关于锌灰、锌渣的提炼回收技术
2019-03-13 10:03:59
在曩昔,许多供应商把热镀锌所发生的锌灰、锌渣直接卖掉,因那时锌价相对较低,所占本钱份额不高,故无人去作过细的收回作业。但在锌价飞涨的今日,耗锌量所占生产本钱现已大于80%,怎么下降锌耗关于镀锌厂来说就必须说到议事日程上来了,不然,轻则影响经济效益,重则关系到厂商的存亡。 当时,一些镀锌厂一边叫着要节能、降耗,一边又对锌渣和锌灰作很多糟蹋。锌渣是一种锌铁合金的固溶体,一般含锌量约在92%~97%,锌灰中的含锌量也应超越80%。怎么把锌从这些副产品中提炼出来,是一项非常重要的作业。这项作业一直都有人在做,一般都用如下几种办法: 一、 蒸馏法:即把副产品(灰、渣)放入密封的容器中加热,使锌还原成锌蒸气,再经过冷凝得到纯锌; 二、 电解法:即把副产品参加硫酸中使其转化成硫酸锌,再运用电解过程中阴极吸附的原理得到纯锌; 三、 转化法:即经过不同工艺直接转化成氧化锌、氯化锌。 鑫岳公司在此基础上又规划出了另一简单易行的办法来对其进行处理,作用显着,出资少、见效快,特别适用于热镀锌厂进行处理,办法如下: 运用专用的工业陶瓷锅装入灰、渣后加上掩盖剂加温至620℃,坚持2个小时,参加抗氧化剂,再参加除铁专用合金。该种合金参加后要用钟罩压入底部,把温度提升到720℃,坚持1个小时后,运用真空抽锌机,抽出提出的锌液,清出残渣。这种办法能够在锌渣中收回80%以上纯锌,锌灰则可收回40~60%的纯锌,纯锌收回今后的残存灰渣能够卖掉,也能够直接在该工业陶瓷锅中对小工件进行镀锌(温度控制在560~620℃),后处理选用离心法或爆破法,均可得到满足的镀层。 在收回锌的过程中,除铁专用合金的增加量约为15~18%(合金报价与0#锌报价相同),掩盖剂为氯化纳和的混合物。 鑫岳公司研发的此种收回办法,在一些镀锌厂中已运用并得到充沛验证,镀锌厂的归纳锌耗大幅下降,从而为镀锌供应商发明了更大的赢利空间。.
锌灰分离机功能介绍
2018-04-26 18:15:29
锌灰分离机设备内物料的运行是靠风机完成的且是负压运行,没有粉尘逸出,所以可达到环保要求,设备结构紧凑自动化程度高,占地面积小(16平米),工作效率高,占用人工少(2人可操作),生产成本低,回收率高(金属回收率80%-95%)改善了工人的工作环境,所以得到了用户的好评。锌灰锌渣是热镀锌厂和电解锌厂在生产过程中产生的一种副产品,主要成分为氧化锌,金属锌和部分杂质.其中氧化锌和金属锌都有着较高的经济价值,但是必须把它们分离开才能使用.传统的处理工艺和设备污染大,回收率低,工作效率差,工作环境恶劣,处理成本高.很难达到国家环保要求.氧化锌及杂质(直接销售或进一步加工制取氧化锌,氯化锌,硫酸锌等)
再生锌回收的主要工艺
2019-01-30 10:26:34
我国再生锌的处理工艺分火法和湿法两种,以火法为主。其中处理锌含量较高的废金属杂料的方法有还原蒸馏法、湿法、熔析熔炼、铝法等。处理含锌量较低的钢厂烟尘等主要用回转窑、平窑等工艺先生产氧化锌,直接可以得到锌锭。
一、对锌含量较高的废杂料处理
蒸馏法和湿法是目前处理含锌量较高的锌渣、锌灰等的回收工艺,直接可以得到锌锭。
(一)横罐蒸馏法处理富锌废料
这种方法生产过程比较简单,不需要很多机电设备,基建投资少,成本较低,目前仍被我国一些小型再生锌冶炼厂用于处理富锌废料,如热镀锌锌灰、锌渣、粗锌锭、边角料等。
当横罐炼锌的原料为锌渣时,锌回收率有80%~85%,如果是锌灰,则只有40%~60%,横罐炼锌得到的锌质量不高,一般只能达到4号或5号锌,甚至等外锌。要想得到高质量的再生锌,还需对其进行精馏精炼。
(二)真空蒸馏法
此法的原理是利用锌渣中锌和其他金属的蒸汽压不同达到锌和杂质分离的目的。该法只能处理热镀锌渣,其优点是在较低的温度下可获得较高的蒸发速度和较高的金属回收率,对物料中的成分有选择性的回收,产品能避免氧化和其他污染,纯度可达到99.8%~99.9%,回收率可达85%以上。渣中未蒸透的锌可通过简单的分选后返回蒸馏,因而其总回收率可达98%以上,且设备简单,操作简便,加工成本低于传统的平罐再生工艺。但是该法的设备投资较大,推广受到限制,在个别大型镀锌钢厂有使用。
(三)湿法工艺
湿法流程可分为溶性阳极电解和浸出——净化——电沉各两种工艺。可溶阳极电解工艺适于处理锌渣,而浸出——净化——电沉积工艺适于处理锌灰。两种工艺都采用硫酸和硫酸锌的水溶液作电解液。
在炼锌工业中,湿法炼锌是目前的主要技术发展方向,湿法工艺的优点是锌回收率高,比传统的火法高20%左右,便于实现机械化、自动化,过程产生的废水、废渣少,对环境污染小。
二、钢铁厂含锌烟尘的处理在高炉炼铁和废钢再生冶炼过程中,铁精矿和钢铁镀锌层中的锌会以气态挥发,随烟气进入收尘系统被收集下来。这种烟尘,根据原料来源不同,含锌量高低不等,这些含锌烟尘大多采用回转窑、平炉等工艺生产次氧化锌(含锌50%)。然后卖到一些氧化锌厂进一步生产高纯氧化锌。
再生锌分类
2018-12-10 09:46:24
再生锌产量按原料来源主要分为新废料和旧废料。新废料是在冶炼及加工过程产生的废料,主要包括来自镀锌行业、铜材厂、锌压铸作业、锌材加工行业、电池生产工业的锌渣、灰、边角料以及铅、铜冶炼系统的锌渣等。旧废料是产品使用期满报废后产生的废料,主要是来自镀锌制品报废回收重熔产生的电炉烟尘、以及少量来自报废锌压铸件、锌材的回收。
一、新废料
(一)热镀锌渣、锌灰
热镀锌灰锌渣是中国再生锌的主要原料,2009年大约占接近70%。热镀锌灰锌渣中锌含量高,易于回收,回收率高达90%以上。根据渣在锌锅中的不同位置,分为底渣、自由渣和浮渣,锌含量均在95%以上;批量镀锌(镀锌管、镀锌结构件等)除锌渣外产生锌灰,锌灰由氧化锌和锌组成,锌含量也在80%左右。2009年在中国镀锌产品市场中,镀锌板占42%,镀锌管占20%,锌结构件占38%。考虑到近几年来建筑材料、高速公路等方面的镀锌结构件用量增长较快,对前几年的比例作相应调整。另外在镀锌板产量中约有5%左右为冷轧板,不产生锌渣。根据调研,热镀锌板中锌渣的产生量平均3.5kg/t镀计算,锌渣中锌含量按94%计算。其他热镀锌制品的单位镀件耗锌量按5%计算,这部分锌中只有73%附着在镀件中,其余16%和11%分别在锌灰和锌渣中。
(二)铜材厂下脚料
我国铜材综合成品率平均为60%。铜材中有很大一部分是铜杆,这部分基本不含锌,另外的黄铜材中也只有一部分是来自冶炼铜和锌作为原料,另外很大部分是来自杂铜。在此部分只计算新生黄铜材的下脚料。在铜材加工过程的边角料中80%直接被铜加工企业收回利用,20%返回铜的生产阶段间接利用。其中直接利用的黄铜废料中约90%的金属锌没有离开黄铜,加外10%的金属锌有75%被回收利用,间接利用的黄铜中的锌由于与铜相比,锌的价值偏低,90%没有被回收,只有15%左右以铜灰形式(含锌30%左右)生产电解锌。
(三)压铸锌合金
锌合金压铸时产生的锌废料主要来自压铸的熔渣。锌合金压铸生产有5%的金属损耗,另外还产生4%的熔渣,熔渣主要送锌冶炼环节制造锌锭,是压铸锌合金再生锌的主要原料来源。考虑到锌铸件中有一部分是合金铸件,按铸釿产量的95%计算含锌量。
(六)铅、铜冶炼系
由于锌与铅金属总是在矿石中伴生的,在铅冶炼过程中,锌会在烟尘中富集起来,这部分也是再生锌的原料。另外在铜冶炼系统中因为有废杂黄铜的存在,其中的锌也会在烟道中富集起来,成为再生锌的原料。
二、旧废料
再生锌分类【我来说两句】 2010-10-27 9:22:22 中国选矿技术网 浏览 12 次 收藏 【摘要】:再生锌产量按原料来源主要分为新废料和旧废料。新废料是在冶炼及加工过程产生的废料,主要包括来自镀锌行业、铜材厂、锌压铸作业、锌材加工行业、电池生产工业的锌渣、灰、边角料以及铅、铜冶炼系统的锌渣等。 (一)钢厂含锌烟尘
这部分主要用回转窑和平窑等工艺烧结生产次氧化锌和一些化学产品。含锌烟尘主要来自高炉灰、转炉灰和电炉来。其中以电炉来为主,因为电炉主要是用来炼废钢,电炉灰中锌含量大约15%;转炉也有一部分废钢,但含锌量较低,一般在零点几到一点几的百分点;高炉灰的含锌量也有7%~8%,但这取决于原料种类,不同钢厂的烟尘含锌量差别很大。总的来说,烟尘的锌主要是来自电炉。
在钢厂的实际生产中,炼一炉废钢不太可能全部是镀锌钢,而且根据镀锌钢占粗钢的产量比例,废钢的回收量中锌钢的比例也不超过5%,而且南方沿海地区环境潮湿,镀锌钢的使用和回收比例比北方更高。根据调研,一般能够利用的烟尘含锌量在8%~18%。2008年和2009年烟尘利用率大幅下降的原因是锌价暴跌,用此法生产次氧化锌的利润大大缩水,直到2009年下半年才有部分工厂慢慢恢复生产。
(二)锌合金压铸件
锌合金压铸制品的折旧再生锌资源主要来自折旧锌合金压铸制品废料,例如报废的汽车零部件、家用旧电器等。其中绝大部分不适用于压铸工业的再次利用,而是送锌冶炼环节生产锌锭,估算我国折旧锌合金压铸制品回收率约为65%。
(三)锌材
锌材中的折旧再生锌来源于折旧锌材制品废料,包括废轧制屋顶板、印刷锌板、胶印锌板,这部分废锌主要送到冶炼环节生产重熔锌锭。估算我国折旧锌材回收率约为65%。(Fiona)
产生漏锌的原因
2019-01-25 13:38:15
漏镀指镀锌层断续呈现部分斑驳状或无规则的黑色区域,当钢带表面存有脏物,阻碍锌液滋润而影响镀锌反响。发生漏锌的原因首要有: 1、基板表面粘附没有被清洗洁净的外来物这种漏镀缺点有或许会散布在带钢的下表面或上表面,一般呈现无规律性块状斑痕。成因:在基板表面的乳化液不均匀,或有残留轧制油在基板表面,由基板变形、磨损发生的铁粉等固体污染物,都会污染基板表面,在镀锌线进行清洗过程中假如这些杂质铲除不洁净,则会导致带钢镀锌过程中,有污染物的部分不能被锌液滋润,简单发生漏镀。2、氧化层在进入锌锅之前没有被有用复原这种漏锌缺点会散布在镀锌板的下表面或上表面,假如运用的是卧式炉,下表面发生的漏镀缺点或许比上表面发生的更严峻,相同呈现出无规律性散布,而缺点描摹一般为片状的针孔黑点。成因:工艺流程中,退火段首要起到消除加工硬化、保证基板回复再结晶和入锌锅温度,一起复原带钢表面的效果。在复原炉内通入氮、氢维护气从而使炉内气氛为复原性气氛,假如氧化层在入锌锅前不能被有用复原,则锌液对基板的滋润性下降,极易呈现漏锌的缺点。3、耐火材料剥离影响镀锌层表面质量这种漏锌缺点或许散布在镀锌板的下表面或上表面,沿着带钢运转方向纵向散布,其描摹呈条状。成因:一般在开炉、停炉过程中简单引发耐火材料的脱落,耐火材料的细小颗粒假如掉落到钢板表面或许轧辊工作面,都会影响镀锌板质量。而炉鼻内部锌液面上假如有积灰,在钢带正常运转中,锌灰与带钢之间正常状况都会坚持必定安全间隔,这时一般不呈现漏镀缺点;但假如带钢发生振荡,且振幅大于带钢与锌灰间坚持的间隔,锌灰就会粘附在带钢表面,下降锌液对基板的滋润性,发生漏镀缺点。为此,出产中应防止耐材剥离,保证退火炉内炉气操控满意工艺要求,进步带钢镀锌前表面洁净度,守时整理锌液内氧化锌成分,以防止热镀锌钢带漏锌,出产高质量产品。
氨法超细活性氧化锌研究
2019-02-18 15:19:33
据全国锌盐协作组查询,国外氧化锌工业开展较为老练,近几年处于相对安稳的状况,1999年美国、日本、西欧的氧化锌消费量共582.3万吨,实践产值共466.5万吨。与国外构成显着对照的是,近几年我国汽车工业的快速开展,加上我国涂料工业的快速开展,使我国氧化锌的需求在逐年上升。估计到2005年,我国氧化锌仍将以6~8﹪的速度开展。据全国锌盐协作组2000年职业查询,现在我国氧化锌出产厂商为96家,2000年氧化锌实践产值30.63万吨。
国内外氧化锌出产工艺还是以直接法和直接法为主,少数以湿法工艺出产。而湿法工艺出产氧化锌中大部分是硫酸法工艺的产品,其很多副产品难以收回,环保问题不易处理;直接法氧化锌工艺以含氧化锌的质料经氧化复原直接产出氧化锌产品。该法受质料约束,质量不高,价格较低;直接法氧化锌出产工艺以冶炼提纯的金属锌为质料,经熔化、汽化、氧化出产出氧化锌。该法出产成本较高。法湿法工艺是现在国内氧化锌出产工艺的开展方向。且其产品简单完成多种类、多规格。可广泛用于橡胶、涂料、陶瓷、磁性材料等范畴。
南京铅锌银矿业公司经过以广西冶金研讨所协作研讨,以成功开发了法超细氧化锌新工艺及其产品。《法超细氧化锌新工艺及其产品》在2001年经过江苏省科技厅安排专家判定,并被南京市经委认定为高新技术产品。国内近年稀有家单位都在研讨类似工艺,咱们现在的水平在同行中处于先进水平。
法超细氧化锌新工艺,克服了硫酸法工艺环保问题难以处理的缺陷,它以氧化锌焙砂为质料,经脱硫、洗刷、浸出,除铜、铅、铁、锰;深度静化、水解、蒸、枯燥、煅烧,制得超细活性氧化锌产品。
与现有的各种氧化锌出产工艺比较,法超细氧化锌新工艺的优势:
1、出产成本低。直接法氧化锌与直接法氧化锌因为所用质料不同。所以出产成本也不一样。前者出产成本显着低于后者。直接法中法和酸法出产成本附近,法在质猜中能够调配运用低度氧化锌、锌灰、菱锌矿、锌烟尘,使出产成本更低。
2、产品活性高。氧化锌出产原理不同,制品的晶型也不一样,因而化学活性不同很大,法工艺出产的超细氧化锌,具有粒度细、比表面积大、晶型出现多孔的结构。因而,具有化学活性高的特色。
3、产品纯度高。因为法在出产中应用了多种净化办法,使得杂质金属含量降到最低。一起,也避免了酸法工艺的产品中硫酸根的残留问题。
4、产品种类多。直接法受工艺的约束,只要一种产品——直接氧化锌。而法经过微调工艺可出产出不同功能的氧化锌和锌盐产品。以满意用户不同的需求。习惯商场的广泛需求。
5、质料来历广。法工艺质料习惯性最广。锌焙砂、低度氧化锌、锌灰、菱锌矿等都能够作为法工艺的出产质料。在矿产资源越来越匮乏的今日,这是一个很大的优势。
6、环保有保证。法工艺的规划思维就是水、闭路循环。没有一般湿法出产水的污染问题。
别的,咱们经过调整某些工艺参数、流程工序,能够出产出粒径40~60nm的氧化锌。
氧化锌市场价
2017-06-06 17:49:50
氧化锌市场价, 基本是随着华东、华南、华北地区的波动而改变着,因为国内氧化锌产能集中在这些地区.氧化锌的工业生产一般有干法和湿法。干法包括直接法和间接法。湿法也可分为碱法和酸法两类。直接法主要以含ZnO?Fe2O3的氧化物矿为主,一般氧化锌含量≤99.5%;间接法以金属锌为主,含量>99.5;湿法原料以金属锌、氯化锌、碳酸锌等,含量在90%--98%.国内氧化锌的原料较为复杂,目前用的比较多的三种原料为锌锭,锌灰锌渣,氧化锌矿.近几年,随着我国对氧化锌扶持力度加大以及国家对氧化锌相关措施推出,鉴于氧化锌价格变化对于国内消费有着巨大的影响,加强对氧化锌市场的价格管理和调节显得十分重要.
