 k 转中两相邻断面壁厚之差 (4.3) (4.4) (4.5) rd + 2r 2 d r 1+ + 2 D D r = s(tan α 1 + tan γ ) 对于区域Ⅲ, r = s(tan γ  tan α 2 ) 式中: γ ——顶头锥体的母线的倾斜角; s ——螺距。 η 0 F1 d1 tan α ηt F K 式中: F1 ——金属在出口断面上的面积; s =π (4.6) η t ——出口断面的切向滑动系数,η t ≈ 1 ; η 0 ——轴向滑动系数; η 0 = 0.68 ln α + 0.05 d0  ε0  f k dp F ——金属在所研究断面上的面积; d1 ——管坯在出口断面上的直径;  d 0 ——管坯的外径,mm; 式中: d p ——顶头的外径,mm; f ——摩擦系数; (4.7) α ——送进角; ε 0 ——顶头前坯料的径向压下量,%; 轧制过程中产生大的滑动是不利的, 它会使生产率降低, 工具磨损加快, 能量消耗增加, 30 无缝钢管生产技术 轧件质量恶化。因此,合理的设计应使滑动系数尽可能增大。 由式(4.6)可见,螺距是变化的,其值随轧件进入变形区坯料横断面面积的减小而增 大。 接触面积为 bi + bi +1 l 2 式中: bi 、 bi +1 ——在分点 i 及 i + 1 上的接触宽度; F =∑ (4.8) l ——分点 i 及 i + 1 间的距离。 4.9.1.3 平均单位压力 p 的计算 ' ' ' p = νnσ nσ' nσ'' σ s (4.9) 式中:ν——中间主应力影响系数(取ν=1.15); ' ' nσ ——外摩擦及变形区几何参数影响系数(取 nσ = 1 ); ' nσ' ——外端影响系数; ' ' nσ'' ——张力影响系数(取 nσ'' = 1 ); σ s ——一定的变形温度、变形速度及变形程度金属的变形抗 力, MPa ; ' nσ' 的计算 1 外端影响的应力状态系数 入口錐侧变形区: ' nσ' 1 =1.5(1-2.7ε2) (4.10) ε 孔喉处的相对压下率; ε = (d p  d H ) / d p 出口錐侧变形区: ' ' nσ' 2 = 0.75nσ' 1 (4.11) (4.12) 2 入口錐侧变形区平均单位压力 p1 =1.15×1.5(1-2.7 ε 2 ) σ s (4.13) σ s 不同变形温度、变形速度及变形程度时,沿入口锥长度 式中: 的平均变形抗力; 3 出口錐侧变形区平均单位压力 p2 = 4 平均单位压力 4 p1 3 7 p1 6 (4.14) p= 5 变形抗力 σ s 的确定 (4.15) 变形抗力的确定首先是计算穿孔时的变形温度, 变形速度和变形程度数值, 然后根据该 钢种的实测变形抗力曲线,确定该变形条件下的变形抗力。确定入口锥的平均变形阻力: 第四章 穿孔 31 1) 变形温度:根据已有现场实测参考数值在 1180℃~1240℃ 2) 变形程度: 在斜轧穿孔入口锥碾轧实心坯的区域,变形程度为: ε= 2 r dx (4.16) 在斜轧穿孔出口锥碾轧毛管的区域,变形程度为: ε= r S + r 式中: r ——该截面的径向压下量; S ——该截面毛管壁厚; r = z x (tan α 1 ) ; z x ——单位螺矩; (4.17) α 1 ——入口锥辊面锥角; d x ——该截面轧件直径; η 1 Z x = πξ x d x x tan α ηy 2 式中: ξ x ——椭圆度系数; η x ——轴向滑动系数,查图表可得; η y ——切向滑动系数,近似为 1; (4.18) α ——送进角。 3) 变形速度: 在斜轧穿孔入口锥碾轧实心坯的区域,任一断面的沿接触弧的平均变形速度:  ε= (4.19) 在斜轧穿孔出口锥碾轧毛管的区域,任一断面的沿接触弧的平均变形速度: r R ω0 1 + m vt 2  ε= 其中:  r  rp   r + r  rp vt  +  + 1 ln  ω0 ( R + r )  R  R   r  rp r R b R (弧度)   (4.20) m= (4.21) ω 0 = arcsin 式中: ω 0 ——毛管咬入点所对应轧辊中心角; R ——入口区管坯任一断面的轧辊半径; r ——入口区管坯任一断面的管坯半径; r ——径向压下量; (4.22) 32 无缝钢管生产技术 vt ——金属切向速度分量; rp ——顶头半径; b ——轧辊和管坯接触宽度[13]; b= re ——轧前管坯半径,即为 re = 椭圆度 2 Rre r Rr + (ξ  1) R + re R+r dp (4.23) 2 ; ab dh ; 式中: a b ——导盘距离; d h ——轧辊距离; ξ= 4.9.1.4 轧制压力 P 的计算 P = p×F (4.24) 4.9.2 顶头轴向力的确定 确定斜轧穿孔时轴向力的大小对于生产有很重要的意义。 轴向力即为作用在顶杆上的压 力,轴向上的大小直接影响着顶杆强度及工作的稳定性。 顶头轴向力对轧辊所受的轴向力大小和轧制力矩的大小有直接影响。 因此在设计中, 为 了计算轧辊止推轴承,电机功率,顶杆的弯曲强度和顶杆的止推轴承,都要求较准确的确定 顶头轴向力的大小。如图 4-11 所示。 图 4-11 作用在顶头上的力 顶头的轴向力是由作用在顶头尖端上和主体上的两部分轴向力所组成。 顶头主体是由头 部、定径段和圆柱段组成。试验表明顶头尖端的轴向力只占顶头轴向力的 15%左右。因此, 顶头上的轴向力主要由作用在主体上的力决定。主体上的轴向力与坯料每转的送进距离有 关,送进距离越大,金属与工具接触面增大,作用在顶头上的轴向力就增大。 送进角愈大,送进距离也愈大,轴向速度增加,同时由于轧制压力的增加,其轴向分力 也增加,所有这些因素都使顶头所受的轴向力有较大的增长。 第四章 穿孔 33 穿孔过程中与顶头有关的重要力能参数指标有两个: 一个是顶头对金属的轴向力, 这个 力越大,顶杆产生的弯曲也越大,这样导致毛管壁厚不均匀增加;另外一个指标是顶头的轴 向力与轧辊上所受的总压力的比值 Q / P ,这个比值越小,金属对轧辊的轴向滑动就越小, 因而越有利于穿孔过程的力能条件。 顶头轴向力的确定用理论方法计算是很复杂的。 根据顶头受力的平衡条件而求出的轴向 力解析计算公式十分庞大,式中的各分力很难正确算出,因此在实际中无法应用。 作用在顶头轴向上的力基本公式计算为[12]: Q = QH + 2 P0 (sin  0 + f cos  0 cos θ c ) (4.25) 式中: Q, QH 作用在顶头上和作用在顶头鼻部上的轴向力; P0 作用在顶头上的正压力;  0 顶头母线的倾斜角; θ c 倾斜角。 目前在设计时广为应用的办法是根据实际测定的 Q / P 比值来确定。 Q / P 比值的范围 在 27%~44%内,故推荐经验公式: Q =(0.35~0.50) P (4.26) Q =0.35 P 。 我们这里暂定为 4.9.3 斜轧力矩计算 4.9.3.1 转动轧辊所需的力矩 当没有顶头的情况下如图 4-12 所示,即轧件在前进方向没有受到轴向阻力时: 图 4-12 在没有顶头作用下斜轧的受力分析 34 无缝钢管生产技术 b   M z = P R sin ω cos α + cos ω  2 ω 角由下式确定; tan ω = b dx 式中: b ——轧辊与轧件平均接触宽度; d x ——轧制力作用面内的坯料直径; (4.27) (4.28) α 送进角。 R ——合压力作用面上轧辊半径; 当有顶头时如图 4-13 所示,在前进方向受到顶头的轴向阻力(Q),这时传动轧辊所需 总轧制力矩为: 图 4-13 二辊穿孔机轧辊受力分析 M z = P ( R sin ω cos α + b Q cos ω ) + R sin α 2 K (4.29) 式中: K 轧辊数目; Q 顶头上的轴向力。 4.9.3.2 电机所需力矩 电机所需力矩除了轧制力矩外,还有摩擦力矩,空转力矩,动力矩。这些力矩的计算方 法与一般纵轧相同。 当不考虑动力矩时所需电机力矩: M 电= k η1η 2 ( M Mm + + Mk) i i (4.30) 式中: K ——轧辊数; M ——一个轧辊所需的轧制力矩; i ——减数箱传动比; M m ——产生在轧辊轴承中的摩擦力矩。 第四章 穿孔 35 由于传动扭矩是由穿孔主电机直接经主传动轴传至轧辊。所以减数箱传动比 i =1; (4.31) 式中: f ——轧辊轴承中的摩擦系数, 滚珠轴承可取 f =0.004~0.006, 滑动轴承可取 f =0.08~0.1; M m = Pf dm 2 η1 ——齿轮机座传动效率,一般取 0.92~0.95; η 2 ——接轴传动效率,为 0.99; M k ——空转力矩,空载时传动轧机主机列所需的力矩,它应 等于所有转动机件空转力矩之和。 一般可按经验方法确 定如下: P ——轧制力; d m ——轴承摩擦园直径,即为轧辊辊颈直径; M k ≈ 0.03M H M H ——电动机的额定转矩。 额定功率=3800kw 转速=62~110r/min (4.32) M H = 9.55 Ph 3800 = 9.55 × = 585.3kN  m n 62 (4.33) M k = 17.55kN  m 4.9.3.3 电机功率的计算 根据已转换到电机轴上的总力矩 M 电,可求出电机功率: N = 0.105M 电 n 式中: N ——电机功率,kw; M 电 ——总力矩,kN. m ; (4.34) n ——电机转速,r/min。 4.9.3.4 穿孔机轧制时间的确定 在电机校核中,需要用到纯轧时间和间隙时间。 1 纯轧时间的计算 斜轧的纯轧时间是指轧件通过变形区所需的时间——由管坯前端接触轧辊起到轧出的 毛管尾端离开轧辊止的时间间隔。 l+L πD n η x 1 r sin α 60 式中: l ——变形区长度; L ——毛管长度; T ——纯轧时间; T= (4.35) η x ——出口断面的轴向滑动系数; 36 无缝钢管生产技术 α ——送进角 D1 ——出口断面上的轧辊直径; nr ——轧辊的转速; 由此可见,为提高轧机生产效率,缩短纯轧时间,可以通过提高轧辊转速和加大送进角 来实现。 虽然也可以通过加大轧辊直径和增加滑动系数使纯轧时间减少, 但受到轧机结构和 咬入条件的限制,后面的方法是不可取的。 2 间隙时间的确定 由实际情况确定。 4.10 4.10.1 穿孔机的设备组成 斜轧穿孔机的设备由哪几部分组成? 斜轧穿孔机的设备由哪几部分组成 穿孔机设备由主传动、前台、机架和后台四大部分组成。主传动一般由主电机或主电极 +变速箱组成。前台设备一般包括受料槽、导管和推钢机组成。机架中包括轧辊和导向设备 (导盘或导板)。 后台设备主要包括定心辊、毛管回送辊道、顶杆小车、顶杆小车的止推座及将毛管从穿 孔机组运送到轧辊机组的运输设备,常见的运输设备有传送链、回转臂和电动车。 4.10.2 主传动的方式及特点? 主传动的方式及特点 穿孔机的主传动电机可以使用直流电机或交流电机。 直流电机一般通过传动轴直接与轧 辊连接,而交流电机则通过减速机和传动轴与轧辊连接。 一个机组可以使用一个电机,即一个电机连接减速机,减速机输出两个输出轴。也可以 两个电机串联后再接减速机单独驱动一个轧辊。 穿孔机使用的接轴有万向接轴和十字头接轴。 十 字头接轴具有良好的调节性能, 无论在 水平面和垂直平面内都可以产生相对的角位移。 4.10.3 管坯定心机的组成结构? 管坯定心机的组成结构 定心方法有两种,即热定心和冷定心。热定心是用压缩空气或液压在热状态下冲孔。特 点是生产效率高,设备简单,同时由于冲头形状与顶头鼻部形状相适应,能获得良好的定心 孔形状。从近些年的发展来看,热定心工序有逐步被取消的趋势。 冷定心是在离线状态下在机床上钻孔,冷定心仅在高合金或重要用途钢管的生产中采 用。 4.10.4 穿孔机机座(牌坊)有哪几部分组成 穿孔机机座(牌坊)有哪几部分组成? 穿孔机的机座大多由包括以下几部分: 转鼓,又称作轧辊箱。作用是放置轧辊,轧辊在转鼓内滑动或与转鼓紧固在一起。 轧辊倾角调整装置,常用的驱动设备是电机+蜗轮蜗杆+定位器(编码器),作用在转 鼓上。一般放置的位置在牌坊的侧面。由于立式穿孔机的下转鼓在水平面以下,冷却水及氧 化铁皮的长时间冲刷,工作环境恶劣,给电机的维护带来困难,用液压马达替代电极可以解 决此问题。 第四章 穿孔 37 轧辊倾角调整的平衡装置 与轧辊倾角调整装置组合,消除穿孔过程中产生的间隙和冲击。根据转鼓的形状不同, 安装的位置可以与倾角调整装置在一侧或另外一侧。常使用液压缸实现此功能。 轧辊的平衡装置 作用是消除穿孔过程中对轧辊的瞬间冲击。 机盖 机盖上一般安装轧辊间距的调整装置。 4.10.5 导盘调整方式有哪几种? 导盘调整方式有哪几种 导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即 直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。 4.10.6 三辊定心的作用和结构? 三辊定心的作用和结构 由于顶杆很长且直径较小, 因此顶杆的刚度较差。 为了增加顶杆刚度和防止顶杆在穿孔 过程中的抖动,在穿孔机的后台设置定心辊装置。老式穿孔机因毛管较短,定心辊的数目一 般为 3~4 架,随着毛管长度的增加现代的穿孔机定心辊数目为 6~7 架。 每一台定心辊装置有三个互为 1200 布置定心辊组成,即上定心辊和 2 个下定心辊。 在轧制过程中定心辊的另外作用是: 当毛管未接近定心辊时,三个定心棍将顶杆抱住,并随顶杆而转动。作用是使顶杆轴线 始终保持在轧制线上,不至于因弯曲而产生甩动; 当毛管接近定心辊时,上下定心辊同时打开一定距离(小打开位置),使毛管进入三个 定心辊之间,毛管就在三个定心辊中旋转前进,其导向的作用; 当一只毛管完全穿透之后,上定心辊向上抬起一个较大的距离(大打开位置),布置在 定心辊之间的升降辊同时将毛管托住。 定心辊的驱动最早是由气缸完成的, 使用在小机组上。 后来被液压缸代替。 定心辊小打开的间距需要根据毛管直径的变化而调整, 调整距离指导行毛管时三个辊的 距离,距离的大小为毛管直径加毛管跳动量,毛管的跳动量一般为 8~12 毫米左右,薄壁管 可以取上限,厚壁管取下限。 小打开位置调整一般通过调整丝杠来限制液压缸的行程, 最新型的液压缸缸体内带有位 置检测装置,调整行程只需在调整终端上修改数值即可,具有简单、安全、快捷的优点。 第一架三辊定心辊的位置大多放置在机架以外, 为了减小毛管头部的壁厚不均, 最新的 设计机组将第一架三辊定心辊伸入到机架内或者在机架内设立四辊或三辊式的定心装置。 4.10.7 顶杆的冷却形式有哪些? 顶杆的冷却形式有哪些 顶杆的循环方式主要有两种。 38 无缝钢管生产技术 一种为顶杆不循环,此种方式顶杆一般为内水冷式,而顶头为外水冷式,每穿孔一次更 换一个顶头或者直到一个顶头损坏才更换; 另一种方式为顶杆循环使用,此种顶杆结构简单、维护方便,每组一般需要 6~12 支才 能循环使用。 4.10.8 顶头的使用方式有几种? 顶头的使用方式有几种? 顶头的使用方式主要有以下几种: 顶头与顶杆连接在一起一同进行循环的。顶头损坏后需要离线进行更换,一般情况下, 一组顶杆 6~7 支,冷却站在轧线之外,占地面积较大。 顶头在线循环。即使用一支顶杆,每穿孔一次,顶头更换一次,一般情况下使用三个顶 头,顶头循环的次序是 1,2,3,再 1,2,3。这种方式只更换顶头,使用方便,生产节奏 快。但要求顶头的定位精确,工具加工精度高,设备运转正常,否则的话,容易发生顶头与 顶杆连接不牢,顶头脱落的情况。 一个顶头/顶杆单独使用。当顶头损坏后,须在线更换顶头顶杆。

铝箔有哪些缺陷

2018-12-28 09:57:24

(1)针孔  针孔是铝箔材的首要缺点。原猜中,轧辊上,轧制油中,乃至空气中的尘土尺度到达6μm摆布进入辊缝均会导致针孔,所以6μm铝箔没有针孔是不可能的,只能用多少和巨细评估它。因为铝箔轧制条件的改进,特别是防尘与轧制油有用地过滤和方便的换辊体系的设置,铝箔针孔数目愈来愈依赖于质料的冶金质量和加工缺点,因为针孔通常是质料缺点的掉落,很难找到与原缺点的对应联系。  通常以为,针孔首要与含气量、搀杂、化合物及成分偏析有关。采纳有用的铝液净化、过滤、晶粒细化均有助于削减针孔。当然选用合金化等手法改进材料的硬化特性也有助于削减针孔。优质的热轧材轧制的6μm铝箔针孔可在100个/㎡以下。铸轧材当净化较好时,6μm铝箔针孔在200个/㎡以下。在铝箔轧制过程中,其他构成针孔的要素或许多,乃至是灾难性的,每平方米数以千计的针孔并不稀罕。轧制油的有用过滤,轧辊短期替换及防尘办法均是削减铝箔针孔所必备的条件,而选用大轧制力,小张力轧制也会对削减针孔有所帮助。  (2)辊印、辊眼、光泽不均  它首要是轧辊导致的铝箔缺点,分为点、线、面三种。最明显的特色三周期呈现。构成这种缺点的首要缘由为:轧辊不正确的磨削;外来物损害轧辊:来料缺点印伤轧辊;轧辊疲惫;辊间撞击、打滑等。一切能够构成轧辊外表损害的要素,均可对铝箔轧制构成损害。因为铝箔轧制辊面光洁度很高,细微的光泽不均匀也会影响其外表状况。定时的整理轧机,保持轧机的清洗,确保清辊器的正常作业,定时换辊,合理磨削,均是确保铝箔轧后外表均匀共同的基本条件。  (3)起皱  因为板形严峻不良,在铝箔卷取或打开时会构成皱折,其本质为张力缺乏以使箔面拉平。关于张力维20MPa的设备,箔面的板形不得大于30I,当大于30I时,必然起皱。因为轧制时铝箔通常接受比后续加工更大的张力,一些在轧制时只是表现为板形不良,包含轧辊磨削不正确,辊型不对,来料板形不良及调整板形不正确。  (4)亮点、亮痕、亮斑  双合面因为双合油运用不当导致的亮点、亮痕、亮斑,首要是因为双合油油膜强度缺乏,或轧辊面不均导致轧制不均变形,外观呈麻皮或异物压入状。选用合理的双合油,保持来料清洗和轧辊的辊面均匀是处理这类缺点的有用办法。当然改动压下量和挑选优良的铝板也是必要的。  (5)厚差  厚差难于操控是铝箔轧制的一个特色,3%的厚差在板材出产时或许不难,而在铝箔出产时却非常艰难。缘由在于厚度薄,其他微量条件均可构成影响,如温度、油膜、油气浓度等。铝箔轧制一卷可达几十万米,轧制时刻长达10h摆布,随时刻延伸,厚差很易构成,而对厚度调整的手法仅有张力速度。这些要素均构成了铝箔轧制的厚控艰难,所以,真实操控厚差在3%以内,需求许多条件来确保,难度相当大。 12后一页

