您所在的位置: 上海有色 > 有色金属产品库 > 铝硅合金粉末冶金技术 > 铝硅合金粉末冶金技术百科

铝硅合金粉末冶金技术百科

钼及钼合金粉末冶金技术研究现状与发展

2019-03-04 11:11:26

体系总结了钼及钼合金粉末冶金技能的研讨进展和工业运用现状。别离论说了钼粉末冶金理论、超细(纳米)钼粉、大粒度(和高活动性)钼粉、高纯钼粉、新式钼成型技能、新式钼烧结技能、钼粉末冶金进程数值模仿技能等7个研讨方向的技能原理、技能特色、设备结构和工业运用现状,并分析其展开远景。 钼及钼合金具有高的高温强度和高温硬度,杰出的导热性和导电性,低的热膨胀系数,优异的耐磨性和抗腐蚀性,被广泛运用于航天航空、动力电力、微电子、生物医药、机械加工、医疗器械、照明、玻纤、国防建设等范畴。本文体系总结钼及钼合金粉末冶金技能的原理、技能特色、设备结构和工业运用现状,并分析其展开远景。 一、钼粉末制备技能展开 跟着轿车、电子、航空、航天等职业的日益展开,对钼粉末冶金制品的质量要求越来越高,因而要求钼粉质料在化学成分、物理描摹、均匀粒度、粒度散布、松装密度、活动性等许多方面具有愈加优异的功能目标,钼粉朝着高纯、超细、成分可调的方向展开,然后对其制备理论和制备技能提出了更高的要求。 (一)钼粉复原理论研讨 钼粉的制取进程是一个包含钼酸铵到MoO3、MoO到MoO2、MoO2到钼粉等3个独立化学反响,阅历一系列杂乱的相变进程,触及钼酸铵质料以及MoO3、MoO2、钼蓝等中间钼氧化产品的描摹、尺度、结构、功能等许多要素的极端杂乱的物理化学进程。 现在,已根本清晰MoO3到Mo的复原进程动力学机制,即:MoO3到MoO2阶段反响进程契合核决裂模型,MoO2到Mo阶段反响契合核减缩模型;MoO2到Mo阶段反响有两种办法,低露点气氛时通过假晶改变,高露点气氛时通过化学气相搬迁。但对MoO3到MoO2阶段的反响办法没有构成共同观点,Sloczynski以为MoO3到MoO2的复原是以Mo4O11为中间产品的接连反响,Ressler等以为在复原进程中,MoO3首要吸附氢原子[H]生成HxMoO3,然后HxMoO3开释所吸附的[H]改变为MoO3和MoO22种产品,跟着温度上升MoO2不断长大,而改变成的中间态MoO3进一步复原为Mo4O11,进而复原成MoO2。国内尹周澜等、刘心宇等、潘叶金等在这一范畴也进行了必定作业,但未见到较完善的物理模型和数学模型的报道。 (二)超细(纳米)钼粉制备技能研讨 现在,制备超细钼粉的办法首要有:蒸腾态三氧化钼复原法、活化复原法和十二钼酸铵复原法。纳米钼粉的制备办法首要有:微波等离子法、电脉冲放电等。 1、蒸腾态三氧化钼复原法 蒸腾态三氧化钼复原法,是将MoO3粉末(纯度达99.9%)装在钼舟上,置于1300~1500℃的预热炉中蒸腾成气态,在流量为150mL/min的H2-N2气体和流量为400mL/min的H2的混合气流的夹载下,MoO3蒸气进入反响区,通过复原成为超细钼粉。该办法可取得粒径为40~70nm的均匀球形颗粒钼粉,但其工艺参数操控比较困难,其间,MoO3-N2和H2-N2气流的混合温度以及MoO3成分都对粉末粒度的影响很大。 2、活化复原法 活化复原法以七钼酸铵(APM)为质料,在NH4Cl的催化效果下,通过复原进程制备超细钼粉,复原进程中NH4Cl彻底蒸发。其复原进程大致分为氯化铵加热分化、APM分化成氧化钼、MoO3和HCl反响生成7MoO2Cl2、MoO2Cl2被复原为超细钼粉等4个阶段。总反响式为:NH4Cl+(NH4)6Mo7O24+4H2O=HCl+7NH3+28H2O+7Mo。该办法比传统办法的复原温度下降约200~300℃,而且只运用一次复原进程,工艺较简略。此办法制备的钼粉均匀粒度为0.1μm,且粉末具有杰出的烧结功能。韩国岭南大学提出了类似办法,仅仅所用质料为高纯MoO3。 3、十二钼酸铵复原法 十二钼酸铵复原法 是将十二钼酸铵在镍合金舟中,并置于管式炉中,在530℃下用复原,然后再在900℃下用复原,可制出比表面积为3.0m2/g以上的钼粉,这种钼粉的粒度为900nm左右。该办法仅有工艺进程描绘,未见到进程机制的分析,其可行性没有可知。 4、羰基热分化法 羟基法是以羟基钼为质料,在常压和350~1000℃的温度及N2气氛下,对羟基钼料进行蒸气热分化处理。因为羟基化合物分化后,在气相中情况下完结形核、结晶、晶核长大,所以制备的钼粉颗粒较细,均匀粒度为1~2μm。运用羟基法制得的钼粉具有很高的化学纯度和杰出的烧结性。 5、微波等离子法 微波等离子法运用羟基热解的原理制取钼粉。微波等离子设备运用高频电磁振荡微波击穿N2等反响气体,构成高温微波等离子体,进而使Mo(CO)6在N2等离子体气氛下热解发生粒度均匀共同的纳米级钼粉,该设备能够将生成的CO当即排走,且使发生的Mo敏捷冷凝进入搜集设备,所以能制备出比羟基热解法粒度更小的纳米钼粉(均匀粒径在50nm以下),单颗粒近似球形,常温下在空气中的稳定性好,因而此种纳米钼粉可广泛运用。 6、等离子氢复原法 等离子复原法的原理是:选用混合等离子反响设备将高压直流电弧喷射在高频等离子气流上,然后构成一种混合等离子气流,运用等离子蒸气复原,开端得到超细钼粉。取得的初始超细钼粉打针在直流弧喷射器上,当即被冷却水冷却成超细粉粒。所得到粉末均匀粒径约为30~50nm,适用于热喷涂用的球形粉末。该办法也可用于制备其他难熔金属的超细粉末,如W、Ta和Nb。微波等离子法和等离子氢复原法制备的纳米钼粉纯度较高,描摹较好,但其出产本钱大大提高。 7、机械合金化法 日本的桑野寿选用碳素钢、SUS304不锈钢、硬质合金钢nm左右的钼粉。这种办引起Fe、Fe-Cr-Ni和W在钼中固溶,其固溶量到达百分数级。此外,电脉冲法和电子束辐照法、冷气流破坏、金属丝电爆破法、高强度超声波法、电脉冲放电、关闭循环氢复原法、电子束辐射法等大多只具有实验研讨的价值,尚不具有工业化制备的条件。 (三)大粒度(和高活动性)钼粉制备技能研讨--钼粉的增大改形技能研讨大粒度(和高活动性)钼粉首要用于精细器材的焊接和喷涂,其物性目标首要有:大粒度(≥10μm)、大松装密度(3.0~5.0g/cm3)、杰出的活动性(10~30s/50g)。相对费氏粒度一般为5μm以下,粒度散布根本呈正态散布,松装密度在0.9~1.3g/cm3之间,钼粉描摹为不规矩颗粒团,活动性较差(霍尔流速计无法测出)的惯例钼粉而言,这类钼粉的制备难点首要有3点:粒度大、密度大、活动性好。