热镀锌25问——贸易、生产环节常见问题汇总
2018-11-30 12:08:09
贸易环节板材【1】热镀锌板的主要用途是什么?答:热镀锌板的主要用于建筑,家电,汽车,机械,电子,轻工业等行业。【2】目前世界上有哪几类镀锌方法?答:有电镀锌,热镀锌和涂镀锌三类方法。【3】热镀锌按退火方式的不同可分为哪两种类型?答:按后续退火炉方式可分为连退和罩退。【4】热镀锌板的常用钢种有哪些?答:产品种类::一般商品卷(CQ),结构用镀锌板(HSLA),深冲热镀锌板(DDQ),烘烤硬化热镀锌板(BH),双相钢(DP), TRIP钢(相变诱导塑性钢)等。【5】热镀锌的缺陷主要有哪些?答:主要有:脱落,划伤,钝化斑,锌粒,厚边,气刀条痕,气刀刮痕,漏镀,夹杂,机械损伤,附着性能不良,边浪,瓢曲,尺寸不合,锌层厚度不合,辊印等。【6】已知:生产的规格为0.75×1050mm,卷重为5吨,问该卷带钢的长度是多少?(镀锌板比重为7.6g / cm3)解:L = G /(h×b×p)=(5×1000)/(0.75×1.050×7.6 )= 834.42m答:该卷带钢长834。中文翻译手机版光洁度)。【8】白锈和黑斑产生的原因有哪些?答:黑斑是白锈进一步氧化形成的。白锈产生的原因主要有:(1)钝化不良,钝化膜厚度不够或不均匀;(2)表面未涂油或带钢表面残留水分;(3)卷取时带钢表面含有水分;(4)钝化未完全烘干;(5)在运输或储存中受潮或雨水淋湿;(6)成品存放时间过长;(7)镀锌板与其他酸碱等腐蚀性介质接触或存放在一起。【9】成品在库中最长允许存放多长时间?为什么? :允许存放三个月,以避免存放过久产生氧化。【10】镀锌钢板的长度公差是什么?答:长度公差不允许有负值,最大不允许超过+ 6mm。【11】什么是大锌花 什么是小锌花?答:大锌花就是正常锌花,镀锌后在通常条件下锌层冷凝而得的锌花;小锌花是通过对锌层的控制冷凝而形成的表面,呈现比正常锌花的的细小锌花,这种锌花一般无法用肉眼辨认。【12】热镀锌层的保护原理?在大气中,锌的抗腐蚀能力比钢铁强得多,通常条件下锌的抗腐蚀能力是钢铁的数倍。(1)物理作用:锌镀层在钢板的表面,阻断了钢板与外面腐蚀介质的接触,使钢板免除腐蚀介质的腐蚀作用。(2)电化学作用:当镀锌钢板基板和锌镀层同时暴露在腐蚀介质环境中时(如镀锌层划伤和切口处),由于锌的电极电位(-0.726V)低于铁的电极电位(-0。(14)热镀锌板钝化的原理是什么?答:对镀锌板进行铬酸盐钝化处理可以形成钝化膜,其化学反应式如下:Zn + H2GrO4-ZnGrO2 = H2溶液钝化族中的三价铬难溶于水,化学性质不活泼,起骨架作用,而其中的六价铬易溶于水,能在钝化膜划伤时起到再钝化的作用,具有钝化膜的治愈作用。因此,在一定限度内,钝化膜能防止蒸汽或潮湿空气直接侵蚀镀锌板,起保护作用。【14】检验热镀锌板的耐腐蚀性能有哪几种方法?答:检验热镀锌板的耐腐蚀性能有两种方法:(1)盐水喷雾试验:模拟海洋地区大气环境的加速腐蚀试验,考察镀层的耐腐蚀性能。(2)潮热试验:模拟湿热气候条件的加速腐蚀试验,考察镀层的耐腐蚀性能。【15】对热镀锌产品为什么还要 行防锈处理?答:当热镀锌板处于潮湿的空气中,特别是空气中含有SiO2,CO2,NO2及NO等酸性物质时,镀锌层表面很快会生成质地疏松的白锈。白锈的主要成分是ZnO和Zn(OH)2,这种白锈不仅影响美观,而且给以后的使用带来极大的困难。【16】白锈产生的原因有哪几种?答:白锈产生的原因有:(1)热镀锌与其他酸碱,盐等腐蚀性介质放在一起;(2)钝化膜或防膜被破坏;(3)钝化或涂油效果不好;( 4)储存仓库通风不好,潮湿;(5)镀锌板在运输中淋水;(6)在低温下运输,在高温下储存,形成冷凝水。【17】如何计算镀层厚度?答:镀层厚度公式为:Dz = Gz(Sz * dz)其中:Dz ---镀层厚度mm,Gz ---每平方米镀层重量g,Sz ---镀层面积mm2,dz ---锌比重将上面公式可以简化为:DZ = 0。同时也可把表面的锌粒压平,使带钢表面光滑,这对于以后的深冲和其它使用精度较高的场合都特别有利。(2)使用的光整辊,经过了预先喷丸处理,因而经过光整的镀板表面具有一定的粗糙度。它能提高涂层的粘附力,还能储存一定的量的油脂,在深冲加工时,对冲模的润滑有益;(3)对于以后作涂漆处理的镀板,尽管把表面控制成小锌花但小锌花仍然能够透过漆层而显露出来。所以,对于某些要求高的镀锌板,小锌花表面需再经过光整处理。(4)通过光整,可以降低下屈服点,使屈服平台消失或不太明显,能够防止在以后作拉伸或深冲加工时出现滑移线,改善深冲性可能。热镀锌件生产环节【20】漏镀的原因?成因及解决措施:1,镀件表面不干净⑴镀件表面含有油漆,油脂,焊镏 可洗磨或配制相关溶剂擦洗.⑵铁氧化物;欠酸洗;继续酸洗.2,酸洗及操作:⑴欠,过酸洗。欠酸洗,使得镀件表面留有铁的氧化物(锈斑);过酸洗,使得钢基体表面组织被破坏,其所含的硅及少量的活泼金属难熔氧化物附于镀件表面,阻止了铁锌的结合或者因过酸洗,使得镀片吸氢,镀锌时。⑵酸洗时镀件叠加,积压,造成漏洗,或者因镀件结构上的原因酸洗时又疏于翻动造成涡气而漏洗。解决办法:尽可能摆开酸洗,勤翻动.3,助镀环节⑴助剂浓度偏低,助镀效果不理想;解决:调整合适助剂浓度.⑵助剂比例不当,锌盐含量高,使得助剂盐膜易吸水潮解,氢氧化物分解成气体而爆锌,而形成漏镀。解决办法:调整助剂配比4,锌液成分及锅台操作:⑴锌液 中铝含偏高,造成漏镀;解决办法:加锌或利用氯化铵消耗等办法降低铝含量;⑵镀件下锅速度过慢,助剂受热分解失效,引起漏镀。适当调整下锅速度。⑶浸锌时间过短,使得铁锌反应未来得及进行,⑷镀件下锅时未清理锌液面上的锌灰,使得过热的锌灰灼烧助剂而漏镀。⑸镀件下锅时,因工艺孔或者结构的原因,使得镀件内的高温气体受热逸出时,将助剂灼烧而引起漏镀。解决办法:适量撒些氯化铵.⑹5,镀件材质⑴钢材表面含有等元素的难熔氧化物,使得铁锌反应被阻止。⑵钢材基体含有过多的碳,或者钢材在炼制过程中产生了过多的碳化铁,使得铁锌结合困难,造成漏镀。⑶镀件材质加工成型缺陷,造成材质烂裂,酸液,水分及助剂进入,引起漏镀。目前除了借助氯化铵外尚无好的办法解决。【21 】爆锌的原因?镀件在锌锅内,因诸多原因产生气体,过高的温度使得气体剧烈膨胀,导致锌液四溅的现象。主要形成原因:⑴因镀件未干燥情况下下锅,水分受热迅速由液态变为气态而急剧膨胀产生.⑵因助助剂配比不当,氯化铵或者氯化锌失衡 ,膨胀形成;或者过量氯化锌吸潮而导致水分汽化形成.⑷镀件结构方面,比如夹缝,半封闭管道等,下过速度稍快情况下易产生爆锌。【22】造成色差的原因主要是因铁锌剧烈反应产生.Fe-Zn的剧烈反应,使得原来由合金层和纯锌层构成的完整镀层,变为仅有合金层而无纯锌层的现象。灰色或者暗灰色即为铁锌合金的颜色。另外,若锌液质量恶化,使得锌液中铁含量增多,镀锌后表面的纯锌层因含铁而呈现灰色,造成色差。具体产生原因:⑴镀件材质中含有较多的碳,硅,硫,磷等元素。铁锌之间的电化学反应因该类元素形成的惰性电极,相对电势变高,导致铁锌反应加剧.⑵锌液中铝等金属元素含量偏少,对活性钢等材质镀锌而言,无法有效抑制其铁锌反应.⑶锌液中铁含量增多,使得锌液质量 恶化。改进措施:⑴根据材质,选择合适的镀锌温度;⑵调整锌液成分,使铝,镍含量控制在合适的范围;⑶尽可能缩短浸锌时间;⑷出锅后,尽快入水冷却。【23】流挂,积锌,锌瘤的原因?流挂主要是由于镀件从锌锅内引出后,镀件表层锌液局部凝固形成。积锌是由于镀层表面覆盖过多的锌锌镀件引出速度大导致锌液未及时流出或者由于锌液在未流尽时即进行水冷解决办法:。控制镀件引出速度,把握好冷却时间。锌瘤主要由锌液和操作两个方面造成。锌液方面:温度低以及锌液含杂质导致粘度过大;操作方面:镀件引出速度过快。解决办法:选择合适的镀锌温度,及时净化锌液,保证锌液质量干净不影响镀锌。【24】镀层夹杂的原因?镀件表层的纯锌层夹杂锌灰,锌渣及熔剂残渣的现象。解决办法:⑴打灰及时,彻底干净;镀锌时尽可能生生的锌灰闪开.⑵控制好助剂,及时净化锌液,尽量避免多余锌渣,锌灰产生。【25】镀件有白锈的原因?主要成分是氧化锌及氢氧化锌。成因:由于镀件表层的锌在潮湿的环境下发生了吸氧腐蚀。解决办法:⑴确保镀件钝化质量.⑵镀件应在干燥 再打包。⑶镀件贮藏时应保证通风良好,或者在镀件外层涂油保护。
热镀锌合金
2017-06-06 17:50:05
随着我国热镀锌
行业
的不断发展壮大,锌价的不断上扬,热镀锌生产厂家对产品质量以及成本的控制也提出越来越高的要求,而热镀锌合金在热镀锌生产中的应用也越来越普及,目前
市场
上各种牌号的合金充斥整个热镀锌
行业
,在利益的驱使下各种合金良莠不齐、以次充好现象很普遍,很多合金生产厂家在自己都不知道应该怎样严格规范合金生产工艺和应该怎样合理使用热镀锌合金的情况下,随便做个土法冶炼炉就开始生产合金,在原料采购上也没有严格的把关,很多采用锌灰、锌渣等提炼锌和回收锌制作合金,他们的
价格
一般都低于正常
价格
,而目前很多热镀锌厂家,对热镀锌合金的制作工艺和杂质要求不是很了解,盲目追求低的
价格
,而忽略了劣质合金给生产带来的隐患。首先热镀锌合金的生产原料应该有严格的要求,基础原料应采用正厂生产的0#锌,其他辅助材料应采用高纯
金属
元素,严格控制杂质的源头。热镀锌合金的生产也应该有严格的工艺规定,确保生产出的热镀锌合金各成分含量合理,每块合金内的
金属
成分均匀,杂质含量绝不允许超标。热镀锌企业在选择热镀锌合金时,首先要分辨供应商是否具备优质合金的生产技术及能力,其生产原料的品质是否得到保证,合金中各
金属
元素配比是否合理。其次是供应商是否了解热镀锌生产,对热镀锌生产的每个环节是否非常把握得当,每个厂家所镀产品不同,所使用的合金也不一样,供应商所提供的热镀锌合金是否适应企业的生产要求,能否为企业提供良好的售后服务,确保合金使用效果。热镀锌企业所镀产品各不一样,所用热镀锌合金及用量也有所区别,只有选对合金,合理使用才能满足企业的生产,从而达到节能降耗提高成品质量的目的。
赤铁矿法在湿法冶金中的应用
2019-03-05 09:04:34
日本秋田公司饭岛锌冶炼厂和德国鲁尔锌公司达特伦电锌厂均选用赤铁矿法处理锌厂中性浸出的浸渣收回其间以铁酸锌存在的锌及其他有价组分。用赤铁矿法处理湿法炼锌的铁渣源于环境保护的压力。赤铁矿法准则流程见图1。来自浸出主流程的高铁渣在村耐酸砖和铅的高压釜顶用电解贫液补加酸再提出,反响温度95~100℃。浸出在SO2(分压0.15~0.25MPa)气氛下进行,所以也称为SO2浸出。在此条件下渣中的铁酸盐很简单溶解,高铁复原成二价伴随铁酸盐中的锌和铜进入溶液:
(1)
(2)图1 赤铁矿法准则流程图
从溶液中排去过量的SO2和用H2S沉积除掉铜后,对含大约Zn90kg∕m3,Fe60kg∕m3,H2SO4 20kg∕m3的溶液用石灰百分两段中和。榜首段中和到pH=2以发生可供应的高等第石膏,然后再中和到pH=4.5,沉积分出含有价金属如Ca和In的石膏,一同有碍赤铁矿沉积的元素如Al等也在此阶段随石膏沉积除掉。第二段中和发生的浆料经重力沉降得到的固体回来榜首段中和槽,沉降后液高压过滤得到氧化物-氢氧化物的混合沉积,送熔炼厂收回镓和铟。一同用空气氧化沉积部分铁和其他杂质。沉积石膏有助于除掉SO2氧化发生的硫酸根以保持硫酸根平衡。两段中和后的溶液(含Fe 40~45kg∕m3)用赤铁矿法沉积除铁。沉铁在衬钛高压釜中进行,通入新鲜蒸汽和氧气,温度从95℃升高到200℃,压力进步到1.8MPa(氧分压0.15~0.25MPa),溶液中的硫酸亚铁被氧化成硫酸铁并发生水解:
(3)
高压釜中停留时间约3h,首要水解产品为赤铁矿,含有w(Fe)=59%和w(S)=3%,固液别离后赤铁矿也首要供应给水泥厂。别离出赤铁矿的溶液含Fe5~7kg∕m3和H2SO460~70kg∕m3,回来焙砂的中性浸出段。
选用赤铁矿法的饭岛锌冶炼厂自1972年投产以来,至今已成功运行了26年,经1997年扩产,电锌产值巳达190000t∕a。因为锌精矿铁含量添加,出产功率进步和工厂扩产,赤铁矿法处理的铁量逐年添加,并在技术上作了若干改善。例如,锌焙砂弱酸浸出的渣与元素硫混合用电解贫液补加硫酸后在衬铅和耐酸砖的高压釜中再浸出。参加元素硫使溶液中大部分铜作为硫化铜沉积。热酸浸出的排料除掉过量的SO2后,在拌和槽中通入H2S沉积其他的铜。沉铜槽的排料稠密、压滤,得到的滤渣含铜、铅和贵金属,送熔炼厂收回。沉铜稠密机溢流含30kg∕m3游离酸,用细磨的石灰石两段中和。榜首段中和游离酸(至pH=1)得到纯的石膏,离心过滤后供应给水泥厂。