铝箔的主要缺陷

2018-09-13 10:00:17

1、针孔:针孔三铝箔材的主要缺陷。原料中,轧辊上,轧制油中,甚至空气中的尘埃尺寸达到6μm左右进入辊缝均会引起针孔,所以6μm铝箔没有针孔是不可能 的,只能用多少和大小评价它。由于铝箔轧制条件的改善,特别是防尘与轧制油有效地过滤和方便的换辊系统的设置,铝箔针孔数目愈来愈依赖于原料的冶金质量和 加工缺陷,由于针孔往往是原料缺陷的脱落,很难找到与原缺陷的对应关系。一般认为,针孔主要与含气量、夹杂、化合物及成分偏析有关。采取有效的铝液净化、 过滤、晶粒细化均有助于减少针孔。当然采用合金化等手段改善材料的硬化特性也有助于减少针孔。优质的热轧材轧制的6μm铝箔针孔可在100个/㎡以下。铸 轧材当净化较好时,6μm铝箔针孔在200个/㎡以下。在铝箔轧制过程中,其他造成针孔的因素也很多,甚至是灾难性的,每平方米数以千计的针孔并不稀奇。 轧制油的有效过滤,轧辊短期更换及防尘措施均是减少铝箔针孔所必备的条件,而采用大轧制力,小张力轧制也会对减少针孔有所帮助。2、辊印、辊眼、光泽不均:它主要是轧辊引起的铝箔缺陷,分为点、线、面三种。最显著的特点三周期出现。造成这种缺陷的主要原因为:轧辊不正确的磨削;外来物 损伤轧辊:来料缺陷印伤轧辊;轧辊疲劳;辊间撞击、打滑等。所有可以造成轧辊表面损伤的因素,均可对铝箔轧制形成危害。因为铝箔轧制辊面光洁度很高,轻微 的光泽不均匀也会影响其表面状态。定期的清理轧机,保持轧机的清洁,保证清辊器的正常工作,定期换辊,合理磨削,均是保证铝箔轧后表面均匀一致的基本条 件。3、起皱:由于板形严重不良,在铝箔卷取或展开时会形成皱折,其本质为张力不足以使箔面拉平。对于张力维20MPa的装置,箔面的板形不得大于30I,当大于30I时,必然起皱。由于轧制时铝箔往往承受比后续加工更大的张力,一些在轧制时仅仅表现为板形不良,包括轧辊磨削不正确,辊型不对,来料板形不良及调整 板形不正确。4、亮点、亮痕、亮斑:双合面由于双合油使用不当引起的亮点、亮痕、亮斑,主要是因为双合油油膜强度不足,或轧辊面不均引起轧制不均变形,外观呈麻皮或异物压 入状。选用合理的双合油,保持来料清洁和轧辊的辊面均匀是解决这类缺陷的有效措施。当然改变压下量和选择优良的铝板也是必要的。5、厚:厚差难于控制是铝箔轧制的一个特点,3%的厚差在板材生产时也许不难,而在铝箔生产时却非常困难。原因在于厚度薄,其他微量条件均可造成影响,如温 度、油膜、油气浓度等。铝箔轧制一卷可达几十万米,轧制时间长达10h左右,随时间延长,厚差很易形成,而对厚度调整的手段仅有张力速度。这些因素均造成 了铝箔轧制的厚控困难,所以,真正控制厚差在3%以内,需要许多条件来保证,难度相当大。6、油污:油污是指轧制后铝箔表面带上了多余的油,即除轧制油膜以外的油。这些油往往由辊颈处或轧机出口上、下方甩、溅、滴在箔面上,且较脏,成分复杂。铝箔 表面带油污比其他轧制材带油污危害更大,一是由于铝箔成品多数作为装饰或包装材料,必须有一个洁净的表面;二是其厚度薄,在后道退火时易形成泡状,而且由 于油量较多在该处形成过多的残留物而影响使用。油污缺陷多少是评价铝箔质量的一项很重要的指标。7、水斑:水斑是指在轧制前有水滴在箔面上,轧制后形成的白色斑迹,较轻微时会影响箔面表面状况,严重时会引起断带。水斑是由于油中有水珠或轧机内有水珠掉在箔面上形成的,控制油内水分和水源是避免水斑的惟一措施。8、振痕:振痕是指铝箔表面周期性的横波。产生振痕原因有两种:一种是由于轧辊磨削时形成的,周期在10~20mm左右;另一种是轧制时由于油膜不连续形成振 动,常产生在一个速度区间,周期为5~10mm。产生振痕的根本原因是油膜强度不足,通常可以采用改善润滑状态来消除。9、张力线:当厚度达到0.015mm以下时,在铝箔的纵向形成平行条纹,俗称张力线。张力线间距在5~20 mm左右,张力愈小,张力线愈宽,条纹愈明显。当张力达到一定值时,张力线很轻微甚至消失。厚度愈小产生张力线的可能性愈大,双合轧制产生张力线的可能性 较单张大。增大张力和轧辊粗糙度是减轻、消除张力线的有效措施,而大的张力必须以良好的板形为基础。10、开缝:开缝是箔材轧制特有的缺陷,在轧制时沿纵向平直地裂开,常伴有金属丝线。开缝的根本原因是入口侧打折,常发生在中间,主要由于来料中间松或轧辊不良。严重的开缝无法轧制,而轻微的开缝在以后的分切时裂开,这往往造成大量废品。11、气道:在轧制时间断出现条状压碎,边缘呈液滴状曲线,有一定宽度,轻度的气道未压碎,呈白色条状并有密集针孔。在压碎铝箔的前后端存在密集针孔是判断气道与其他缺陷的主要标志。气道来源于原料,选择含气量低的材料作为铝毛坯是非常重要的。12、卷取缺陷:卷取缺陷主要指松卷或内松外紧。由于铝箔承受的张力有限,卷取硬卷就很困难。取得里紧外松的卷是最理想的,而足够的张力是形成一定张力梯度的条 件。所以,卷取质量最终依赖于板形好坏,内松外紧的卷会形成横棱,而松卷则会形成椭圆,这均会影响以后加工。铝箔轧制缺陷种类尽管很多,但最终主要表现为:以孔洞为特征的针孔、辊眼、开缝、气道;以表面状况为特征的油污、光泽不均、振痕、张力线、水斑、亮点亮 斑;以影响后工序加工的板形、起皱、打折、卷取不良 ;以尺寸为特征的厚差等。实质上,铝箔特有的缺陷只有针孔一类,其他几种缺陷板材也同样有,只不过表现的严重程度不同伙要求不同而已。

铝板带材工艺废品种类及产生原因

2018-12-27 09:30:05

1.贯穿气孔 熔铸品质不好。  2.表面气泡  铸锭含氢量高组织疏松;铸锭表面凸凹不平的地方有脏东面,装炉前没有擦净;蚀洗后,铸块与包铝板表面有蚀洗残留痕迹;加热时间过长或温度过高,铸块表面氧化;第一道焊合轧制时,乳液咀没有闭严,乳液流到包铝板下面。  3.铸块开裂  热轧时压下量过大,从铸锭端头开裂;铸块加热温度过高或过低。  4.力学性能不合格  没有正确执行热处理制度或热处理设备不正常,空气循环不好;淬火时装料量大,盐浴槽温度不够时装炉,保温时间不足,没有达到规定温度即出炉;试验室采用的热处理制度或试验方法不正确;试样规格形状不正确,试样表面被破坏。  5.铸锭夹渣  熔铸品质不好,板片内夹有金属或非金属残渣。  6.撕裂  润滑油成分不合格或乳液太浓,板片与轧辊间产生滑动,金属变形不均匀;没有控制好轧制率,压下量过大;轧制速度过大;卷筒张力调整得不正确,张力不稳定;退火品质不好;金属塑性不够;辊型控制不正确,使金属内应力过大;热轧卷筒裂边;轧制时润滑不好,板带与轧辊摩擦过大;送卷不正,带板一边产生拉应力,一边产生压应力,使边沿产生小裂口,经多次轧制后,从裂口处继续扩大,以至撕裂;精整时拉伸机钳口夹持不正或不均,或板片有裂边,拉伸时就会造成撕裂;淬火时,兜链兜得不好或过紧,使板片压裂,拉伸矫直时造成撕裂。  7.过薄  压下量调整不正确;测厚仪出现故障或使用不当;辊型控制不正确。  8.压折(折叠)  辊型不正确,如压光机轴承发热,使轧辊两端胀大,结果压出的板片中间厚两边薄;压光前板片波浪太大,使压光量过大,从而产生压折;薄板压光时送入不正容易产生压折;板片两边厚差大,易产生压折。  9.非金属压入  热轧机的轧辊、辊道、剪刀机等不清洁,加工过程中脏物掉在板车带上,经轧制而形成;冷轧机的轧辊、导辊、三辊矫直机、卷取机等接触带板的部分不清洁,将脏物压入;轧制油喷咀堵塞或压力低,带板表面上粘附的非金属脏物冲洗不掉;乳液更换不及时,铝粉冲洗不净及乳液槽未洗刷干净。  10.过烧  热处理设备的高温仪表不准确;电炉各区温度不均;没有正确执行热处理制度,金属加热温度达到或超过金属过烧温度;装料时放得不正,靠近加热器的地方可能产生局部过烧。  11.金属压入  加热过程中金属屑落到板带上经轧制后形成;热轧时辊边道次少,裂边的金属掉在带板上;圆盘剪切边品质不好,带板边缘有毛刺,压缩空气没有吹净带板表面的金属屑;轧辊粘铝后,将粘铝块压在带板上;导尺夹得过紧,刮下来的碎屑掉在板上。  12.波浪  辊型调整得不正确,原始辊型不适合;板形控制系统出现故障或使用不当;冷轧毛料原始板形差或断面中凸度过大;压下率、张力、速度等工艺参数选择不当;各种类型的矫直机调整得不好,矫直辊辊缝间隙不一致,使板片薄的一边产生波浪;对拉伸矫直和拉弯矫直机,伸长率选择不当。  13.腐蚀  板片经淬火、洗涤、干燥后,表面残留有酸、碱或硝盐痕迹时,经过一段时间后板片就会受到腐蚀;板带保管不当,有水滴掉在板面上;加工过程中,接触产品的辅助材料,如火油、轧制油、乳液、包装油等含有水分或呈碱性,都可能引起腐蚀;包装时卷材温度过高,或包装不好,运输过程中受损坏。  14.划伤  热轧机辊道,导板粘铝,使热压板带划伤;冷轧机导板、夹送辊等有突出尖角或粘铝;精整机列加工中被导路划伤;成品包装时,抬片抬放不当。  15.元素扩散   退火及淬火时,没有正确执行热处理制度,不合理地延长加热时间或提高保温温度;退火、淬火次数过多;热轧尾部或预先剪切机列没有按工艺规程要求切头切尾,使板片包铝层不合格而造成;错用了包铝板,使用铝板太薄。  16.过厚  原因同7“过薄”。  17.擦伤  吊运卷筒时不小心,易造成卷筒擦伤;送板带不正,轧制时将送歪的带板拉正,使带板与轧辊间产生相对磨擦;卷卷时张力采用不正确,卷取时张力小,开卷时张力大,轧辊把卷筒拉紧使板间产生错动;润滑油含沙锭油太多,轧制后卷筒上残留油不一样,开卷时圈与圈之间产生很微小的滑动造成擦伤。  18.过窄  剪切时圆盘剪间距调整过窄;热粗轧宽展余量不足;热精轧圆盘剪调节时,没有很好地考虑冷收缩量与剪切时的剪切余量。  19.过短  剪切时定尺不当或设备出现故障。  20.镰刀形  热轧机轧辊两端辊缝值不同;导尺送带板不正,带板两边延伸不同;热轧机轧辊预热不好,辊形不正确;乳液喷射不均或喷咀有堵塞;压光机轧制时板片未对中。  21.裂边   铸锭加热温度过低,热压时产生的裂边没有全部切掉,冷轧后裂边扩大;热轧辊边量过小,可能产生裂边;压下率过大或过小;铸锭浇口部分未切掉,热轧时就会裂边;切边时两边切得不均,一边切得太少,可能产生裂边;退火品质不好,金属塑性不够;包铝板放得不正,使一面侧边包铝不完全。  22.裂纹  铸锭本身裂纹或加热温度过高或过低;轧制率不适当引起压缩。  23. 收缩孔  铸块品质不好。  24.白斑点  冷轧用的乳液不清洁,或新换乳液搅拌不均。  25乳液痕  轧制时乳液没有吹净,使乳液卷入筒里;热精轧温度太低,乳液浓度太高;风管里有水,随空气吹到带板上。  26.包铝层错动  包铝板放得不正,热粗轧时金属包铝板和铸锭间发生错动;热粗轧轧制时铸块送得不正;焊合轧制时压下量太小,没有焊合上;对侧面包铝铸块辊边量太大;精整剪切及热精轧切边量不均,一边切得太少。  27.  凹陷(碰伤)  板片或卷筒在搬运或停放进程中被碰撞;冷轧或退火时卡子打得不好,以及退火料不干净,有金属物或突出物;冷轧时卷入硬的金属渣或其它硬东西。  28.松树枝状  冷轧时压下量太大,金属在轧辊间由于摩擦力大,来不及流动而产生滑动;轧制液浓度太大,流动性不好,不能均匀分布在板带面上,轧制后就会产生松树状;厚度显示仪器出现故障;冷轧张力太小。  29.压过划痕  热轧产生波浪或镰刀形,当其通过尾部给料辊、剪刀、三辊等时被划伤,及轧热机导板之划伤,并被压过;退火装料或搬运次数多,使卷筒松层;热轧道路粘铝划伤带板,经冷轧后产生;冷轧机的道路,三辊、五辊出现粘伤或转动不灵,划伤、擦伤铝板,经轧制而产生;冷轧及热轧张力不稳定,张力大小不匹配,或装卸卷时不小心,使层间错动擦伤板面。  30.硝石痕  淬火后洗涤不净,板片表面留有硝石痕压光前擦得不干净。  31.印痕  冷轧机轧辊粘有金属残渣,或轧辊上带有印痕印在板面上;矫直和辊子上粘有金属残屑,未清辊或清辊不彻底。矫直前金属残渣掉在板片上,经矫直而造成。  32.粘铝  在剪切机列上因矫直机辊子不干净造成粘铝;精整时的所有多辊矫直机易粘伤片板面;热轧或冷轧时轧辊粘铝造成板带粘伤。  33.折伤  薄板搬运不小心。  34.揉擦伤  淬火后板片弯曲度太大,互相擦伤;装卸料时不小心,或装料量太多,使板片互相错动。  35.横波  冷轧薄板时张力控制不当,使卷筒内匝在卸卷时造成雀窝;轧制过程中中间停车。  36.包铝层厚度不合格  热轧焊合压下量过大;热轧尾部或预剪切头切尾量太少;包铝板用错了;碱洗时间过长。  37.油痕  冷轧以后板上残留轧制油。  38.滑移线  板片在拉伸时因拉伸量太大出现的滑移线(沿途45°)方向。  39.水痕  淬火后未擦干净,压光时压在板片上。  40.表面不亮  轧辊、压光辊、矫直辊光洁度不够,润滑性能不好,太脏。  41.小黑点  在热轧板材过程中,由于高温乳液分解,分解产物与在轧制过程中因润滑不好使轧辊与铝板摩擦而产生的铝粉在高温下相互作用,产生“小黑点”混合于乳液中,经过轧制又压到铝板表面上,形成小黑点;乳液稳定性不好,不清洁,润滑性不好,用硬水配制,乳液喷射到轧辊上不均匀,及辊道不清洁,辊道、地沟、油管、油箱不清洁也易产生“小黑点”。  42.起皮  由于铣面品质不好,加热铸块表面氧化,铸块本身品质不好形成条状或块状起皮。  43.分层  在轧制过程中,带板端头或边部产生不均匀变形,继续轧制时扩散而成。删除

轧管机的几种样式

2019-03-15 09:13:19

轧管机一般都分为两种,一种是LG型,一种就是LD型。L G型的冷轧管机为两辊轧机。LD型为多辊轧机(至少三个轧辊以上,包括三个)。LG型冷轧管机的主要结构为:床身、回转送进机构、机架、主电机、芯棒、传动系统、电气系统等。这里面先把回转送进机构提出说,以前的冷轧管机都是单回转单送进,随着科技的发展,现在发展为单回转,双送进、双回转,单送进。双回转双送进等,一般送进方式又可分为机械送进,光电送进,伺服送进等。一台冷轧机最主要的部分就是机架,机架中包括:轧辊、齿轮、齿条等。其工作原理:轧辊和芯棒形成有规则的空腔,利用金属的弹性变形实现钢管的轧制。 轧管机的几种样式 连轧管机是在毛管内穿入长芯棒后, 经过多机架顺序布置且相临机架辊缝互错 (二辊式 辊缝互错 90°,如所示;三辊式辊缝互错 60°)的连轧机轧成钢管, 它是当今被最广 泛应用的纵轧钢管方法。连轧管机轧制过程中,轧件变形实际上是受多组(4~8 组)轧辊与 芯棒的反复作用从圆到椭圆…椭圆再到圆的过程。连轧管机的发展早在 19 世纪末就曾尝试在长芯棒上进行轧管, 但种种原因, 至 1950 年世界上仅有 6 台连轧管机。1960 年后,随着科学技术的进步和生产的发展,特别 是电子计算机技术的飞速发展和应用, 使连轧管机在生产工艺和设备上日趋完善, 得到了迅 速的发展和推广。 在浮动芯棒连轧管机的基础上, 限动芯棒连轧管机于 20 世纪 60 年代中期 进行了工艺试验,获得了可喜的成果。1978 年世界上第一套限动芯棒连轧管机(MPM)在 意大利达尔明钢管厂建成投产,连轧管工艺发展到了一个新的水准。20 世纪 90 年代末又推 出了三辊连轧管机(PQF)技术,使连轧管工艺装备跃上了更高的台阶。 连轧管机在 PQF 出现以前,都是两辊式的,即由两个轧辊为一组组成孔型,二辊式的机 架既有与地面呈 45°交错布置的,也有与地面垂直、水平交错布置的;PQF 为三辊式的, 即由三个轧辊为一组组成孔型;;MPM 与 PQF 孔型构成见(图 2);连轧管时,孔型顶部 的金属由于受到轧辊外压力和芯棒内压力作用而产生轴向延伸, 并向圆周横向宽展, 而孔型 侧壁部分的金属与芯棒不接触, 但它被顶部轴向延伸的金属对它附加的拉应力作用而产生轴 向延伸,并同时产生轴向拉缩。不论两辊式的还是三辊式的连轧管机,按芯棒的运行方式可 分为以下三种形式。