满意这3点要求的抱负钼粉描摹是大直径的实心球体,这与惯例钼粉非规格松懈颗粒团的描摹天壤之别。一般地,钼粉增大改形技能首要有化学法和物理法两大类。 1、化学法 制备出大粒度钼酸铵单晶块状颗粒,依照遗传性原理,通过后续焙烧、复原,制备出大粒度的钼粉真颗粒(惯例钼粉颗粒实践上是许多小颗粒的聚会体),随后进行必定的机械处理,取得描摹圆整、密度大、尺度大的钼粉颗粒。这种办法理论上可行,可是制备大单晶钼酸铵颗粒的难度较大,而且后续钼粉尺度和描摹的遗传性量化规矩不清晰,工艺流程较长。 2、机械造粒技能 将加有粘结剂的混合钼粉在模具或造粒设备中,通过机械约束得到必定尺度,然后脱除粘结剂,烧结成必定强度的规矩颗粒团。这种办法原理简略,但实验标明,这种办法增大钼粉粒度较为简略,但对活动性改善不大。 3、等离子造粒技能 等离子造粒技能在粉末改形方面运用由来已久,其原理是,在维护气氛下,通过必定途径将粉末送入等离子火焰心部,运用高达几千摄氏度的高温使粉末颗粒熔化,然后在自在下落进程中运用液滴的表面张力自行球化,球形液滴通过冷却介质激冷呈大粒度、高密度球形粉末。这种办法取得的粉末具有很好的物性目标,商场远景宽广,但其技能难度较大,特别在粉末运送和维护气氛的坚持、制品的冷却搜集等方面较为困难,设备出资大,保养比较困难。 4、流化床复原法 钼粉的流化床复原法由美国Carpenter等提出,通过2阶段流化床复原直接把粒状或粉末状的MoO3复原成金属钼粉。第1阶段选用作流态化复原气体,在400~650℃下把MoO3复原为MoO2;第2阶段选用作流态化复原气体,在700~1400℃下将MoO2复原成金属Mo。因为在流化床内,气-固之间能够取得最充沛的触摸,床内温度最均匀,因而反响速度快,能够有效地完结对钼粉粒度和形状的操控,所以该办法出产出的钼粉颗粒呈等轴状,粉末活动性好,后续烧结细密度高。这种办法没有见到详细出产运用的信息。 (四)高纯钼粉制备技能研讨 高纯钼粉用于耐高压大电流半导体器材的钼引线、声像设备、照相机零件和高密度集成电路中的门电极靶材等。要制备高纯钼粉,有必要首要取得高纯三氧化钼或高纯卤化物。取得高纯三氧化钼的工艺首要有: 1、等离子物理气相堆积法 以空气等离子处理普通的三氧化钼,运用三氧化钼沸点比大大都杂质低的特色,令其在空气等离子焰中敏捷蒸发,然后在等离子焰外引进很多冷空气使气态三氧化钼激冷,取得超纯三氧化钼粉末。 2、离子交换法 将质料粉末溶于聚四氟乙烯容器中加水拌和,然后以1L/h的速度向容器中参加浓度为30%的H2O2。所得溶液通过H型阳离子交换剂,将容器中的溶液加热至95℃,抽气压力在25Pa左右坚持5h,浓缩后构成沉积,即为高纯三氧化钼。 3、化学净化法 通过屡次重结晶,取得高纯钼酸铵,然后煅烧得到高纯三氧化钼。 取得高纯三氧化钼后,选用传统氢复原法和等离子氢复原法均可取得高纯度钼粉。这几种制备技能均有运用的报道,但详细技能思路和细节均未揭露。 取得高纯卤化物的工艺原理是:将工业三氧化钼或钼金属废料(如垂熔条的夹头、钼材边角料、废钼丝等)卤化得到卤化物(一般为),然后在550℃左右的高温条件下对卤化钼进行分馏处理,使里边的杂质蒸发,得到深度提纯的卤化钼(据称纯度可到达5N),终究通过氢氯焰或氢等离子焰复原,得到高纯钼粉。日本学者佐伯雄造报道了800~1000℃下氢复原高纯的研讨,得到的超纯钼粉中金属杂质含量比其时商场上高纯钼粉低2个数量级。氢复原法是一种产品纯度高,简略易行的办法。可是的制备、提纯和氢复原进程均运用了,对操作人员和环境危害较大。 二、新式钼成型技能展开 现在,粉末的成型技能朝着"成型件的高细密化、结构杂乱化、(近)净成型、成型快速化"的方向展开。以下几种约束成型技能具有很大的技能创新性,一旦取得打破,将对钼固结技能(包含约束和烧结)发生性的影响,但这些技能的详细技能细节没有发表。 1、动磁约束(DMC)技能 1995年美国开端研讨“动磁约束”并于2000年取得成功。动磁约束的作业原理是:将粉末装于一个导电的护套内,置于高强磁场线圈的中心腔内。电容器放电在数微秒内对线圈通入高脉冲电流,线圈腔内构成磁场,护套内发生感应电流。感应电流与施加磁场彼此效果,发生由外向内紧缩护套的磁力,因而粉末得到二维约束。整个约束进程缺乏1ms。相对传统的模压技能,动磁约束技能具有工件约束密度高(生坯密度可到达理论密度的95%以上),作业条件愈加灵敏,不运用润滑剂与粘结剂,有利于环保等长处。现在动磁约束的运用已挨近工业化阶段,第1台动磁约束体系已在试运行。 2、温压技能 温压技能由美国Hoeganaes公司于1994年提出,其工艺进程是,在140℃左右,将由质料粉末和高温聚合物润滑剂组成的粉末喂入模具型腔,然后约束取得高细密度的压坯。这种专利聚合物在约150℃具有杰出的润滑性,而在室温则成为杰出的粘结剂。温压技能是一项运用单次约束/烧结制备高细密度零件的低本钱技能,只通过一次约束便可到达复压/复烧或熔渗工艺方能到达的密度,而出产本钱却低得多,乃至可与粉末铸造相竞赛。但现在适合于钼合金的喂料配方需求实验断定。 3、活动温压(WFC)技能 活动温压技能由德国Fraunhofer研讨所提出。其根本原理是:通过在惯例粒度粉末中,参加适量的微细粉末和润滑剂,然后大大提高了混合粉末的活动性、填充才能和成形性,进而能够在80~130℃温度下,在传统压机上精细成形具有杂乱几许外形的零件,如带有与约束方向笔直的凹槽、孔和螺纹孔等零件,而不需求这以后的二次机加工。作为一种簇新的粉末冶金零部件近终构成形技能,活动温压技能既克服了传统粉末冶金技能在成形方面的缺乏,又防止了打针成形技能的高本钱,具有非常宽广的运用潜力。现在,该技能尚处于研讨的初始阶段,混合粉末的制备办法、适用性、成形规矩、受力情况、流变特性、烧结操控、细密化机制等方面的研讨均未见报道。 4、高速约束(HVC)技能 粉末冶金用高速约束技能是瑞典Hoganas公司与Hydrapulsor公司合作开发的,选用液压机,在比传统快500~1000倍的约束速度(压头速度高达2~30m/s)下,一起运用液压驱动发生的多重冲击波,间隔约0.3s的附加冲击波将密度不断提高。高速约束压坯的径向弹性后效很小,压坯的尺度误差小,可用于粉末的近净构成型,且出产功率极高;但其设备吨位较大,尚不具有制备大尺度工件的才能,且工艺进程环境噪音污染严峻。 