近些年来,跟着锌精矿中铁含量的添加,焙砂中进入铁酸盐中的铜添加,焙砂弱酸浸出的铜削减而进入浸渣的铜添加,因此浸渣赤铁矿法处理厂中需求沉积的铜大为添加,从而使渣处理厂沉积铜的本钱进步。1992年曾经,渣处理厂中溶液中的铜用元素硫和硫化氧沉积:
(4)
(5)
饭岛锌冶炼厂1992年用于沉积铜的硫化氧气体耗费本钱占总的耗费性本钱的25%。这无疑太高,需求开发一个不必沉积铜的新办法。后来发现硫化锌精矿能够替代气体,它沉积除铜的反响如下
(6)
(7)当出产上用硫化锌精矿沉铜时,铜的沉积并不彻底。后来运用更细的精矿添加SO2分压处理了这一问题。现在这种办法有用地脱除了铜。
高铁水解成赤铁矿和铝水解沉积铝矾都发生酸,因此下降赤铁矿沉积釜的料液中游离硫酸的浓度和铝的浓度对促进高铁的水解很有用:本来第二段中和的溶液有30%回来榜首段,从1997年3月以来,第二段溶液回来的量逐步添加,赤铁矿水解高压釜的料液中游离硫酸浓度从7kg∕m3降到4kg∕m3,铝的浓度降到2kg∕m3以下,除铁功率进步到88%以上,使操作本钱要素如氧气或蒸汽的本钱下降。
尽管赤铁矿法在环保方面比黄铁矾法和针铁矿法更有利,它依然遭到环境方面的压力。为了使沉积的赤铁矿能悉数售出给水泥厂,有必要处理赤铁矿中的含砷和含硫问题。因为火法冶金不只本钱高,并且很难满足脱除砷,所以饭岛炼锌厂研讨在沉积赤铁矿前从溶液中脱砷,提出了图2所示的改善赤铁矿法新流程。图2 改善的赤铁矿法新流程
在改善的赤铁矿法中,弱酸提出的渣在105℃下SO2气氛中浸出而不加锌精矿或元素硫,发生的含银和铅的渣过滤别离。滤液用石灰榜首段中和到pH=1,发生纯石膏。然后在该中和段的溶液中参加锌灰,沉积砷化铜,铜和砷的脱除率到达99%。脱砷后液榜首段加石灰石中和到pH=4,沉积出含Ga,In和Al的石膏。该段的溶液大部分送赤铁矿沉积高压釜,其他溶液用于浸出砷化铜。浸除在独自的高压釜中氧气氛下进行,铜被浸出而砷沉积为铁。浸液中的铜用锌灰置换,然后将溶液回来焙砂中性浸段。改善的赤铁矿法进行了中试和可行性研讨,得到的赤铁矿质量及本钱都令人满足。
德国鲁尔公司(Ruhr-Zink GmbH)的赤铁矿法首要包含以下过程:
(1)中性浸出渣两段热酸浸出。榜首段为热酸浸出,中性提出渣用第二段超热酸浸出的滤液在95℃下浸出,浸出的终酸浓度50kg∕m3。渣中的大部分有价金属如锌、铜和镉伴随铁一同溶解。浸出的排料稠密后溢流泵送至复原段,底流在过热酸浸段中沸点以上浸出,酸浓度140kg∕m3。过热酸浸中铁酸盐都溶解,残留的低铁富铅的Pb-Ag渣经稠密和高压膜压滤机过滤,滤液回来热酸浸出。
(2)高铁复原。为了在沉积赤铁矿前净化溶液并能在最尽或许低的温度下沉积铁,需求将离解的高铁先复原成亚铁。硫化锌精矿可用作复原剂,它的本钱低,但需大大过量,反响温度在90℃左右。未反响的含元素硫的渣过滤后回来焙烧。
(3)溶液的净化与中和。复原后液用焙砂在中和槽和稠密机中两段中和,使一切影响赤铁矿质量的元素大部分沉积分出,特别是砷和锑。铜则部分共沉积。这些元素富集在中和渣中,再在终浸作业中彻底溶解。终浸用废酸进行,终酸浓度为40kg∕m3。在稠密机中固液别离后,底流送去热酸浸出作业,溢流送去用海绵铁置换沉铜,将铜的浓度降至500g∕m3以下,再返至前面的中和作业。置换的铜用废酸洗刷后出售。
(4)赤铁矿沉积。这是最重要的部分。中和净化的浸液(含Fe2+25~30kg∕m3,Zn120~130kg∕m3)用蒸汽加热到180℃以上,其间的亚铁在氧压1.8MPa下氧化并水解成含w(Fe)=60%左右的细粒赤铁矿,铁的沉积率达90%~95%。详细流程如图3所示。
赤铁矿法出资和操作费用远高于黄铁矾法和针铁矿法,但它或许收回锌精矿的悉数成分,发生的满是可供应的产品,一切作为中间产品的渣帮可进一步加工而无需堆存。图3 鲁尔公司电解锌厂赤铁矿法准则流程
氧化锌湿法冶金技术
2019-03-06 09:01:40
一、碱法浸出
碱法浸出用碱浸出氧化锌矿石,设备不易腐蚀,固液别离便利,浸出液易净化,是现在研讨较多和较有出路的氧化锌矿石处理办法之一。本工刁难云南兰坪氧化锌矿石进行碱法浸出探索性实验,选用的浸出剂为和-碳酸铵,旨在为从氧化锌矿石中直接湿法收回锌寻觅卓有成效的办法。
碱法浸出是处理氧化锌矿石的有用办法之一,它具有浸出率高和对环境友好等长处。对云南兰坪氧化锌矿石的碱法浸出实验标明,和-碳酸铵溶液都是处理氧化锌矿石的有用浸出剂,锌浸出率可达90%以上。该办法可用于处理同类矿石。
二、硫酸浸出
选用废电解液浸出氧化锌矿,矿石中的硅很多溶出,生成胶态硅,影响矿浆的液固别离,其它杂质如铁、钙、镁、铝等的浸出也加大净化难度。因此,对氧化锌矿特别是低档次氧化锌矿的湿法处理,国内外进行了很多的研讨。为防止硅酸损害,氧化锌矿浸出时应尽量防止发生胶质SiO2,或操控浸出液中硅酸的聚合作用,使硅酸在胶凝前除掉,改进矿浆液固别离的功能。现在出产上常用的氧化锌矿酸浸工艺有老山工艺(Vieille-Montagne)、中和凝集法和瑞底诺(Radina)法,都是选用不同办法将矿浆中胶质SiO2在胶凝前以不同方式除掉。
用硫酸浸出低档次氧化锌矿,既到达浸出金属锌的意图,又下降了杂质和酸耗,为开发使用低档次氧化锌矿奠定了根底。
三、细菌浸出
某些细菌因为具有氧化还原作用而被使用于浸矿作业,如氧化铁硫杆菌(Thiobacillus Ferrooxidans简称Tf)是近况细菌中最常用的一种自养菌,已被广泛使用于硫化矿的浸出工艺上。Duncan等人用Tf浸出硫化锌矿,在必定条件下锌的进出速率可达150mg/(L·h),将细菌用于氧化锌矿的浸出,不只能促进其间少数的硫化矿在较短时间内浸出,进步锌的浸出率,还有利于浸出液沉积除铁,下降滤液中的铁含量。Tf可按下式直接或直接浸出硫化锌矿:
ZnS+2O2=ZnSO4 (7)
ZnS+Fe2(S01)3=ZnSO4+2FeSO4+S0 (8)
Fe2+=Fe3+ (9)
四、渗滤-萃取浸出
渗滤浸出被广泛使用于低档次硫化矿的堆浸,因为减少了磨矿工艺,下降了浸矿工艺的本钱,出产上具有操作简略,便于管理等长处。氧化矿因为渗透性差,大规模堆浸比较困难,但也能够实施薄层浸出。
五、低浓度浸-直接电积
针对这些高碱性脉石含锌5%~15%的中低档次氧化锌矿的开发使用,有关单位尽管进行了多年的研讨并提出了多个处理计划,但均因经济或技能方面的原因此没能完成工业使用。近年来,国内有关专家学者学习20世纪80年代法国、比利时从炼钢锌灰中提取锌所选用的NaOH浸出-浸出液净化除杂-电积出产电解锌的思路,提出了相似的流程来处理高碱性脉石中低档次氧化锌。该工艺尽管具有出产本钱较低、NaOH能够再生循环使用等许多长处,但因为不能有用脱除溶液中的铅(浸出液中含有1~2g/L的铅),尚不具有工业使用远景。
考虑到溶液除杂、按捺铅的浸出和进步锌的浸出速度,中南大学在-氯化铵介质中选用拌和浸出-净化-电积工艺对氧化锌矿的处理进行了研讨。因为有Cl-存在,电积进程阳极反应以析氮为主,不只耗费量大,并且对设备原料防腐要求也较高,加之为了确保所产电解锌的产品质量、保持溶液中高的锌浓度,浸出时不得不选用较高的游离浓度,导致电积锌时铵蒸发严峻、操作环境较差,因此锌的出产本钱较高。
针对高硅酸盐、低Ca、Mg含量的中低档次氧化锌矿的处理,国内有关学者提出了硫酸强化浸出-P204萃取-锌反萃液电积的工艺,并完成了体系的小型实验研讨,取得了很好的实验成果。有关单位在学习低档次氧化铜堆浸工艺的根底上,展开了氧化锌矿的堆浸实验研讨,有关作业正在进行。
铁水解沉淀在湿法冶金中的应用
2019-03-05 09:04:34
运用水解堆积除铁的最典型的实却是锌的焙烧-浸出-电积法出产实践。尽管焙烧是为了将硫化锌转变为氧化锌,但原猜中的铁在焙烧过程中简直悉数与锌结组成铁酸锌。稀硫酸溶解焙砂中的氧化锌只能到达85%~93%的总浸出率,而用热酸浸出铁酸锌中的锌则导致很多铁进入溶液,净化除铁因此曾一度成为电解锌出产的瓶颈问题。通过艰苦而行之有用的尽力,到20世纪60年代中后期开发了几个能发生易于过滤的铁化合物的除铁办法,并首要工业应用于电解锌工业,焙烧-浸出-电积法自此得到长足发展,成为出产电解锌的首要办法,现在国际80%的电解锌系由此法出产。这些除铁办法在很大程度上也可应用于其他溶液的除铁实践。
一、黄铁矾法
黄铁矾法作为有用的除铁办法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,其时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独登时开发了这项技能并简直一同申请了专利。尔后黄铁矾法敏捷得到广泛应用,成为电解锌出产中首要的除铁技能,现在国际上至少有16家大型电解锌厂选用了此技能。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且保持这一pH值,并在95℃左右参加一价阳离子从酸性硫酸盐溶液中堆积黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾堆积后,溶液中铁的浓度一般降到1~5kg∕m3。
湿法炼锌中黄铁矾法典型的操作分3个根本过程:中性浸出、热酸浸出和黄铁矾堆积。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解堆积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液形成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾堆积段处理,先用锌焙砂调整酸度,再参加硫酸铵或硫酸钠堆积碱金属黄铁矾。沉铁后液回来中性浸出,黄铁矾渣则弃去。需求指出,堆积黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,避免丢失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸恰当安稳,实践上黄铁矾渣弃去前可在相似热酸浸出的条件下进行酸洗,溶解收回渣中残存的铁酸锌,而黄铁矾本身不致溶解。
黄铁矾法的3个根本过程的详细操作条件及次序在不同供应商不尽相同,但意图是相同的;最大极限地收回锌而不考虑少数的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的堆积能够合而为一,即所谓转化法,其总反响如下:
(1)
该兼并过程的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣回来循环。若精矿中含有较很多的Pb和Ag,则选用其他的流程,得到含Pb∕Ag的渣、黄铁矾堆积和中性Zn电解液。这类流程中包含有一个预中和作业。在一般的黄铁矾流程中是用焙砂下降热酸浸出液的酸度,然后敏捷而有用地堆积黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而丢失。在热酸浸出和黄铁矾堆积作业之间引进一个预中和作业能够下降黄铁矾中的金属丢失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣回来热酸浸出段溶解其间的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后参加所需求的中和剂进行黄铁矾堆积。
图1为集成的黄铁矾法流程示意图。它的规划中结合了各种黄铁矾法计划中的大多数改善环节。图1 集成黄铁矾法
除应用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取顶用作除铁工艺,尤其是在硫酸盐系统中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是选用黄钾铁矾沉铁。因为硫酸化焙烧本身供给了K+离子,堆积黄钾铁矾时无需外加高本钱的硫酸钾。
黄铁矾法的长处是堆积简单过滤,Zn,Cd和Cu在堆积中的丢失最少,能够一同操控硫酸根和碱金属离子,简单与各种湿法冶金流程结合。但它也有其本身的缺陷,例如:1)所用试剂本钱较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需求充沛洗刷以除掉吸附的有害环境或可供运用的金属;4)需求在操控条件下寄存避免分化放出有害组分污染环境。通过热分化或水热分化将黄铁矾转化为赤铁矿供出产铁并将硫酸钠/硫酸铵循环至黄铁矾堆积作业,可望战胜这些缺陷。
二、针铁矿法
