太阳能组件铝边框设计计算书
2018-12-27 09:37:01
太阳能边框单坡式设计计算书基本参数: 标高=7.000m 抗震7 度 (0.10g)设防一、设计方法和指标 本工程设计采用概率极限状态设计法,根据
>GB50009-2001规定 各种载荷的分项系数如下: 1.永久载荷分项系数 rg: 1)当其效应对结构不利时 ①对由可变荷载效应控制的组合,应取 1.2; ②对由永久荷载效应控制的组合,应取 1.35; 2)当其效应对结构有利时 ①一般情况下应取 1.0; ②对结构的倾覆、滑移或漂浮验算,应取 0.9。 2.可变荷载的分项系数: ①一般情况下应取 1.4; ②对标准值大于 4KN/m^2 的工业房屋楼面结构的活荷载应取 1.3。 对于某些特殊情况,可按建筑结构有关设计规范的规定确定。 在设计中采用可变荷载效应控制的组合,各相的分相系数取值如下 永久载荷分项系数 rg 为: 1.2 风载荷分项系数 rw为: 1.4 雪载荷分项系数 rs为: 1.4 活载荷分项系数 rq为: 1.3 地震载荷分项系数 re 为: 1.3 温度载荷分项系数 rt 为: 1.3二、采光顶承受荷载计算 1. 风荷载标准值计算: Wk: 作用在采光顶上的风荷载标准值(kN/m^2) Wk=0.800 kN/m^2 因为 Wk
>GB50009-2001 取值 μr: 屋面积雪分布系数为 1.000 根据
>GB50009-2001 公式 6.1.1 屋面雪载荷按下式计算 Sk=μr×S0 =1.000×0.400 =0.400kN/m^2 4. 雪载荷设计值计算 S: 雪载荷设计值(KN/m^2) rs: 雪载荷分项系数为 1.40 按《铝门窗幕墙技术资料汇编(一)》表'3-1 各种荷载分顶系数'采用 S=rs×Sk =1.40×0.400 =0.560kN/m^2 5.采光顶构件自重荷载设计值 G: 采光顶构件自重荷载设计值(KN/m^2) Gk: 采光顶结构平均自重[KN/m^2]为 0.40 KN/m^2 rg: 恒载荷分项系数为 1.20 按《铝门窗幕墙技术资料汇编(一)》表'3-1 各种荷载分顶系数'采用 G=rg×Gk =1.20×0.400 =0.480kN/m^2 6. 采光顶坡面活荷载设计值 Q: 采光顶坡面活载荷设计值(KN/m^2) rq: 活载荷分项系数为 1.30 Qk: 采光顶坡面活载荷标准值为 0.300kN/m^2 Q=rq×Qk =1.3×0.300 =0.390kN/m^2 7. 采光顶设计中各种荷载组合: 计算采光顶杆件和结构应力时的载荷组合(沿坡面分布) 本地区位于北纬 27.5°以南,冬季气温较高,很少降雪。 根据
>GB50009-2001 规定和
>5.2.1 中载荷组合要求: 设计荷载取恒载与活载,或恒载与风载两组中大值,组合系数取 1。 1)计算恒载荷+活载荷组合: Q: 采光顶坡面活载荷为 0.390kN/m^2 α: 采光顶坡面水平夹角为 14.000° G: 采光顶结构平均自重设计值为 0.480KN/m^2 Lj: 斜杆间距为 0.994m qk1: 载荷组合之一(KN/m) qk1=(G×1/cosα+Q)×Lj×cos(α) =(0.495+0.390)×0.994×0.970 =0.853kN/m 2)计算恒载荷+风载荷组合: W: 风载荷设计值 1.400 KN/m^2 G: 采光顶结构平均自重设计值为 0.480KN/m^2 Lj: 斜杆间距为 0.994m α: 采光顶坡面水平夹角为 14.000° qk2: 载荷组合之二(KN/m) qk2=(G+W)×1/cosα×Lj×cosα =1.880×1.031×0.994×0.970 =1.869kN/m Lj: 斜杆间距为 0.994m q1: 载荷组合(KN/m) 3)设计荷载取其中最大者 q1=MAX(qk1,qk2) =1.869kN/m二、玻璃的选用: 本工程选用玻璃种类为: 钢化玻璃 1. 