三、新式钼烧结技能展开 近年来,粉末烧结技能层出不穷。电场活化烧结技能(FAST)是通过在烧结进程中施加低电压(~30V)和高电流(>600A)的电场,完结脉冲放电与直流电一起进行,到达电场活化烧结,取得显微结构显着细化、烧结温度显着下降、烧结时刻显着缩短的意图。挑选性激光烧结(SLS)运用分层制作办法,首要在核算机上完结契合需求的三维CAD模型,再用分层软件对模型进行分层,得到每层的截面,然后选用自动操控技能,使激光有挑选地烧结出与核算机内零件截面相对应部分的粉末,完结分层烧结。 从理论上讲,这些烧结技能都具有很高的学术价值,但大多尚处于实验室研讨阶段,只能用于小尺度钼制品的小批量烧结,间隔工业运用研讨尚有很大间隔。具有必定工业化运用远景的钼烧结技能首要有以下几种: 1、微波烧结技能 微波烧结运用材料吸收微波能转化为内部分子的动能和热能,使材料全体均匀加热至必定温度而完结细密化烧结的意图。微波烧结是快速制备高质量的新材料和制备具有新功能的传统材料的重要技能手段之一。 相对电阻烧结、火焰烧结、感应烧结等传统烧结办法而言,微波烧结法不只具有节能显着,出产功率高,加热均匀(其温度梯度为传统办法的1/10),烧结制品少(无)内应力、大幅变形和烧结裂纹等缺点,烧结进程准确可控等长处。别的,微波加热技能可用于钼精矿提高除杂、钼精矿焙烧、钼酸铵焙解、钼粉复原等多种工艺环节。但因为微波穿透深度的约束,被烧结材料的直径一般不大于60mm,别的微波烧结气氛很难确保处于2,因而很难防止钼的烧结进程氧化污染。 2、热等静压技能 气压烧结(热压烧结)技能是一种约束机械能与烧结热能耦合效果下的钼固结技能,热等静压是其间运用最成功的工艺。对烧结密度、安排均匀性和空地率等烧结目标要求比较高的高端钼烧结产品,如TFT-LCD用钼溅射靶材,国外大多选用热等静压技能,其产品质量远高于传统的冷等静压-无压烧结工艺,国内尚无类似出产工艺的报道。 3、放电等离子烧结技能 放电等离子烧结技能(SPS)是一种运用通-断直流脉冲电流直接通电烧结的加压烧结法。其工艺原理是,电极通入通-断式直流脉冲电流时瞬间发生的放电等离子体、放电冲击压力、焦耳热和电场分散效果,使烧结体内部各个颗粒均匀地本身发生焦耳热并使颗粒表面活化,然后运用粉末内部的本身发热效果完结烧结细密化,取得均质、细密、细晶的烧结安排。这种比传统烧结工艺低180~500℃,且高温等离子的溅射和放电冲击可铲除粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。德国FCT公司现已选用这种技能制备出直径为300mm的钼靶材,国内尚无类似出产工艺的报道。 4、铝热法复原-烧结一体化技能 铝热法选用铝粉末作为复原剂,在200~300℃下,对钼酸钙、硫化钼或三氧化钼进行低温复原,可用大大低于惯例氢复原工艺的本钱和较高出产功率制得低密度粗制钼产品或钼合金涂层。一起,在必定的气体压力效果下,跟着复原进程的进行,钼粉可发生开端烧结,取得质量要求较低的钼坯料。这种钼坯料可作为钢铁和高温合金的合金添加剂,也可作为电解精粹法制备高纯钼制品的质料。 四、钼粉的粉末冶金特性规矩性研讨 HCStark、Plansee等国外首要钼厂商对钼粉有严厉的分类,构成了较为完好的钼粉系列,不同加工制品选用不同目标的钼粉,不同的钼粉在约束成型前选用不同的前处理办法,不同的钼粉选用不同的约束、烧结工艺,而且不同物性目标钼粉能够彼此调配,取得最优质料组成和最佳的密度、均匀性等压坯质量,然后确保烧结件和终究产品的质量。而国内只要少量组织进行了开端探究,国内厂商没有构成体系的钼粉分级,不管哪种质料、哪种工艺、哪种设备取得的钼粉,均选用类似的工艺,制备同一类制品;钼粉在成型前的处理工艺更是无从提及。较为体系地展开钼粉的粉末冶金特性研讨,理清质料-工艺-钼粉-成型工艺-烧结工艺-制品之间的对应联系,关于取得产品的多元化、系列化、最优化具有很大的出产辅导意义。 五、钼粉末冶金进程数值模仿技能展开 长期以来,钼粉复原、成型、烧结工艺多依赖于出产经历堆集。近年来跟着钼制备加工技能的精整化,数值模仿逐步用于钼的这3个粉末冶金工艺段,为研讨微观演化进程,提醒钼制备加工进程的准确机制,进而为完结钼成型工艺的可控性供给理论支撑。就这3段工艺的本质而言,钼粉复原阶段归于典型的分散场现象,可学习流体介质模仿技能;成型、烧结进程归于典型的非接连介质体,且质料粉末组成反常杂乱,无法树立一致的几许形式、物理模型和数学模型,现在尚无完善的模仿技能和模仿软件。 1、钼粉成型进程数值模仿 钼粉约束成型时,粉末的应力变形比固态金属杂乱,可概括为2个首要阶段:约束前期为松懈粉末颗粒的聚合,约束后期为含孔隙的实体。粉末约束时因为很多不同尺度粉末颗粒间的彼此效果以及粉末与模壁间的机械效果和冲突效果,再加上制品密度、弹性功能、塑性功能间的彼此影响,粉末的力学行为是非常杂乱的,还没有一个一致的材料模型。 现在因为非接连介质力学的根本理论还不完善,国内外的研讨大多是将粉末体作为接连体假定而进行的。粉末约束模型可简化为弹性应力-应变方程。 2、钼粉烧结进程数值模仿 烧结从本质上来说也是一种热加工工艺。烧结进程中的粉末固结和热量搬迁是一起进行的,固结中的物理机制包含塑性屈从、蠕变和分散。而粉末凝结进程中的部分压力和温度决议着这些物理机制对粉末固结所起的效果。一起,粉末凝结中的热量搬迁(首要是热量传递)又深受部分相对密度的影响。因而,对烧结的分析有必要结合热力学。 因为钼粉烧结进程的基础理论展开缺乏,无法树立满足的偏微分方程组,所以烧结进程的数值模仿,只能进行单元素体系、简略尺度和描摹的钼粉情况下的简略模仿。这种模仿成果有助于分析其间的机制,但尚无法有效地辅导出产工艺。 六、结束语 通过近一个世纪的展开,"粉末多样化、制品准确化"逐步成为现代钼粉末冶金技能的展开方向,并开宣布一系列钼粉末冶金新技能、新工艺及其进程理论,这些研讨的重点是粉末和制品的结构、描摹、成分操控技能。总的趋势是钼粉向超细、超纯、粉末特性可控方向展开,钼制品的约束烧结向以彻底细密化、(近)净成型为首要目标的新式固结技能展开。 展开钼粉末复原进程动力学问题研讨和粉末冶金进程的数值模仿研讨,有助于从理论上分析质料、钼粉功能、钼制品功能、复原工艺、约束工艺、烧结工艺之间的影响规矩,为处理实践工艺问题供给理论支撑和技能思路。