运用堆积针铁矿除铁的技能是由比利时老山公司巴伦厂(Vieille Montagne)首要开发和工业化的,称为VM法。成功地堆积针铁矿的关键在于保持溶液中Fe3+的低浓度,例如<1kg∕m3,否则在堆积针铁矿的pH规模(2~3.5)内将得到胶状的Fe(OH)3或碱式硫酸铁Fe4SO4(OH)10。VM法处理此问题选用的是复原-堆积法,流程如图2所示,从热酸浸出得到的含100kg∕m3Zn,25~30kg∕m3Fe3+及50~60kg∕m3H2SO4的硫酸锌溶被先通过复原作业,即在堆积针铁矿前在一个独自的作业中先用锌精矿(ZnS)将溶液中的Fe3+都复原成Fe2+,复原后未反响的ZnS与反响生成的元素硫一同别离出来送回焙烧炉。复原后液再用焙砂ZnO预中和至3~5kg∕m3H2SO4,得到的铁渣回来热酸浸出作业,溶液则送入堆积反响器。向堆积器通空气将Fe2+氧化成Fe3+而使之水解堆积出针铁矿晶体。图2 VM针铁矿法
堆积针铁矿时需不断在参加焙砂以中和水解反响发生的酸,将pH值操控在恰当的规模内,如pH=2~3.5。VM法需求特别注意操控Fe2+的氧化速度,使得溶液中Fe3+的浓度在水解堆积针铁矿的过程中一直保持在1kg∕m3以内。与黄铁矾法不同的是,针铁矿堆积时无需供给一价阳离子,而得到的针铁矿渣也不能进行酸洗收回其间由焙砂中和带入的未溶解的锌。为避免这部分锌的丢失,一个对策是运用低铁的闪锌矿焙砂作中和剂。
澳大利亚电解锌公司开发的EZ法直接将含Fe3+的待水解液慢慢参加水解堆积器中,操控水解液Fe3+浓度不超越1kg∕m3然后操控水解,因此EZ法亦称部分分化法。在70~90℃下接连水解堆积针铁矿,一同不断参加锌焙砂中和因水解发生的酸,保持溶液pH值在2.8以适于水解。
两种针铁矿法比较,堆积相同数量的铁,VM法水解发生的酸此EZ法少,因此为中和水解的酸需求耗费的锌焙砂也少,随锌焙砂丢失的锌电少,除铁的作用也好于EZ法。但VM法触及先复原后氧化两道工序,比较繁琐。此外,VM法用空气氧化Fe2+的速度较慢,而用其他氧化剂则本钱高。
与黄铁矾法比较,针铁矿法不需求硫酸根和碱金属,可应用于任何酸浸系统,包含氯化物系统和硝酸盐系统,除铁的作用也更好(从30kg∕m3到小于1kg·kg∕m3),但针铁矿对酸的安稳性较差,堆积中未溶解的铁酸锌不能如黄铁矾法那样用酸洗来收回。
三、赤铁矿法
日本秋田公司饭岛锌冶炼厂和德国鲁尔锌公司达特伦电锌厂均选用赤铁矿法处理锌厂中性浸出的浸渣收回其间以铁酸锌存在的锌及其他有价组分。用赤铁矿法处理湿法炼锌的铁渣源于环境保护的压力。赤铁矿法准则流程见图3。来自浸出主流程的高铁渣在村耐酸砖和铅的高压釜顶用电解贫液补加酸再提出,反响温度95~100℃。浸出在SO2(分压0.15~0.25MPa)气氛下进行,所以也称为SO2浸出。在此条件下渣中的铁酸盐很简单溶解,高铁复原成二价伴随铁酸盐中的锌和铜进入溶液:
(2)
(3)图3 赤铁矿法准则流程图
从溶液中排去过量的SO2和用H2S堆积除掉铜后,对含大约Zn90kg∕m3,Fe60kg∕m3,H2SO4 20kg∕m3的溶液用石灰百分两段中和。榜首段中和到pH=2以发生可供应的高等第石膏,然后再中和到pH=4.5,堆积分出含有价金属如Ca和In的石膏,一同有碍赤铁矿堆积的元素如Al等也在此阶段随石膏堆积除掉。第二段中和发生的浆料经重力沉降得到的固体回来榜首段中和槽,沉降后液高压过滤得到氧化物-氢氧化物的混合堆积,送熔炼厂收回镓和铟。一同用空气氧化堆积部分铁和其他杂质。堆积石膏有助于除掉SO2氧化发生的硫酸根以保持硫酸根平衡。两段中和后的溶液(含Fe 40~45kg∕m3)用赤铁矿法堆积除铁。沉铁在衬钛高压釜中进行,通入新鲜蒸汽和氧气,温度从95℃升高到200℃,压力进步到1.8MPa(氧分压0.15~0.25MPa),溶液中的硫酸亚铁被氧化成硫酸铁并发生水解:
(4)
高压釜中停留时间约3h,首要水解产品为赤铁矿,含有w(Fe)=59%和w(S)=3%,固液别离后赤铁矿也首要供应给水泥厂。别离出赤铁矿的溶液含Fe5~7kg∕m3和H2SO460~70kg∕m3,回来焙砂的中性浸出段。
选用赤铁矿法的饭岛锌冶炼厂自1972年投产以来,至今已成功运行了26年,经1997年扩产,电锌产值巳达190000t∕a。因为锌精矿铁含量添加,出产功率进步和工厂扩产,赤铁矿法处理的铁量逐年添加,并在技能上作了若干改善。例如,锌焙砂弱酸浸出的渣与元素硫混合用电解贫液补加硫酸后在衬铅和耐酸砖的高压釜中再浸出。参加元素硫使溶液中大部分铜作为硫化铜堆积。热酸浸出的排料除掉过量的SO2后,在拌和槽中通入H2S堆积其他的铜。沉铜槽的排料稠密、压滤,得到的滤渣含铜、铅和贵金属,送熔炼厂收回。沉铜稠密机溢流含30kg∕m3游离酸,用细磨的石灰石两段中和。榜首段中和游离酸(至pH=1)得到纯的石膏,离心过滤后供应给水泥厂。
近些年来,跟着锌精矿中铁含量的添加,焙砂中进入铁酸盐中的铜添加,焙砂弱酸浸出的铜削减而进入浸渣的铜添加,因此浸渣赤铁矿法处理厂中需求堆积的铜大为添加,然后使渣处理厂堆积铜的本钱进步。1992年曾经,渣处理厂中溶液中的铜用元素硫和硫化氧堆积:
(5)
(6)
饭岛锌冶炼厂1992年用于堆积铜的硫化氧气体耗费本钱占总的耗费性本钱的25%。这无疑太高,需求开发一个不必堆积铜的新办法。后来发现硫化锌精矿能够替代气体,它堆积除铜的反响如下
(7)
(8)当出产上用硫化锌精矿沉铜时,铜的堆积并不彻底。后来运用更细的精矿添加SO2分压处理了这一问题。现在这种办法有用地脱除了铜。
高铁水解成赤铁矿和铝水解堆积铝矾都发生酸,因此下降赤铁矿堆积釜的料液中游离硫酸的浓度和铝的浓度对促进高铁的水解很有用:本来第二段中和的溶液有30%回来榜首段,从1997年3月以来,第二段溶液回来的量逐步添加,赤铁矿水解高压釜的料液中游离硫酸浓度从7kg∕m3降到4kg∕m3,铝的浓度降到2kg∕m3以下,除铁功率进步到88%以上,使操作本钱要素如氧气或蒸汽的本钱下降。
尽管赤铁矿法在环保方面比黄铁矾法和针铁矿法更有利,它依然遭到环境方面的压力。为了使堆积的赤铁矿能悉数售出给水泥厂,有必要处理赤铁矿中的含砷和含硫问题。因为火法冶金不只本钱高,并且很难满足脱除砷,所以饭岛炼锌厂研讨在堆积赤铁矿前从溶液中脱砷,提出了图4所示的改善赤铁矿法新流程。图4 改善的赤铁矿法新流程
在改善的赤铁矿法中,弱酸提出的渣在105℃下SO2气氛中浸出而不加锌精矿或元素硫,发生的含银和铅的渣过滤别离。滤液用石灰榜首段中和到pH=1,发生纯石膏。然后在该中和段的溶液中参加锌灰,堆积砷化铜,铜和砷的脱除率到达99%。脱砷后液榜首段加石灰石中和到pH=4,堆积出含Ga,In和Al的石膏。该段的溶液大部分送赤铁矿堆积高压釜,其他溶液用于浸出砷化铜。浸除在独自的高压釜中氧气氛下进行,铜被浸出而砷堆积为铁。浸液中的铜用锌灰置换,然后将溶液回来焙砂中性浸段。改善的赤铁矿法进行了中试和可行性研讨,得到的赤铁矿质量及本钱都令人满足。
德国鲁尔公司(Ruhr-Zink GmbH)的赤铁矿法首要包含以下过程:
(1)中性浸出渣两段热酸浸出。榜首段为热酸浸出,中性提出渣用第二段超热酸浸出的滤液在95℃下浸出,浸出的终酸浓度50kg∕m3。渣中的大部分有价金属如锌、铜和镉伴随铁一同溶解。浸出的排料稠密后溢流泵送至复原段,底流在过热酸浸段中沸点以上浸出,酸浓度140kg∕m3。过热酸浸中铁酸盐都溶解,残留的低铁富铅的Pb-Ag渣经稠密和高压膜压滤机过滤,滤液回来热酸浸出。
(2)高铁复原。为了在堆积赤铁矿前净化溶液并能在最尽或许低的温度下堆积铁,需求将离解的高铁先复原成亚铁。硫化锌精矿可用作复原剂,它的本钱低,但需大大过量,反响温度在90℃左右。未反响的含元素硫的渣过滤后回来焙烧。
(3)溶液的净化与中和。复原后液用焙砂在中和槽和稠密机中两段中和,使一切影响赤铁矿质量的元素大部分堆积分出,特别是砷和锑。铜则部分共堆积。这些元素富集在中和渣中,再在终浸作业中彻底溶解。终浸用废酸进行,终酸浓度为40kg∕m3。在稠密机中固液别离后,底流送去热酸浸出作业,溢流送去用海绵铁置换沉铜,将铜的浓度降至500g∕m3以下,再返至前面的中和作业。置换的铜用废酸洗刷后出售。
(4)赤铁矿堆积。这是最重要的部分。中和净化的浸液(含Fe2+25~30kg∕m3,Zn120~130kg∕m3)用蒸汽加热到180℃以上,其间的亚铁在氧压1.8MPa下氧化并水解成含w(Fe)=60%左右的细粒赤铁矿,铁的堆积率达90%~95%。详细流程如图5所示。图8 鲁尔公司电解锌厂赤铁矿法准则流程
赤铁矿法出资和操作费用远高于黄铁矾法和针铁矿法,但它或许收回锌精矿的悉数成分,发生的满是可供应的产品,一切作为中间产品的渣帮可进一步加工而无需堆存。
低品位氧化锌矿冶金技术进展
2019-02-20 11:59:20
我国西南地区氧化锌矿资源极其丰富,氧化锌富矿的档次一般在25%~35%,档次小于25%归于低档次氧化锌矿。氧化锌是锌的次生矿藏。氧化锌矿石中的锌首要以菱锌矿(ZnCO3)、硅锌矿(Zn-SiO4)等形状存在,矿石中含有许多的金属杂质,如铅、铁、镉、铜等。锌的氧化矿藏相杂乱,不易选别,浮选药剂的挑选、矿藏表面的改性都比较困难。
跟着国际对金属需求量的增大,一起矿藏资源日趋缺少,从低档次矿石中提取有价金属成为近些年来的研讨热门。关于低档次氧化锌矿来说,选用惯例的酸浸工艺作用并不抱负,首要是因为酸耗大、杂质多、锌浓度低、浸出液难以处理,因此低档次氧化锌矿一向没有得到很好的使用。
现在,氧化锌矿石的处理办法有两种:第一种是氧化锌矿石经选矿富集后进入冶炼程序得金属锌;第二种是氧化锌矿石直接人冶炼程序。直接冶锌法又分为火法和湿法两类。
一、火法冶金
(一)金属浴熔融复原法
金属浴熔融复原法是近10年繁荣发展起来的冶金新技能,其间含碳球团铁浴熔融复原法对错高炉炼铁中的首要研讨工艺之一。金属浴熔融复原法,除具有氧化物(或含碳氧化物球团)快速复原,能量使用好等特色外,金属浴自身自带的许多显热,以及其杰出的热传递才干,能快速弥补氧化物复原所耗费的热量,促进氧化物的复原反响,这也是其特色之一。国外20世纪80年代末展开了使用铁或铁浴来复原蒸发氧化锌的研讨。日本伊藤聪、澳大利亚Rankin和加拿大Donald作了这方面的研讨,这些都为金属浴熔融复原法处理氧化锌矿供给了根据和参阅。因为氧化锌矿中都伴跟着必定量的铅,当选用铁浴或铁熔点以上的温度处理时,这些铅根本悉数蒸发,使搜集物产品质量大为下降,所以完成氧化锌矿中的锌、铅别离是得到高档次氧化锌粉的要害。选用铁浴熔融复原法对含铅量高的含锌铅粉尘处理后证明,搜集物中ZnO含量仅70%,没有到达处理的作用,后选用废铝构成铝浴代替铁浴,完成氧化锌的熔融复原,搜集物中ZnO含量达92.523%,开始完成了锌铅别离及粉尘处理。铝浴熔融复原法的特色:铝的熔化温度很低(660℃),其传热才干很强,可在较低温度下挑选复原温度,既到达氧化锌快速复原,而Pb又不蒸发的意图。
1、铁浴熔融复原法(下面简称“铁浴法”)
铁浴法处理氧化锌矿的原理相似铁氧化物铁浴复原的机理。铁浴法中氧化锌的复原办法多于其它火法工艺,并且氧化锌的复原是耗热进程,铁浴法的温度高,传热办法首要是传导传热,热传递速度快,并充分使用铁水的显热,所以铁浴法中氧化锌复原反响速度很快。铁浴法中氧化锌会发作以下反响:
(ZnO)+Cs=Zn(g)+CO (1)
(ZnO)十CO=Zn(g)+CO2 (2)
C+CO2=2CO (3)
(ZnO)+[C]=Zn(g)+CO (4)
C=[C] (5)
(ZnO)+Fe=Zn(g)+(FeO) (6)
式中Zn-代表熔渣中的氧化锌;
Cs-代表固体碳;
[C]-代表铁浴中饱满碳。
2、铝浴熔融复原法(简称“铝浴法”)
铝浴法中氧化锌首要是以含碳球团的办法进行复原。对铝浴中纯氧化锌球团以及含碳氧化锌球团复原的研讨成果标明:铝浴在1000~1250℃温度范围内根本不参加氧化锌的复原,有铝浴存在时含碳球团的复原速度快于无铝浴存在。因为氧化锌复原时强吸热反映,进步温度有利于复原,但进步温度也会进步铅的蒸汽压,加大船的蒸发,导致铅及其氧化物进入搜集物中,铝浴法就是针对这一特色,使用铝熔点低、传热才干强的特色,是氧化锌在低温下也能取得满足热量,然后既能到达快速复原,又能下降铅蒸发的意图。
(二)电炉法
电炉法是选用电炉冶炼,在电炉中复原氧化锌。电炉法要求氧化锌矿的锌档次很高,铅含量及其它杂质要十分低,入炉料为粉料,复原要求冶金焦,电炉处理法的质料条件要求严厉,现在我国大部分氧化锌矿低档次难选氧化矿,这种质料条件很难再许多供应商完成。
(三)韦氏炉法和回转窑法