玻璃面积: H: 采光顶分格高: 0.994m B: 采光顶分格宽: 1.652m A: 玻璃板块面积: A=B×H =0.994×1.652 =1.642m^22. 玻璃厚度选取: Wk: 风荷载标准值: 1.000kN/m^2 A: 玻璃板块面积: 1.642m^2 K3: 玻璃种类调整系数: 3.000 试算: C=Wk×A×10/3/K3 =1.000×1.642×10/3/3.000 =1.825 T=2×(1+C)^0.5-2 =2×(1+1.825)^0.5-2 =1.361mm 玻璃选取厚度为: 4.0mm 其大面强度设计值为:84.000N/mm^2 其边缘强度设计值为:58.800N/mm^2三、玻璃的校核: 1. 玻璃板块自重: GAk: 玻璃板块平均自重: t: 玻璃板块厚度: 4.0mm 25.6: 玻璃的体积密度, 单位是kN/m^3 按5.2.1 采用 GAk=25.6×t/1000 =25.6×4.0/1000 =0.102kN/m^22. 验算荷载 1)计算恒载荷+活载荷组合: Q: 采光顶坡面活载荷为 0.390kN/m^2 α: 采光顶坡面水平夹角为 14.000° GAk: 玻璃板块平均自重为 0.102kN/m^2 rg : 永久荷载分项系数,取 1.2 qk1: 载荷组合之一(KN/m^2) qk1=(rg×GAk×1/cosα+Q)×cos(α) =(0.127+0.390)×0.970 =0.501kN/m^2 2)计算恒载荷+风载荷组合: W: 风载荷设计值 1.400 KN/m^2 GAk: 玻璃板块平均自重为 0.102kN/m^2 rg : 永久荷载分项系数,取 1.2 α: 采光顶坡面水平夹角为 14.000° qk2: 荷组合之二(KN/m^2) qk2=1.2GAk+W =0.123+1.400 =1.523kN/m^2 3)设计荷载取其中最大者 qb=MAX(qk1,qk2) =1.523kN/m^23. 玻璃的强度计算: 校核依据: σ≤fg=84.000 q: 玻璃所受组合荷载: a: 玻璃短边边长:0.994m b: 玻璃长边边长:1.652m t: 玻璃厚度:4.0mm ψ: 玻璃板面跨中弯曲系数, 按边长比 a/b查 表5.4.1 得: 0.087 σw: 玻璃所受应力: σw=6×ψ×qb×a^2×1000/t^2 =6×0.087×1.523×0.994^2×1000/4.0^2 =48.852N/mm^2 48.852N/mm^2≤fg=84.000N/mm^2 玻璃的强度满足!4. 玻璃温度应力计算: 校核依据: σmax≤[σ]=58.800N/mm^2 (1)在年温差变化下, 玻璃边缘与边框间挤压在玻璃中产生的 挤压温度应力为: E: 玻璃的弹性模量:0.72×10^5N/mm^2 α^t: 玻璃的线膨胀系数: 1.0×10^-5 △T: 年温度变化差: 80.000℃ c: 玻璃边缘至边框距离, 取 5mm dc: 施工偏差, 可取:3mm ,按5.4.3 选用 b: 玻璃长边边长:1.652m 在年温差变化下, 玻璃边缘与边框间挤压在玻璃中产生的 温度应力为: σt1=E(a^t×△T-(2c-dc)/b/1000) =0.72×△T-72×(2×5-3)/b =0.72×80.000-72×(2×5-3)/1.652 =-247.485N/mm^2 计算值为负,挤压应力取为零. 