铜合金粉末

2017-06-06 17:50:03

铜合金粉末为铜铅锡合金粉    铜粉及铜合金粉生产及 市场 ,国外工业用铜粉的生产始于20世纪20年代,当时的生产工艺主要有电解法和氧化还原法两种。50年代之后又出现了置换沉淀法、水治法及雾化法等新的生产工艺。我国1958年开始进行电解铜粉的生产实验,并于60年代中期取得成功。目前,国内铜粉生产工艺主要有电解法、雾化法和还原法三种。    技术由于生产工艺简单、投资小,我国90%的铜粉都是采用电解法生产。电解法所用的电流强度较高, 金属 粉末沉积在阴极上,刮下来再经过加热软化处理即成。制成的粉末较纯且具有不规则之枝桠状。虽然电解法生产的铜粉纯度较高,压制性好,但是生产能耗高,从而成本高,环境污染严重。    化法就是将熔融的 金属 压入喷嘴,再以压缩空气、水或惰性气体吹散成极小的 金属 颗粒珠,制成的 金属 粉末多呈球形或泪滴形。雾化法有成本低、污染小的优点,可生产出低松比的铜粉,但技术要求较高。国外从上世纪60年代就开始采用雾化法生产铜粉,即雾化--氧化--还原法,简称AOR法。我国近几年才开始着手研究这项技术。    还原法就是利用氢气、一氧化碳等还原性气体将 金属 化合物(通常是氧化物)还原成多孔而疏松的团块,然后再经研磨即成。此法制成的粉末多呈不规则形。     铜基粉体材料包括电解铜粉、低松装密度水雾化铜粉、铜合金粉、氧化铜粉、纳米铜粉和喷涂用抗氧化仿金铜合金粉等六大类。    电解铜粉呈浅玫瑰红树枝状粉末,在潮湿空气中易氧化,能溶于热硫酸或硝酸。广泛应用于金刚石工具、粉末冶金制品、磨擦材料、电碳制品、导电油墨等。    低松装密度水雾化铜粉呈浅玫瑰红不规则粉末。主要应用于金刚石工具、粉末冶金零件、化学催化剂、碳刷、磨擦材料及焊接电极。    铜合金粉包括锡青铜粉和黄铜粉。锡青铜粉广泛用于粉末冶金含油轴承及金刚石工具;黄铜粉广泛用于轴套材料、金刚石工具等。    氧化铜粉用作油漆及化学试剂,陶瓷、搪瓷的颜料等。纳米铜粉粒径均匀、球形状、结晶度大、分散性好等。主要用于制造多层陶瓷电容器的终端和内部电极、电子元件的电子浆料等。    喷涂用抗氧化仿金铜合金粉主要用于高档装饰、装潢、加点表面喷涂、摩托车、汽车表面涂装、纺织物印染、陶瓷及工艺美术制作及塑料复合材料制造业等领域。近年来,高档建筑内外墙体、室内装饰均开始使用高品质仿金铜合金粉,同时,受日趋严格的环保要求,化学镀铜和电镀铜 行业 将逐步被喷涂高品质仿铜合金粉所替代,从而为这种产品应用开辟了十分广阔的 市场 前景。

钨铜复合电极性能介绍

2019-05-27 10:11:36

钨铜复合电极钨铜与铁结合的复合电极,根绝以往此技术运用焊接复合中存在的孔隙、裂缝问题。钨铜铁复合电极为钨铜、铁两种材料复合而成,结合强度高、导电功能好。 1、钨铜、铁的合理调配,使其力学功能愈加合理,运用愈加便利。小型精细电极制作中的变形问题得到了很好的处理; 2、可将电极直接吸附在磁性作业台上磨削,其制作后的平面度、表面光洁度和尺度精细度是其它制作办法无法等到的。在大平面电极的制作中尤显其优越性; 3、磨削后的电极基准再现性好,特别合适需多工序组合工的电极; 4、多个电极可一起制作,可大大进步作业效率; 5、损耗的电极经磨削可重复运用,运用率高,大幅进步作业效率,下降制作成本。