韦氏炉法和回转窑法首要处理低档次难选矿藏,质料条件不限,但因为经济效益的原因,也要求质猜中Zn含量大于15%。韦氏炉法和回转窑法的炉料在复原进程中根本坚持原有形状,不能发作软化或熔化;冶炼温度低,反映多是气-固相反响,冶炼周期较长;冶炼的热量均来自煤焚烧,传热办法首要是对流传热,才干使用率低。电炉处理法的冶炼温度高,质料为粉料并快速熔化;反映有气-固相反响和液-气相反响等;冶炼的热量来自电能转化,传热办法首要是辐射传热,故要求反响关闭体内进行,才干使用率高。
二、湿法冶金
(一)碱法浸出
碱法浸出用碱浸出氧化锌矿石,设备不易腐蚀,固液别离便利,浸出液易净化,是现在研讨较多和较有出路的氧化锌矿石处理办法之一。本工刁难云南兰坪氧化锌矿石进行碱法浸出探索性实验,选用的浸出剂为和-碳酸铵,旨在为从氧化锌矿石中直接湿法收回锌寻觅卓有成效的办法。
碱法浸出是处理氧化锌矿石的有用办法之一,它具有浸出率高和对环境友好等长处。对云南兰坪氧化锌矿石的碱法浸出实验标明,和-碳酸铵溶液都是处理氧化锌矿石的有用浸出剂,锌浸出率可达90%以上。该办法可用于处理同类矿石。
(二)硫酸浸出
选用废电解液浸出氧化锌矿,矿石中的硅许多溶出,生成胶态硅,影响矿浆的液固别离,其它杂质如铁、钙、镁、铝等的浸出也加大净化难度。因此,对氧化锌矿特别是低档次氧化锌矿的湿法处理,国内外进行了许多的研讨。为防止硅酸损害,氧化锌矿浸出时应尽量防止发生胶质SiO2,或操控浸出液中硅酸的聚合作用,使硅酸在胶凝前除掉,改进矿浆液固别离的功能。现在出产上常用的氧化锌矿酸浸工艺有老山工艺(Vieille-Montagne)、中和凝集法和瑞底诺(Radina)法,都是选用不同办法将矿浆中胶质SiO2在胶凝前以不同方式除掉。
用硫酸浸出低档次氧化锌矿,既到达浸出金属锌的意图,又下降了杂质和酸耗,为开发使用低档次氧化锌矿奠定了根底。
(三)细菌浸出
某些细菌因为具有氧化复原作用而被使用于浸矿作业,如氧化铁硫杆菌(Thiobacillus Ferrooxidans简称Tf)是近况细菌中最常用的一种自养菌,已被广泛使用于硫化矿的浸出工艺上。Duncan等人用Tf浸出硫化锌矿,在必定条件下锌的进出速率可达150mg/(L·h),将细菌用于氧化锌矿的浸出,不只能促进其间少数的硫化矿在较短时间内浸出,进步锌的浸出率,还有利于浸出液沉积除铁,下降滤液中的铁含量。Tf可按下式直接或直接浸出硫化锌矿:
ZnS+2O2=ZnSO4 (7)
ZnS+Fe2(S01)3=ZnSO4+2FeSO4+S0 (8)
Fe2+=Fe3+ (9)
(四)渗滤-萃取浸出
渗滤浸出被广泛使用于低档次硫化矿的堆浸,因为减少了磨矿工艺,下降了浸矿工艺的本钱,出产上具有操作简略,便于管理等长处。氧化矿因为渗透性差,大规模堆浸比较困难,但也能够实施薄层浸出。
(五)低浓度浸-直接电积
针对这些高碱性脉石含锌5%~15%的中低档次氧化锌矿的开发使用,有关单位尽管进行了多年的研讨并提出了多个处理计划,但均因经济或技能方面的原因此没能完成工业使用。近年来,国内有关专家学者学习20世纪80年代法国、比利时从炼钢锌灰中提取锌所选用的NaOH浸出-浸出液净化除杂-电积出产电解锌的思路,提出了相似的流程来处理高碱性脉石中低档次氧化锌。该工艺尽管具有出产本钱较低、NaOH能够再生循环使用等许多长处,但因为不能有用脱除溶液中的铅(浸出液中含有1~2g/L的铅),尚不具有工业使用远景。
考虑到溶液除杂、按捺铅的浸出和进步锌的浸出速度,中南大学在-氯化铵介质中选用拌和浸出-净化-电积工艺对氧化锌矿的处理进行了研讨。因为有Cl-存在,电积进程阳极反响以析氮为主,不只耗费量大,并且对设备原料防腐要求也较高,加之为了确保所产电解锌的产品质量、保持溶液中高的锌浓度,浸出时不得不选用较高的游离浓度,导致电积锌时铵蒸发严峻、操作环境较差,因此锌的出产本钱较高。
针对高硅酸盐、低Ca、Mg含量的中低档次氧化锌矿的处理,国内有关学者提出了硫酸强化浸出-P204萃取-锌反萃液电积的工艺,并完成了体系的小型实验研讨,取得了很好的实验成果。有关单位在学习低档次氧化铜堆浸工艺的根底上,展开了氧化锌矿的堆浸实验研讨,有关作业正在进行。
三、定论
为了开发低档次氧化锌矿,国内外进行了许多的研讨。可是火法冶金存在的高能耗、高污染的冶金特色一时难于改动。湿法冶金存在的高耗费、浸出率低的特色也需求霸占。这些难点是往后低档次氧化锌矿冶金的要点,只要处理了这些问题,才干更好的开发低档次氧化锌矿。
转底炉技术及其在含铁尘泥处理中的应用
2019-02-26 11:04:26
摘要:钢铁厂商发生很多含铁尘泥,且锌、碱金属含量较高,不利于收回运用,转底炉技能有效地处理了该问题,使尘泥中的有价金属得到了很好的收回。概述了Inmetco、Fastmet、Fastmelt和Itmk3等处理含铁粉尘的转底炉工艺,并具体介绍了国内外转底炉处理含铁粉尘的运用状况,指出了转底炉技能存在的问题,展望了转底炉处理含铁尘泥的未来展开方向。
关键词:转底炉;含铁粉尘;金属化率钢铁厂商尘泥总量一般为钢产值的8%~12%,锌、钠、钾等元素含量较高的粉尘约占钢铁厂粉尘量的25%~30%,这些锌、钠、钾元素含量高的粉尘如直接回来烧结,将会形成锌、钠、钾元素的富集进而影响高炉顺行和寿数。转底炉技能有效地处理了该问题,它将尘泥配料后直接复原,生成直接复原铁,并将锌、钠、钾等元素以粉尘的方式收回,使尘泥中的有价金属得到了很好的收回,现在已在国内外多家钢厂运用,宝钢湛江钢铁、莱芜钢铁、日照钢铁等国内钢厂均有建成投产的转底炉,日本新日铁、韩国浦项等国外钢厂也投产若干座转底炉。本文对处理含铁尘泥的各种转底炉工艺和国内外钢厂的运用状况进行介绍。1转底炉工艺概略及特色比较转底炉(RHF)是转底式加热炉(RotaryHearthFurnace)的简称,是指经过炉底滚动将坯料送进的加热炉。最早的转底炉是用于轧钢的环形加热炉,近十余年来移植为冶炼设备,既能够用于铁精矿的煤基直接复原,又能够处理钢铁厂的含铁尘泥[1-2]。现在已工业化运用的转底炉工艺首要有:Inmetco、Fastmet、Fastmelt、ITmk3和DRyIron工艺等。
1.1转底炉工艺概略
Inmetco转底炉工艺由InternationalmetalReclamationCompany公司开发,并在美国建成世界上第一座具有出产规划的转底炉,可从不锈钢粉尘中收回Zn、Ni、Cr等金属。该工艺首先将质料、燃料送入造球体系,造好的球团由加料溜槽参加转底炉内,球团在炉内1250~1300℃高温下复原成直接复原铁,经过螺旋卸料机排出炉外[3-4]。
Fastmet工艺由美国Midrex公司与日本神户制钢协作开发,用以处理钢厂内部的含铁粉尘和铁屑等,球团在1250~1300℃温度下被加热复原,其工艺流程与Inmetco工艺根本类似[5]。因为Fastmet工艺产品中含有脉石、煤灰分等杂质,金属化率也依赖于质料档次,所以在此基础上,将埋弧电炉(EIF)设置在转底炉后处理直接复原铁,形成了Fastmelt工艺。
ITmk3工艺(第三代煤基直接复原工艺)由神户制钢和美国Midrex公司联合开发,既能够复原铁矿石,又能够处理冶金厂发生的粉尘,以及其它含铁、铬、锌的冶金废弃物等。该工艺以粉矿、含铁粉尘和喷吹煤粉为质料,运用造/压球机等设备制成球团或团块,在1350~1450℃的加热条件下完结复原、渗碳及熔融反响,并对排出的渣、铁进行别离[6]。DRyIron工艺是由美国MR&E公司与罗杰钢公司(RSC)联合开发的煤基直接复原工艺,能够用来处理收回钢铁厂含锌粉尘。该工艺在质料预备阶段的特色是将焦粉(或煤粉)与铁矿粉(或许含铁固废)混合后直接限制成块,不运用粘结剂,并在转底炉单层装料,一般在1160~1300℃下完结复原反响[7-8]。
近年来,国内高校及相关科研机构也开发出了具有自主知识产权的转底炉专利技能,其间北京科技大学、北京神雾集团、钢铁研讨总院、中冶赛迪等已别离与国内钢铁厂商协作,建造并投产了多条转底炉出产线。
1.2转底炉工艺特色比较
Inmetco转底炉工艺复原温度规划略小于Fastmet工艺和Fastmelt工艺,但根本工艺流程类似,只在烧嘴方式、温度散布等方面有差异。ITmk3工艺复原温度高于前面几种工艺,能使金属在球团复原时进一步熔化,并完成渣铁别离,在短时刻内出产出成分如生铁的高纯度粒铁产品,且出产出的产品质量高于前述几种工艺。DRyIron工艺其特征是用压块替代造球,简化了工艺流程,含锌粉尘压块在炉内的逗留时刻短,而且克服了煤基复原时带来的粉化、脉石含量高、硫高级缺陷。2国内外钢厂转底炉工艺运用现状转底炉工艺以其本钱低、原燃料灵敏、出产节奏适应性强、环境友好等长处,受到了国内外钢铁厂商的喜爱。转底炉工艺最先在美国鼓起,并在日本发扬光大,近年来,引起了我国的广泛重视,国内钢厂经过技能引入等手法,已投产若干座转底炉,并取得了出色的作用。
2.1国外钢厂转底炉工艺运用状况
国外钢厂共投产13座转底炉用于处理含铁尘泥,别离坐落美国、日本、韩国等地,各钢厂转底炉运用工艺及首要技能指标见表1。其间运用Inmetco工艺的转底炉3座,运用Fastmet工艺6座,运用DryIron工艺4座,上文说到的Fastmelt工艺和ITmk3工艺并未运用于含铁尘泥的处理。美国Inmetco公司、神户钢铁公司加古川厂和新日铁光厂的转底炉产能较小,其他几座转底炉产能均能到达14万t/a以上。2.1.1美国Inmetco公司
美国Inmetco公司转底炉建于1978年,选用的是自主研制的Inmetco工艺,用于处理不锈钢粉尘以及含锌电池,产能9万t/a。该转底炉直径16.7m,炉底宽4.3m,炉底面积146m2,转速15~20r/min,复原温度1250~1300℃,金属化率为96%。
2.1.2神户钢铁公司
神户钢铁公司加古川厂转底炉建于2001年,选用的是Fastmet工艺,用于处理钢铁厂的含铁、含锌粉尘,产能为1.4万t/a。该转底炉直径为8.5m,炉底宽1.25m,复原温度为1300~1350℃,复原时刻为12min,DRI(直接复原铁)或HBI(热压块铁)金属化率85%~92%,镍档次95%~100%,脱锌率超越90%,收回粉尘中锌含量为44.70%[9]。
2.1.3新日铁公司
新日铁公司现在建有8座转底炉,广畑厂4座,光厂1座,君津厂3座,别离选用了Fastmet工艺、DryIron工艺和Inmetco工艺。
新日铁广畑厂别离于2000年、2005年和2008年建成3座转底炉,选用Fastmet工艺,用于处理钢铁厂含铁、含锌废弃物,产能均为19万t/a,其间3号转底炉由新日铁工程与神钢的合资专业公司建造。该转底炉直径21.5m,炉底宽2.8m,转速3.75r/min,设备作业率可达90%以上。当炉子的出产率为10kg/(m2·h)时,DRI金属化率达91.9%,脱锌率为94.0%,其间14万t金属化球团供该厂转炉炼钢,转底炉布袋过滤器收回的粉尘含锌量约为63.4%(其间78.9%是ZnO),铁含量小于1%,可作为炼锌厂质料。尔后在2011年又建成产能为22万/a的4号转底炉。
新日铁光厂转底炉建于2001年,选用DryIron工艺,用于处理不锈钢出产过程中发生的固体废弃物(电炉粉尘、酸洗沉渣和轧钢氧化铁皮等),收回铁、锌、镍、铬等成分,产能为2.8万t/a。该转底炉直径为15m,复原温度为1300℃,复原时刻为15min,作业率为80%左右,DRI的金属化率为70%~80%,DRI产品用于电炉和AOD炉[10]。新日铁君津厂在2000年和2002年先后建成2座转底炉,选用Inmetco工艺,用于处理来自高炉和转炉的干粉尘和低水分污泥,产能别离为18万t/a和14万t/a,复原时刻别离为10~20min和15~30min,生球处理才能别离为22t/h和17t/h。该转底炉直径为24m,炉底宽为4m,炉膛面积为230m2,冶炼温度为1250~1300℃,DRI金属化率到达75%~85%;脱锌率可达92%,直接复原铁均匀强度为10MPa[11]。尔后在2008年又建成3号转底炉,选用DRyIron工艺,产能为31万t/a。
2.1.4JFE公司
JFE西日本钢铁福山厂转底炉建于2009年,选用Fastmet工艺,用于处理高炉尘和转炉尘,产能为19万t/a,产品DRI用于高炉,收回的氧化锌出售。该转底炉直径为27m,出产的DRI复原度大于80%,锌收回率大于90%,耐压性大于100kg/块。
2.1.5韩国浦项
韩国浦项与日本新日铁协作,别离在浦项厂和光阳厂各建成1座转底炉,选用DryIron工艺,用于处理含泥和轧钢铁鳞,每座转底炉可出产HBI(或DRI)14万t/a,总出资1300亿韩元,出资份额为7∶3。浦项厂转底炉从2008年8月开端建造,于2009年9月建成,出产的HBI大部分出口到新日铁;而光阳厂转底炉从2009年1月开端建造,于2009年末建成,出产的DRI则悉数被浦项公司运用。浦项经过收回运用炼钢过程中发生的副产品添加铁水产值和公司赢利,一起,经过将转底炉项目与联合国清洁展开机制项目(CDM)相结合,以保证取得二氧化碳排放权。