0.000N/mm^2<58.800N/mm^2 玻璃边缘与边框间挤压温度应力可以满足要求!(2)玻璃中央与边缘温度差产生的温度应力: μ1: 阴影系数: 按《玻璃幕墙工程技术规范》 JGJ 102-96 表 5.4.4-1 得 1.000 μ2: 窗帘系数: 按《玻璃幕墙工程技术规范》 JGJ 102-96 表 5.4.4-2 得 1.000 μ3: 玻璃面积系数: 按《玻璃幕墙工程技术规范》 JGJ 102-96 表 5.4.4-3 得 1.046 μ4: 边缘温度系数: 按《玻璃幕墙工程技术规范》 JGJ 102-96 表 5.4.4-4 得 0.380 Tc: 玻璃中央部分温度 a: 玻璃线胀系数: 1.0×10^-5 a0: 玻璃吸热率:0.099 a1: 室外热传递系数, 取 15W/m^2K t0: 室外设计温度-10.000℃ t1: 室内设计温度 40.000℃ Tc=(a0×700+15×t0+8×t1)/(15+8) =(0.099×700+15×(-10.000)+8×40.000)/(15+8) =10.404℃ Ts: 玻璃边缘部分温度: Ts=(15×t0+8×t1)/(15+8) =(15×(-10.000)+8×40.000)/(15+8) =7.391℃ △t: 玻璃中央部分与边缘部分温度差: △t=Tc-Ts =3.013℃ 玻璃中央与边缘温度差产生的温度应力: σt2=0.74×E×a×μ1×μ2×μ3×μ4×(Tc-Ts) =0.74×0.72×10^5×1.0×10^-5×μ1×μ2×μ3×μ4×△t =0.638N/mm^2 玻璃中央与边缘温度差产生的温度应力可以满足要求!四、玻璃最大面积校核: Azd: 玻璃的允许最大面积(m^2) Wk: 风荷载标准值: 1.000kN/m^2 t: 玻璃厚度: 4.0mm α1: 玻璃种类调整系数: 3.000 A: 计算校核处玻璃板块面积: 1.642m^2 Azd=0.3×α1×(t+t^2/4)/Wk (6.2.7-1) =0.3×3.000×(4.0+4.0^2/4)/1.000 =7.200m^2 A=1.642m^2≤Azd=7.200m^2 可以满足使用要求!五、单坡式采光顶杆件计算: 1. 验算截面弯矩 单坡采光顶大弯矩点发生在跨中 M0.5L: 验算截面弯矩 L1: 斜杆长度0.994m q1: 设计荷载的线密度 1.869kN/m M0.5L=q1×L1^2×cos α/8=q1×(L1/2)^2×cos α/2 =1.869×0.497^2×0.970/2 =0.224kN-m =22371.968N-cm 2. 验算截面轴力 N0.5L: 验算截面轴力 L1: 斜杆长度0.994m N0.5L=q1×L1×sin α/2 =1.869×0.994×0.242/2 =224.575N 3. 选用斜杆型材的截面特性: 选用型材号: XC1\Q128A60 型材强度设计值: 85.500N/mm^2 型材弹性模量: E=70000N/mm^2 X 轴惯性矩: Ix=5.511cm^4 Y 轴惯性矩: Iy=1.317cm^4 X 轴抵抗矩: Wx1=2.121cm^3 X 轴抵抗矩: Wx2=2.897cm^3 型材截面积: A=2.207cm^2 型材截面面积矩: Ss=1.588cm^3 4. 斜杆强度 σ:斜杆强度(N/mm^2) Wx2:型材截面抗弯矩 2.897cm^3 A:型材截面积2.207cm^2 σ=M/W+N/A =22371.968/2.897+224.575/2.207 =7824.754N/cm^2 =78.248N/m^2 78.248N/mm^2≤fa=85.500N/mm^2 杆件强度可以满足!