不锈钢热轧钢板

2019-03-18 11:00:17

不锈钢热轧钢板是用热轧工艺生产的不锈钢钢板。厚度不大于3mm的为薄板,厚度大于3mm的为厚板用于化工、石油、机械、船舶等行业制造耐蚀零件、容器和设备。其分类和牌号如下:   1.奥氏体型钢   (1)1Cr17Mn6Ni15N;(2)1Cr18Mn8Ni5N;(3)1Cr18Ni9;(4)1Cr18Ni9Si3;(5)0Cr18Ni9;(6)00Cr19Ni10;(7)0Cr19Ni9N;(8)0Cr19Ni10NbN;(9)00Cr18Ni10N;(10)1Cr18Ni12;(11) 0Cr23Ni13;(12)0Cr25Ni20;(13) 0Cr17Ni12Mo2;(14) 00Cr17Ni14Mo2;(15) 0Cr17Ni12Mo2N;(16) 00Cr17Ni13Mo2N;(17) 1Cr18Ni12Mo2Ti;(18) 0Cr18Ni12Mo2Ti;(19) 1Cr18Ni12Mo3Ti;(20) 0Cr18Ni12Mo3Ti;(21) 0Cr18Ni12Mo2Cu2;(22) 00Cr18Ni14Mo2Cu2;(23) 0Cr19Ni13Mo3;(24) 00Cr19Ni13Mo3;(25) 0Cr18Ni16Mo5;(26) 1Cr18Ni9Ti;(27) 0Cr18Ni10Ti;(28) 0Cr18Ni11Nb;(29) 0Cr18Ni13Si4   2.奥氏体——铁素体型钢   (30)0Cr26Ni5Mo2;(31)00Cr18Ni5Mo3Si2;   3.铁素体型钢   (32)0Cr13Al;(33) 00Cr12;(34)1Cr15;(35)1Cr17;(36)1Cr17Mo;(37)00Cr17Mo; (38)00Cr18Mo2;(39)00Cr30Mo2;(40)00Cr27Mo   4.马氏体型钢   (41)1Cr12;(42)0Cr13;(43);1Cr13;(44)2Cr13;(45)3Cr13;(46)4Cr13;(47)3Cr16;(48)7Cr17   5.沉淀硬化型钢   (49)0Cr17Ni7Al热轧板带钢工艺润滑的研究  一 热轧工艺润滑的主要作用  1.1 降低摩擦系数,降低轧制力  由于磨擦系数的减小,使轧制力降低,一般为可降低轧制力10%~25%,这样降低了轧制功率,节约了能耗,。  1.2 减少轧辊消耗,提高作业率  热轧条件下,工作轧辊面因与冷却水长期接触发生氧化,形成黑皮,这是造成轧辊异常磨损的主要原因。采用特殊的润滑剂能够有效阻止辊面黑皮的形成,延长轧辊使用寿命,减少换辊次数,提高轧机作业率。  1.3改善轧后表面质量  轧辊磨损的降低,黑皮的减少直接改善了轧后板面质量。  1.4改善制品内部组织性能  工艺润滑可以使轧后带钢的晶料组织得到改善,提高其深冲性能。  1.5节能降耗  采用工艺润滑后,热轧吨钢平均节电3度;酸洗酸液减少0.3~1.0kg;金属消耗降低1.0kg;轧辊的消耗能降低30%~50%。  二 热轧工艺润滑的机理   通常热轧润滑剂是以油水混合液的形式被送到轧辊表面的,水是载体,少量的油均匀分散在水中。油水混合液的作用过程是水包油相向油包水相的转变过程。混合液体到达辊面后,以水包油的形式迅速地在辊面展开,当进入变形区与高温轧件接触时,由于温度和压力的作用,水很快蒸发并转变成油包水相,一部分油燃烧成以灰分为主的燃烧物;一部分油则以油膜的形式均匀地覆盖在轧辊与轧件的接触弧面上,两者在变形区内大约0.01s的时间内都能起到润滑的作用。  三 热轧工艺润滑剂的选用  3.1 热轧工艺润滑剂的性能  3.1.1良好且稳定的润滑性能  3.1.2良好的润湿性和黏着性,能均匀地分散在轧辊表面并牢固地黏着。  3.1.3高温下良好的抗氧化性和耐分解性,保证在与轧件接触前不产生燃烧和分解。  3.1.4良好的抗乳化性和离水展着性。  3.1.5无毒无味,同时分解中产生的气体也无毒无味,燃烧产物无毒,不污染环境。  3.2热轧工艺润滑剂的组成及种类  热轧油有水基和油基两种形式,目前大部分厂家采用油基热轧油。  一般热轧油由基础油和油性剂两部分组成,基础油有矿物油、聚烯烃、酯类油;油性剂有动、植物油、脂肪酸、高级脂肪酸、合成脂、固体润滑剂等。  四 热轧工艺润滑对力能参数的影响  生产中采用上述热轧油后,使得轧制压力显著降低15%~30%;轧辊消耗减少可达50%;节能减少近10%。  采用不同类型的热轧油进行热轧普碳钢工艺润滑效果实验,测量轧制压力并与无工艺润滑的轧制条件的轧制力作比较,结果见下表  表: 不同类型热轧油的润滑效果  热轧油类型 轧制压力下降%  Q-HB-1905 32.5   HR-40 21.2   Q-HB-11 20.8   脂肪油 40  由表可看出,脂肪油表现出较好的降低轧制力的能力,但脂肪油也存在致命缺陷,如轧后钢板表面的清洁性较差;另外脂肪油在高温条件下油烟较重,恶化工作环境。另外不同种类的添加剂降低轧制压力也明显不同,影响效果如图所示 五 工艺润滑对轧辊磨损的影响  采用工艺润滑可大大降低轧辊的磨损,热轧时轧辊应有足够冷却与润滑。通过现场对比试验,轧制带钢产量与轧辊磨损的关系在不同的轧制条件下有很大的差异,如图所示 随轧制量增加,轧辊磨损加剧,由于磨损的不均匀性,将严重影响到轧后的板面质量,采用润滑后,轧辊磨损的速度要缓慢得多。  采用工艺润滑后,轧辊磨损大大减少,沿辊身长度上的磨损也变得较为均匀,这样对热轧带钢的板形非常有利。下图为F1~F4 400连轧机组轧辊的磨损情况:   实践表明,采用微量的润滑剂完全可以达到降低轧辊磨损的目的,轧辊的润滑效果及磨损程度并不是与润滑剂用量及浓度成正比,相反,润滑剂的用量过大,会造成打滑、轧件咬入困难,同时造成污染。  六 存在的问题   热轧带钢采用工艺润滑后,使轧件的咬入条件发生变化,不利于轧件的顺利咬入,可以通过间歇供油的方式来解决。由于采用润滑后摩擦系数的下降,对板宽、板厚将产生很大影响,且不易控制,可在条件成熟时采用AGC厚度自动控制系统,对厚度精度进行有效控制,且能获得更加良好的板形。此外由于轧制油的燃烧,使工人恶劣的工作条件比以前有所加剧,车间油烟较大,需专设排烟系统。

半固态镁合金连续铸轧技术

2019-01-30 10:26:27

本文介绍了镁合金的基本性能和优势,重点论述了半固态加工技术、连续铸轧技术、半固态镁合金连续铸轧技术及其未来展望,指出其加工技术将得到进一步发展。    镁合金是目前应用最轻的金属结构材料,密度小,比强度、比刚度高,具有优良的导电、导热性能,尺寸稳定性好,电磁屏蔽性好,在航空、汽车运输行业,计算机、通讯等产业得到快速发展。我国是镁资源大国,但目前我国的镁合金生产规模还比较小,生产技术还不成熟,应抓住这难得的机遇,把我国的镁合金生产水平提到一个新高度。     一、镁合金的基本性能     (一)镁合金的物理及力学性能     镁合金与其它相关材料的物理和力学性能如下表所示。 镁合金与相关材料的物理和力学性能比较表材料名称密度/g·cm-3熔点/℃导热系数/W·(mk)-1抗拉强度/MPa屈服强度/MPa延伸率/%弹性模量/GPa比强度镁合金AZ91D1.8359772281162845188镁合金AM601.79615622701041545180铝合金3802.0595100315160371106碳钢7.861520425171402220080铸铁7.351150552003123.512060塑料ABS1.0390(Tg)0.235—402.141塑料PC1.23160(Tg)0.2104—36.7102     从表1可以看出,镁合金的主要力学性能接近于铝合金,但其密度却小于铝合金,比强度是铝合金的1.8倍,可以说,在应用金属范围内镁合金具有最高的比强度。与工程塑料相比,镁合金的密度虽比其高,但其熔点却是它的4~6倍,比强度是它的1.8倍左右,此外,镁合金的热传导系数是工程塑料的300倍以上,在一些电子产品的应用上具有明显的优势。     (二)镁合全产品具备的优势     1、轻量化:密度 1.8g/cm3 左右,是铁的l/4,铝的2/3,与塑料相近;2、比强度高、刚性好,优于钢、铝;3、对振动/冲击的吸收性高,极佳的防震性,耐冲击、耐磨性良好;4、优良的热传导性,改善电子产品散热问题;5、非磁性金属,抗电磁波干扰,电磁屏蔽性好;6、加工成型性能好,成品外观美丽,质感佳;7、材料可100%回收,回收率高,符台环保法;8、良好的抗蠕变性,尺寸稳定,收缩率小,不易因时间和环境温度变化而改变(相对于塑料)。     二、半固态镁合全连续铸轧技术     (一)半固态加工技术     半固态加工是利用金属材料从固态向液态,或从液态向固态转变过程中,经历半固态温度区间,在该温度区间内实现的加工过程。半固态技术综合了液态铸造成形、固态压力加工的优点,半固态加工技术能大大提高材料的力学性能,达到节约材料的目的,是目前材料领域最热门的研究热点之一。半固态成型技术是近几年兴起的一种高效优质的成型方法。     半固态加工的主要成型手段有压铸和锻造,此外也有人试验用挤压和轧制等方法,其工艺路线有两条:一条是将搅拌获得的半固态浆料在保持其半固态温度的条件下直接成形,通常被称为流变铸造(Rheocasting);另一条是将半固态浆料制备成坯料根据产品尺寸下料,再重新加热到半固态温度成形,通常被称为触变成形。对于触变成形,由于半固态坯料便于输送成形,易于实现自动化,因而在工业中较早得到了广泛应用。对于流变铸造,由于将搅拌后的半固态浆料直接成形,具有高效、节能、短流程的特点,近年来发展很快。     半固态金属加工成形中,由于采用了非枝晶半固态浆料,可以直接得到几乎均一的球状细晶组织,显著地改善了金属材料的组织性能。半固态成形件表面平整光滑,晶粒细小,力学性能好;半固态浆料的部分凝固潜热已经放出,所以一方面对加工设备的热作用小,设备材料的选择范围扩大,制造设备的难度大大降低,另一方面半固态浆料本身凝固收缩小,产品尺寸精确。由此可见,半固态加工技术比传统的加工技术有很大的优势,目前越来越多的科技工作者高度重视半固态加工技术,在工艺实验和理论等方面开展了广泛的研究。     (二)连续铸轧技术     连续铸轧技术是将熔融金属直接注入两个相向旋转的铸轧辊之间,使其在铸轧辊的冷却与轧制作用下凝固并具有一定的轧制变形量,从而直接获得金属带坯的一种近终成形加工工艺。     连续铸轧过程是集快速凝固与热轧变形于一体的成型过程。在该过程中,铸轧辊起“结晶器”与“热轧辊”双重作用。当高温金属熔体通过与铸轧辊表面接触的区域时,将热量快速传递给轧辊,实现其凝固结晶;又对已凝固的带坯进行轧制,起“热轧辊”作用;同时已凝固的高温带坯在轧制变形过程中,继续将热量传递给轧辊,轧辊继续吸热。轧辊的内表面与冷却水、外表面与周围介质,在轧辊连续旋转过程中不断进行着热交换,使进入工作区域的部分轧辊表面能以较低的温度与金属熔体接触,以保证铸轧过程的顺利进行。     铸轧技术是冶金及材料领域的一项前沿技术,它不同于传统冶金工业中带材的生产工艺,而是将连续铸造、轧制、甚至热处理等串联为一体,铸出毫米级的薄带坯,经在线轧制后一次性形成工业产品。铸轧技术具有以下优点:     1、在同一台设备上同时完成了铸造和轧制两道工序,相比热轧省去了铸锭加热、开坯及热轧等多道工序,减少了废料,节约了能源。     2、省去了铸锭铣面,减少了热轧后的切头切尾,成材率提高15%~20%。     3、设备简单集中,投资少,占地面积小,建造速度快,生产成本低。     4、可连续稳定地进行生产,简化厂生产工艺,缩短了生产周期,使生产效率大大提高,且便于实现自动化。     5、持轧薄带品质不亚于传统工艺,还可以生产出传统工艺难以轧制的材料以及具有特殊性能的新材料。     (三)半固态镁合金连续铸轧技术     将水平双辊连续铸轧技术与半固态加工技术相结合,所获得的半固态板带连续持轧成形技术,将是一种全方位高效、节能、短流程、近终成形的加工方法。把这种技术应用于投台金的加工成形,可以说是具有国际领先水平的技术,具有一定的创新性。这种新型的金属带坯生产工艺,不仅从根本上改变了传统的金属带坯生产方法,即使通常需由铸造、铣面、加热、热轧等多道次工序才能完成的生产工艺流程,仅由铸轧就可以实现,而且可以较方便地实现产品质量调控。     具有球状晶的合金材料加热到半固态时,变形抗力很低,这对轧制成形有利。半固态轧制工艺是将被轧制材料加热到半固态后,送入轧辊间轧制的方法。试验对象主要是板材的轧制成形。结果表明,由于固相率的高低不同,轧辊咬入区内被轧制材料的变形和流动行为有很大不同。在被轧制材料固相率高的情况下(例如固相率在90%以上),其变形和固体金属热轧情况大致相同,内部固相成分和液相成分共同被轧制,可得到均一的轧制成品。固相率在70%以下时,轧辊间隙中轧制材料的液相成分和固相成分的流动、变形分别单独进行,由于轧辊施加的压力而引起的静水压力的影响,轧辊间隙内开始有液相成分从固相成分间隙溢出,流向压力减小的方向,即液相成分从轧辊间隙的入口处被铸轧材料的表面流出,通常被轧辊冷却凝固后再次被引,轧辊间隙里轧制成成品。半固态连续铸轧示意图见下图。    半固态镁合金铸轧工艺模拟仿真是使材料成形工艺从经验走向科学指导的重要手段,是材料科学与制造科学的前沿领域和研究热点。利用计算机模拟材料成形过程,可预测产品的质量,减少试验次数;确定最佳的工艺流程,以达到某一特殊性能的要求;动态显示各个物理量的演变历程和空间分布;提高劳动生产率。因此,在半固态镁合金连续铸轧技术中,数值模拟分析是很重要的一部分。     三、半固态镁合金连续铸轧技术的展望     笔者认为,半固态镁台金的连续铸轧技术将会朝着以下方向发展:     (一)对半固态浆料制备的深入研究,半固态浆料的好坏直接影响铸轧后的成品质量的好坏。     (二)目前流变成形研究只有在实验室,工艺还不成熟,与应用还有一定的距离。流变成形比触变成形更能节省能源、流程更短、设备更紧凑,因此流变成形技术仍然是未来金属半固态加工技术的一个重要发展方向。另外,触变成形技术的研究也是未来工业化发展应用的重点。     (三)对半固态连续铸轧过程中,铸轧材料及轧辊的数值分析的研究,为工业化生产提供技术支持。     (四)半固态镁合金铸轧时,一方面要保证组织得到充分变形,达到改善组织的目的,因此要有一定的变形量;另外,由于多晶镁合金滑移系少,晶粒产生宏观屈服而易在晶界产生大的应力集中,合金很容易产生晶间断裂。因此,镁合金板带轧制以后的退火及热处理技术也是未来研究的热点问题。     (五)半固态镁合金连续铸轧技术应用到工业化大批量生产就在将来的几年。     四、结束语     随着冶炼技术的提高和先进成型技术的出现以及制造成本的降低,镁台金材料才得到了实际应用。现代冶金工业正向着短流程、节能型、连续化、自动化、高质量方向发展,半固态镁合金连续铸轧技术已经得到越来越多研究人员的关注,为镁合金材料进一步工业化生产奠定坚实的技术基础。

管坯轧制造事项

2019-03-18 11:00:17

管坯轧制时,有时会出现安全臼断裂,出现抱棒现象,进而导致停机事故,严重影响生产顺利进行。分析认为有以下原因: 1毛管尺寸因素。毛管尺寸偏大会使连轧负荷增加,轧制力增高,从而导致断臼抱棒。 2辊缝过压因素。辊缝过压使压下量增大,导致轧制力升高,使断臼抱棒几率大增。 3辊缝内外差大因素。辊缝内外差大,辊缝大的一侧轧制力小,辊缝小的一侧轧制力大。在 设定的压下量情况下,轧制力偏大的一侧容易发生断臼。 4轧辊转速调整不当因素。相邻机架轧辊的转速调整不当,会产生堆、拉钢现象,拉钢使轧制力降低,堆钢使轧制力增高,轧制力高断臼抱棒几率增加。 为此改进的方法为: 1毛管取样。当芯棒规格变化≥5mm时必须提出毛管取样,必须根据毛管的实际尺寸进行调整。当芯棒规格变化<5mm时,必须在脱棒链前测量毛管外径,根据毛管外径尺寸进行调整。 及时测量辊缝。多次调整后由于累积调整误差,辊缝与实际辊缝的片产可能过大,导致轧制力偏高,为此要求班组交接时必须测量一次实际辊缝,当芯棒规格变化时,也必须测量实际辊缝。 3及时测量内外辊缝。由于轧辊本身装配精度问题,连轧辊内外辊缝经常出现偏差过大现象。所以使用铅块及时测量轧辊的内外辊缝,内外辊缝超差的要立即更换该轧辊。 4规范转速调整。要其相邻机架之间转速修正值差不能大于3%,避免产生过堆、拉现象,造成断臼抱棒事故停机。 以上措施在国内天津钢管轧管厂得以实行后,平均断臼抱棒停机时间由30min降低到15.6min内,创效100余万,效果较好

铝箔的缺陷分析

2018-12-12 09:41:29

铝箔的主要缺陷有:(1)针孔。针孔是铝箔材的主要缺陷。原料中,轧辊上,轧制油中,甚至空气中的尘埃尺寸达到6μm左右进入辊缝均会引起针孔,所以6μm铝箔没有针孔是不可能的,只能用多少和大小评价它。由于铝箔轧制条件的改善,特别是防尘与轧制油有效地过滤和方便的换辊系统的设置,铝箔针孔数目愈来愈依赖于原料的冶金质量和加工缺陷,由于针孔往往是原料缺陷的脱落,很难找到与原缺陷的对应关系。一般认为,针孔主要与含气量、夹杂、化合物及成分偏析有关。采取有效的铝液净化、过滤、晶粒细化均有助于减少针孔。当然采用合金化等手段改善材料的硬化特性也有助于减少针孔。优质的热轧材轧制的6μm铝箔针孔可在100个/㎡以下。铸轧材当净化较好时,6μm铝箔针孔在200个/㎡以下。在铝箔轧制过程中,其他造成针孔的因素也很多,甚至是灾难性的,每平方米数以千计的针孔并不稀奇。轧制油的有效过滤,轧辊短期更换及防尘措施均是减少铝箔针孔所必备的条件,而采用大轧制力,小张力轧制也会对减少针孔有所帮助。(2)辊印、辊眼、光泽不均。它主要是轧辊引起的铝箔缺陷,分为点、线、面三种。最显著的特点三周期出现。造成这种缺陷的主要原因为:轧辊不正确的磨削;外来物损伤轧辊:来料缺陷印伤轧辊;轧辊疲劳;辊间撞击、打滑等。所有可以造成轧辊表面损伤的因素,均可对铝箔轧制形成危害。因为铝箔轧制辊面光洁度很高,轻微的光泽不均匀也会影响其表面状态。定期的清理轧机,保持轧机的清洁,保证清辊器的正常工作,定期换辊,合理磨削,均是保证铝箔轧后表面均匀一致的基本条件。(3)起皱。由于板形严重不良,在铝箔卷取或展开时会形成皱折,其本质为张力不足以使箔面拉平。对于张力维20MPa的装置,箔面的板形不得大于30I,当大于30I时,必然起皱。由于轧制时铝箔往往承受比后续加工更大的张力,一些在轧制时仅仅表现为板形不良,包括轧辊磨削不正确,辊型不对,来料板形不良及调整板形不正确。(4)亮点、亮痕、亮斑。双合面由于双合油使用不当引起的亮点、亮痕、亮斑,主要是因为双合油油膜强度不足,或轧辊面不均引起轧制不均变形,外观呈麻皮或异物压入状。选用合理的双合油,保持来料清洁和轧辊的辊面均匀是解决这类缺陷的有效措施。当然改变压下量和选择优良的铝板也是必要的。(5)厚差。厚差难于控制是铝箔轧制的一个特点,3%的厚差在板材生产时也许不难,而在铝箔生产时却非常困难。原因在于厚度薄,其他微量条件均可造成影响,如温度、油膜、油气浓度等。铝箔轧制一卷可达几十万米,轧制时间长达10h左右,随时间延长,厚差很易形成,而对厚度调整的手段仅有张力速度。这些因素均造成了铝箔轧制的厚控困难,所以,真正控制厚差在3%以内,需要许多条件来保证,难度相当大6)油污。油污是指轧制后铝箔表面带上了多余的油,即除轧制油膜以外的油。这些油往往由辊颈处或轧机出口上、下方甩、溅、滴在箔面上,且较脏,成分复杂。铝箔表面带油污比其他轧制材带油污危害更大,一是由于铝箔成品多数作为装饰或包装材料,必须有一个洁净的表面;二是其厚度薄,在后道退火时易形成泡状,而且由于油量较多在该处形成过多的残留物而影响使用。油污缺陷多少是评价铝箔质量的一项很重要的指标。(7)水斑。水斑是指在轧制前有水滴在箔面上,轧制后形成的白色斑迹,较轻微时会影响箔面表面状况,严重时会引起断带。水斑是由于油中有水珠或轧机内有水珠掉在箔面上形成的,控制油内水分和水源是避免水斑的惟一措施。(8)振痕。振痕是指铝箔表面周期性的横波。产生振痕原因有两种:一种是由于轧辊磨削时形成的,周期在10~20mm左右;另一种是轧制时由于油膜不连续形成振动,常产生在一个速度区间,周期为5~10mm。产生振痕的根本原因是油膜强度不足,通常可以采用改善润滑状态来消除。(9)张力线。当厚度达到0.015mm以下时,在铝箔的纵向形成平行条纹,俗称张力线。张力线间距在5~20 mm左右,张力愈小,张力线愈宽,条纹愈明显。当张力达到一定值时,张力线很轻微甚至消失。厚度愈小产生张力线的可能性愈大,双合轧制产生张力线的可能性较单张大。增大张力和轧辊粗糙度是减轻、消除张力线的有效措施,而大的张力必须以良好的板形为基础。(10)开缝。开缝是箔材轧制特有的缺陷,在轧制时沿纵向平直地裂开,常伴有金属丝线。开缝的根本原因是入口侧打折,常发生在中间,主要由于来料中间松或轧辊不良。严重的开缝无法轧制,而轻微的开缝在以后的分切时裂开,这往往造成大量废品。(11)气道。在轧制时间断出现条状压碎,边缘呈液滴状曲线,有一定宽度,轻度的气道未压碎,呈白色条状并有密集针孔。在压碎铝箔的前后端存在密集针孔是判断气道与其他缺陷的主要标志。气道来源于原料,选择含气量低的材料作为铝毛坯是非常重要的。(12)卷取缺陷。卷取缺陷主要指松卷或内松外紧。由于铝箔承受的张力有限,卷取硬卷就很困难。取得里紧外松的卷是最理想的,而足够的张力是形成一定张力梯度的条件。所以,卷取质量最终依赖于板形好坏,内松外紧的卷会形成横棱,而松卷则会形成椭圆,这均会影响以后加工。铝箔轧制缺陷种类尽管很多,但最终主要表现为:以孔洞为特征的针孔、辊眼、开缝、气道;以表面状况为特征的油污、光泽不均、振痕、张力线、水斑、亮点亮斑;以影响后工序加工的板形、起皱、打折、卷取不良 ;以尺寸为特征的厚差等。实质上,铝箔特有的缺陷只有针孔一类,其他几种缺陷板材也同样有,只不过表现的严重程度不同或要求不同而已。