2.2国内转底炉工艺运用现状
国内钢厂共投产7座转底炉用于处理含铁尘泥,2座在建。各钢厂转底炉及首要技能指标见表2。除马钢直接引入新日铁DryIron工艺外,其他几家钢厂均是选用国内高校或许科研机构成套技能。国内钢厂转底炉投产时刻较晚,技能也较为老练,建成转底炉产能均在20万t/a以上。
2.2.1马鞍山钢铁公司
马鞍山钢铁公司引入新日铁DryIron工艺,于2009年7月建成投产1座产能为20万t/a的转底炉,用于处理高泥,该转底炉核心技能和设备由日本新日铁工程公司供给,马钢设计院担任国内的配套,之后,马钢设计院与日本新日铁公司合资建立马鞍山中日资源再生工程技能有限公司。该转底炉直径为20.5m,炉底宽为4.9m,作业率均匀为80%(最高可达95%),制品球能耗为248.57~297.43kgce/t,体系脱锌率达85%以上,排碱率达60%,烟尘浓度低于50mg/m3,收回含锌55%的粗锌粉为0.3万t/a,出产金属化率大于80%的金属化球团14万t/a[12-13]。
2.2.2日照钢铁公司
日照钢铁公司选用钢铁研讨总院的“冷固结成型+转底炉直接复原”技能,建成2条20万t/a的转底炉出产线,于2010年5月投产,其产品金属化球团产值为14万t/a,可作为转炉炼钢的冷却剂质料,副产品粗锌粉尘外售作为炼锌的质料。该转底炉直径为21m,炉底宽为5m,炉膛内高为1.5m,炉底面积为330m2,烧嘴数31个,助燃空气预热器能够将助燃空气加热至450~480℃,煤气预热器将发生炉煤气加热至250~280℃,炉子作业率到达90%,所出产的直接复原铁金属化率均匀在75%~85%,可日产400~500t合格金属化球团,出产运转本钱控制在800~900元/t[14-16]。
2.2.3莱芜钢铁公司
山东莱芜钢铁公司与北京科技大学出资2亿元协作开发出转底炉直接复原处理钢铁厂含泥成套工艺,产能为32万t/a,于2010年11月投产,用以处理烧结灰、高炉除尘灰、转炉灰、电炉除尘灰、轧钢污泥、转炉污泥等,可年产金属化球团20万t、锌灰0.2万t,出产的金属化球团供高炉或转炉运用,转底炉二次除尘灰经湿法富集锌后作为炼锌质料。该转底炉直径为34.5m,炉底宽为5m,出产的金属化球团金属化率大于60%,TFe档次大于55%,脱锌率大于93%,粗锌档次为41.36%,粗锌产值为2000t/a,脱钾、钠率大于85%,归纳能耗为227.86kgce/tDIR[17]。
2.2.4沙钢集团
江苏沙钢集团与北京神雾集团出资3亿元联合开发出具有彻底自主知识产权的“蓄热式转底炉处理含泥、归纳收回铁/锌”的成套工艺技能和配备,建造了1座30万t/a的蓄热式转底炉,于2011年12月投产。该转底炉直径为45m,炉底宽为5m,转速为20~30min/r,金属化率在72%~96%之间,作业率到达82.5%,脱锌率在94%~97%之间,锌元素均匀收回率到达95%,收回ZnO均匀锌含量在62%以上(最高可达70%),制品球能耗为208.3kgce/t。该转底炉技能不仅能收回高纯度ZnO、金属铁,还能收回过热蒸汽,每年处理含铁污泥、除尘灰等冶金固废37万t,可出产30万t金属化球团,并收回ZnO1.5万t,蒸汽16万t,减排二氧化碳3.12万t,出产运转本钱为776.41元/t[18]。
2.2.5宝钢集团
宝钢湛江钢铁有限公司选用中冶赛迪转底炉固废处理成套技能,建成1座产能20万t/a转底炉,并于2016年6月热试成功。该项目出资约2亿元,可出产制品金属球约14万t/a,粗锌粉约1万t/a,脱锌率大于85%,金属化率大于75%,预期年收益达5000余万元,可完成宝钢湛江钢铁厂含铁粉尘100%收回运用。之后,宝钢集团同中冶赛迪协作一个固废处置、资源归纳运用项目,在上海本部拟建2×20万t/a转底炉,并依照两期分步施行建造,一期建造一条出产线,预留1条出产线二期建造。一期工程除转底炉本体及相应公辅设备外,还包含两期共用的质料接纳、配料、混合体系、制品存储、质料除尘以及二期的部分土建造施。
2.2.6燕山钢铁公司
河北钢铁集团燕山钢铁有限公司选用中冶赛迪集团自主研制的转底炉固废处理成套技能建成一座产能20万t/a的转底炉,用以处理各种高炉、转炉除尘灰,并于2015年6月热试成功,该转底炉脱锌率大于85%,金属化率大于75%,每年可取得约14万t金属化球团、0.5万tZnO粉尘、13万t蒸汽。3转底炉存在的技能问题转底炉技能尽管展开迅速,技能日趋老练,但因为工艺自身的局限性,仍存在如下的技能问题:
(1)转底炉首要依托辐射传热,且炉底料层较薄,所以普遍存在能耗高、出产率低、出产规划
小的问题。
(2)转底炉设备机械设备杂乱,设备故障率高,运转维护费用较高。
(3)转底炉处理的冶金尘泥中含有锌、铅、钾、钠等物质,因为这些物质熔点较低,导致转底
炉烟气成分杂乱,处理与收回运用困难。
(4)转底炉出产质料成分杂乱、开停炉频频,致使耐材腐蚀速度快,限制了连续出产[19-20]。4转底炉处理含铁尘泥的未来展望跟着环保标准收紧,钢铁厂环保压力大幅添加,对钢铁厂含铁粉尘的归纳运用有着重大意义。Inmetco和Fastmet工艺出产的DRI质量较差,不适合国内引入,后续开发的Fastmelt工艺能耗较高,也不符合我国国情。国内科研人员经过对现有技能研讨,进一步优化主体体系和改善配套技能,提出了具有自主知识产权的研讨成果。往后,我国应该坚持以经济效益为中心,以高效、优质、低耗、环保、安全为方针展开转底炉技能,在国家支持下,产学研相结合,对转底炉工艺的共性、关键技能难题展开技能攻关,对在转底炉运转条件下生成粒铁的必要条件和充分条件展开基础研讨,运用现有条件展开工业规划顺行出产条件的探究实验。5结语转底炉技能最早发源于美国,展开于日本,技能日趋老练后被国内钢厂引入。现在已工业化运用的转底炉工艺首要有Inmetco、Fastmet、Fastmelt、ITmk3和DRyIron工艺等,国内高校及科研机构在这些工艺的基础上开发出了具有独立知识产权的成套技能,并已投产运用于国内部分钢厂。因为工艺自身存在着局限性,转底炉仍存在着一些技能问题,但其在资源运用和环保方面的出色体现,必定推进该技能的进一步展开与完善。
参考文献(略)
来历:鞍钢集团经济展开研讨院李博等。
铁水解沉淀
2019-02-18 15:19:33
铁是湿法冶金中最常遇见的杂质元素。它在天然界的丰度以及它与周期表中许多元素(如第二类主族元素中的Ca和Mg及榜首过渡系元素Ti,V,Cr,Mn,Co,Ni,Cu)化学性质上的相似性,使之常常发作元素替代,致使这些元素的矿藏假如不是悉数,至少也是大部分含有铁。作为固溶体结合在矿藏中的铁含量从微量(<0.5wt%)到多量(>10wt%)不等,闪锌矿中替代锌的铁量可多达17.4%,镍黄铁矿(Fe,Ni)9S8含铁最多乃至可达43%。因此,湿法冶金中各种浸出液和工艺溶液中都程度不同地含有铁。下表列出了几种首要金属出产进程中由酸浸或酸洗作业发作的可溶性铁的预算数量。因此,含铁溶液的水解天然成了湿法冶金中堆积别离铁最重要最常见的反响,并且大都是为了从浸出液和各种工艺溶液中,首要是从硫酸盐介质中,除掉铁杂质。用堆积法除铁的一个额定的长处是能够通过与铁的共堆积一同除掉其他有害元素如砷。
表 某些冶金业中发作的可溶性铁预算量金属出工业金属产值∕(t·a-1)发作的可溶性铁∕(t·a-1)铜100000003000000锌60000001000000镍5000002500000钢7000000002000000
在湿法冶金所遇到的氧化电位和pH条件下,溶液中的铁只需二价和三价两种价态。由图1看,Fe3+与Zn2+,Cu2+,Co2+,Ni2+等的堆积线相距甚远,标明能够通过水解挑选性堆积铁化合物,在3.5~5的低pH值下从这些金属的溶液中除掉铁。Fe2+则即便在中性条件下也不发作堆积,因此湿法冶金中的堆积除铁问题都是根据Fe3+的水解,Fe2+需先氧化成Fe3+后才干有用除掉。
铁的水解是一个十分复杂的进程,溶液的性质和水解的条件都对水解的成果有着重要影响,发作不同的水解产品和不同的晶型结构。也正因为如此,天然界才会有多种铁的氧化物存在。现在现已知道的铁氧化物、羟基氧化物和氢氧化物有13种,包含水铁矿(Fe5HO8·4H2O)、赤铁矿(α-Fe2O3)、赤磁铁矿(γ-Fe2O3)、磁铁矿(Fe3O4)、针铁矿(α-FeOOH)、四方纤铁矿(β-FeOOH)、纤铁矿(γ-FeOOH)和六方纤铁矿(δ'-FeOOH)。除针铁矿和六方纤铁矿外,其他铁氧化矿藏都或许为杰出的晶体。图2描绘了常见铁氧化物的构成条件和它们间改变的道路和大致的改变条件。图1 金属氢氧化物堆积图25℃图2 常见铁氧化物构成和转化道路及其条件
除氧化物、羟基氧化物和氢氧化物外,铁水解时还或许结合溶液中某些阴离子而构成复盐,最典型的比如是黄铁矾。其间的一些水解产品或许发展为湿法冶金中从溶液中除铁的化合物。挑选作为除铁的水解产品应具有下列性质:
(1)应具有较小的溶解度,然后可把溶液中残留的铁降到最低;
(2)应能在较低的pH值下堆积分出,避免在除铁时引起主金属堆积丢失;
(3)应易于结晶,晶粒较大尤好,便于过滤洗刷;
(4)应有较大水解速度,使除铁进程能在短时刻内完结;
(5)最好能与溶液中的其他有害杂质发作共堆积作用,简化溶液净化进程;
(6)水解堆积进程应尽或许经济、简洁。
现已开发并工业运用的沉铁办法有4种,都是运用中和水解办法堆积的。其间3种用于除铁,都是从锌的湿法冶金工业发展起来并首要工业化的,依其堆积的铁化合物别离称为黄铁矾法、针铁矿法和赤铁矿法。第4种首要用于磁铁组成。下面别离介绍3种水免除铁的办法。
氧化复原电位和pH值是操控铁在水溶液中行为的两个重要要素。氧化环境有利铁堆积,复原环境促进铁溶解;酸性条件有利铁溶解,碱性条件有利铁堆积。高铁离子平衡浓度受溶液pH值改变的影响很激烈,在pH<3时,pH值每添加1个单位,高铁离子的平衡浓度就下降2~3个数量级。因此简略地进步高铁溶液的pH值进行水解会发作巨大的过饱和度,引起很大的成核速度而构成胶体分出。溶液中的铁大于5kg∕m3时,中和水解发作的胶状Fe(OH)3堆积就难于乃至无法过滤或沉降。这样的堆积夹藏许多溶液,构成有价组分的严重丢失,无法在工业出产顶用来除铁。
温度对铁的行为也有重要影响。高温会促进铁堆积,使堆积在更低的pH值下发作。因此,操控溶液中Fe3+堆积程度和堆积物安稳性的最重要的要素是温度和pH值。诱发水解反响相应地有两种首要办法:加热溶液或加碱中和。巴布坎在20~200℃规模内用0.5mol∕L Fe2(SO4)3-KOH水解组成黄钾铁矾阐明晰其构成的温度-pH联系,如图3所示。图中斜线暗影部分为黄钾铁矾的安稳区,跟着温度的升高,安稳区向pH值下降的方向歪斜。在20℃下黄钾铁矾构成的pH值规模从2延伸到3,而在100℃下pH值规模从1延伸到2.3,200℃下pH值从0到1.2。低于此安稳区的pH值时无堆积生成,pH值高过此区则因温度的不同而构成各种其他铁化合物。特别值得注意的是,在100℃以上会构成赤铁矿,而在较低温度下构成针铁矿。看来pH在1.5~1.6之间是100℃下黄钾铁矾构成的抱负酸度。黄钾铁矾堆积的程度随溶液初始pH值的上升而进步,初始pH值再高则会构成别种铁化合物。图3 黄钾铁矾构成的安稳区与温度与pH值的联系
(20~200℃下从0.5mol∕LFe2(SO4)3溶液中堆积)
高铁浓度液对铁的堆积也有重要影响。测定Fe2O3-H2SO4-H2O三元件系的等温线标明,在110℃下,硫酸铁酸性溶液中,在最低的铁和酸浓度下堆积的是针铁矿α-FeO(OH),中等铁浓度时呈现草黄铁矾H3OFe3(SO4)2(OH)6,在黄铁矾与针铁矿之间还有另一个化合物 Fe4(SO4)(OH)10,它在较低的铁浓度下构成,或许在黄铁矾构成后期铁浓度只需几g∕L时生成,只需在很高的硫酸铁浓度下才有Fe3(SO4)(OH)生成。
关于铁水解堆积的物理化学更深化的评论可参阅有关文献。
一、黄铁矾的水解堆积
黄铁矾习惯上也统称为黄钾铁矾,在酸性溶液中具有很小的溶解度。矾是指两种或两种以上金属的硫酸盐所组成的复盐,它比其对应的单盐更易从溶液中结晶分出,还能构成较大的晶粒,有利于固液别离。黄铁矾是一组Fe(Ⅲ)的碱式硫酸盐的复盐,其分子式一般可写成M2O·3Fe2O3·4SO3·6H2O或MFe3(SO)2(OH)6,式中M+为下列一价阳离子(或称矾离子)之一:H3O+、Na+、K+、NH4+、Ag+、Rb+和 Pb2+等。在黄铁矾的化学组成中,高铁离子与硫酸根离子的比值(Fe3+∶SO42-=1.5)远大于1∕2,因此归于碱式盐而不是正盐。与正盐比较,它是在溶液酸度较低和SO3百分含量较小的条件下构成的,并可看成是氢氧化物向正盐过渡的中间产品。在正盐中,高铁离子的键合物是SO42-离子中的O2-离子,在氢氧化物中则为OH-离子。溶液酸度增大就会向正盐改变,酸度下降则分出氢氧化物。