铜铝合金粉

2017-06-06 17:50:09

        铜铝合金粉是铜铝合金的一种材料。具有良好的传热、导电、压延等物理机械性能。铜是钢铁和铝等合金中的重要添加元素。少量铜(0.2~0.5%)加入低合金结构用钢中,可以提高钢的强度及耐大气和海洋腐蚀性能。在耐蚀铸铁和不锈钢中加入铜,可以进一步提高它们的耐蚀性。含铜30%左右的高镍合金是著名的高强度耐蚀"蒙乃尔合金",在核工业中广泛使用。   在许多高强度铝合金中都含有铜。通过淬火 一 时效热处理 ,在合金中析出弥散分布的细小颗粒,而显著提高其强度,称为时效硬化铝合金。其中著名的有杜拉铝 或称硬铝,它是一种含铜、锰、镁的铝合金,是制造飞机和火箭的重要结构材料。     铜及铜铝合金具有良好的传热、导电、压延等物理机械性能,但在空气中不稳定,易氧化。     同时对于铜铝合金性能,我门可以看到汽车工业技术的发展主流为智能、节能和环保。解决节能和环保问题的关键在于汽车轻量化。因此,在汽车制造工业中,以铝、镁合金代替钢铁是长期的发展趋势。铝铜合金尤其是含铜4﹪~5﹪的铝铜合金,其力学性能优良,完全可以替代钢铁材料,用于制造汽车结构件。但是,Al-(4﹪~5﹪)Cu合金铸造性极差,热裂倾向十分严重,制约了铝铜合金铸件在汽车零部件中的使用。长期以来,研究人员采用孕育、电磁搅拌、半凝固态等手段同,试图解决铝铜合金的热裂问题,但因 金属 污染、生产效率、生产成本等方面的原因,使得铝铜合金迟迟得不到广泛应用。外场对 金属 凝固的作用是近年受到人们关注的研究领域。作者研究了采用电脉冲孕育(EPM)处理技术对Al-(4﹪~5﹪)Cu合金进行处理,探讨EPM处理对Al-(4﹪~5﹪)Cu合金孕育形核的作用。     目前,铜铝合金粉也是比较广泛使用的工业材料.

钍粉末冶金

2019-01-30 10:26:27

用粉末冶金的方法由金属钍粉制取致密钍金属的过程。包括钍粉成形及烧结两道作业。产品金属钍块纯度一般为99.7%,布氏硬度为65,可加工成电极,作为熔铸原料。 钍粉的可压性取决于制取方法及其纯度,用金属热还原法制得的钍粉,其可压性比熔盐电解法(见金属钍生产)制取的差,这是因为前者含有较多的氧气和ThO2等杂质。坯料中的氧会使其可压性、强度及烧结件的机械性能变差。ThO2大多集中在氧化膜内,氧化膜的厚度越大,粉末的可压性越差。钍粉的颗粒大小、形状、结构及体积特性也是影响粉末可塑性的重要因素。 钍粉或钍屑大多在钢制压模中成形。压模主要由阴模、压头、底座三部分组成。大多采用液动油压机成形。成形的方法可分为冷压法和热压法。热压法要选择适当的压模材料,并需在保护气体下进行。钍粉末所受的冷态等压力与成形坯块的密度有关,等压力为120MPa、228~304MPa、608~684MPa时,坯块密度相应为7700、9500和11000kg/m3。 压制坯料在设有铜制加热器的真空炉内烧结l~2h。密度10000~11000kg/m3的冷压坯块的烧结温度为1373~1473K,密度在1000kg/m3以下的冷压坯块的烧结温度为1573~1623K。烧结钍块的密度比坯块密度略高些,机械加工性能也有提高。