板带材工艺废品种类及产生原因

2019-01-14 14:52:46

1.贯穿气孔 熔铸品质不好。 2.表面气泡 铸锭含氢量高组织疏松;铸锭表面凸凹不平的地方有脏东面,装炉前没有擦净;蚀洗后,铸块与包铝板表面有蚀洗残留痕迹;加热时间过长或温度过高,铸块表面氧化;靠前道焊合轧制时,乳液咀没有闭严,乳液流到包铝板下面。 3.铸块开裂 热轧时压下量过大,从铸锭端头开裂;铸块加热温度过高或过低。 4.力学性能不合格 没有正确执行热处理制度或热处理设备不正常,空气循环不好;淬火时装料量大,盐浴槽温度不够时装炉,保温时间不足,没有达到规定温度即出炉;试验室采用的热处理制度或试验方法不正确;试样规格形状不正确,试样表面被破坏。 5.铸锭夹渣 熔铸品质不好,板片内夹有金属或非金属残渣。 6.撕裂 润滑油成分不合格或乳液太浓,板片与轧辊间产生滑动,金属变形不均匀;没有控制好轧制率,压下量过大;轧制速度过大;卷筒张力调整得不正确,张力不稳定;退火品质不好;金属塑性不够;辊型控制不正确,使金属内应力过大;热轧卷筒裂边;轧制时润滑不好,板带与轧辊摩擦过大;送卷不正,带板一边产生拉应力,一边产生压应力,使边沿产生小裂口,经多次轧制后,从裂口处继续扩大,以至撕裂;精整时拉伸机钳口夹持不正或不均,或板片有裂边,拉伸时就会造成撕裂;淬火时,兜链兜得不好或过紧,使板片压裂,拉伸矫直时造成撕裂。 7.过薄 压下量调整不正确;测厚仪出现故障或使用不当;辊型控制不正确。 8.压折(折叠) 辊型不正确,如压光机轴承发热,使轧辊两端胀大,结果压出的板片中间厚两边薄;压光前板片波浪太大,使压光量过大,从而产生压折;薄板压光时送入不正容易产生压折;板片两边厚差大,易产生压折。 9.非金属压入 热轧机的轧辊、辊道、剪刀机等不清洁,加工过程中脏物掉在板车带上,经轧制而形成;冷轧机的轧辊、导辊、三辊矫直机、卷取机等接触带板的部分不清洁,将脏物压入;轧制油喷咀堵塞或压力低,带板表面上粘附的非金属脏物冲洗不掉;乳液更换不及时,铝粉冲洗不净及乳液槽未洗刷干净。 10.过烧 热处理设备的高温仪表不准确;电炉各区温度不均;没有正确执行热处理制度,金属加热温度达到或超过金属过烧温度;装料时放得不正,靠近加热器的地方可能产生局部过烧。 11.金属压入 加热过程中金属屑落到板带上经轧制后形成;热轧时辊边道次少,裂边的金属掉在带板上;圆盘剪切边品质不好,带板边缘有毛刺,压缩空气没有吹净带板表面的金属屑;轧辊粘铝后,将粘铝块压在带板上;导尺夹得过紧,刮下来的碎屑掉在板上。 12.波浪 辊型调整得不正确,原始辊型不适合;板形控制系统出现故障或使用不当;冷轧毛料原始板形差或断面中凸度过大;压下率、张力、速度等工艺参数选择不当;各种类型的矫直机调整得不好,矫直辊辊缝间隙不一致,使板片薄的一边产生波浪;对拉伸矫直和拉弯矫直机,伸长率选择不当。 13.腐蚀 板片经淬火、洗涤、干燥后,表面残留有酸、碱或硝盐痕迹时,经过一段时间后板片就会受到腐蚀;板带保管不当,有水滴掉在板面上;加工过程中,接触产品的辅助材料,如火油、轧制油、乳液、包装油等含有水分或呈碱性,都可能引起腐蚀;包装时卷材温度过高,或包装不好,运输过程中受损坏。 14.划伤 热轧机辊道,导板粘铝,使热压板带划伤;冷轧机导板、夹送辊等有突出尖角或粘铝;精整机列加工中被导路划伤;成品包装时,抬片抬放不当。 15.元素扩散 退火及淬火时,没有正确执行热处理制度,不合理地延长加热时间或提高保温温度;退火、淬火次数过多;热轧尾部或预先剪切机列没有按工艺规程要求切头切尾,使板片包铝层不合格而造成;错用了包铝板,使用铝板太薄。 16.过厚 原因同7“过薄”。 17.擦伤 吊运卷筒时不小心,易造成卷筒擦伤;送板带不正,轧制时将送歪的带板拉正,使带板与轧辊间产生相对磨擦;卷卷时张力采用不正确,卷取时张力小,开卷时张力大,轧辊把卷筒拉紧使板间产生错动;润滑油含沙锭油太多,轧制后卷筒上残留油不一样,开卷时圈与圈之间产生很微小的滑动造成擦伤。 18.过窄 剪切时圆盘剪间距调整过窄;热粗轧宽展余量不足;热精轧圆盘剪调节时,没有很好地考虑冷收缩量与剪切时的剪切余量。 19.过短 剪切时定尺不当或设备出现故障。 20.镰刀形 热轧机轧辊两端辊缝值不同;导尺送带板不正,带板两边延伸不同;热轧机轧辊预热不好,辊形不正确;乳液喷射不均或喷咀有堵塞;压光机轧制时板片未对中。 21.裂边 铸锭加热温度过低,热压时产生的裂边没有全部切掉,冷轧后裂边扩大;热轧辊边量过小,可能产生裂边;压下率过大或过小;铸锭浇口部分未切掉,热轧时就会裂边;切边时两边切得不均,一边切得太少,可能产生裂边;退火品质不好,金属塑性不够;包铝板放得不正,使一面侧边包铝不完全。 22.裂纹 铸锭本身裂纹或加热温度过高或过低;轧制率不适当引起压缩。 23.收缩孔 铸块品质不好。 24.白斑点 冷轧用的乳液不清洁,或新换乳液搅拌不均。 25.乳液痕 轧制时乳液没有吹净,使乳液卷入筒里;热精轧温度太低,乳液浓度太高;风管里有水,随空气吹到带板上。 26.包铝层错动 包铝板放得不正,热粗轧时金属包铝板和铸锭间发生错动;热粗轧轧制时铸块送得不正;焊合轧制时压下量太小,没有焊合上;对侧面包铝铸块辊边量太大;精整剪切及热精轧切边量不均,一边切得太少。 27.凹陷(碰伤) 板片或卷筒在搬运或停放进程中被碰撞;冷轧或退火时卡子打得不好,以及退火料不干净,有金属物或突出物;冷轧时卷入硬的金属渣或其它硬东西。 28.松树枝状 冷轧时压下量太大,金属在轧辊间由于摩擦力大,来不及流动而产生滑动;轧制液浓度太大,流动性不好,不能均匀分布在板带面上,轧制后就会产生松树状;厚度显示仪器出现故障;冷轧张力太小。 29.压过划痕 热轧产生波浪或镰刀形,当其通过尾部给料辊、剪刀、三辊等时被划伤,及轧热机导板之划伤,并被压过;退火装料或搬运次数多,使卷筒松层;热轧道路粘铝划伤带板,经冷轧后产生;冷轧机的道路,三辊、五辊出现粘伤或转动不灵,划伤、擦伤铝板,经轧制而产生;冷轧及热轧张力不稳定,张力大小不匹配,或装卸卷时不小心,使层间错动擦伤板面。 30.硝石痕 淬火后洗涤不净,板片表面留有硝石痕压光前擦得不干净。 31.印痕 冷轧机轧辊粘有金属残渣,或轧辊上带有印痕印在板面上;矫直和辊子上粘有金属残屑,未清辊或清辊不彻底。矫直前金属残渣掉在板片上,经矫直而造成。 32.粘铝 在剪切机列上因矫直机辊子不干净造成粘铝;精整时的所有多辊矫直机易粘伤片板面;热轧或冷轧时轧辊粘铝造成板带粘伤。 33.折伤 薄板搬运不小心。 34.揉擦伤 淬火后板片弯曲度太大,互相擦伤;装卸料时不小心,或装料量太多,使板片互相错动。 35.横波 冷轧薄板时张力控制不当,使卷筒内匝在卸卷时造成雀窝;轧制过程中中间停车。 36.包铝层厚度不合格 热轧焊合压下量过大;热轧尾部或预剪切头切尾量太少;包铝板用错了;碱洗时间过长。 37.油痕 冷轧以后板上残留轧制油。 38.滑移线 板片在拉伸时因拉伸量太大出现的滑移线(沿途45°)方向。 39.水痕 淬火后未擦干净,压光时压在板片上。 40.表面不亮 轧辊、压光辊、矫直辊光洁度不够,润滑性能不好,太脏。 41.小黑点 在热轧板材过程中,由于高温乳液分解,分解产物与在轧制过程中因润滑不好使轧辊与铝板摩擦而产生的铝粉在高温下相互作用,产生“小黑点”混合于乳液中,经过轧制又压到铝板表面上,形成小黑点;乳液稳定性不好,不清洁,润滑性不好,用硬水配制,乳液喷射到轧辊上不均匀,及辊道不清洁,辊道、地沟、油管、油箱不清洁也易产生“小黑点”。 42.起皮 由于铣面品质不好,加热铸块表面氧化,铸块本身品质不好形成条状或块状起皮。 43.分层 在轧制过程中,带板端头或边部产生不均匀变形,继续轧制时扩散而成。

铝箔产品生产过程中的磨损具有哪些特点

2018-12-27 14:45:26

铝箔在生产轧制过程中不可避免的会有一定程度的磨损,经过研究我们发现铝箔磨损有一定的特点,一下为大家进行简单分析。  铝箔在轧制过程中,由于金属发生塑性变形,连续不断地生成新的表面,而且在接触面具有很高的单位压力,再加上变形温度高、滑动速度大等特点,使轧辊表面粘附金属、轧辊磨损等现象尤为突出。当金属与轧辊之间发生粘着后,两者之间的滑动外摩擦就随之转变成为金属表层的内摩擦,发生次表层的剪切变形,从而在金属粘着的部位改变该处的摩擦状态,导致金属应力状态的变化和流动状态的改变。其结果使摩擦加大,力能消耗增加,产品表面显著损伤以及轧辊急剧磨损,使用寿命缩短,严重时将使轧制过程无法正常进行。  轧制过程中磨损的情况极为复杂,金属磨损与金属材料、表面氧化物、加工硬化、加工温度、速度、润滑剂以及周围环境等因素有关。材料变形过程中,磨损机理可能是一种或数种机理同时起作用。而且,变形过程本身也是变化的。轧制时,轧辊是反复连续地与轧件接触,而轧件进人变形区的表面也是不断地改变。此外,工件经酸洗后其表面清洁,当与脏污的轧辊表面接触时,因塑性变形与延展加剧了粘附的可能性与磨损质点的剥落,如果磨损质点高度大于油膜厚度,那么,质点将被压人表面,起磨削轧辊表面的作用。  因接触表面形貌、接触状况和环境条件不同,磨损类型也不同。但是,一般可分为机械磨损与化学磨损两大类型。机械磨损是与摩擦、磨粒磨损、侵蚀以及疲劳有关的一类磨损过程;化学磨损是因各种活性物质对表面的侵蚀,随后因机械作用使这些反应物发生摩擦和破碎而引起的。不同类型的磨损可以单独发生、相继发生或同时发生。而磨损表面上的应力过高,则是各种磨损现象的共同特点。

铝箔轧制的特点

2018-12-27 09:30:10

在双张箔的生产中,铝箔的轧制分粗轧、中轧、精轧三个过程,从工艺的角度看,可以大体从轧制出口厚度上进行划分,一般的分法是出口厚度大于或等于0.05mm为粗轧,出口厚度在0.013~0.05之间为中轧,出口厚度小于0.013mm的单张成品和双合轧制的成品为精轧。粗轧与铝板带的轧制特点相似,厚度的控制主要依靠轧制力和后张力,粗轧加工率厚度很小,其轧制特点已完全不同于铝板带材的轧制,具有铝箔轧制的特殊性,其特点主要有以下几个方面:   (1)铝板带轧制。要使铝板带变薄主要依靠轧制力,因此板厚自动控制方式是以恒辊缝为AGC主体的控制方式,即使轧制力变化,随时调整辊缝使辊缝保持一定值也能获得厚度一致的板带材。而铝箔轧制至中精轧,由于铝箔的厚度极薄,轧制时,增大轧制力,使轧辊产生弹性变形比被轧制材料产生塑性变形更容易些,轧辊的弹性压扁是不能忽视的,轧辊的弹轧压扁决定了铝箔轧制中,轧制力已起不到像轧板材那样的作用,铝箔轧制一般是在恒压力条件下的无辊缝轧制,调整铝箔厚度主要依靠调整后张力和轧速度。   (2)叠轧。对于厚度小于0.012mm(厚度大小与工作辊的直径有关)的极薄铝箔,由于轧辊的弹性压扁,用单张轧制的方法是非常困难的,因此采用双合轧制的方法,即把两张铝箔中间加上润滑油,然后合起来进行轧制的方法(也称叠轧)。叠轧不仅可以轧制出单张轧制不能生产的极薄铝箔,还可以减少断带次数,提高劳动生产率,采用此种工艺能批量生产出0.006mm~0.03mm的单面光铝箔。   (3)速度效应。铝箔轧制过程中,箔材厚度随轧制度的升度而变薄的现象称为速度效应。对于速度效应机理的解释尚有待于深入的研究,产生速度效应的原因一般认为有以下三个方面:   1)工作辊和轧制材料之间摩擦状态发生变化,随着轧制速度的提高,润滑油的带入量增加,从而使轧辊和轧制材料之间的润滑状态发生变化。摩擦系数减小,油膜变厚,铝箔的厚度随之减薄。   2)轧机本身的变化。采用圆柱形轴承的轧机,随着轧制速度的升高,辊颈会在轴承中浮起,因而使两根相互作用受载的轧辊将向相互靠紧的方向移动。   3)材料被轧制变形时的加工软化。高速铝箔轧机的轧制速度很高,随着轧制速度的提高,轧制变形区的温度开高,据计算变形区的金属温度可以上升到200℃,相当于进行一次中间恢复退火,因而引起轧制材料的加工软化现象。删除