天然界巳知有6种黄铁矾,别离为:黄钾铁矾,草黄铁矾,黄铵铁矾,银铁矾,黄钠铁矾和铅铁矾。它们都是在酸性环境中构成的,多为黄铁矿氧化成褐铁矿的中间产品,多发作在硫化矿氧化带发育的开始阶段。一价阳离子M+的品种对黄铁矾的堆积有影响。在160~200℃规模内别离参加Na2SO4,Na2CO3,NH4OH或K2SO4作为堆积黄铁矾的一价阳离子源进行比较,发现堆积后溶液中残留的铁浓度很不相同,残留铁浓度按此次序递减,但到180℃以上这种不同变小。几种黄铁矾中草黄铁矾最不安稳,尽管没有碱金属存在时能够见到草黄铁矾H3OFe3(SO4)2(OH)6生成,但即便少数碱金属的参加便会使之转化为碱金属黄铁矾,水合质子 H3O+被碱金属离子替代的程度随温度上升而添加。钾的铁矾安稳性最高,NH4+离子半径比K+大,Na+、Li+等离子的半径尽管比K+小,但它们的水合分子数多,其水合离子的半径大,因此它们的铁矾的安稳性都不及钾的铁矾。不过考虑到钾盐较贵,工业上铵一般是堆积黄铁矾首选的一价阳离子源。
黄铁矾一旦构成,就很安稳,不溶于酸,因此黄铁矾的堆积反响可用于从硫酸盐溶液中除铁,然后下降给定酸度下铁的溶解度。堆积反响可用下式标明:
(1)
如上式所见,黄铁矾堆积进程中有游离酸发作,需求随反响进程处以中和以坚持堆积要求的溶液pH值。因此,堆积黄铁矾运用的中和剂不只用以中和初始酸,也用以中和高铁水解发作的酸。不过如前所述,中和不宜运用强碱如,即便很稀的强碱液也很难操控pH值。在电解锌厂的实践中是用锌焙砂(首要含ZnO)作中和剂。
文献汇集了各种黄铁矾的自由能数据,从黄铁矾离解成它的组成成分的平衡常数能够核算在给定条件下铁的溶解度。黄钾铁矾堆积构成的速度随温度而异。在25℃下黄铁矾的构成速度缓慢,从pH值0.82~1.72规模的溶液中堆积彻底或许需耗时6个月。进步温度可改善堆积速度,80℃以上时堆积速度变得较快,100℃时可在数小时内堆积彻底。温度100℃以上堆积速度明显加速,不过就黄铁矾的安稳性而言,堆积温度有一个上限。尽管此温度上限会因溶液的组成而异,但180~200℃似为黄铁矾安稳性的上限。
诚如上述,除pH值和温度外,黄铁矾的构成及其安稳性还与一价阳离子浓度、铁浓度以及有无晶种或杂质存在等许多要素密切相关。假如把黄铁矾看作一种难溶电解质,其离解反响式可写为:
(2)
相应地,溶度积写为
(3)
能够看出,参加碱金属硫酸盐可促进黄铁矾的构成。不过上式中以一价阳离子M+的浓度方次最低,对溶液中铁的堆积影响最小,黄铁矾能够从含K+低至0.02mol∕L的溶液中堆积,但一般来说,铁堆积的程度随一价阳离子M+对Fe3+之浓度比添加而进步,且试验证明,抱负状况的M+浓度应满足分子式MFe3(SO4)2(OH)6所规则的原子比。从含Fe3+0.025至3mol∕L的溶液都彻底能够堆积黄铁矾,堆积的下限是10-3mol∕L。只需溶液中有过量的M+离子存在,堆积的黄铁矾的数量和成分与初始溶液中的Fe3+浓度无关。另一方面,OH-离子的浓度方次最高,因此溶液酸度对铁矾分出影响最大。在工厂实践操作条件(堆积温度~100℃)下,黄铵铁矾堆积时溶液中残留的Fe3+浓度与初始H2SO4浓度存在以下联系:
[Fe3+]/[H2SO4]=0.01
上式标明,初始H2SO4浓度越高,黄铁矾堆积残留的Fe3+浓度也越高。并且到达平衡所需求的时刻也越长。
黄铁矾堆积根本上是一个成核与成长的进程,其堆积数量和速度与晶种的运用很有联系。在均相系统中发作堆积反响发作固体表面或许需求一个诱导期,晶种的存在可望消除这种诱导期并加速铁矾堆积的速度。尽管因为反响设备的尺度然后壁效应、所用试剂的纯度等许多要素都或许影响新相成核进程,因此文献对晶种的作用的报导颇有收支,有的乃至以为晶种作用不大,但一般的观念都必定晶种对黄铁矾构成的促进作用。晶种的参加可大大添加黄铁矾的堆积速度并按捺诱导期,堆积的初始速度随晶种参加量呈线性添加。参加晶种还可使黄铁矾在更低的pH值及温度下堆积。
铅、银及其他二价金属如Cu、Ni、Co等在黄铁矾堆积中的行为也不容忽视。在酸度不高的条件下铅可按下式构成铅铁矾:
(4)
铅铁矾的生成量与铁浓度及酸度有关。铁浓度越高,能构成铅铁矾的酸度也越高。这类铁矾还会与其他黄铁矾如草黄铁矾和碱金属的黄铁矾构成固溶体。假如溶液中的铅浓度本来有收回价值,则铅铁矾的生成会构成铅的丢失。为避免铅铁矾的生成,提出过3种办法,(1)将酸度进步到能阻挠铅铁矾能构成的浓度,在95℃下铅铁矾能溶于1mol∕L硫酸;(2)在180~190℃规模内堆积铁,在此温度规模内铅铁矾不安稳;(3)在有满足高的碱金属离子浓度下有用地堆积铁,这样会构成比铅铁矾更安稳的碱金属黄铁矾。例如,在Fe3+为0.1mol∕L,H2SO4为0.1mol∕L、PhS为4.5kg/m3的矿浆中,在150℃、K2SO4或Na2SO4或(NH4)2SO4为0.3mol∕L下就能够有用避免铅铁矾的构成。而碱金属离子浓度较低时则会发作碱金属与铅的混合黄铁矾。
贵金属如银也易堆积为银铁矾或含银铅铁矾
(5)
当从含100×10-4%以下Ag的溶液中堆积黄钠铁矾时,有95%以上的银被结合到铁矾中。而二价金属如Zn2+,Cu2+,Ni2+则只在很小程度上结合到碱金属黄铁矾中,这使得黄铁矾法能够很方便地用于从这些金属的溶液(尤其是硫酸盐溶液)中除铁而不构成金属丢失。金属结合到碱金属黄铁矾中的次序是:Fe3+>Cu2+>Zn2+>Co2+>Ni2+。但这些金属结合到铅铁矾中的量要大得多。三价金属如Ga和In比较简单结合到黄铁矾类化合物中。
还有一种观念以为,二价金属离子替代的是黄铁矾结构中的Fe3+而不是碱金属离子。二价金属结合到黄铁矾中的总的趋势是随其离子浓度、pH及碱金属离子浓度添加而加强,并随Fe3+浓度削减而下降。
二、针铁矿的水解堆积
针铁矿是羟基氧化铁的一种,称为α型羟基氧化铁α-FeO(OH)。天然界有4种羟基氧化铁同质异象体,其他3种别离是:四方纤铁矿β-FeO(OH),纤铁矿γ-FeO(OH)和六方纤铁矿δ-FeO(OH)。针铁矿是天然界中最常见的羟基氧化铁矿藏,反映了它在风化条件下最安稳。事实上占一般是天然界中含铁的硫化矿、氧化矿、碳酸盐和硅酸盐风化的产品。研讨指出,在常压的沸点下pH1.5~3.5规模内及硫酸根总浓度3mol∕L以内针铁矿是高铁水解最或许的产品。大大都针铁矿都以固溶体办法含有其他元素。
针铁矿也可看为α型-水氧化铁α-Fe2O3·H2O,其结构上与一水硬铝矿相同,属斜方晶系。在针铁矿的晶体结构中,只需Fe3+,O2-和OH-3种离子,三者的合作比为1∶1∶1。其间O2-坐落八面体的极点,而Fe3+处于八面体的中心,并为O2-所围住。O2-离子与4个Fe3+离子相联合,即共用于4个八面体之间,其间每一个价键仅为1/2价。OH-离子则共用于2个八面体之间,每一个价键也是1/2所。坐落八面体中心的高铁离子具有很强的极化才能,使四周配位离子的外层电子云发作偏移,导致正负离子外层电子云的彼此堆叠,并构成共价键。因为 O2-较OH-更易于发作变形,因此配位氧离子将具有较配位氢氧离子为强的共价键,即键的极性较弱。
热力学核算指出,针铁矿较三水氧化铁具有更大的晶格能,标明针铁矿比后者更安稳。因此,在一般状况下(酸度不大和温度不高于140℃),高铁水解产品在热力学上的安稳结构应是针铁矿而不是胶态氢氧化铁。但在实践上,当用中和法使高铁从水溶液中分出时,得到的堆积物都是三水氧化铁胶体而不是结晶态的针铁矿。呈现这种状况的首要原因在于pH对溶液中高铁的过饱和程度影响很大,因此中和水解时,跟着溶液pH的升高构成巨大的高铁过饱和度,构成很大的成核速度,使得水解产品呈肢体分出。鉴于高铁溶液中和水解很难操控系统的过饱和度,欲避免胶件氢氧化铁分出,关键是水解时要将溶液中的高铁离子浓度操控在很低的水平,一般低于1kg·m-3。针铁矿法正是针对这一问题而提出来的。它选用的水解条件是运用空气氧化、低过饱和度及较高温度,既有利于水合物的脱水和缩合,也有利于有关质点有序摆放,然后使水解产品呈晶体而不是肢体。针铁矿法有两种办法来操控高铁浓度。其一是先将溶液中的高铁离子复原成贱价,再中和至pH值为4.5~5,这时因高铁浓度很低,不会分出胶态氢氧化铁,而亚铁离子在此pH值下也不会构成Fe(OH)2堆积。然后通空气在90℃左右的温度下再将亚铁从头氧化成高铁,小量发作的高铁离子一经呈现即水解构成少数晶核,并缓慢发育成针铁矿晶体而堆积,相关的反响方程式为:
(7)
高铁的复原剂能够有许多挑选,但出产中运用的复原剂应报价低廉,操作简洁,并且氧化后不引进任何损害。从这种实践的视点考虑,硫化锌精矿是硫酸锌电解液针铁矿法净化的最佳复原剂。用硫化锌复原高铁的成果,ZnS中的锌即以Zn2+离子办法进入溶液,硫则以元素硫的固体办法留在渣中,对这以后的作业无任何损害。硫化锌复原高铁的总反响式为:
(8)
热力学核算得到该氧化复原反响的标准电动势为0.506V,具有满足的热力学推动力。实践标明反响的速度也比较高,在90℃温度下一般只需3~4h就可到达恰当的复原深度。例如,由反响式(8)的标准电动势求得的平衡常数为Kc=[Fe2+]2[Zn2+]∕[Fe3+]2=1017.09,若取锌离子的活度为0.1mol∕L,则求得[Fa2+]∕[Fe3+]≈109,阐明硫化锌使高铁的复原进行得比较彻底。
针铁矿法中亚铁的再氧化选用空气中的氧作氧化剂,其氧化反响方程为:
(9)
在25℃温度下空气的标准氧化电位E=1.22-0.059pH。在pH=4时,氧的标准电位为0.984V,仅此Fe3+∕Fe2+电对的标准电位(0.771V)高0.213V。可是,因为在此刻Fe3+已预复原成Fe2+,此电对的实践电位E 大为下降。例如当Fe3+/Fe2+=10-4时, E 降至0.538V,然后氧化反响(9)的电位进步到0.316V。一同,在水解沉铁系统中,氧化发作的高铁高子即时水解堆积,因此能一直坚持系统中[Fe3+]/[Fe2+]为一个较低的值。
亚铁氧化堆积包含亚铁氧化和高铁水解这两个接连的环节。氧气氧化亚铁的进程又包含氧气的溶解、氧分子由相界面向溶液内部的分散、亚铁离子对氧分子的吸附、氧分子裂解为氧原子、亚铁离子与氧原子之间的电子交流等多个过程。其间氧分子裂解为氧原子为操控速度的关键过程。进步氧分子裂解反响的速度能够采纳3种办法:进步氧分压,如运用富氧鼓风和运用压缩空气并保持整个反响进程在较高的压力下进行,进步温度;选用催化,一般以Cu2+作为催化剂。
被吸附的氧分子改变为被吸附的氧原子后,即发作氧原子与亚铁离子之间的电子搬运,其成果是亚铁离子被氧化成高铁离子,而氧原子则复原为O2-离子:另一个氧原子也将以相同办法被复原成离子O2-,所构成的O2-会和高铁离于激烈结合,构成(Fe-O-Fe)4+这样的合作物离子。它再与OH-离子结合,并进一步脱水归纳,就生成了针铁矿:针铁矿法另一种操控高铁浓度的办法是澳大利亚电解锌公司开发的,它不通过先复原,而是直接将热的高铁溶液连同中和剂以操控的速度参加堆积槽中,使高铁的浓度保持在1kg·m-3以下。在70~90℃温度下并保持pH在2.8左右,针铁矿跟着高铁的参加接连分出。相关的反响为:
(10)
三、赤铁矿的水解堆积
赤铁矿系Fe2O3三方晶系,结构属刚玉型,有两种结晶形状,即α-Fe2O3(赤铁矿)和α-Fe2O3(磁赤铁矿)。这两种不同晶型的改变温度大致在400℃左右,γ-Fe2O3在热力学上是不安稳的,处于介稳状况,在400℃左右会向α-Fe2O3改变。天然赤铁矿α-Fe2O3首要是含铁的硅酸盐、硫化物和碳酸盐风化的产品,是天然环境中最安稳的铁化合物。从低温溶液水解分出的氢氧化铁加热时首要得到的产品是一水氧化铁即针铁矿,继而是半水氧化铁即水赤铁矿,进一步加热则得到α型Fe2O3。针铁矿和γ型Fe2O3的改变温度大致在160℃邻近。假如选用高温水解的办法,跟着不断进步水解温度,也能够顺次得到一水、半水和无水三氧化二铁。工业上用以堆积除铁的赤铁矿法系高温水解办法。温度愈高水解速度愈快,愈有利于在较高酸度下堆积铁。在200℃高温下,即便硫酸浓度高达100kg∕m3,溶液中残留的铁浓度仍可下降到5~6kg∕m3。
四、铁水解堆积在湿法冶金中的运用