粉末冶金钛合金生产技术

2019-03-08 11:19:22

下降本钱主要是下降工业纯钛出产本钱和钛及钛合金的制作加工本钱。为了下降钛合金的本钱,国外大力开展钛合金无切削、少切削的近净形工艺,粉末冶金技能就是这种近净形工艺之一。制作钛合金部件现在主要有3种办法:①传统的铸造材料加工;②铸造;⑧粉末冶金。用铸造进行材料加工,其材料功能优秀,但糟蹋大,加工量大,本钱高,且难取得形状杂乱的产品;铸造可取得形状杂乱的净形或近净形产品,本钱较低,但铸造过程中材料的成分偏析、疏松、缩孑L等缺陷难以避免,材料功能较低。钛合金的粉末冶金技能则战胜了这2种办法的缺陷,一起兼有它们的长处。因而国内外科研者在粉末冶金技能制备钛合金上展开了许多作业。本文就近年来国外研讨开发的几种制备高功能钛合金的粉末冶金技能及其运用情况做一扼要的介绍。 1 新粉末冶金制备技能 1.1 金属打针成形(MlM) 金属粉末打针成形(MIM)技能作为一种近净成形技能,可制备高质量、高精度的杂乱零件,被认为是现在最有优势的成形技能之一。用MIM法制作钛及钛合金近净形零件,可大幅下降加工费用。据估计,现在全世界钛的MIM 部件的出产量为每月3~5t。跟着制备钛粉工艺的改进和粉末本钱的下降-,钛合金打针成形件的出产量呈增加趋势。 日本最早选用MIM 技能出产Ti一4wt%Fe合金运动夹板。现在最大的钛粉末打针成形的出产厂是日本Injex,每月出产约2~3t。钛的MIM产品已在高尔夫球头、主动轿车、医疗器械、牙科植入体及表壳表带等方面取得运用一。日本Hitachi metalPrecision公司和Casio计算机公司制作的钛合金表壳在1999年世界粉末冶金会议上取得MIM 优胜奖,此表在水深200m仍能正常工作。1997年日本太平洋金属有限公司选用住友Sitix气雾法制得的球形钛粉,均匀粒径23.8 m,选用4O 聚+6O白腊粘结剂,经1443K烧结1.5h得到MIM钛材,材料中间隙元素含量及力学功能如表1 表1 日本太平洋金属有限公司MIM 钛件功能 空隙元素含量wt% 力学功能 O C N σ0.2Mpa σbMpaδ% 0.226 0.04 0.0017 360 504 19 日本一些大学选用住友Sitix气雾化球形钛粉,由MIM法制取了Ti一6Al一4V、Ti一12Mo、Ti一5Co合金等。材料功能均优于平等条件下用惯例粉末冶金工艺所制得的材料功能,彻底到达了相同成分的熔炼铸造材料的水平。此外,日本一家公司用打针成形法制作形状杂乱的钛铁合金零件,如田径跑鞋的鞋底钉子。该办法将钛铁合金(Ti一5wt%Fe)粉末和有机粘结剂混合,以196MPa的压力打针成形,在550。C脱脂后,再在1000-1400。C,1.33×1O Pa条件下进行真空烧结。这样制成的钛铁合金鞋钉与钼合金鞋钉比较,耐磨性和耐冲击性均进步。且分量减轻45%。轿车喷油嘴形状杂乱,尺度小,用打针成形技能(MIM)研发的Ti?Al金属间化合物和Ti一7.6A1?2.6Cr合金喷油嘴,具有耐高温、耐磨损、质量轻等优秀功能,其尺度精度也到达了运用要求。 1.2 激光成形技能 激光成形法是一种将高功率激光涂覆技能同先进的快速原型仿制法相结合以直接制作杂乱三维零部件的激光定向金属堆积加工工艺。激光成形工艺具有高精细、高质量、非触摸性、洁净无污染、无噪音、材料耗费少、参数精细操控和高度主动化等特性,能够制作充沛细密和高度完好的金属零部件而不需要像铸造、热等静压或低熔点合金的反渗透这样一些中间工艺过程,因而特别合适于金属化合物等脆性合金的成形与加工。 美国AeroMet公司开发的激光成形工艺,是把钛合金粉堆积到基体上预先成形,再加工成精细件。该公司用激光成形技能出产的F一22飞机支架、F/A一18E/F飞机机翼衔接板的翼根加强筋,以及起落连杆件3种部件可满意飞机功能的要求。他们用的材料都是Ti一6A1?4Y合金。用铸造和铸造技能制作这些飞机零部件的材料使用率低于5,交货时刻长达1~2年。使用激光成形规律能够战胜这些缺陷。现在已用该技能制作出了Ti一6A1?4V、Ti一5A1?2.5Sn、Ti一6Al一2Sn一4Zr一2Mo一0.1Si 和Ti一6A1?2Sn一2Zr一2Cr一2Mo一0 25Si等合金。 最近,美国坩埚公司使用大功率CO的激光设备,将气雾化法制备的Ti一47Al一2Cr一2Nb合金粉末喂入激光束聚焦点,经过计算机三维图形操控制备了尺度为200×150×32mm的r-TiAl合金板材。使用激光成形技能,板的成分与原始粉末的成分附近,在制作过程中不会失掉铝和吸收氧气。产品的显微安排为彻底的片状安排,片团巨细为18O~600um(均匀尺度为400um),片间隔约为0.5u m,其力学功能如表2(略)。激光成形法制备的Ti一6A1?4V合金的力学功能如表3(略),其疲惫功能介于铸造与铸造之间 。 选择性激光烧结技能作为激光成形技能中开展最敏捷的技能之一,现在得到了广泛的开展。它原则上合适于任何能够与激光发作相互作用的粉末材料,尤其是金属粉末。日本大阪大学选用选择性激光烧结技能制备医用钛牙冠件,取得了很好的作用。它是以Nd:YAG激光器为能量源(均匀功率为50W),原材料为球形钛粉。粗钛粉激光烧结件的相对密度为84%,抗拉强度为70MPa。而细微的球形钛粉(粒度为25um)的激光烧结件,其相对密度到达93%.抗拉强度是150MPa。 1.3 温压成形技能 温压成形技能是近几年新开展起来的一次约束、一次烧结工艺,是制作高密度、高功能粉末冶金结构零件的一项经济可行的新技能。它是在混合物中增加新式润滑剂,然后将粉末和模具加热至15O。C左右进行约束,最终选用传统的烧结工艺进行烧结,是普通模压技能的开展与延伸,被世界粉末冶金界称为“创始铁基粉末冶金零部件运用新”和“导致粉末冶金技能”的新成形技能。 最近德国Fraunhofer研讨地点温压成形技能的根底上开发了一种被称为活动温压工艺的粉末冶金新技能一。该技能以温压工艺为根底,结合金属打针成形的长处,经过参加适量的微细粉末和加大润滑剂的含量大大进步了混合粉末的活动性、填充性和成形性。活动温压成形技能原则上可合适一切具有足够好的烧结功能的粉末系统。其主要特点是可成形几许形状杂乱的零部件;产品密度高、功能均匀;工艺简略、本钱低价。 研讨人员 选用了如图1所示的一种可拆钢模,水平孔和笔直孔的直径都是16ram。所用粉末为纯Ti粉,用150gm以下颗粒的粉末为粗粉,细粉由气雾化法制备。样品在T一型模具中约束,于1250。C真空中烧结2h后,用密度仪测得不同部位(在零件几许草图上用1~6标出)的密度(理论密度为4.5g/cm。),得知,选用活动温压成形技能能够取得很高的密度。微细粉末的参加能够使装粉更均匀,而且具有较好的烧结功能,烧结后样品密度散布也较好,如间隔零件中心轴选用惯例粉末约束法,该处往往密度偏低。用传统模压工艺在压机上成形零件时,一般说来,其各个断面的密度是不同的,这主要是因为模壁冲突形成的,也是内压力在约束的粉末中散布不均所造成的。而选用活动温压成形技能后,因为在约束时,混合粉末变成具有杰出活动性的粘流体,因而冲突力减小,约束压力也得到了很好的传递,然后密度散布也得到了很好的改进。 2 结语 钛合金的高本钱约束了其更广泛的推行和运用,归纳上述几种粉末冶金新技能,粉末冶金技能在制备钛合金方面具有材料使用率高、能耗低、经济效益高级长处,然后下降了本钱,且是出产某些形状杂乱零件的仅有办法。一起高质量、低本钱钛粉末的使用使钛粉末冶金产品取得了较好的开展,比如钛打针成形、激光成形等粉末冶金产品已在民用工业中有了显着的增加。咱们信任打针成形、激光成形、温压成形等粉末冶金技能将会愈加广泛地推进钛粉末冶金工业的开展。