铝及铝合金腐蚀的特征

2019-02-28 10:19:46

1.点腐蚀 点腐蚀又称为孔腐蚀,是在金属上发作针尖状、点状、孔状的一种为部分的腐蚀形状。点腐蚀是阳极反响的一种共同方式,是一种自催化进程,即点腐蚀孔内的腐蚀进程构成的条件既促进又足以保持腐蚀的持续进行。           2.均匀腐蚀 铝在磷酸与等溶液中,其上的氧化膜会溶解,发作均匀腐蚀,溶解速度也是均匀的。溶液温度升高,溶质浓度加大,促进铝的腐蚀。           3.缝隙腐蚀 缝隙腐蚀是一种部分腐蚀。金属部件在电解质溶液中,因为金属与金属或金属与非金属之间构成缝隙,其宽度足以使介质浸入而又使介质处于一种阻滞状况,使得缝隙内部腐蚀加重的现象称为缝隙腐蚀。           4.应力腐蚀开裂(SCC) 铝合金的SCC是在20世纪30年代初发现的。金属在应力(拉应力或内应力)和腐蚀介质的联合效果下所发作的一种损坏,被称为SCC。SCC的特征是构成腐蚀—机械裂缝,既能够沿着晶界开展,也能够穿过晶粒扩展。因为裂缝扩展是在金属内部,会使金属结构强度大大下降,严峻时会发作俄然损坏。SCC在必定的条件下才会发作,它们是:必定的拉应力或金属内部有剩余应力;   板带材工艺废品品种及发作原因 :   1.贯穿气孔 熔铸质量欠好。  2.表面气泡 铸锭含氢量高安排疏松;铸锭表面凸凹不平的当地有脏东面,装炉前没有擦净;蚀洗后,铸块与包铝板表面有蚀洗残留痕迹;加热时刻过长或温度过高,铸块表面氧化;靠前道焊合轧制时,乳液咀没有闭严,乳液流到包铝板下面。   3.铸块开裂 热轧时压下量过大,从铸锭端头开裂;铸块加热温度过高或过低。   4.力学功能不合格 没有正确履行热处理准则或热处理设备不正常,空气循环欠好;淬火时装料量大,盐浴槽温度不行时装炉,保温时刻缺乏,没有到达规则温度即出炉;实验室选用的热处理准则或实验办法不正确;试样规格形状不正确,试样表面被损坏。    5.铸锭夹渣 熔铸质量欠好,板片内夹有金属或非金属残渣。  6.撕裂 光滑油成分不合格或乳液太浓,板片与轧辊间发作滑动,金属变形不均匀;没有操控好轧制率,压下量过大;轧制速度过大;卷筒张力调整得不正确,张力不稳定;退火质量欠好;金属塑性不行;辊型操控不正确,使金属内应力过大;热轧卷筒裂边;轧制时光滑欠好,板带与轧辊冲突过大;送卷不正,带板一边发作拉应力,一边发作压应力,使边际发作小裂口,经屡次轧制后,从裂口处持续扩展,以致撕裂;精整时拉伸机钳口夹持不正或不均,或板片有裂边,拉伸时就会构成撕裂;淬火时,兜链兜得欠好或过紧,使板片压裂,拉伸矫直时构成撕裂。   7.过薄 压下量调整不正确;测厚仪呈现毛病或运用不妥;辊型操控不正确。   8.压折(折叠) 辊型不正确,如压光机轴承发热,使轧辊两头胀大,成果压出的板片中间厚两头薄;压光前板片波涛太大,使压光量过大,然后发作压折;薄板压光时送入不正简单发作压折;板片两头厚差大,易发作压折。    9.非金属压入 热轧机的轧辊、辊道、剪刀机等不清洁,加工进程中脏物掉在板车带上,经轧制而构成;冷轧机的轧辊、导辊、三辊矫直机、卷取机等触摸带板的部分不清洁,将脏物压入;轧制油喷咀阻塞或压力低,带板表面上粘附的非金属脏物冲刷不掉;乳液替换不及时,铝粉冲刷不净及乳液槽未洗刷洁净。   10.过烧 热处理设备的高温外表不精确;电炉各区温度不均;没有正确履行热处理准则,金属加热温度到达或超越金属过烧温度;装料时放得不正,接近加热器的当地或许发作部分过烧。  11.金属压入 加热进程中金属屑落到板带上经轧制后构成;热轧时辊边道次少,裂边的金属掉在带板上;圆盘剪切边质量欠好,带板边际有毛刺,紧缩空气没有吹净带板表面的金属屑;轧辊粘铝后,将粘铝块压在带板上;导尺夹得过紧,刮下来的碎屑掉在板上。  12.波涛 辊型调整得不正确,原始辊型不适合;板形操控系统呈现毛病或运用不妥;冷轧毛料原始板形差或断面中凸度过大;压下率、张力、速度等工艺参数挑选不妥;各品种型的矫直机调整得欠好,矫直辊辊缝空隙不一致,使板片薄的一边发作波涛;对拉伸矫直和拉弯矫直机,伸长率挑选不妥。    13.腐蚀 板片经淬火、洗刷、枯燥后,表面残留有酸、碱或硝盐痕迹时,通过一段时刻后板片就会遭到腐蚀;板带保管不妥,有水滴掉在板面上;加工进程中,触摸产品的辅助材料,如火油、轧制油、乳液、包装油等含有水分或呈碱性,都或许引起腐蚀;包装时卷材温度过高,或包装欠好,运送进程中受损坏。   14.划伤 热轧机辊道,导板粘铝,使热压板带划伤;冷轧机导板、夹送辊等有杰出尖角或粘铝;精整机列加工中被导路划伤;制品包装时,抬片抬放不妥。   15.元素分散 退火及淬火时,没有正确履行热处理准则,不合理地延伸加热时刻或进步保温温度;退火、淬火次数过多;热轧尾部或预先剪切机列没有按工艺规程要求切头切尾,使板片包铝层不合格而构成;错用了包铝板,运用铝板太薄。  16.过厚 原因同7“过薄”。    17.擦伤 吊运卷筒时不小心,易构成卷筒擦伤;送板带不正,轧制时将送歪的带板拉正,使带板与轧辊间发作相对磨擦;卷卷时张力选用不正确,卷取时张力小,开卷时张力大,轧辊把卷筒拉紧使板间发作错动;光滑油含沙锭油太多,轧制后卷筒上残留油不一样,开卷时圈与圈之间发作很细小的滑动构成擦伤。   18.过窄 剪切时圆盘剪距离调整过窄;热粗轧宽展余量缺乏;热精轧圆盘剪调节时,没有很好地考虑冷缩短量与剪切时的剪切余量。    19.过短 剪切时定尺不妥或设备呈现毛病。  20.镰刀形 热轧机轧辊两头辊缝值不同;导尺送带板不正,带板两头延伸不同;热轧机轧辊预热欠好,辊形不正确;乳液喷发不均或喷咀有阻塞;压光机轧制时板片未对中。   21.裂边 铸锭加热温度过低,热压时发作的裂边没有悉数切掉,冷轧后裂边扩展;热轧辊边量过小,或许发作裂边;压下率过大或过小;铸锭浇口部分未切掉,热轧时就会裂边;切边时两头切得不均,一边切得太少,或许发作裂边;退火质量欠好,金属塑性不行;包铝板放得不正,使一面侧边包铝不完全。   22.裂纹 铸锭自身裂纹或加热温度过高或过低;轧制率不适当引起紧缩。  23. 缩短孔 铸块质量欠好。   24.白斑驳 冷轧用的乳液不清洁,或新换乳液拌和不均。  25乳液痕 轧制时乳液没有吹净,使乳液卷进筒里;热精轧温度太低,乳液浓度太高;风管里有水,随空气吹到带板上。  26.包铝层错动 包铝板放得不正,热粗轧时金属包铝板和铸锭间发作错动;热粗轧轧制时铸块送得不正;焊合轧制时压下量太小,没有焊合上;对侧面包铝铸块辊边量太大;精整剪切及热精轧切边量不均,一边切得太少。    27. 洼陷(碰伤) 板片或卷筒在转移或停放进程中被磕碰;冷轧或退火时卡子打得欠好,以及退火料不洁净,有金属物或杰出物;冷轧时卷进硬的金属渣或其它硬东西。   28.松树枝状 冷轧时压下量太大,金属在轧辊间因为冲突力大,来不及活动而发作滑动;轧制液浓度太大,活动性欠好,不能均匀分布在板带面上,轧制后就会发作松树状;厚度显现仪器呈现毛病;冷轧张力太小。  29.压过划痕 热轧发作波涛或镰刀形,当其通过尾部给料辊、剪刀、三辊等时被划伤,及轧热机导板之划伤,并被压过;退火装料或转移次数多,使卷筒松层;热轧路途粘铝划伤带板,经冷轧后发作;冷轧机的路途,三辊、五辊呈现粘伤或滚动不灵,划伤、擦伤铝板,经轧制而发作;冷轧及热轧张力不稳定,张力巨细不匹配,或装卸卷时不小心,使层间错动擦伤板面。   30.硝石痕 淬火后洗刷不净,板片表面留有硝石痕压光前擦得不洁净。  31.印痕 冷轧机轧辊粘有金属残渣,或轧辊上带有印痕印在板面上;矫直和辊子上粘有金属残屑,未清辊或清辊不完全。矫直前金属残渣掉在板片上,经矫直而构成。   32.粘铝 在剪切机列上因矫直机辊子不洁净构成粘铝;精整时的一切多辊矫直机易粘伤片板面;热轧或冷轧时轧辊粘铝构成板带粘伤。   33.折伤 薄板转移不小心。   34.揉擦伤 淬火后板片弯曲度太大,相互擦伤;装卸料时不小心,或装料量太多,使板片相互错动。   35.横波 冷轧薄板时张力操控不妥,使卷筒内匝在卸卷时构成雀窝;轧制进程中中间泊车。   36.包铝层厚度不合格 热轧焊合压下量过大;热轧尾部或预剪切头切尾量太少;包铝板用错了;碱洗时刻过长。  37.油痕 冷轧今后板上残留轧制油。    38.滑移线 板片在拉伸时因拉伸量太大呈现的滑移线(沿途45°)方向。  39.水痕 淬火后未擦洁净,压光时压在板片上。  40.表面不亮 轧辊、压光辊、矫直辊光洁度不行,光滑功能欠好,太脏。   41.小黑点 在热轧板材进程中,因为高温乳液分化,分化产品与在轧制进程中因光滑欠好使轧辊与铝板冲突而发作的铝粉在高温下相互效果,发作“小黑点”混合于乳液中,通过轧制又压到铝板表面上,构成小黑点;乳液稳定性欠好,不清洁,光滑性欠好,用硬水制造,乳液喷发到轧辊上不均匀,及辊道不清洁,辊道、地沟、油管、油箱不清洁也易发作“小黑点”。  42.起皮 因为铣面质量欠好,加热铸块表面氧化,铸块自身质量欠好构成条状或块状起皮。  43.分层 在轧制进程中,带板端头或边部发作不均匀变形,持续轧制时分散而成。

铝及铝合金板带材压延过程中的板型控制研究

2019-01-08 17:01:49

文章刊于Lw2016论文集——作者胡冠奇(河南永登铝业有限公司) 摘要:本文讨论了铸轧辊型、轧制压力、张力、冷轧压下量、冷却强度及正负弯辊等工艺因素对板形的影响,合理搭配各工艺参数以获得良好的板形控制。 板形是板带材产品的重要质量指标之一,因此,生产过程中的板形控制是至关重要的问题。随着HC六辊轧机、VC变凸度轧机的诞生和板形控制技术的发展,实现了板形的高度自动化控制,提高了板形精度。但是这些轧机投资较大,对于普通轧机必须通过各工艺参数的合理调整以达到有效控制的目的。我公司技术人员通过多年的实际生产经验逐渐总结出了一系列行之有效的方法。下面主要探讨用铸轧坯料在Ф380/Ф1050×1800四辊不可逆轧机上板形控制的几个因素。 一  影响铸轧板坯板形的几个因素 1.铸轧辊型的影响。铸轧辊内通有连续的冷却水,带走铝液凝固时散出的热量。目前国内大部分连铸连轧机采用的是开放式冷却循环系统,水质没有达到软化要求或水中的机械杂质有可能堵塞辊芯的冷却水道,造成铸轧辊横断面上冷却强度不均匀,从而影响铸轧坯料横向板差(如图1所示)。因此,在铸轧生产中,在保证铸轧辊装配精度和车磨精度的同时,要尽可能采用密闭的软化冷却水系统,以避免辊芯堵塞而影响板形。2.铸轧辊套和辊芯的配合间隙不均匀。机械加工精度低或在使用过程中的辊芯腐蚀都会造成其间隙不均匀,从而使冷却不均匀,这种情况下要脱套堆焊辊芯。 3.铸轧辊轴承间隙要适中,一般控制在0.3mm——0.35mm,若间隙过小,影响轴承使用寿命,若间隙过大则会影响到铸轧坯的纵向板差。 4.铸咀口腔开口度和咀唇厚度要尽可能均匀。对于水平式连铸连轧机,在安装铸咀时压板受力要均 5.立板前保持一定的预应力,以消除牌坊的弹性变形。预应力的设定一般为额定轧制压力的三分之二。 6.驱动侧和操作侧的轧制压力。通过一定范围内的压力调整可使铸轧板坯横向厚差控制在规定的范围,从而保证板形的有利控制,对不同轧机和不同规格牌号的产品,轧制压力的大小对铸轧板坯的厚度影响不同。 7.张力。适当的张力可以在一定程度上对板形进行张力矫平,减轻粘辊现象并改善板形。 二  影响冷轧板形的几个因素 1.坯料板形要合乎使用要求。坯料的断面形状是获得良好板形的主要条件,具体控制前面已阐述。 2.工作辊原始凸度的影响。工作辊原始凸度的选定要依据辊身长度、刚度、合金状态、坯料宽度、压下量及轧制时的热凸度等综合因素而定,原则是尽可能不用或少用液压弯辊系统而能达到良好的板形,因此,选定工作辊原始凸度时要综合考虑。 3.正负弯辊。弯辊的作用是改变辊缝的形状,采用正弯时工作辊的挠度将减小,相当于增加了工作辊的原始凸度;采用负弯时,工作辊的挠度将增加,相当于减小了工作辊的原始凸度(如图2所示)。一般情况下,开坯道次由于压下量较大,工作辊的弯曲变形大,而且轧制速度较低,工作辊热膨胀小,这时应使用较大的正弯,之后道次随着速度的增加,工作辊的热凸度增加,这时应逐渐减小正弯,直至采用适当的负弯。4.张力对板形的影响。根据轧制理论我们知道张力能使轧制力减少,这样可以减轻主电机的负荷。同时张力的大小还影响到板形,因为张力改变了轧制压力,影响了轧辊的弹性弯曲,从而改变了辊缝形状。此外,张力促使金属沿横向延伸均匀,因此,在生产过程中适当调整张力,可以获得良好的板形。 5.压下量对板形的影响。为了较大限度地提高生产率,在合金塑性和设备能力允许的条件下应尽可能使用大压下量,一般靠前道次压下量较大,以充分利用合金的塑性,以后道次压下量适当减小,分配时要根据设备结构、装机水平和坯料情况综合考虑,压下量越大,轧辊的弯曲变形就越大,辊缝的形状会发生变化,同时要注意正负弯辊的恰当调整,以利于板形的控制。 6.轧制油冷却的影响。由于轧件和轧辊之间的磨擦和轧件自身变形产生的热量会使轧辊的温度不断升高,而且加工率大,轧制速度高时更为突出。为了保持连续稳定生产,必须及时把这部分热量带走,冷轧生产中常用轧制油冷却。但是由于轧辊受热和冷却条件沿辊身长度方向是不均匀的,如果不及时调整轧制油在辊身不同部位的强度和流量就会产生不同的波浪。生产过程中当出现中间波浪时可适当加大中间部分或减小两端的冷却量;当出现两边浪时,可适当增大两端部或减小中间部位的冷却量;当出现二肋浪时,可适当减小轧辊中间部位的冷却量或加大二肋部位的冷却量。这样,通过调整轧辊不同部位轧制油的分布达到控制板形的目的。 7.中间道次消除轧件内部应力以控制板形。如果坯料横断面厚度不均匀,在轧制过程中轧件沿宽度方向上的纵向延伸会不均匀,出现内应力。延伸较大部分的金属被迫受压,延伸较小部分的金属被迫受拉,当延伸较大部分所受附加压力超过临界时,就会形成不同的波浪现象,如果通过中间退火消除内压力,将会使板形到一定程度的控制,但是这样势必会增加能耗,因此,这种方法在生产过程中一般不可取。 三  结论 板形的好坏取决于板带沿宽度方向的延伸是否相等,这一条件是由轧前坯料横断面厚度的均匀性及辊型或实际辊缝开口形状所决定的。在生产过程中,首先要控制铸轧坯料的板形,同时在冷轧过程中要根据设备状况合理搭配工作辊原始凸度、压下量、正负弯辊、轧制速度、张力和冷却强度等工艺参数。 参考文献 [1]  傅祖铸主编.《有色金属板带材生产》.长沙:中南工业大学出版社。 [2]  马锡良著.《铝带坯连铸连轧生产》.长沙:中南工业大学出版社。 [3]  王祝堂,田荣璋主编.《铝合金及其加工手册》.长沙:中南工业大学出版社。

高压清洗机在铝板带清洗设备上的应用

2018-12-29 16:57:09

近些年来我国经济高速发展,各种行业对铝带、箔的需求越来越大,带动了铝塑带、PS基材、制罐料、电容器箔等高精度铝板带材的快速发展。这些产品对平直度、洁净度要求非常严格,而高精度铝带材通常是采用全油冷却润滑轧制的,其表面残留大量的轧制油和铝粉,因此要获得良好的表面质量,必须清洗掉表面残留物。另外对于板形要求较高铝带材还要进行拉弯矫直,拉弯矫直使带材在拉仲和弯曲的作用下,逐步产生塑性延仲并释放板材内应力,以改善板带材在冷加工时产生的波形、翘曲、侧弯和潜在的板形不良等缺陷,从矫直工艺考虑,首先必须对带材使用高压清洗机进行表面清洗。   铝板带(高压清洗机)清洗原理铝板带在冷轧制过程中,轧辊在铝板表面摩擦和碾压,其表面会产生细微的氧化铝粉脱落和吸附,轧制油及其附带悬浮成分会残留在铝板表面,对铝板带复合、涂装等成品加工造成一定的影响。而且拉弯矫直时由于带材在轧辊上产生剧烈弯曲变形,对带材施加的张力一部分转化为带材对轧辊的压力,并最终形成摩擦力。因此,如果带材表面未经清洗,变形时氧化铝粉脱落,随着油污一起附在轧辊的辊面,使辊面产生磨损,并造成铝板略伤,故必须通过特殊设计的清洗设备进行清洗。清洗就是利用压力泵对清洗介质加压,对带材表面进行非接触式冲洗或接触式刷洗,使材料表面的铝粉油污溶解脱落到清洗介质中,再经高压空气吹扫,甚至高温空气烘干,以获得洁净的铝带材。目前,铝加工行业的拉弯矫直机常用的清洗介质有清洗剂、软化热水、化学溶剂等。

钼铜合金铸铁

2017-06-06 17:50:09

     钼铜合金铸铁是轧辊的材质,轧辊是轧钢生产中的大型消耗配件,轧制钢材的数量和质量都与轧辊有着极为密切的联系。轧制过程自动化,连续化,重型化是现代轧制技术的发展方向。    其中铬是强碳化物形成元素之一,它加入铸铁时,形成复杂的铁-铬碳化物,这种化合物即使在很高的温度下也很稳定。普通铸铁中加入少量铬,其组织将发生显著变化,柔软的铁素体变成珠光体组织。且能增加碳在奥氏体中的溶解度,促进珠光体生成,减少甚至完全抑制铁素体的析出,同时铬也是珠光体细化元素,可大大提高珠光体组织强度。对于铁轧辊的使用要求,一般选0.4%-0.8%的铬含量比较适宜。另个化学元素钼对于铸铁具有温和的碳化物形成作用,在大多数铸铁中加入钼可使其物理性能获得满意的改善。钼可极为有效的提高铸铁的抗拉强度,并且使铸铁的硬度增加。具有较好的机械加工性能和优良的耐磨性。但钼在凝固时容易发生偏析,所以一般钼含量的选取范围在0.3%-0.5%。铜在铸铁中主要作为一个石墨化元素。在机械性能方面,特别是抗拉强度,抗弯强度和布氏强度几乎与所有铜的量成比例的增加,铜也可以提高韧性和硬度。在合金铸铁中加入铜还可增加铸铁的耐磨性,耐热性和耐腐性,也可以改善铸造性能。一般选铜含量0.7%-1.0%    结果表明铬钼铜合金铸铁作为轧辊的材质是比较可靠和稳定的。具有优越的抗高温氧化和耐热浸蚀性能。在常温和高温下具有良好的综合力学性能。铬钼铜合金铸铁化学成份分析仪,具体属性特点如下所示1、主要技术参数:◇分析方法:光电比色分析法◇量程范围:吸光度值0~1.999A 浓度值0~99.99%◇测量精度:符合GB223.3~5-88标准◇可测元素:硅、锰、磷、铜、镍、铬、钼、稀土、镁、钛、锌、铅、铝、铁等。2、主要特点:◇采用“智能动态跟踪”和“标准曲线的非线性回归”技术,测试结果数显直读,自动打印;◇采用微机控制及数据处理,储存9条可修正曲线,具有断电数据保护、自诊断功能;◇仪器设计合理,变更比色皿、改变称样量及合理利用曲线,可扩大测量元素的品种及含量范围;◇采用机外溶样,操作灵活、简单,无管道、无电磁阀腐蚀、老化问题。延长仪器的使用寿命。◇适用于生铸铁、球铁、碳钢、合金钢、合金铸铁等材料中的多元素分析。铬钼铜合金铸铁化学分析标准样品