删除
铝木复合窗
2019-01-16 11:51:35
铝木复合窗:以灌注一体式保温铝型材为主体,室内一侧加实木条装饰,室内效果与实木窗相同。纯实木窗:高雅、节能、环保。大大提高了建筑物的档次,有良好的视觉效果。表面喷涂进口木窗专用漆,达到防潮、环保、美观。在节能方面,大大降低了取暖和制冷的能量消耗,能够取得理想的效果,优点是其他任何窗所无法比拟的。铝包木窗:采用德国技术在实木窗的基础上外挂铝合金,更进一步提高了产品外表抗老化能力。选配装置:进口中空内置遥控百叶窗系统,在烈日炎炎的夏季,可随意控制阳光的进入,控制室内光线的明暗。会呼吸的木窗:配置德国窗用通风器,全天候调节您室内的空气质量
内衬不锈钢复合管规格
2019-03-15 10:05:15
内衬不锈钢复合钢管中的外层钢管是采用按“GB/T3091-2001低压流体输送用焊接钢管”生产的焊接钢管、或按“GB/T8163-1999输送流体用无缝钢管”生产的无缝钢管、或按“SY/T5037-2000生产的螺旋缝埋弧焊钢管” 生产的螺旋缝焊管。输送石油天然气的内衬不锈钢复合钢管的外层钢管,是按GB/T9711-1997“石油天然气工业输送钢管交货技术条件”进行生产的。 内衬不锈钢复合钢管执行城镇建设行业标准CJ/T192-2004,是在钢管内壁复合薄壁不锈钢管,这种双金属复合钢管大大提高钢管在输水、输热水、输煤气、输天然气、输油过程中的耐腐蚀性能,表面光滑,流体阻力小,又保留了钢管机械强度高,可采用焊接、沟漕、螺纹连接,密封性好的优点,克服了镀锌钢管易腐蚀,采用热熔连接的塑料管易漏水和老化的缺陷,是输气、输水、输油钢管的升级换代的理想产品。内衬不锈钢复合管规格 Product Specifications 公称通径 DN(mm) 壁厚(mm) Wall thickness 内衬锈钢管壁厚(mm)10 1.5/2.0/.2.5 0.2015 1.5/2.0/2.5/2.75 0.2520 1.5/2.0/2.5/2.75 0.2525 1.5/2.0/2.5/2.75/3.0 0.2532 2.0/2.5/2.75/3.0/3.75 0.3040 2.0/2.5/2.75/3.0/3.75 0.3550 2.0/2.5/2.75/3.0/3.75 0.3565 2.5/2.75/3.0/3.75/4.0 0.4080 2.5/2.75/3.0/3.75/4.0 0.45100 2.75/3.0/3.75/4.0/4.5 0.50125 3.0/3.75/4.0/4.5/5.0 0.50150 4.0/4.5/5.0/5.5/6.0 0.60200 4.0/4.5/5.0/5.5/6.0 0.70250 5./5.5/6.0/6.5 0.80300 5.0/5.5/6.0/6.5 0.80 换热器专用碳素钢内复不锈钢复合管规格15 19 2.0 0.4020 25 2.5 0.5032 38 3.0 1.00
内衬不锈钢复合管规格长度:1000-13000mm内衬不锈钢复合管规格注:1、可根椐用户要求提供加厚的复合钢管。
2、如需方要求,经供需双方协定,可提供表中元曲格以外的尺寸。
3、管端是否带螺纹由供需双方确定。
4、复合钢管外层若采用无缝钢管时,可按4000-9000mm范围长度供贷,
也可以范围长度内定尺供贷
锌铜合金带
2017-06-06 17:50:05
锌铜合金带是在合金带材中加入了我国资源丰富的稀土元素,使合金组织明显细化,具有强度高,塑性好,耐蚀好等优异特性。用此带材加工按扣、鞋眼、电珠头等日用五金产品,可节材15%左右,并缩短了上镀时间,具有明显的社会效益和经济效益。产品名称: 锡锌铜合金丝产品用途: 薄膜电容器产品特点: 锡锌铜合金丝是本公司根据国外产品信息研究开发的新产品,申报专利号:200410017274.8,是薄膜电容器的理想喷金料,适应ISO14000和欧盟的二个指令的要求。 产品牌号: SZC产品规格: Φ1.6mm-Φ3.2mm产品包装: 10kg-15kg轴装, 30kg-400kg桶装
铝镍钴
2017-06-06 17:49:59
铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。铝镍钴磁铁含有铝、镍、钴、铜、铁、钛等材料。按照加工工艺的不同,铝镍钴磁铁又分为铸造型铝镍钴磁铁和烧结型铝镍钴磁铁两类。铸造型的磁性能较高,烧结型的工艺简单,可直接压制成所需的产品。铝镍钴磁铁的优点是其温度系数小,因而受温度变化而引起的磁性能变化很小。铝镍钴磁铁最高工作温度可达450℃—650℃。故目前仍被广泛应用于仪器、仪表这类要求温度稳定性高的产品中。在开路的工作环境下,铝镍钴磁体的“长径比”(即长度与直径之比L/D)至少应为4:1。铝镍钴永磁材料的抗锈蚀能力较强,不需进行表面涂层处理。铸造铝镍钴磁性能表牌号剩磁Br矫顽力Hcb最大磁能积( BH )max最大工作温度美国标准IEC<span style="fo
铝镍钴
2017-06-06 17:50:12
铝镍钴铝镍钴(AlNiCo)是最早开发出来的一种永磁材料,是由铝、镍、钴、铁和其它微量
金属
元素构成的一种合金。根据生产工艺不同分为烧结铝镍钴(Sintered AlNiCo)和铸造铝镍钴(Cast AlNiCo)。产品形状多为圆形和方形。铸造工艺可以加工生产成不同的尺寸和形状;与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯尺寸公差比铸造产品毛坯要好,磁性能要略低于铸造产品,但可加工性要好。在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 铝镍钴磁铁,铝镍钴永磁是由
金属
铝,镍,钴,铁和其他微量
金属
元素构成的一种合金. 铸造工艺 其
金属
成份的构成不同,磁性能也不同,从而用途也不同.铝镍钴永磁有两种不同的生产工艺:铸造和烧结.铸造工艺可以加工生产成不同的尺寸和形状,与铸造工艺相比,烧结产品局限于小的尺寸,其生产出来的毛坯产品尺寸公差小,铸造可加工性好.在永磁材料中,铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达500摄氏度以上.铝镍钴磁能积高,温度稳定性好,
价格
与钕铁硼差不多,缺点是矫顽力极低,容易发生退磁,磁路设计不能采用薄片状磁体,且需要先装配再整体充磁。铝镍钴的用途十分广泛,在工业中有着很重要的作用。
铜合金带
2017-06-06 17:50:04
铜合金带主要化学成分(%) 杂质总和(%) 锡 铝 锰 其它 硅青铜 QSi1-3 硅0.6-1.1 0.1-0.4 ≤0.5 QSi1-3强度高,耐磨性极好,切削性,焊接性良好,耐腐蚀性良好,工作条件较差或腐蚀性介质中的零件制造 电火花专用材料: SAMBO红铜(C1100、C1011)含氧量<0.003,导电率>95%IACS,组织细密, 纯度>99.96,加工无方向性,含氧量极低,因在加工前加温拉弯矫直降低
金属
应力, 经光亮退火热处理后使其达到完美精密放电加工效果 SAMBO铬铜(C18200)导电率80%IACS,抗腐蚀性好,由于热导率>850W/m.k20度, 稳定性好,有高的硬度,耐磨,抗爆,抗裂性,使用时损耗少 SAMBO铍铜(C17200)高硬度,由真空冶炼,经固溶-淬火-时效等工艺,是机械, 物理,化学性能良好结合的
有色
合金,具有高弹性极限,屈服极限,疲劳极限 SAMBO钨铜应用等静压成型,经高温烧结-渗铜具有高强度,高耐温,耐电弧烧蚀 还可以提供 铜钢复合电极银铜 碲铜 银钨 锥度铜 电极丝/管焊接电极材料: 铬锆铜(C18150) 铍镍铜 高钨铜 铍钴铜 机械加工用材料:黄铜系列C2600/ C2680 青铜系列C5191/ C5210 白铜系列C7541/ C7521 可向客户提供棒、板、排、带、丝线材料铜合金带用途:适用于控制屏蔽电缆(KVVP2),高压交联绕包屏蔽使用。铜合金带使用:是铜、铝、稀土原素、镍四种元素合成的铜合金,是替代铜的最佳产品。铜合金带特性:具有铜的特性,抗拉强度比铜大,延伸率比圆铜小,同时比重比铜轻,铜的比重为8.9,该产品的比重为7.95.即具有高强度,亦具有铜低电阻的性能.