粉末冶金材料

2019-01-07 07:51:16

粉末冶金是一项很有发展的新技术、新工艺,已广泛应用在农机、汽车、机床、冶金、化工、轻工、地质勘探、交通运输等各方面。粉末冶金材料有工具材料及机械零件和结构材料。工具材料大致有粉末高速钢、硬质合金、超硬材料、陶瓷工具材料及复合材料等。机械零件和结构材料有粉末减摩材料,包括多孔减摩材料和致密减摩材料;粉末冶金铁基零件及粉末冶金非铁金属零件等。   1.硬质合金   硬质合金由硬质基体(质量分数为70%~97%)和粘结金属两部分组成。硬质基体是难熔金属的碳化物,如碳化钨及碳化钛等;粘结金属为铁族金属及合金,以钴为主。   ⑴硬质合金的种类和牌号   硬质合金为一种优良的工具材料,主要用作切削刀具、金属成形工具、矿山工具、表面耐磨材料及高刚性结构部件。类型有含钨硬质合金,钢结硬质合金,涂层硬质合金,细晶粒硬质合金等。钢结硬质合金是一种新型的工模具材料,性能介于高速工具钢和硬质合金之间,是以一种或几种碳化物(如WC、TiC)为硬化相,以碳钢或合金钢(如高速工具钢、铬钼钢等)粉末为粘结剂,经配料、压制、烧结而制成的粉末冶金材料。退火处理后,可进行切削加工;淬火、回火处理后,有相当于硬质合金的高硬度和耐磨性,一定的耐热、耐蚀和抗氧化性。适于制造麻花钻、铣刀等形状复杂的刀具、模具和耐磨件。   含钨硬质合金按其成分和性能特点分为钨钴类(WC-Co系)、钨钛钴类(WC-TiC-Co系)、钨钛钽(铌)类[WC-TiC-TaC(NbC)-Co系、WC–TaC(NbC)-Co系]。钨钴类硬质合金的主要化学成分是碳化钨(WC)及钴。牌号为“YG+数字”(YG为“硬钴”汉语拼音字首),数字表示钴平均质量分数。如YG6表示钴平均质量分数为6%,余量为碳化钨的钨钴类硬质合金。该类合金的抗弯强度高,能承受较大的冲击,磨削加工性较好,但热硬性较低(800~900℃),耐磨性较差,主要用于加工铸铁和非铁金属的刃具。   钨钛钴类硬质合金的主要化学成分是碳化钨、碳化钛(TiC)及钴。牌号为“YT+数字”(YT为“硬钛”汉语拼音字首),数字表示碳化钛平均质量分数。如YT15表示TiC为15%,其余为WC和Co的硬质合金。该类硬质合金的热硬性高(900~1100℃),耐磨性好,但抗弯强度较低,不能承受较大的冲击,磨削加工性较差,主要用于加工钢材。   钨钛钽(铌)类硬质合金又称为通用硬质合金或万能硬质合金。它是由碳化钨、碳化钛、碳化钽(TaC)或碳化铌(NbC)和钴组成。牌号为“YW+顺序号”(YW表示“硬万”汉语拼音字首),如YW1表示万能硬质合金。该类硬质合金是在上述硬质合金中添加TaC或NbC,它的热硬性高(>1000℃),其它性能介于钨钴类与钨钛钴类之间,它既能加工钢材,又能加工非铁金属。   ⑵硬质合金的性能及应用   1)性能   硬质合金的硬度高,室温下达到86~93HRA,耐磨性好,切削速度比高速工具钢高4~7倍,刀具寿命高5~80倍,可切削50HRC左右的硬质材料;抗弯强度高,达6000MPa,但抗弯强度较低,约为高速工具钢的1/3~1/2,韧性差,约为淬火钢的30%~50%;耐蚀性和抗氧化性良好;线膨胀系数小,但导热性差。   2)应用   硬质合金主要用于制造高速切削或加工高硬度材料的切削刀具,如车刀、铣刀等;也用作模具材料(如冷拉模、冷冲模、冷挤模等)及量具和耐磨材料。根据GB2075—87规定,切削加工用硬质合金按切削排出形式和加工对象范围不同,分为P、M、K三个类别,同时又依据加工材质和加工条件不同,按用途进行分组,在类别后面加一组数字组成代号。如P01、P10、P20……,每一类别中,数字越大,韧性越好,耐磨性越低。   2.粉末高速钢   高速钢的合金元素含量高,采用熔铸工艺时会产生严重的偏析使力学性能降低。金属的损耗也大,高达钢锭重量的30%~50%。粉末高速钢可减少或消除偏析,获得均匀分布的细小碳化物,具有较大的抗弯强度和冲击强度;韧性提高50%,磨削性也大大提高;热处理时畸变量约为熔炼高速钢的十分之一,工具寿命提高1~2倍。   采用粉末冶金方法还可进一步提高合金元素的含量以生产某些特殊成分的钢。如成份为9W-6Mo-7Cr-8V-8Co-2.6C的A32高速钢,切削性能是熔炼高速钢的1~4倍。   常用高速钢牌号为W18Cr4V和W6Mo5Cr4V2,含有0.7%~0.9%C,及>10%的钨、铬、钼、钒等合金元素。其中碳保证高速钢具有高硬度和高耐磨性,钨和钼提高钢的热硬性,铬提高钢的淬透性,而钒则提高钢的耐磨性。   3.铁和铁合金的粉末冶金   在粉末冶金生产中,铁粉的用量比其金属粉末大得多。铁粉的60%~70%用于制造粉末冶金零件。主要类型有铁基材料、铁镍合金、铁铜合金及铁合金和钢。粉末冶金铁基结构零件具有精度较高,表面粗糙值小,不需或只需少量切削加工,节省材料,生产率高,制品多孔,可浸润滑油,减摩、减振、消声等特点。广泛用于制造机械零件,如机床上的调整垫圈、调整环、端盖、滑块、底座、偏心轮,汽车中的油泵齿轮、活塞环,拖拉机上的传动齿轮、活塞环,以及接头、隔套、油泵转子、挡套、滚子等。   粉末冶金铁基结构材料的牌号用“粉”、“铁”、“构”三字的汉语拼音字首“FTG”,加化合碳含量的万分数、主加合金元素的符号及其含量的百分数、辅加合金元素的符号及其含量的百分数和抗拉强度组成。如FTG60-20,表示化合碳量0.4%~0.7%,抗拉强度200MPa的粉末冶金铁基结构材料;FTG60Cu3Mo-40,表示化合碳量0.4%~0.7%,合金元素含量Cu2%~4%、Mo0.5%~1.0%,抗拉强度400MPa的粉末冶金铁基结构材料。