铝及铝合金腐蚀的基本类型

2019-03-08 12:00:43

1.点腐蚀 点腐蚀又称为孔腐蚀,是在金属上发作针尖状、点状、孔状的一种为部分的腐蚀形状。点腐蚀是阳极反响的一种共同方式,是一种自催化进程,即点腐蚀孔内的腐蚀进程构成的条件既促进又足以保持腐蚀的持续进行。         2.均匀腐蚀 铝在磷酸与等溶液中,其上的氧化膜会溶解,发作均匀腐蚀,溶解速度也是均匀的。溶液温度升高,溶质浓度加大,促进铝的腐蚀。      3.缝隙腐蚀 缝隙腐蚀是一种部分腐蚀。金属部件在电解质溶液中,因为金属与金属或金属与非金属之间构成缝隙,其宽度足以使介质浸入而又使介质处于一种阻滞状况,使得缝隙内部腐蚀加重的现象称为缝隙腐蚀。     4.应力腐蚀开裂(SCC) 铝合金的SCC是在20世纪30年代初发现的。金属在应力(拉应力或内应力)和腐蚀介质的联合效果下所发作的一种损坏,被称为SCC。SCC的特征是构成腐蚀—机械裂缝,既能够沿着晶界开展,也能够穿过晶粒扩展。因为裂缝扩展是在金属内部,会使金属结构强度大大下降,严峻时会发作俄然损坏。SCC在必定的条件下才会发作,它们是:  ——必定的拉应力或金属内部有剩余应力;  板带材工艺废品品种及发作原因      1.贯穿气孔 熔铸质量欠好。      2.表面气泡 铸锭含氢量高安排疏松;铸锭表面凸凹不平的当地有脏东面,装炉前没有擦净;蚀洗后,铸块与包铝板表面有蚀洗残留痕迹;加热时刻过长或温度过高,铸块表面氧化;第一道焊合轧制时,乳液咀没有闭严,乳液流到包铝板下面。      3.铸块开裂 热轧时压下量过大,从铸锭端头开裂;铸块加热温度过高或过低。      4.力学功能不合格 没有正确履行热处理准则或热处理设备不正常,空气循环欠好;淬火时装料量大,盐浴槽温度不行时装炉,保温时刻缺乏,没有到达规则温度即出炉;实验室选用的热处理准则或实验办法不正确;试样规格形状不正确,试样表面被损坏。      5.铸锭夹渣 熔铸质量欠好,板片内夹有金属或非金属残渣。      6.撕裂 光滑油成分不合格或乳液太浓,板片与轧辊间发作滑动,金属变形不均匀;没有操控好轧制率,压下量过大;轧制速度过大;卷筒张力调整得不正确,张力不稳定;退火质量欠好;金属塑性不行;辊型操控不正确,使金属内应力过大;热轧卷筒裂边;轧制时光滑欠好,板带与轧辊冲突过大;送卷不正,带板一边发作拉应力,一边发作压应力,使边际发作小裂口,经屡次轧制后,从裂口处持续扩展,以致撕裂;精整时拉伸机钳口夹持不正或不均,或板片有裂边,拉伸时就会构成撕裂;淬火时,兜链兜得欠好或过紧,使板片压裂,拉伸矫直时构成撕裂。      7.过薄 压下量调整不正确;测厚仪呈现毛病或运用不妥;辊型操控不正确。      8.压折(折叠) 辊型不正确,如压光机轴承发热,使轧辊两头胀大,成果压出的板片中间厚两头薄;压光前板片波涛太大,使压光量过大,然后发作压折;薄板压光时送入不正简单发作压折;板片两头厚差大,易发作压折。      9.非金属压入 热轧机的轧辊、辊道、剪刀机等不清洁,加工进程中脏物掉在板车带上,经轧制而构成;冷轧机的轧辊、导辊、三辊矫直机、卷取机等触摸带板的部分不清洁,将脏物压入;轧制油喷咀阻塞或压力低,带板表面上粘附的非金属脏物冲刷不掉;乳液替换不及时,铝粉冲刷不净及乳液槽未洗刷洁净。      10.过烧 热处理设备的高温外表不精确;电炉各区温度不均;没有正确履行热处理准则,金属加热温度到达或超越金属过烧温度;装料时放得不正,接近加热器的当地或许发作部分过烧。      11.金属压入 加热进程中金属屑落到板带上经轧制后构成;热轧时辊边道次少,裂边的金属掉在带板上;圆盘剪切边质量欠好,带板边际有毛刺,紧缩空气没有吹净带板表面的金属屑;轧辊粘铝后,将粘铝块压在带板上;导尺夹得过紧,刮下来的碎屑掉在板上。      12.波涛 辊型调整得不正确,原始辊型不适合;板形操控系统呈现毛病或运用不妥;冷轧毛料原始板形差或断面中凸度过大;压下率、张力、速度等工艺参数挑选不妥;各品种型的矫直机调整得欠好,矫直辊辊缝空隙不一致,使板片薄的一边发作波涛;对拉伸矫直和拉弯矫直机,伸长率挑选不妥。      13.腐蚀 板片经淬火、洗刷、枯燥后,表面残留有酸、碱或硝盐痕迹时,通过一段时刻后板片就会遭到腐蚀;板带保管不妥,有水滴掉在板面上;加工进程中,触摸产品的辅助材料,如火油、轧制油、乳液、包装油等含有水分或呈碱性,都或许引起腐蚀;包装时卷材温度过高,或包装欠好,运送进程中受损坏。      14.划伤 热轧机辊道,导板粘铝,使热压板带划伤;冷轧机导板、夹送辊等有杰出尖角或粘铝;精整机列加工中被导路划伤;制品包装时,抬片抬放不妥。      15.元素分散 退火及淬火时,没有正确履行热处理准则,不合理地延伸加热时刻或进步保温温度;退火、淬火次数过多;热轧尾部或预先剪切机列没有按工艺规程要求切头切尾,使板片包铝层不合格而构成;错用了包铝板,运用铝板太薄。     16.过厚 原因同7“过薄”。      17.擦伤 吊运卷筒时不小心,易构成卷筒擦伤;送板带不正,轧制时将送歪的带板拉正,使带板与轧辊间发作相对磨擦;卷卷时张力选用不正确,卷取时张力小,开卷时张力大,轧辊把卷筒拉紧使板间发作错动;光滑油含沙锭油太多,轧制后卷筒上残留油不一样,开卷时圈与圈之间发作很细小的滑动构成擦伤。      18.过窄 剪切时圆盘剪距离调整过窄;热粗轧宽展余量缺乏;热精轧圆盘剪调节时,没有很好地考虑冷缩短量与剪切时的剪切余量。      19.过短 剪切时定尺不妥或设备呈现毛病。      20.镰刀形 热轧机轧辊两头辊缝值不同;导尺送带板不正,带板两头延伸不同;热轧机轧辊预热欠好,辊形不正确;乳液喷发不均或喷咀有阻塞;压光机轧制时板片未对中。      21.裂边 铸锭加热温度过低,热压时发作的裂边没有悉数切掉,冷轧后裂边扩展;热轧辊边量过小,或许发作裂边;压下率过大或过小;铸锭浇口部分未切掉,热轧时就会裂边;切边时两头切得不均,一边切得太少,或许发作裂边;退火质量欠好,金属塑性不行;包铝板放得不正,使一面侧边包铝不完全。      22.裂纹 铸锭自身裂纹或加热温度过高或过低;轧制率不适当引起紧缩。      23. 缩短孔 铸块质量欠好。      24.白斑驳 冷轧用的乳液不清洁,或新换乳液拌和不均。      25乳液痕 轧制时乳液没有吹净,使乳液卷进筒里;热精轧温度太低,乳液浓度太高;风管里有水,随空气吹到带板上。     26.包铝层错动 包铝板放得不正,热粗轧时金属包铝板和铸锭间发作错动;热粗轧轧制时铸块送得不正;焊合轧制时压下量太小,没有焊合上;对侧面包铝铸块辊边量太大;精整剪切及热精轧切边量不均,一边切得太少。      27. 洼陷(碰伤) 板片或卷筒在转移或停放进程中被磕碰;冷轧或退火时卡子打得欠好,以及退火料不洁净,有金属物或杰出物;冷轧时卷进硬的金属渣或其它硬东西。      28.松树枝状 冷轧时压下量太大,金属在轧辊间因为冲突力大,来不及活动而发作滑动;轧制液浓度太大,活动性欠好,不能均匀分布在板带面上,轧制后就会发作松树状;厚度显现仪器呈现毛病;冷轧张力太小。      29.压过划痕 热轧发作波涛或镰刀形,当其通过尾部给料辊、剪刀、三辊等时被划伤,及轧热机导板之划伤,并被压过;退火装料或转移次数多,使卷筒松层;热轧路途粘铝划伤带板,经冷轧后发作;冷轧机的路途,三辊、五辊呈现粘伤或滚动不灵,划伤、擦伤铝板,经轧制而发作;冷轧及热轧张力不稳定,张力巨细不匹配,或装卸卷时不小心,使层间错动擦伤板面。      30.硝石痕 淬火后洗刷不净,板片表面留有硝石痕压光前擦得不洁净。     31.印痕 冷轧机轧辊粘有金属残渣,或轧辊上带有印痕印在板面上;矫直和辊子上粘有金属残屑,未清辊或清辊不完全。矫直前金属残渣掉在板片上,经矫直而构成。      32.粘铝 在剪切机列上因矫直机辊子不洁净构成粘铝;精整时的一切多辊矫直机易粘伤片板面;热轧或冷轧时轧辊粘铝构成板带粘伤。      33.折伤 薄板转移不小心。      34.揉擦伤 淬火后板片弯曲度太大,相互擦伤;装卸料时不小心,或装料量太多,使板片相互错动。      35.横波 冷轧薄板时张力操控不妥,使卷筒内匝在卸卷时构成雀窝;轧制进程中中间泊车。      36.包铝层厚度不合格 热轧焊合压下量过大;热轧尾部或预剪切头切尾量太少;包铝板用错了;碱洗时刻过长。      37.油痕 冷轧今后板上残留轧制油。      38.滑移线 板片在拉伸时因拉伸量太大呈现的滑移线(沿途45°)方向。      39.水痕 淬火后未擦洁净,压光时压在板片上。      40.表面不亮 轧辊、压光辊、矫直辊光洁度不行,光滑功能欠好,太脏。      41.小黑点 在热轧板材进程中,因为高温乳液分化,分化产品与在轧制进程中因光滑欠好使轧辊与铝板冲突而发作的铝粉在高温下相互效果,发作“小黑点”混合于乳液中,通过轧制又压到铝板表面上,构成小黑点;乳液稳定性欠好,不清洁,光滑性欠好,用硬水制造,乳液喷发到轧辊上不均匀,及辊道不清洁,辊道、地沟、油管、油箱不清洁也易发作“小黑点”。      42.起皮 因为铣面质量欠好,加热铸块表面氧化,铸块自身质量欠好构成条状或块状起皮。      43.分层 在轧制进程中,带板端头或边部发作不均匀变形,持续轧制时分散而成。

坚持科技创新 冲破技术垄断——中国建材总院光掩膜基版用石英玻璃实现产业化

2019-01-03 10:44:25

集成电路用石英玻璃产品市场的主要份额集中在亚洲和欧洲国家,其生产技术在国际上属于高新技术,几年前,只有德、日、美等少数发达国家拥有这种技术,并实现机械化、自动化规模生产。近年来,中国建筑材料科学研究总院材料生产质量和加工水平的快速提升,使之具备了批量生产、销售该类产品的能力。石英玻璃属于典型的脆硬材料,光学冷加工难度大,加工效率低,其生产工艺较为复杂。中国建材总院项目组通过对精密加工技术的研发,引入或试制了多种精密加工设备,并开发、完善了集成开发掩膜版用高精度石英玻璃基片的精密加工技术与系统。中国建材总院建立的石英玻璃基板生产线,实现了产品的批量加工、高精度加工,在保证产量的同时其质量也能够完全满足IC产业光掩膜版用玻璃基板的高精度要求。 经中国建材总院研发整合、简化改良的基本生产工艺大致可以分为下图所示的六个环节:自然界当中的石英矿石往往含有多种杂质,将石英矿石粉碎、提纯可获取纯度较高石英砂。石英砂通过熔炼生成石英玻璃是国内最为常见的手段,而为了获取纯度更高的石英玻璃,则需通过化学手段。 中国建材总院利用多晶硅生产中的废弃物SiCl4为原料、以氯碱化工的副产品H2为能源、采用立式化学气相沉积(CVD:Chemical VaporDeposition)工艺合成石英玻璃。此方法制备石英砣的纯度更高,可以满足光掩膜版对于石英玻璃基板纯度的要求,中国建材总院拥有此项技术的知识产权。 在传统退火工艺的基础上,中国建材总院采用有限元软件ANSYS对石英玻璃退火过程的温度场进行模拟,借以研究退火参数对退火过程的影响。根据石英玻璃退火过程中温度场和应力场的特点创建了石英玻璃退火几何模型,模拟了升温及温度均匀后的温度和应力分布,为实际退火过程的参数优化提供了指导。 随着产品需求量的大增,传统的切割方式已无法满足规模化批量生产的需求,且存在极大浪费。在这种状况下,中国建材总院将多刀切割技术引入到石英玻璃光掩膜基片的生产之中,采用多刀切割技术可进行单次、同时、大量切割,生产效率大幅提高。多刀切割技术利用金属刀片与液体磨料的相互作用对石英玻璃进行切割,其成品端面平整精度较高。中国建材总院相关科研技术人员在研究如何高效、经济地进行多刀切割的过程中,解决了刀条断裂、玻璃片厚度不均、玻璃片表面沟槽等重点问题,综合粘接、排刀、上刀、切割整个过程,形成了独有的多刀切割工艺。 为满足不同厂家客户对于各类别规格石英玻璃基板尺寸的要求,中国建材总院配备了平面磨床、万能磨床、倒角机等各类成型加工仪器,并对多种仪器进行了改良。平面磨床主要对石英玻璃表面进行粗磨加工。万能磨床加工各类异型产品,实现石英玻璃基板尺寸的快速精密加工。为保证后续步骤的成品率并考虑到用户使用时的安全,中国建材总院利用改良的倒角设备对石英玻璃基板的锐边及客户要求的直边进行倒角。 石英玻璃的细磨与精抛原理相似,都是利用研磨液在某一特定压力下进行磨削的过程,精抛的加工精度要高于细磨。随着订单数量的增加及交付时间的缩短,传统的单面磨抛已无法满足当前市场。经过大量的研究实验,中国建材总院试制成功了精密双面研磨及抛光工艺,总结得到一系列的浆料筛选和配置参数。针对双面磨抛技术在石英玻璃厚度较薄的情况下极易出现各类缺陷等问题,中国建材总院经过尝试与改良,发现通过逐步加压法对石英玻璃基板进行加工,可防止因厚度偏差引起的崩边和破裂,极大地提高了加工速度及成品率。 十多年前,我国芯片制造技术还严重滞后于欧美及日本,近十年来随着国家的大力扶持以及行业前景持续向好,我国集成电路生产技术已取得令人瞩目的进步。未来,我国集成电路制造业的产能还将稳步增长。作为生产集成电路的配套消耗性材料,光掩膜基板用石英玻璃批量生产的意义不言而喻。中国建材总院将继续努力,优化各类生产工艺和研发性能更加完善的产品,为我国集成电路制造产业链提供保障。

铝箔高速轧制生产中遇到的铝卷起鼓现象分析

2018-12-07 13:52:39

一般认为铝箔合埋的单张轧制速度应达到轧机轧制设计速度的80%,丹阳铝业公司从德国ACIIENACH公司引进一台1500mm四辊不可逆铝箔粗轧机的设计速度为2000m/min,目前单张铝箔轧制速度基本在600m/miT,的水平,国内单张扎制速度一般为设汁速度的60%~70%。铝箔在高速轧制时常遇到起皱、串层,起鼓、板形不良等问题。任何缺陷都可能造成下道次报废,成材率大幅下降等问题。笔者就高速轧制生产中遇到的铝卷起鼓现象作一些定性分析,在双张箔的生产中,铝箔的轧制分粗轧、中轧、精轧三个过程,从工艺的角度看,可以大体从轧制出口厚度上进行划分,一般的分法是出口厚度大于或等于0.05mm为粗轧,出口厚度在0.013~0.05之间为中轧,出口厚度小于0.013mm的单张成品和双合轧制的成品为精轧。粗轧与铝板带的轧制特点相似,厚度的控制主要依靠轧制力和后张力,粗轧加工率厚度很小,其轧制特点已完全不同于铝板带材的轧制,具有铝箔轧制的特殊性,其特点主要有以下几个方面:(1)铝板带轧制。要使铝板带变薄主要依靠轧制力,因此板厚自动控制方式是以恒辊缝为AGC主体的控制方式,即使轧制力变化,随时调整辊缝使辊缝保持一定值也能获得厚度一致的板带材。而铝箔轧制至中精轧,由于铝箔的厚度极薄,轧制时,增大轧制力,使轧辊产生弹性变形比被轧制材料产生塑性变形更容易些,轧辊的弹性压扁是不能忽视的,轧辊的弹轧压扁决定了铝箔轧制中,轧制力已起不到像轧板材那样的作用,铝箔轧制一般是在恒压力条件下的无辊缝轧制,调整铝箔厚度主要依靠调整后张力和轧速度。(2)叠轧。对于厚度小于0.012mm(厚度大小与工作辊的直径有关)的极薄铝箔,由于轧辊的弹性压扁,用单张轧制的方法是非常困难的,因此采用双合轧制的方法,即把两张铝箔中间加上润滑油,然后合起来进行轧制的方法(也称叠轧)。叠轧不仅可以轧制出单张轧制不能生产的极薄铝箔,还可以减少断带次数,提高劳动生产率,采用此种工艺能批量生产出0.006mm~0.03mm的单面光铝箔。(3)速度效应。铝箔轧制过程中,箔材厚度随轧制度的升度而变薄的现象称为速度效应。对于速度效应机理的解释尚有待于深入的研究,产生速度效应的原因一般认为有以下三个方面:1)、工作辊和轧制材料之间摩擦状态发生变化,随着轧制速度的提高,润滑油的带入量增加,从而使轧辊和轧制材料之间的润滑状态发生变化。摩擦系数减小,油膜变厚,铝箔的厚度随之减薄。2)、轧机本身的变化。采用圆柱形轴承的轧机,随着轧制速度的升高,辊颈会在轴承中浮起,因而使两根相互作用受载的轧辊将向相互靠紧的方向移动。3)、材料被轧制变形时的加工软化。高速铝箔轧机的轧制速度很高,随着轧制速度的提高,轧制变形区的温度开高,据计算变形区的金属温度可以上升到200℃,相当于进行一次中间恢复退火,因而引起轧制材料的加工软化现象。制定铝箔轧制工艺的原则①总加工率的确定 总加工率是指箔材在经过再结晶退火后到轧制出成品,总的变形程度。一般来说,1系的总加工率可以达到99%以上,部分8系的产品也可以达到这个值,但是铝合金箔的总加工率一般在90%以下。②道次加工率的确定 道次加工率的确定是轧制工艺过程的核心,纯铝系列产品,其道次加工率可以达到65%,坯料退火后的第一道次,不宜采用过大的加工率,一般取50%左右。轧制厚度铝箔轧制时的厚度测量方法主要有涡流测厚、同位素射线测厚和X射线测厚。X射线测厚是在目前的铝箔生产中,尤其是高速铝箔轧机中使用最为普遍的一种测厚方法。铝箔轧制时的厚度控制方法:轧制力控制、张力控制、轧制速度控制、张力/速度、速度/张力控制。1起鼓的定义 起鼓是指卷取的铝箔表面沿轧制方向局部或连续凸起。其实质是该处铝箔较松,卷取后凸起的空隙率比平整处的大。随着起鼓的加重,起鼓部分会起杠、起皱甚至压碎2起鼓原因 铝箔轧制过程中,将会产生大量的变形热和摩擦热.使轧制变形区始终处于受热状态。如果变形区的轧辊局部温度过高。超出了轧制冷却油的最大冲冷却能力,使该处的热膨胀变大,则与之对应该处出口铝箔变松,如在铝箔卷取过程中无法将其展平。则该处卷取后的孔隙率比平整处的大,累积后就形成起鼓,在有些资料上将其称为热鼓。在实际生产中,造成铝卷起鼓的原因主要有以下几方面: (1)轧棍凸度大; (2)板形参数不合理。坯料中凸较大; (3)冷却液喷射压力不足或喷嘴阻塞; (4)工艺润滑油配制不合理 (5)支承辊有擦剐伤; (6)展平机压力大; (7)道次压下量大3原因分析及预防措施 (1)高速铝箔轧机轧辊的凸度在升速阶段阶段与正:常运行时其差别较大,升速时轧辊温度相对较低.凸度也小,特别是新辊,凸度相对更小。从升速到刮口标厚度的过程中,料面板形灯坏直植矽㈨到汁卷的打底质址。凸度小时,升速过程是料两侧偏松,待建立起一定的热凸度使料向平整所需打底就过长,料两侧因过松而形成起鼓;在展平辊压力的作用下,接下上的铝箔受底部起鼓料的影响,也将产生大量起鼓,不仅使底部升速困难,以因底部料大量起鼓无法使用而影响剔成材率。凸度大时,对升速打底质将有明显改善,但由于高速轧制叫的热凸度较大,常因中部板形过松而形成中鼓。 因此,根据出口侧打底时的板形情况及时调整轧辊凸度,保证打底的质量和正常轧制时的板形控制,是防止该类起鼓的措施之一,(2)所谓板形参数是指设定的目标板形曲线:典型目标板为一个抛物线,即中紧,边松的二次线,必要时可以根据需要进行修正。板形参数值要是依据在线出口板形情况和下道下序的生产情来定,如果道次板形参数的设定致使料的中凸,并与下道次的板形参数过渡又不当.中凸人的区变形区相对较长,轧辊中部的变形热较大,轧辊热度相对也大,料的中部板形偏松,就可能出现中部鼓现象。 因此板形参数的设计必须保证出门板形平整同时保证中部比边部略紧,即保持一定中高,还要考虑道次间板形参数的合理过渡。(3)高速铝箔轧机在粗中轧时,变形区将产生大变形热.轧制油的冷却作用对保持辊型、稳定轧制关重要,如果冷却油的喷射压力、流量不足,冷却效果就受影响,但在实际生产过程中,冷却油的压、流量都受监控。一般不会出问题。很多耐候是轧油的喷嘴填塞或是连接喷嘴的油管脱落、破裂等机械故障,导致实际喷射在工作区间内的冷却液流量和压力不足,冷却效果却大打折扣。使对应区域轧棍度偏高,板形偏松而起鼓、 因此,应定期检查喷嘴的喷射效果,一旦出现起鼓现象。及时停机检查喷液工作情况:这是防止该起鼓的措施之一。(4)实际铝箔轧制变形区大都处于混合润滑状。变形区内的微凸体因接触压力过高而发生边界膜破裂,导致金属直接接触,此时变形区内压力一部由流体承担.另一部分则由相接触的微凸体承担形区内的油膜厚度也随压下率的增加而减少。同时.在高速轧制状态下,大量的变形热将会导致变形温度上升,润滑油分子热运动加剧,定向吸附减少。油膜强度下降,甚至出现油膜破裂.金属表面开始出现擦伤、此时的绝对温度称为轧制油临界失效温度Τ。如果变形区局部温度超过了Τ,则边界会发生破裂,导致金属表面发生直接接触,从而使摩擦因数增加,磨损加剧,变形区温度也随之上升,这又进一步促进了油膜的破裂,此时金属表面发生直接接触的面积百分数M。将会迅速增加,热量在该处迅速积聚,导致该处出口料面变板而起鼓。 工艺润滑油不同其临界失效温度T,也不同,其温度与润滑基础油性能及添加剂配比有关。由添加剂分子所形成的听附膜的强度较大,可以在较高温度下不破裂,但不同配比的添加剂所形成的油膜强度和临界失效温度T,又不同。轧制油的合理配制对增强油膜强度、提高轧制速度非常重要。 一般轧制油的配制按照高油膜强度、低粘度、低油斑倾向的原则。首先选用合适的基础油(碳链在C10~C14之间0)及合适的添加剂比例(以复合型添加剂为主,酯2%~3%、醇1%~2%)同时应根据各厂生产的实际情况进行调整。配制过程中严格控制好轧制油的各项性能参数。(5)现代铝箔轧制都非常注重轧机机内环境的清洁卫生,清辊器就是针对轧制环境的清洁需要设备的。最早的清辊器一般用毛毡,它柔软、吸汕、对支承辊的磨损小;缺点是一旦卡有异物,不易清除,反而易擦伤支承辊,同时寿命短、不耐用。现在都采用聚胺酯胶片,它具有坚固耐用、易清理、更换方便等优点;但是如果胶片与支撑辊吻合不好,形成局部点接触或小面积接触,在高速轧制过程中,支承辊合因局部摩擦过热而受损伤,影响到工作辊,从而在料面留下伤痕。在下道轧制时,对应位置常出现起鼓。 因此,更换清辊器胶片或更换支承辊后必须检查清辊器胶片与支撑辊的压靠辊是否正常,同时调整好清辊器压力。生产时,注意观察料面的质量情况,是预防该类起鼓的措施之一。(6)展平辊对高速铝箔轧制的稳定进行非常重要,国外甚至有将伺服阀引入展平辊两侧参与压力控制的做法。一般平时讲的速度,都是指轧辊的线速度,而压靠在出口铝卷上的展平辊的速度要比轧辊的速度快20%~30,如果轧机速度为1500m/min,则展平辊线速度可达1800m/min~2000m/min,则展平辊线速度可达1800m/min~2000m/min。在如此高速状态下,展平辊的压靠状态对卷取质量有很大影响,如果压靠的铝卷上的压力大了,对料的的摩擦力增大。局部产生的热量也会使料发松起鼓。在实际生产中,常采用减小展平辊的压力、降低展平辊的磨削凸度的方法来减轻的消除起鼓。(7)提高道次压下率,有利于速度的提高,但是,增加道次压下率,意味着变形区长度增大,摩擦热和变形热增加,轧制变形区油膜的热稳定性下降。如果冷却油无法及时将变形区的热量带走,就有可能造成局部热量的积聚而形成起鼓。 因此,应根据来料性质和设备的冷却能力合理分配好道次压下率。一般可控制在52%左右。