铝塑复合板
2017-06-06 17:50:11
铝塑复合板(英文名称:aluminium plastic composite panel),简称铝塑板,是指以塑料为芯层,两面为铝材的3层复合板材,并在产品表面覆以装饰性和保护性的涂层或薄膜(若无特别注明则通称为涂层)作为产品的装饰面。分类、规格尺寸及标记 铝塑复合板分类:按幕墙板的燃烧性能分为普通型和阻燃型。 规格尺寸:幕墙板的常见规格尺寸如下: 长度:2000、2440、3000、3200等,单位为mm。 宽度:1220、1250、1500等,单位为mm。 最小厚度:4,单位为mm。 幕墙板的长度和宽度也可由供需双方商定。 标记代号:普通型,代号为G;阻燃型,代号为FR;氟碳树脂涂层装饰面,代号为FC。 标记方法:按幕墙板的产品名称、分类、装饰面、规格尺寸、铝材厚度及标准编号顺序进行标记。 标记示例:规格为2440mm×1220mm×4mm、铝材厚度为0.50mm、表面为氟碳树脂涂层的阻燃型幕墙板,其标记为:示例———建筑幕墙用铝塑复合板FRFC2440×1220×40.50GB/T17748-200×。铝塑复合板的材料:铝材:幕墙板采用材质性能应符合GB/T3880.2要求的3×××系列、5×××系列或耐腐蚀性及力学性能更好的其他系列铝合金。铝材应经过清洗和化学预处理,以清除铝材表面的油污、脏物和因与空气接触而自然形成的松散的氧化层,并形成一层化学转化膜,以利于铝材与涂层和芯层的牢固粘接。 涂层:幕墙板涂层材质宜采用耐候性能优异的氟碳树脂,也可采用其他性能相当或更优异的材质。 注1:目前最广泛采用的是耐候性优异的聚偏二氟乙烯氟碳树脂(PVDF),但纯PVDF树脂不宜在铝材上直接涂装,而要适当加入一些其他材料,以改变其涂装性能,即构成通常所称的70%氟碳树脂。 注2:70%氟碳树脂,是指生产铝塑板涂层所用油漆的各种原材料中,PVDF占树脂原料的70%。由于油漆中还有颜料等成分及氟碳树脂涂层下通常有一层非氟碳树脂材质的底涂,因此铝塑板总涂层中PVDF的最终含量大约为25%~45%。 芯材:普通型幕墙板芯材所用原料的材质性能应符合GB11115、GB11116、GB/T15182或其他相应的国家或
行业
标准要求。 注1:芯材原料的品质与铝塑板的产品质量密切相关。劣质废旧塑料中往往含有大量有害杂质及严重老化的塑料,对铝塑板的质量是极为不利的。 注2:聚氯乙烯通常被认为不宜用作芯材,因为它在高温下易分解产生强烈的有毒和腐蚀性的物质。
新型铝木复合型材
2019-01-11 09:43:10
日前,令消耗者线人一新的新型铝木复合型材表态海内建材市场。这种将实木与铝合金型材完善联合的新型高等质料,不但比传统铝包木和木包铝复合门窗装饰性能更强,同时它还具有与铝合金窗一样富厚的表面颜色和极强的耐候性。
它是将将隔热断桥铝合金型材和实木通过机器要领复合而成的框体。两种质料通过高分子尼龙件毗连,充实照顾了木料和金属紧缩系数差另外属性。它的重要受力结 构为隔热断桥铝合金。内木可凭据客户要求,选择遍及,既可用针叶类、也可用阔叶类,为纯实木顺纹集成材,有较高的抗压和抗折强度。加之利用户外专用窗漆作 图装层,形成很好的防变形和抗老化本领。表现自然调和、满盈大自然的韵味。外铝可接纳氟碳后静电喷涂、电泳等处置处罚要领,其布局结实、雅观大方。铝包木门窗 且环保性、装饰性、节能性又高于铝合金门窗,从总体看,该门窗格具特点兼容,经济实惠。 外铝内木,到达双重装饰的结果,室内是温馨、雅致的实木门窗,室外从直观上则是高尚、豪华的铝合金门窗