运用水解堆积除铁的最典型的实却是锌的焙烧-浸出-电积法出产实践。尽管焙烧是为了将硫化锌改变为氧化锌,但原猜中的铁在焙烧进程中简直悉数与锌结组成铁酸锌。稀硫酸溶解焙砂中的氧化锌只能到达85%~93%的总浸出率,而用热酸浸出铁酸锌中的锌则导致许多铁进入溶液,净化除铁因此曾一度成为电解锌出产的瓶颈问题。通过艰苦而行之有用的尽力,到20世纪60年代中后期开发了几个能发作易于过滤的铁化合物的除铁办法,并首要工业运用于电解锌工业,焙烧-浸出-电积法自此得到长足发展,成为出产电解锌的首要办法,现在国际80%的电解锌系由此法出产。这些除铁办法在很大程度上也可运用于其他溶液的除铁实践。
(一)黄铁矾法
黄铁矾法作为有用的除铁办法在湿法炼锌厂的实践最具代表性。黄铁矾法的开发成功是在20世纪60年代中期,其时澳大利亚的电锌公司、挪威锌公司和西班牙阿斯图里亚那公司各自独登时开发了这项技能并简直一同申请了专利。尔后黄铁矾法敏捷得到广泛运用,成为电解锌出产中首要的除铁技能,现在国际上至少有16家大型电解锌厂选用了此技能。现在用以除铁的黄铁矾法是将溶液pH值调到1.5且保持这一pH值,并在95℃左右参加一价阳离子从酸性硫酸盐溶液中堆积黄铁矾。工业中最常用的一价阳离子是NH4+和Na+。黄铁矾堆积后,溶液中铁的浓度一般降到1~5kg∕m3。
湿法炼锌中黄铁矾法典型的操作分3个根本过程:中性浸出、热酸浸出和黄铁矾堆积。在中性浸出阶段,酸性电解贫液被锌焙砂ZnO中和,得到含铁酸锌的渣和供电解堆积锌的中性硫酸锌溶液。铁酸锌渣在热酸浸出段用补克了硫酸的电解贫液构成的热酸中溶解,得到的含Zn和Fe的浸出液再在黄铁矾堆积段处理,先用锌焙砂调整酸度,再参加硫酸铵或硫酸钠堆积碱金属黄铁矾。沉铁后液回来中性浸出,黄铁矾渣则弃去。需求指出,堆积黄铁矾时用作中和剂的锌焙砂中所含的铁酸锌将不溶解而进入铁矾渣中,因此新生成的黄铁矾渣不宜直接弃去,避免丢失焙砂中和剂中未溶的铁酸锌。鉴于黄铁矾一旦生成则对酸恰当安稳,实践上黄铁矾渣弃去前可在相似热酸浸出的条件下进行酸洗,溶解收回渣中残存的铁酸锌,而黄铁矾本身不致溶解。
黄铁矾法的3个根本过程的详细操作条件及次序在不同供应商不尽相同,但意图是相同的;最大极限地收回锌而不考虑少数的伴生元素如Pb和Ag。例如,铁酸锌的热酸浸出和黄铁矾的堆积能够合而为一,即所谓转化法,其总反响如下:
(11)
该兼并过程的溶液然后可用新鲜焙砂中和,产出溶液供电解和渣回来循环。若精矿中含有较许多的Pb和Ag,则选用其他的流程,得到含Pb∕Ag的渣、黄铁矾堆积和中性Zn电解液。这类流程中包含有一个预中和作业。在一般的黄铁矾流程中是用焙砂下降热酸浸出液的酸度,然后敏捷而有用地堆积黄铁矾。焙砂中存在的Zn2+,Cd2+,Cu2+,Pb2+和Ag进入黄铁矾而丢失。在热酸浸出和黄铁矾堆积作业之间引进一个预中和作业能够下降黄铁矾中的金属丢失。在预中和作业中,溶液中的酸一部分被焙砂中和,所得的渣回来热酸浸出段溶解其间的Zn和Fe,而Pb和Ag留在铅-银渣中。部分中和过的溶液随后参加所需求的中和剂进行黄铁矾堆积。
图4为集成的黄铁矾法流程示意图。它的规划中结合了各种黄铁矾法计划中的大大都改善环节。图4 集成黄铁矾法
除运用于湿法炼锌工业中外,黄铁矾法还在铜、镍、钴等金属提取顶用作除铁工艺,尤其是在硫酸盐系统中。例如,在处理钴-铜精矿的阡比什(Chambishi)焙烧-浸出-电积法中,铜电积前的除铁就是选用黄钾铁矾沉铁。因为硫酸化焙烧本身供给了K+离子,堆积黄钾铁矾时无需外加高本钱的硫酸钾。
黄铁矾法的长处是堆积简单过滤,Zn,Cd和Cu在堆积中的丢失最少,能够一同操控硫酸根和碱金属离子,简单与各种湿法冶金流程结合。但它也有其本身的缺陷,例如:1)所用试剂本钱较高;2)渣的体积较大,为1.4kg∕(m3·t),堆存占地较大;3)需求充沛洗刷以除掉吸附的有害环境或可供运用的金属;4)需求在操控条件下寄存避免分化放出有害组分污染环境。通过热分化或水热分化将黄铁矾转化为赤铁矿供出产铁并将硫酸钠/硫酸铵循环至黄铁矾堆积作业,可望战胜这些缺陷。
(二)针铁矿法
运用堆积针铁矿除铁的技能是由比利时老山公司巴伦厂(Vieille Montagne)首要开发和工业化的,称为VM法。成功地堆积针铁矿的关键在于保持溶液中Fe3+的低浓度,例如<1kg∕m3,否则在堆积针铁矿的pH规模(2~3.5)内将得到胶状的Fe(OH)3或碱式硫酸铁Fe4SO4(OH)10。VM法处理此问题选用的是复原-堆积法,流程如图5所示,从热酸浸出得到的含100kg∕m3Zn,25~30kg∕m3Fe3+及50~60kg∕m3H2SO4的硫酸锌溶被先通过复原作业,即在堆积针铁矿前在一个独自的作业中先用锌精矿(ZnS)将溶液中的Fe3+都复原成Fe2+,复原后未反响的ZnS与反响生成的元素硫一同别离出来送回焙烧炉。复原后液再用焙砂ZnO预中和至3~5kg∕m3H2SO4,得到的铁渣回来热酸浸出作业,溶液则送入堆积反响器。向堆积器通空气将Fe2+氧化成Fe3+而使之水解堆积出针铁矿晶体。图5 VM针铁矿法
堆积针铁矿时需不断在参加焙砂以中和水解反响发作的酸,将pH值操控在恰当的规模内,如pH=2~3.5。VM法需求特别注意操控Fe2+的氧化速度,使得溶液中Fe3+的浓度在水解堆积针铁矿的进程中一直坚持在1kg∕m3以内。与黄铁矾法不同的是,针铁矿堆积时无需供给一价阳离子,而得到的针铁矿渣也不能进行酸洗收回其间由焙砂中和带入的未溶解的锌。为避免这部分锌的丢失,一个对策是运用低铁的闪锌矿焙砂作中和剂。
澳大利亚电解锌公司开发的EZ法直接将含Fe3+的待水解液慢慢参加水解堆积器中,操控水解液Fe3+浓度不超越1kg∕m3然后操控水解,因此EZ法亦称部分分化法。在70~90℃下接连水解堆积针铁矿,一同不断参加锌焙砂中和因水解发作的酸,保持溶液pH值在2.8以适于水解。
两种针铁矿法比较,堆积相同数量的铁,VM法水解发作的酸此EZ法少,因此为中和水解的酸需求耗费的锌焙砂也少,随锌焙砂丢失的锌电少,除铁的作用也好于EZ法。但VM法触及先复原后氧化两道工序,比较繁琐。此外,VM法用空气氧化Fe2+的速度较慢,而用其他氧化剂则本钱高。
与黄铁矾法比较,针铁矿法不需求硫酸根和碱金属,可运用于任何酸浸系统,包含氯化物系统和硝酸盐系统,除铁的作用也更好(从30kg∕m3到小于1kg·kg∕m3),但针铁矿对酸的安稳性较差,堆积中未溶解的铁酸锌不能如黄铁矾法那样用酸洗来收回。
(三)赤铁矿法
日本秋田公司饭岛锌冶炼厂和德国鲁尔锌公司达特伦电锌厂均选用赤铁矿法处理锌厂中性浸出的浸渣收回其间以铁酸锌存在的锌及其他有价组分。用赤铁矿法处理湿法炼锌的铁渣源于环境保护的压力。赤铁矿法准则流程见图6。来自浸出主流程的高铁渣在村耐酸砖和铅的高压釜顶用电解贫液补加酸再提出,反响温度95~100℃。浸出在SO2(分压0.15~0.25MPa)气氛下进行,所以也称为SO2浸出。在此条件下渣中的铁酸盐很简单溶解,高铁复原成二价伴随铁酸盐中的锌和铜进入溶液:
(12)
(13)图6 赤铁矿法准则流程图
从溶液中排去过量的SO2和用H2S堆积除掉铜后,对含大约Zn90kg∕m3,Fe60kg∕m3,H2SO4 20kg∕m3的溶液用石灰百分两段中和。榜首段中和到pH=2以发作可供应的高等第石膏,然后再中和到pH=4.5,堆积分出含有价金属如Ca和In的石膏,一同有碍赤铁矿堆积的元素如Al等也在此阶段随石膏堆积除掉。第二段中和发作的浆料经重力沉降得到的固体回来榜首段中和槽,沉降后液高压过滤得到氧化物-氢氧化物的混合堆积,送熔炼厂收回镓和铟。一同用空气氧化堆积部分铁和其他杂质。堆积石膏有助于除掉SO2氧化发作的硫酸根以保持硫酸根平衡。两段中和后的溶液(含Fe 40~45kg∕m3)用赤铁矿法堆积除铁。沉铁在衬钛高压釜中进行,通入新鲜蒸汽和氧气,温度从95℃升高到200℃,压力进步到1.8MPa(氧分压0.15~0.25MPa),溶液中的硫酸亚铁被氧化成硫酸铁并发作水解:
(14)
高压釜中停留时刻约3h,首要水解产品为赤铁矿,含有w(Fe)=59%和w(S)=3%,固液别离后赤铁矿也首要供应给水泥厂。别离出赤铁矿的溶液含Fe5~7kg∕m3和H2SO460~70kg∕m3,回来焙砂的中性浸出段。
选用赤铁矿法的饭岛锌冶炼厂自1972年投产以来,至今已成功运行了26年,经1997年扩产,电锌产值巳达190000t∕a。因为锌精矿铁含量添加,出产功率进步和工厂扩产,赤铁矿法处理的铁量逐年添加,并在技能上作了若干改善。例如,锌焙砂弱酸浸出的渣与元素硫混合用电解贫液补加硫酸后在衬铅和耐酸砖的高压釜中再浸出。参加元素硫使溶液中大部分铜作为硫化铜堆积。热酸浸出的排料除掉过量的SO2后,在拌和槽中通入H2S堆积其他的铜。沉铜槽的排料稠密、压滤,得到的滤渣含铜、铅和贵金属,送熔炼厂收回。沉铜稠密机溢流含30kg∕m3游离酸,用细磨的石灰石两段中和。榜首段中和游离酸(至pH=1)得到纯的石膏,离心过滤后供应给水泥厂。
近些年来,跟着锌精矿中铁含量的添加,焙砂中进入铁酸盐中的铜添加,焙砂弱酸浸出的铜削减而进入浸渣的铜添加,因此浸渣赤铁矿法处理厂中需求堆积的铜大为添加,然后使渣处理厂堆积铜的本钱进步。1992年曾经,渣处理厂中溶液中的铜用元素硫和硫化氧堆积:
(15)
(16)
饭岛锌冶炼厂1992年用于堆积铜的硫化氧气体耗费本钱占总的耗费性本钱的25%。这无疑太高,需求开发一个不必堆积铜的新办法。后来发现硫化锌精矿能够替代气体,它堆积除铜的反响如下
(17)
(18)当出产上用硫化锌精矿沉铜时,铜的堆积并不彻底。后来运用更细的精矿添加SO2分压处理了这一问题。现在这种办法有用地脱除了铜。
高铁水解成赤铁矿和铝水解堆积铝矾都发作酸,因此下降赤铁矿堆积釜的料液中游离硫酸的浓度和铝的浓度对促进高铁的水解很有用:本来第二段中和的溶液有30%回来榜首段,从1997年3月以来,第二段溶液回来的量逐步添加,赤铁矿水解高压釜的料液中游离硫酸浓度从7kg∕m3降到4kg∕m3,铝的浓度降到2kg∕m3以下,除铁功率进步到88%以上,使操作本钱要素如氧气或蒸汽的本钱下降。
尽管赤铁矿法在环保方面比黄铁矾法和针铁矿法更有利,它依然遭到环境方面的压力。为了使堆积的赤铁矿能悉数售出给水泥厂,有必要处理赤铁矿中的含砷和含硫问题。因为火法冶金不只本钱高,并且很难满足脱除砷,所以饭岛炼锌厂研讨在堆积赤铁矿前从溶液中脱砷,提出了图7所示的改善赤铁矿法新流程。图7 改善的赤铁矿法新流程
在改善的赤铁矿法中,弱酸提出的渣在105℃下SO2气氛中浸出而不加锌精矿或元素硫,发作的含银和铅的渣过滤别离。滤液用石灰榜首段中和到pH=1,发作纯石膏。然后在该中和段的溶液中参加锌灰,堆积砷化铜,铜和砷的脱除率到达99%。脱砷后液榜首段加石灰石中和到pH=4,堆积出含Ga,In和Al的石膏。该段的溶液大部分送赤铁矿堆积高压釜,其他溶液用于浸出砷化铜。浸除在独自的高压釜中氧气氛下进行,铜被浸出而砷堆积为铁。浸液中的铜用锌灰置换,然后将溶液回来焙砂中性浸段。改善的赤铁矿法进行了中试和可行性研讨,得到的赤铁矿质量及本钱都令人满足。
德国鲁尔公司(Ruhr-Zink GmbH)的赤铁矿法首要包含以下过程:
(1)中性浸出渣两段热酸浸出。榜首段为热酸浸出,中性提出渣用第二段超热酸浸出的滤液在95℃下浸出,浸出的终酸浓度50kg∕m3。渣中的大部分有价金属如锌、铜和镉伴随铁一同溶解。浸出的排料稠密后溢流泵送至复原段,底流在过热酸浸段中沸点以上浸出,酸浓度140kg∕m3。过热酸浸中铁酸盐都溶解,残留的低铁富铅的Pb-Ag渣经稠密和高压膜压滤机过滤,滤液回来热酸浸出。
(2)高铁复原。为了在堆积赤铁矿前净化溶液并能在最尽或许低的温度下堆积铁,需求将离解的高铁先复原成亚铁。硫化锌精矿可用作复原剂,它的本钱低,但需大大过量,反响温度在90℃左右。未反响的含元素硫的渣过滤后回来焙烧。
(3)溶液的净化与中和。复原后液用焙砂在中和槽和稠密机中两段中和,使一切影响赤铁矿质量的元素大部分堆积分出,特别是砷和锑。铜则部分共堆积。这些元素富集在中和渣中,再在终浸作业中彻底溶解。终浸用废酸进行,终酸浓度为40kg∕m3。在稠密机中固液别离后,底流送去热酸浸出作业,溢流送去用海绵铁置换沉铜,将铜的浓度降至500g∕m3以下,再返至前面的中和作业。置换的铜用废酸洗刷后出售。
(4)赤铁矿堆积。这是最重要的部分。中和净化的浸液(含Fe2+25~30kg∕m3,Zn120~130kg∕m3)用蒸汽加热到180℃以上,其间的亚铁在氧压1.8MPa下氧化并水解成含w(Fe)=60%左右的细粒赤铁矿,铁的堆积率达90%~95%。详细流程如图8所示。
赤铁矿法出资和操作费用远高于黄铁矾法和针铁矿法,但它或许收回锌精矿的悉数成分,发作的满是可供应的产品,一切作为中间产品的渣帮可进一步加工而无需堆存。图8 鲁尔公司电解锌厂赤铁矿法准则流程