金属带及其制造方法

2018-12-12 17:59:49

本发明金属带及其制造方法,该方法将一对轧辊中的至少一个构成其外周面由许多凹部组成,为进行模形加工的模型辊、对此模型辊外周面供给金属粉末,在上述凹部,使金属粉末落入凹部内,同时使金属粉末在除了凹部外的外周面上堆积,使一对轧辊回转,直接对外周面上金属粉末进行轧制,制成具有规定模形孔的多孔性金属带,可把用其它方法制造的金属多孔体或无孔实心金属带在此金属带上层合,具有能以简单工序制造厚度很薄金属带等优点。

铝箔的质量好坏怎么分辨?

2018-08-07 20:04:32

购买铝箔的过程中,一定要独具慧眼,好坏检测铝箔的质量好坏,才能购买,那 铝箔 的质量如何分辨?铝箔生产过程中需要经过多道工序,要经过轧制、精整、退火、包装等,而其中任何一个环节出现问题都有可能导致铝箔质量有问题。很多铝箔质量的好坏,有时候肉眼可辩就可以看出来,下面来介绍一下铝箔的质量如何分辨。1.针孔铝箔材的主要缺陷是针孔问题。原料中,轧辊上,轧制油中,甚至空气中的尘埃尺寸达到6μm左右进入辊缝均会引起针孔,所以6μm铝箔没有针孔是不可能的,只能用多少和大小评价它。当然采用合金化等手段改善材料的硬化特性也有助于减少针孔。优质的热轧材轧制的6μm铝箔针孔可在100个/㎡以下。铸轧材当净化较好时,6μm铝箔针孔在200个/㎡以下。2.暗纹暗面条纹大都出现在双合产品上,暗面有沿轧制方向的明显的明暗相间的条状花纹,影响美观。3.暗面色差铝箔表面纵向的呈条状凸起,手触有明显凸凹感,有时除去外层铝箔后消失,有时贯穿整卷铝箔。4.表面气泡出现表面气泡缺陷的铝箔,其箔材表面会有不规则的圆形或条状空腔凸起;凸起的边缘圆滑,两面不对称,分布无规律,表面气泡使铝箔带各点的受力不均衡,很有可能导致拉断停机。5.铝箔碰伤、擦伤、划伤铝箔碰伤是指箔材在搬运或存放过程中,与其他物体碰撞后在表面或端面产生的损伤。碰伤的情况大多是由于铝箔包装时不注意造成的。擦伤:由于物料间棱与面、或面与面接触后发生的相对滑动在箔材表面造成的成束(或组)分布的伤痕。划伤:箔材表面呈现的断续或连续的沟状伤痕。一般在尖锐物与箔材表面接触后相对滑动时产生。6.印痕有多种情况会导致铝箔表面出现印痕,如轧辊或导辊表面有缺陷或者粘有金属屑等脏物,套筒或管芯表面不清洁或局部存在光滑凸起,或者卷取时箔材表面粘有异物等等。出现印痕的箔材表面一般会存在单个或周期性的凹陷或凸起,很容易辨别。7.油斑常见的铝箔油污是退火后形成的,一般呈淡黄色、棕色,黄褐色斑痕。另外还有除油不净,检测除油是否干净,一般是在退火后,采用刷水方法检测脱脂等级,未达到刷水试验规定的级别的,铝箔上就有可能带有油。8.腐蚀铝箔表面与周围介质接触,发生化学反应或电化学反应后,在铝箔表面产生的缺陷,被腐蚀的铝箔表面会失去光泽,严重时还会产生灰色腐蚀产物。被腐蚀后的铝箔对终端生产出来的产品美观程度会产生很大的影响。9. 起皱由于板形严重不良,在铝箔卷取或展开时会形成皱折,其本质为张力不足以使箔面拉平。10.裂边铝箔表面纵向边部破裂的现象,称裂边。严重时边部可见明显缺口。11. 水斑水斑是指在轧制前有水滴在箔面上,轧制后形成的白色斑迹,较轻微时会影响箔面表面状况,严重时会引起断带。水斑是由于油中有水珠或轧机内有水珠掉在箔面上形成的,控制油内水分和水源是避免水斑的惟一措施。12. 粘连铝箔卷单张不易打开,多张打开时呈板结状,产品自由垂落长度不能达到标准要求,严重时,单张无法打开,铝箔粘连会严重影响产品生产。13.板型不良由于不均匀变形使箔材表面局部产生起伏不平的现象,称为板型不良。根据缺陷产生的部位,分为中间波浪、边部波浪、二肋波浪及复合波浪等。14.辊印、辊眼、光泽不均它主要是轧辊引起的铝箔缺陷,分为点、线、面三种。最显著的特点三周期出现。造成这种缺陷的主要原因为:轧辊不正确的磨削;外来物损伤轧辊:来料缺陷印伤轧辊;轧辊疲劳;辊间撞击、打滑等。所有可以造成轧辊表面损伤的因素,均可对铝箔轧制形成危害。因为铝箔轧制辊面光洁度很高,轻微的光泽不均匀也会影响其表面状态。15.松卷由于分切时卷取不紧,沿管芯方向立拿箔材时,箔材发生层间错动;用手指按压箔材时,可产生局部凹陷的现象。16.开缝开缝是箔材轧制特有的缺陷,在轧制时沿纵向平直地裂开,常伴有金属丝线。开缝的根本原因是入口侧打折,常发生在中间,主要由于来料中间松或轧辊不良。严重的开缝无法轧制,而轻微的开缝在以后的分切时裂开,这往往造成大量废品。17. 厚差厚差难于控制是铝箔轧制的一个特点,3%的厚差在板材生产时也许不难,而在铝箔生产时却非常困难。原因在于厚度薄,其他微量条件均可造成影响,如温度、油膜、油气浓度等。铝箔轧制一卷可达几十万米,轧制时间长达10h左右,随时间延长,厚差很易形成,而对厚度调整的手段仅有张力速度。这些因素均造成了铝箔轧制的厚控困难,所以,真正控制厚差在3%以内,需要许多条件来保证,难度相当大。18.毛刺、翘边剪切后,箔材边部存在的大小不等的刺状物。翘边:铝箔卷两端或一端向上翘起的现象,称为翘边,其特征为铝箔卷边向上部翘起,可以用手去触摸一下,会有明显凹凸感。19.亮点、亮痕、亮斑双合面由于双合油使用不当引起的亮点、亮痕、亮斑,主要是因为双合油油膜强度不足,或轧辊面不均引起轧制不均变形,外观呈麻皮或异物压入状。选用合理的双合油,保持来料清洁和轧辊的辊面均匀是解决这类缺陷的有效措施。20.错层铝箔卷端面层与层之间不规则错动,造成端面不平整。21.皱纹、起皱皱纹:铝箔表面呈现的细小的、纵向或斜向局部凸起的、一条或数条圆滑的沟槽。起皱:铝箔卷表面无法展平的纵向或横向皱折。22.塔形铝箔端面层与层之间的错动造成塔状偏移,称为塔形。塔形是错层的特例,侧边看起来就像一个塔尖。23.黑线、亮线、白条黑线:铝箔表面纵向连续的暗线,产生部位与其他部位有明显的色泽差异。亮线:与暗线相似,亮线是铝箔表面出现纵向连续的亮条,产生部位与其他部位有明显的色泽差异。白条:铝箔表面沿轧制方向、宽度或间隔不等的白色条纹。一般对应铸轧带下表面出现,条纹多集中在铝箔中间、两肋位置,随着铝箔的压延减薄,条纹呈明显加重趋势24.端面花纹铝箔端部局部或整卷上看,管芯处沿壁厚呈放射状花纹;开卷后该处铝箔边部有轻微波浪。25.箭头铝箔卷端面上一定层数在同一处由内向外处的凸起,凸起程度由内向外或由外向内逐渐减弱。26.横纹、人字纹横纹:铝箔表面横向有规律的细条纹,一般呈白色,无凹凸感,有时在卷材局部,有时布满整个表面,同样影响美观。人字纹:箔材表面呈现的有规律的人字形的花纹,一般呈白色,表面有明显的色差,但十分光滑。27.起鼓铝箔表面纵向的呈条状凸起,手触有明显凸凹感,有时除去外层铝箔后消失,有时贯穿整卷铝箔。28.气道由于熔体氢含量偏高,造成铝箔在轧制过程中出现的沿轧制方向的条状压碎,有一定宽度。29.非金属压入非金属夹杂压入箔材表面,表面呈明显的点状或长条状黄黑色缺陷,这个能够比较明显看出来。以上即为铝箔常见的质量缺陷,大家在购买铝箔时注意甄别。

铝加工技术

2017-06-06 17:50:10

铝加工技术概论&nbsp; 世界铝(包括再生铝) 产量 的85%以上被加工成板、带、条、箔、管、棒、型、线、粉、自由锻件、模锻件、铸件、压铸件、冲压件及其深加工件等铝及铝合金产品。铝及铝合金材料的主要形式方法有铸造成型法、塑性成型法和深加工法。(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 制造成型法。铸造成型法就是利用铸造铝合金的良好流动性和可填充性,在一定温度、速度和外力条件下,将铝合金熔体浇注到各种模型中,以获得具有所需形状与组织性能的铝合金铸件和压铸件的方法。(2)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 塑性成型法。铝及铝合金的塑性成型法就是利用铝及铝合金的良好苏醒,在一定的温度、速度条件下,施加各种形式的外力,克服 金属 对于变形的抵抗,使其产生塑性变形,从而得到各种形状规格尺寸和组织性能的铝及铝合金板、带、条、箔、管、棒、型、线和锻件等的加工方法。(3)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 深加工法。深加工法是将铸造或塑性成型法所获得的半成品进一步通过表面处理或表面改性处理、机械加工或电加工、焊接或其他接合、剪断、冲切、拉伸、弯曲等方法,加工成成品零件或部件的方法。本部分着重论述铝材塑性成型技术,也称铝加工技术。1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2铝及铝合金加工材的分类目前,世界上已拥有不同合金状态、形状规格、品种型号、各种功能、性能和用途的铝及铝合金加工材十余万种,通常分类如下1.2.2 按形状与规格分类铝及铝合金材料按形状与规格分类如下:(1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 按产品形状分类。按产品形状铝材主要可分为板、带、条、箔、管、棒、型、线、粉、锻件和模锻件、冷压件等。(2)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 按断面积或质量大小分类。按断面积或质量大小,铝及铝合金材料可分为特大型、大型、中型、小型和特小型等几个类别。如投影面积大于2m2的模锻件,断面积大于400cm2的型材,质量大于10kg的压铸件等,都属于特大型产品;而断面积小于0.1cm2的型材,质量小于0.1kg的压铸件等都称为特小型产品。(3)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 按产品的外型轮廓尺寸分类。按产品的外型轮廓尺寸、外经或外接圆直径的大小,铝及铝合金材料也可以分为特大型、大型、中小型和超小型几个类别。如宽度大于250mm、长度大于800mm的型材为特大型型材,而宽度小于10mm的型材为超小型精密型材等。(4)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 按产品的壁厚分类。按产品的壁厚铝及铝合金产品可分为超厚、厚、薄、特薄等几个类别。如厚度大于150mm的板材为超厚板,厚度大于8mm的为厚板,厚度为2-8mm的为中厚板,厚度为2mm以下的为薄板,厚度小于0.5mm的板材为特薄板,厚度小于0.20mm的为铝箔等。有关铝及铝合金的产品品种、形状与规格范围将在其他章节详细论述。1.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3铝加工方法的分类与特点铝及铝合金塑性成形方法很多,通常按工件在加工时的温度特征和工件在变形过程中的受力与变形方式(应力-应力状态)来进行分类。1.3. 1按工件在加工过程中的温度特征分类按工件在加工过程中的温度特征,铝及铝合金加工可分为热加工、冷加工和温加工。1.3.1.1热加工热加工是指铝及铝合金锭坯在再结晶温度以上所完成的塑性成形过程。热加工时,锭坯的塑性较高而变形抗力较低,可以用能力较小的设备生产变形量较大的产品。为了保证产品的组织性能,应严格控制工件的加热温度、变形温度、与变形速度、变形程度以及变形终了温度和变形后的冷却速度。常见的铝合金热加工方法有热挤压、热轧制、热顶锻、液体模锻、半固态成形、连续铸轧、连铸连轧、连铸连挤等。1.3.1.2冷加工冷加工是指在不产生回复和再结晶的温度以下所完成的塑性成形过程。冷加工的实质是冷加工和中间退火的工艺组合过程。冷加工可得到表面光洁、尺寸精确、组织性能良好和能满足不同性能要求的最终产品。最常见的冷加工方法有冷挤压、冷顶锻、管材冷轧、冷拉拔、板带箔冷轧、冷冲压、冷弯、旋压等。1.3.1.3温加工温加工是介于冷、热加工之间的塑性成形过程。温加工的主要目的是为了降低 金属 的变形抗力和提高 金属 的塑性性能(加工性),最常见的温加工方法有温挤、温轧、温顶锻等。1.3. 2按工件在变形过程中的受力与变形方式分类按工件在变形过程中的受力与变形方式(应力-应变状态),铝及铝合金加工可分为轧制、挤压、拉拔、锻造、旋压、成形加工(如冷冲压、冷变、深冲等)及深度加工等,如图1-1所示。图1-1铝加工按工件的受力和变形方式的分类1.3.2.1轧制轧制是锭坯依靠摩擦力被拉进旋转的轧辊间,借助于轧辊施加的压力,使其横断面减小,形状改变,厚度变薄而长度增加的一种塑性变形过程。根据轧辊旋转方向不同,轧制又可分为纵轧、横轧和斜轧。纵轧时工作轧辊的转动方向相反,轧件的纵轴线与轧辊的轴线相互垂直,它是铝合金板、带、箔材平辊轧制中最常用的方法;横轧时,工作轧辊的转动方向相同,轧件的纵轴线与轧辊轴线相互平行,在铝合金板带材轧制中很少使用;斜轧时,工作轧辊的转动方向相同,轧件的纵轴线与轧辊轴线成一定的倾斜角度。在生产铝合金管材和某些异形产品时常用双辊或多辊斜轧。根据辊系不同,铝合金轧制可分为两辊(一对)系轧制,多辊系轧制和特殊辊系(如行星式轧制、V形轧制等)轧制。根据轧辊形状不同,铝合金轧制可分为平辊轧制和孔型辊轧制等。根据产品品种不同,铝合金轧制可分为板、带、箔材轧制,棒材、扁条和异形型材轧制,管材和空心型材轧制等。1.3.2.2挤压挤压是将锭坯装入挤压筒中,通过挤压轴对 金属 施加压力,使起从给定形状和尺寸的模孔中挤出,产生塑性变形而获得所要求的挤压产品的一种加工方法。按挤压时 金属 流动方向不同,挤压又可分为正向挤压反向挤压和联合挤压。正向挤压时,挤压轴的运动方向和挤出 金属 的流动方向一致,而反向挤压时,挤压轴的运动方向与挤出 金属 的流动方向相反。按锭坯的加热温度,挤压可分为热挤压和冷挤压。热挤压时是将锭坯加热到再结晶温度以上进行挤压,冷挤压是在室温下进行挤压。1.3.2.3拉拔拉拔是拉伸机(或拉拔机)通过夹钳把铝及铝合金坯料(线坯或管坯)从给定形状和尺寸的模孔中拉出来,使其产生塑性变形而获得所需的管、棒、型、线材的加工方法。根据所生产的产品品种和形状不同,拉伸可分为线材拉伸、管材拉伸、棒材拉伸和型材拉伸。管材拉伸又可分为空拉、带芯头拉伸和游动芯头拉伸。拉伸加工的主要要素是拉伸机、拉伸模和拉伸卷筒。根据拉伸配模,拉伸可分为单模拉伸和多模拉伸。1.3.2.4锻造锻造是锻锤或压力机(机械的或液压的)通过锤头或压头对铝及铝合金铸锭或锻坯施加压力,使 金属 产生塑性变形的加工方法。铝合金锻造有自由锻和模锻两种基本方法。自由锻是将工件放在平站(或型站)见进行锻造;模锻是将工件放在给定尺寸和形状的模具内,然后对工件施加压力进行锻造变形,而获所要求的模锻件。1.3.2.5铝材的其他塑性成形方法铝及铝合金加工材中以压延材(板、带、条、箔材)和挤压材(管、棒、型、线材)应用最广, 产量 最大,据近年的统计,这两类材料的年 产量 分别占世界铝材总年 产量 (平均)的58%和39%左右,其余铝加工材,如锻造产品等,仅占铝材总 产量 的百分之几。&nbsp;&nbsp; 更多有关铝加工技术请详见于上海 有色 网<