据相识其布局如下:槽型木构件内设有燕尾楔,铝毗连件上设有与燕尾楔相立室的燕尾槽,铝毗连件与槽型木构件通过燕尾楔和燕尾槽相毗连;铝毗连件两侧设有弹 性卡钩,铝型材的内侧设有与弹性卡钩相立室的卡接槽,铝型材与铝毗连件通过弹性卡钩和卡接槽相毗连;铝型材的侧面设有多个挂钩,在槽型木构件和板型木构件 的内侧设有多个与挂钩相立室的挂接槽,槽型木构件和板型木构件与铝型材通过挂钩和挂接槽相毗连;板型木构件上设有内棱,槽型木构件上设有外棱,槽型木构件 和板型木构件通过内棱和外棱相对接。本实用新型用途遍及,布局牢固,制作容易,便于形成量产。
该产物其明显的特点是转变原有的金属质感,使其具有保存自然木料极富生命力的质感肌理和优美木纹处置处罚,而且降服了实木门窗中袒露的易变形、翘裂、易受虫蚁陵犯等致命缺点,使其具备防水、阻燃、耐腐化、抗老化等特点,得当于户内和户外直接利用。
铝镍钴磁铁
2017-06-06 17:50:12
铝镍钴磁铁铝镍钴磁铁也叫做磁钢磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强
金属
,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金。磁钢最原始的定义即是铝镍钴合金(磁钢在英文中AlNiCo即铝镍钴的缩写),磁钢是由几种硬的强
金属
,如铁与铝、镍、钴等合成,有时是铜、铌、钽合成,用来制作超硬度永磁合金(Any of several hard, strong alloys of iron, aluminum, nickel, cobalt and sometimes copper, niobium, or tantalum, used to make strong permanent magnets.)。其
金属
成分的构成不同,磁性能不同,从而用途也不同,主要用于各种传感器、仪表、电子、机电、医疗、教学、汽车、航空、军事技术等领域。铝镍钴磁铁是最古老的一种磁钢, 被人们称为天然磁体, 虽然他最古老, 但他出色的对高温的适应性, 使其至今仍是最重要的磁钢之一.铝镍钴可以在500℃以上的高温下正常工作, 这是他最大的特点, 另外抗腐蚀性能也比其他的磁体强。铝镍钴磁铁的应用也越来越广泛,从高科技产品到最简单的包装磁,目前应用最为广泛的还是钕铁硼强磁和铁氧体磁铁。 而矫顽力的提高,主要得益于对其本质的认识和高磁晶各向异性化合物的发现,以及制备技术的进步。二十世纪初,人们主要使用碳钢、钨钢、铬钢和钴钢作永磁材料。二十世纪三十年代末,AlNiCo永磁材料开发成功,才使永磁材料的大规模应用成为可能。五十年代,钡铁氧体的出现,既降低了永磁体成本,又将永磁材料的应用范围拓宽到高频领域。到六十年代,稀土钴永磁的出现,则为永磁体的应用开辟了一个新时代。1967年,美国Dayton大学的Strnat等,用粉末粘结法成功地制成SmCo5永磁体,标志着稀土永磁时代的到来。迄今为止,稀十永磁已经历第一代SmCo5,第二代沉淀硬化型Sm2Co17,发展到第三代Nd-Fe-B永磁材料。此外,在历史上被用作永磁材料的还有Cu-Ni-Fe、Fe-Co-Mo、Fe-Co-V、MnBi、A1MnC合金等。这些合金由于性能不高、成本不低,在大多数场合已很少采用。而AlNiCo、FeCrCo、PtCo等合金在一些特殊场合还得到应用。目前Ba、Sr铁氧体仍然是用量最大的永磁材料,但其许多应用正在逐渐被Nd-Fe-B类材料取代。并且,当前稀土类永磁材料的产值已大大超过铁氧体永磁材料,稀土永磁材料的生产已发展成一大
产业
。