基于辊缝动态摩擦方程的铝板冷轧机垂振机理分析

2019-01-11 09:43:18

板带冷轧机这一多质量、旋转运动体系统,在其高速、瞬态轧制过程中,时常会发生轧机振动现象。当轧制工艺、设备和控制等参数配合良好时,这种振动现象并不会明确体现。但是,一旦轧机运行状态超出对产品的精度要求或设备的承受能力,便会导致轧机振动的频繁发生。在带钢冷连轧过程中经常出现的传动系统扭转振动、垂直振动及垂扭耦合振动等振动形式中,以垂向系统的三倍频振动危害较大,它轻则会对轧件产品的板厚-板形质量指标造成不良的影响,重则会导致轧机设备的损害。    北京科技大学的学者针对高速铝板轧制过程中频繁出现的冷轧机垂直振动现象,结合轧制工艺润滑原理和机械振动理论,建立基于辊缝动态摩擦方程的轧机垂直振动模型。该模型由辊缝几何形状模型,轧辊-轧件工作界面的动态摩擦模型,变形区内的正向轧制应力、摩擦应力分布模型,以及单机架铝板冷轧机二自由度垂向系统结构模型组成。同时,为研究轧辊--轧件工作界面动态摩擦机制影响下的冷轧机垂振机理及系统稳定性,采用某厂单机架铝轧机设备及工艺参数,搭建Matlab/Simulink平台,分别模拟仿真轧制压力和正向轧制应力曲线,验证该模型的有效性;并讨论分析了变形区混合摩擦状态,轧辊--轧件表面粗糙度、轧件入口厚度与系统稳定性的关系。

废钢铁的种类(2)

2018-12-14 15:07:41

另外,根据合金及杂质含量高低、供应状态的不同,废铁还有以下几种特殊类型。            (1) 合金废铁 合金废铁指在废铁中的铜、钼、镍含量分别大于 0.30% 、 0.20% 、 0.30% 的废铁。典型的合金废铁有合金轧辊、球墨轧辊等。合金废铁有两种,一种是合金生铁,系用含共生金属如铜、钒、镍等的铁矿石炼成的生铁;另一种是合金铸铁,系有意识的加入一些合金元素配制炼成的生铁。            (2) 高硫磷废铁 指含硫量和含磷量分别大于 0.12% 和 1.0% 的废铁。主要用于锅铁、火烧铁(炉条、炉蓖、热风炉管)等。            (3) 铁屑 来自车、铣、钻、刨、磨、锯、锉等机加工过程。治炼入炉前,以铁屑压块形式供应,密度大于 3t/m3.            (4) 高炉填加料 小渣铁、氧化屑等都属于高炉填加料,其含铁量应在 65% 以上,可以直接转化为粗钢。.

螺纹钢在做冷弯时有裂纹应力集中造成

2019-02-18 15:19:33

1)  螺纹钢在做冷弯时有裂纹应力会集形成。月牙肋钢筋其横肋与内径表面相交处因无圆角过渡,轧制过程中发生的不均匀变形,会使横肋根部与基体表面之间发生拉应力,钢筋在冷弯过程中,受曲折应力的效果,第一章棒线材在轧钢筋受曲折部位的表面一直处于拉应力状况,这种剩余拉应力的存在,使得横肋根部的塑性、耐性远小于摹圆部分的塑性、耐性。其抗开裂才能大为下降。并且此应力值可随着横肋斜角视点添加而使应力集巾的趋势更加显着.在冷弯过程中此处发生裂纹的可能性就愈大。  2) 前滑影响。因为前滑的存在,轧件在某点的线速度大于轧辊在该点的线速度,形成轧辊槽底刮擦横肋,导致横肋底部发生微裂纹,但此刻裂纹较细微,制品查验时不容易发现,冷弯时则成为重要裂纹源。

烧结钕铁硼制作工艺流程

2019-02-25 13:30:49

配料→ 熔炼→ 破碎→ 制粉→ 压型→ 烧结 回火→ 磁性检测→ 机加工→ 表面处理→ 制品 首要设备:熔炼炉,破碎机组,气流磨,成形压机,真空封装机,等静压机,烧结炉,磁功用测试仪,无芯磨床,平面磨床,切片机,线切割机,车床,钻床,异形磨床,表磁计,磁通表等。 1、 配料:依据各种产品要求,选用不同配方,准确计量各种材料,其间纯铁需求除氧化层。 2、熔炼:依据要求不同,有普通熔炼炉,速凝甩带熔炼炉。熔炼炉:在高真空炉室内,运用中频2500Hz电源,依托电磁感应,使材料加热至1650°C左右,使材料彻底消融,充沛混合。在具有快速水冷却的相应锭模内快速浇铸成形。经过必定时刻,彻底冷却至50°C时出炉;速凝甩带熔炼炉:其作业原理和普通熔炼炉相同,区别在浇铸成形方法的不同,速凝甩带熔炼炉的浇铸是缓慢操控熔液慢速浇在高速旋转的水冷铜滚上,在离心力的效果下,构成0.3—0.5的薄片,待材料冷却冷至50°C时出炉。出炉产品表面不得有氧化现象,经品管查验合格进入下一工序。 3、破碎:详细分为机械破碎和氢破炉破碎。先用鄂破机将大块钢锭破成小块料,再用中碎机在氮气维护下破坏成0.5mm3巨细的粉料。粉料用抽真空、充氮维护桶装运,进行下一步制粉工序。如是甩带片可直接进入中碎机。氢破产品可直接进入下一步制粉工序。 4、 制粉:用气流磨将中碎机桶装粉料(0.5mm3),以氮气为介质,依据颗粒破撞原理,选用多喷发,将较大颗粒破坏。再经过必定转速的分选轮分选出必定粒度粉体3-6μm,再经过旋风别离器进行气固别离,进入粉料容器。经过混粉机组进行混料进程,就能进入下一个工序压型。 5、压型:将粉料投入模具,在必定外磁场效果下,用油压机制成所需求的规格形状的进程。充氮维护粉料容器内的粉料,在氮气排氧空间内,用手艺方法或主动方法进行工艺需求的粉料单模称重。采纳袋装或氮气维护下的粉料盒,投入成型模具料腔内,在强磁场效果下,进行取向,限制,再经过相应的反向磁场退磁,取出料块,快速进行真空封装。真空封装一般有2层,第一层选用0.03mm左右的聚乙烯薄膜手艺包装以维护料块的边角。装入相对较厚的第二层0.08mm左右的聚乙烯膜袋中。放入真空封装机内,进行抽气,排气,热封,取料进程。以上进程所限制的料块相对密度较小,且密度散布不均匀,为进步料块密度,改进密度散布均匀性,需用等静压机进行二次加压。将封装无缺的料块装入等静压机腔体内密封,用液压油或水作介质,加压至20MP左右,坚持必定时刻(3-8秒)后放压取料,放置在滤油台上。依据班组指令进行剥拆包装作业。将无缺的料块装入烧结料盒,放入具有抽气充氮功用的周转容器,预备装炉,进入下一工序。 6、烧结(回火):在高真空空间内,用高温效果于产品,使产品内部固体颗粒彼此键联,晶体空地(气孔)和晶界渐趋削减,经过物质的传递,使其总体积缩短,密度添加,最终成为具有某种显微结构的细密多晶烧结体的进程。将装有料块的料盒放置在真空烧结炉的活动炉架上,摆放规整,加盖,推入熔室,关上炉门,逐渐起动真空机组,待真空上升到必定数值时(5*10-2Pa),发动加热烧结程序,完结整个烧结进程。完结后,充入氩气,开动风机,快速冷却至70°C时,再抽真空5*10-2Pa时,发动加热回火程序。完结后,充入氩气,快速冷却至70°C,进行第二步时效。整个进程完结后,待冷却至50°C时,放气,开门,出炉,由检测人员取样。检测合格后,可进库待用。至此整个毛坯生产进程完结。可依据订单需求进行制品生产进程。回火程序是安稳和进步内禀矫顽力的进程。

废旧铝资源的再生利用

2019-01-30 10:26:21

一、引言     2007年全球铝的表现消费总量为53.000kt。其中以回收的废旧铝熔炼的再生铝占总消费量的30.2%,即约16.000kt左右。全世界每年回收的废旧铝约有32%流入变形铝合金领域,也就是用其加工成铝材。其余的再生成铸造铝合金。在工业发达的国家有两类再生铝合金厂:再生变形铝合金锭坯厂与铸造铝合金锭厂或再生铝合金厂。     1981年-2007年,我国原铝的表观消费总量为74,7111.4kt;匡算的废铝表观消费总量约21,290kt;铝的总表观消费量约96,000kt。笔者认为这96,000kt铝制零部件及铝制品就是积蓄在中华大地上的铝。当然有一部分从以装备及产品的形式出口了。但是在进口的机器与装备及产品中也含有铝。     用大部分废旧制备变形铝合金锭,然后加工成各种铝材不但外国有,中国也有。其均取得了较好的经济效益与社会效益。其应当必须转变以再生铝加工用铝合金锭不出性能合格与组织符合要求的铝材形理念,以建立全面的与科学的发展观。     二、废旧铝资源的再生利用状况     废旧铝是一种宝贵资源。最大限度地有效回收与利用废旧铝对发展循环经济、节约资源及能源、减少温室气体及有害物质排放有着特别重要的意义。铝制品及铝合金零部件在使用期满报废后具有很高的再生与可利用性。在当前的结构材料中,铝的可回收性是最高的。下面简单地介绍一下各种废旧铝再生利用的情况:     (一)以废旧铝锭生产优质铝材     以废旧铝熔铸的锭加工优质铝材的企业世界上早已有之。最典型的企业有:用从社会上回收的废易拉罐再生铝锭轧制罐料的工厂;用回收的废铝电线、电缆再生铝锭拉制导线的工厂;用废门窗与结构铝材经再生后,再进行挤压6063合金型材的工厂以及用废建筑板再生成扁锭,然后轧制成建筑板带材的工厂等。废旧铝最有效的利用就是将其再生成原来的半成品型材。     (二)易拉罐生产-使用-回收循环。     截止2007年未,世界上可生产罐料的国家有美国、德国、日本、法国、韩国、澳大利亚、巴西以及中国等。但建有废旧罐料再生利用生产线的国家只有美国、德国、日本、法国与巴西等。因为必须具备3个条件才有建废旧再生利用生产线的可行性:即罐料的表观消费量大于200kt/a;易拉罐的回收率大于50%;有一个工厂的罐料总产量达100kt/a。中国西南铝业(集团)有限公司2007年的3104合金制罐材产量为34.735kt/a。2011年其产量可能超过80kt/a。因此其具备了开始筹建一条生产能力为50kt/a废旧易拉罐的再生利用铝合金生产线的条件。2008年其开始筹建,可于2010年未或2010年上半年即可投产。     废旧易拉罐再生利用生产线最好建在罐料轧制厂。当然也可以单独建厂。即建在废旧铝资源丰富的地区。但是必须在轧制厂的严密管理与监控下,以确保产品的成份与冶金组织之均匀性和稳定性,并且满足某些特殊的要求。     (三)废旧建筑型材的再生利用。     废旧建筑铝型材的来源有二:一是以报废建筑物拆下的门窗与装饰件或各种到期的,并且需要更换的铝件;二是社会上的门窗企业与装潢企业进行加工铝件的工艺废料(不含挤压企业所属门窗车间的加工废料)。建筑物中铝件的使用期限长,通常超过30a。铝结构件中的铝件的使用期限有的较短,有的较长,即超过50a。建筑与结构废铝是一种很宝贵的再生资源。因为使用的合金单一,所以其成份稳定。又因为此种废铝件体大且重,所以其进行再生熔炼时烧损少。     在废旧建筑铝材、结构铝材及建筑结构铝材等生产集中度高的地区建设6063合金圆锭专业生产厂。其废料量应占原料的93%以上(含挤压厂的工艺废料),并且仅用少量的新金属(原铝锭与中间合金)。2007年6月中铝公司开始在广东佛山市大沥镇建设中铝南海合金有限公司。这是中国首家以废旧建筑及结构铝材生产优质挤压圆锭的专业化企业。其一期建设规模为110kt/a;二期规模为200kt/a,从而成为全球最大的再生挤压圆锭厂。2007年未大沥镇有97家铝型材挤压厂。其挤压型材能力约850kt/a;其产量占全国总产量的31.5%。但其多数企业熔铸技术与设备落后,并能耗高,环境污染严重。中铝南海合金有限公司的建设对建设节约型、节约资源型与环保社会型的产业来说均有着重要的意义。其对降低当地挤压企业的生产成本有一定的作用。其对推动大沥镇,甚至华南地区铝挤压行业结构的优化升级定会起到极大的促进作用。中铝南海合金有限公司除充分利用广东省的废旧建筑铝材与铝材挤压企业的工艺废料外,还可以从港澳地区进口废旧建筑铝材。     (四)废旧建筑铝板带材的再生利用。     废旧建筑铝板材是指从高楼大厦与结构中以及从工厂厂房上拆除的墙板、挂板及其他装饰板等。这些钣金件多是用3003、3004与5052合金板材加工的。美国尼科尔斯(Nichols)铝业公司是世界上有名的再生利用废旧建筑物铝板材的企业。它有一条黑兹莱特型1320mm连铸连轧生产线。其特点是在黑兹莱特连铸机之后有一列3机架型热连轧机列;还有1条带材清洗预涂生产线及其他配套设施。由于其用的是废旧铝及节能环保型连铸连轧工艺,因此其所生产的建筑板带材在北美市场上很有竞争力,并且经济效益较高。     围绕我国再生铝行业,我国有色金属工业协会再生金属分会应该协助国家有关部门制定再生铝行业的“十一五”规划,以提出科学合理的产业政策和税收政策;建立废金属回收体系,并且进行制定再生铝标准、预处理以及熔炼等技术规范及环保标准;争取在国家和行业及企业的支持下建立再生铝科研中心。其应该以此为基础进行研究并推广与使用再生铝用新装备、新工艺技术及高规格产品;应该积极地从英国引进、消化与吸收,并且进行推广与使用比较成熟的EMP工艺系统。因为这种系统是相当值得信赖的;它主要投资回报平常在投产的3-12个月中体现。其建设周期短,且卓有成效。其主要表在:产量增加、杂质减少、降低能耗、节约合金的购买与提高熔炼炉的效率。其能够符合环保法的基本要求,并且能够提高能源使用效率。其分析样品的提取可在关闭炉门时操作。这样的操作可节约能源与时间省,并且可降低热量散发。通过数十年的发展及全世界的使用证明,在应用电磁场推动力型的EMP系统进给机构中没有易磨损的或易损坏的可动零部件出现。许多消费者已体验到使用EMP系统后,工艺装备的使用效率可提高达25%以上。EMP系统是铸造车间管理者、冶金学者和金融管理者理想的选择。     再生铝生产企业应当在上述基础上,充分利用再生铝资源,积极研发挤压用铝合金锭坯、轧制用铝合金锭坯与铸造铝合金锭坯等产品,以提高产品的附加值。     三、充分利用再生铝资源,建设铝合金板带材企业     由前述分析可见,以成份单纯的,并且洁净的废旧铝为主,添加少量的新金属(原铝锭与中间合金)完全可以生产出在品质上与以重熔原铝锭为主生产的铝材相当。其在技术上是可行的与成熟的,并且其在国际上也不乏先例。鉴于这种情况,充分而合理地利用再生铝资源来生产铝合金板带材是切实可行的。铝合金板带材用再生铝生产过程如下:     (一)首先需要解决原料问题                                                            26年以来,中国表现消费的铝达96,OOOkt,并且大部分已进入循环期。不过由于中国经济的又快又好地发展,对废旧铝的需求量极大。国内回收的废旧铝远远满足不了经济发展的需要,需要进口。在国际市场上废旧铝资源较为充裕。2007年进口量为2,600亿t,2008年可达2,600亿t或更多些。     此数量还不包括拆解进口的报费装备中所获的废旧铝。如果将这部分废旧铝也计算在内,此数量无疑会超过3,000kt。可见,其原料供应可得到保证。     (二)产品种类及结构。     产品种类当然是热处理不可强化的民用大宗铝板带材。也就是仅生产l×××系列、3×××系列与5×××系列铝合金板带材。2007年全世界铝板带总产量约20,OOOkt。其中热处理不可强化的占94.6%.即普通民用铝板带材为18,920kt。热处理可强化铝合金指2×××系列、6×××系列、7×××系列及部分8xxx系列铝合金。其多用于航空航天、军工及其他需要高强度结构件的工业部门。     (三)利用再生铝生产铝合金板带材所用的主要装备。     先进的高技术废旧铝预处理生产线有2条。其关键装备及部件可引进。其他的国内制造或中外合作制造;     先进的熔炼-静置-铸造线2条,回转-倾动式圆型炉1台,中频感应炉1台,关键装备如蓄热式烧嘴、电磁搅拌器、在线净化处理设施与熔体水平激光自动监控器等进行引进。其他的由世界知名的冶金炉公司设在中国的企业制造。其铸锭产量约220kt/a;     铣床1台(国内制造);     推进加热炉2台。由世界知名的冶金炉公司设在中国的企业制造;     2300mm四辊不可逆式单机架双卷取热轧线1条,国外设计,自动控制装备及关键部件引进,其他设备在外方监控下由中国制造;     一期2台四辊不可逆式冷轧机,1台引进,1台1600mm国产;     轧辊磨床2台,1台引进,1台国产;     拉弯矫直线2条,1条引进,1条国产;     离线式重卷切边线1条,国产;     纵剪线1条,引进;     预涂线1条,引进;     退火炉若干台,国产;     自动打捆与包装线1条,中外合作制造;     其他设备。     本项目的建设完全符合国家的产业政策。其是在建设可持续发展的循环铝工业链中重要的环节。其定会受到国家及各级政府的鼓励与大力支持。     (四)废旧铝的分类与储存。     建设一个以废旧铝为主要原料的,并且生产能力为180kt/a的大型平轧产品厂则需要235kt/a的上等废铝。其最好在以工厂为圆心,并且以1000Km为半径的范围内建立一些收购点,并派有经验的收购人员负责,以确保废旧铝的品质;要有一批定点的废旧铝供应商。废旧铝的运输距离不宜过长,否则其成本会上升。     工厂内要有足够数量的废旧铝储存库。其不得露天存放。废旧铝应严格按牌号分库存放,并且应制定严密的储存规范。     (五)建厂地址。     厂址选择应注意原料来源与产品走向。最好的是:原料的75%以上来自以1000Km为半径的范围内,并且其产品60%以上的销售范围在以半径为1200Km的范围内。如果认为这两个条件可以的话,而且还同时必须遵守大型有色金属加工材料厂的选址通用条件,那么这样的工厂就应建在长江三角洲、珠江三角洲以及环渤海等废旧铝丰富的地区。同时废旧铝进口方便也是必要条件之一。     四、结束语     用废旧铝可以生产出在品质上与用原铝锭相当的普通民用平轧铝合金板带材产品。其符合党中央提出的建立资源泉与能源节约型以及环境友好型社会的目标与要求;完全符合国家的产业政策与国情;有利于行业结构与产品结构调整。其在经济上会有利可图,并且各项技术指标先进。只要不断地推广应用新技术、新材料、新工艺以及新装备,进而研发高质量、低成本与高附加值的高档次产品,投入市场,以满足用户需求,就能使用再生铝合金生产铝合金板带材行业在激烈的市场竞争中处于不败之地,使其发展前景更加光明灿烂。