粉末冶金技术的发展前景

2019-01-04 09:45:26

进入21世纪之后,粉末冶金技术得到了快速的发展,这与其他技术的发展密切相关。现阶段,粉末注射成形、温压成形和喷射成形等技术也得到了飞速的发展,随着这些技术的不断融合,粉末冶金技术不断向前发展,在未来粉末冶金技术会有更进一步的发展。从现阶段看,粉末冶金技术正向着高精度化、高性能化以及低成本化的方向发展。粉末冶金的新工艺随着时间的发展日益多样化,并有着飞速发展的势头。 1. 粉末注射成形技术 粉末注射成形的材料经过很长时间的发展历程,传统的材料主要是铁基和陶瓷为主,这类材料中极易产生杂质,总体性能不是很完美,逐渐不适应社会的发展需要。现在粉末注射成形的材料主要有钛合金和高温合金材料。成形材料的结构发生了很大变化,从单一的结构向复杂、精细的结构发展。 2. 温压成形技术 最近几年,科学家研制出流动温压工艺。这种工艺是在温压工艺基础上,通过与注射成形工艺的优点相结合后形成。这种技术在生产中的主要环节是:将粗粉和细粉按照一定的比例进行融合,之后采用普通的温压工艺,对其进行有效的加工,最后经过结就可以制得。在制造过程中最主要的技术是如何增强混合粉末的流动性,提高制成品的性能。这种技术较传统技术有很多优势,例如可以制造出复杂形状和具有高密度的金属部件,大大降低了生产成本。 3. 微波烧结技术 未来一段时期内,市场将需要综合性能更好的产品,这就需要提高材料的性能,而微波烧结制成的产品具有高密度、高强度的特点。经过微波烧结后,材料内部分布均匀,因此具有较好的韧性。微波加热的速度比较高,1min内就可以使温度达到1600℃,些材料甚至还可以在1min内达到2200℃。在烧制过程中,微波对陶瓷材料的烧制效果更好,因为可以用微波均匀地穿透陶瓷材料,制造出的部件性能更为优异,在烧制过程中,零部件受热均匀,不会产生受热不均的现象。同时,因为烧结时间的大大缩短,不仅可以降低生产成本,还提高了材料的化学性能。今后,微波烧结技术将会成为加工陶瓷材料极为有效的方法。 4. 烧结硬化技术 烧结硬化技术是一种新的粉末冶金新工艺,主要的原理是:在烧结过程中,快速的冷却,进而可以大幅度提高产品的质量,提高材料强度。这种工艺不仅可以有效地避免传统工艺导致的产品变形的缺陷,还可以省去冷却环节。经过此种工艺生产的零部件更能适应未来工业的发展需要。

粉末冶金工艺

2019-03-06 09:01:40

1粉末制备   金属粉末的制备办法分为两大类:机械法和物理化学法。还有新研发的机械合金化法,齐法、蒸腾法、超声损坏法等超微粉末制作技能。制备办法决议着粉末的颗粒巨细、形状、松装密度、化学成分、限制性、烧结性等。   2粉末的预处理   粉末的预处理包含粉末退火、分级、混合、制粒、加光滑剂等。   (1).退火   粉末的预先退火能够使氧化物复原,下降碳和其它杂质的含量,进步粉末的纯度;一同,还能消除粉末的加工硬化、安稳粉末的晶体结构。退火温度依据金属粉末的品种而不同,一般为金属熔点的0.5~0.6K。一般,电解铜粉的退火温度约为300,电解铁粉或电解镍粉的约为700℃,不能超越900℃。退火一般用复原性气氛,有时也用真空或慵懒气氛。   (2).分级   将粉末按粒度巨细分红若干级的进程。分级使配料时易于操控粉末的粒度和粒度散布,以习惯成形工艺要求,常用标准筛网筛分进行分级。   (3).混合   指将两种或两种以上不同成分的粉末均匀化的进程。混合根本上有两种办法:机械法和化学法,广泛使用的是机械法,将粉末或混合料机械的掺和均匀而不发作化学反应。机械法混料又可分为干混和湿混,铁基等制品出产中广泛选用干混;制备硬质合金混合料则常运用湿混。湿混时常用的液体介质为酒精、汽油、、水等。化学法混料是将金属或化合物粉末与增加金属的盐溶液均匀混合;或者是各组元悉数以某种盐的溶液办法混合,然后经堆积、枯燥和复原等处理而得到均匀散布的混合物。   常需参加的增加剂,用于进步压坯强度或防止粉末成分偏析的增塑剂(汽油、橡胶溶液、白腊等),用于削减颗粒间及压坯与模壁间冲突的光滑剂(硬质酸锌、二硫化钼等)。   (4).制粒   将小颗粒的粉末制成大颗粒或团粒的工序,常用来改进粉末的流动性。常用的制粒设备有振动筛、滚筒制粒机、圆盘制粒机等。   3成形   成形是将粉末转变成具有所需形状的凝集体的进程。常用的成形办法有模压、轧制、揉捏、等静压、松装烧结成形、粉浆浇注和爆破成形等。   (1).模压   即粉末料在压模内限制。室温限制时一般需求约1吨/厘米2以上的压力,限制压力过大时,影响加压东西;并且有时坯体发作层状裂纹、伤痕和缺点等。限制压力的最大极限为12—15吨/厘米2。超越极限强度后,粉末颗粒发作损坏性损坏。   常用的模压办法有单向限制、双向限制、起浮模限制等。      ⑴单向限制   即固定阴模中的粉末在一个运动模冲和一个固定模冲之间进行限制的办法,单向限制模具简略,操作便利,出产功率高,但限制时受冲突力的影响,制品密度不均匀,适合限制高度或厚度较小的制品。      ⑵双向限制   阴模中粉末在相向运动的模冲之间进行限制的办法,双向限制比较适合高度或厚度较大的制品。双向限制压坯的密度较单向限制均匀,但双向一同加压时,压坯厚度的中间部分密度较低。      ⑶起浮限制   起浮阴模中的粉末在一个运动模冲和一个固定模冲之间进行限制,阴模由绷簧支承,处于起浮情况,开端加压时,因为粉末与阴模壁间冲突力小于绷簧支承力,只要上模冲向下移动;跟着压力增大,当二者的冲突力大于绷簧支承力时,阴模与上模冲一同下行,与下模冲间发生相对移动,使单向限制转变为压坯的双向受压,并且压坯双向不一同受压,这样压坯的密度更均匀。   4烧结   (1).烧结的办法   不同的产品、不同的功用烧结办法不一样。      ⑴按质料组成不同分类。能够将烧结分为单元系烧结、多元系固相烧结及多元系液相烧结。单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、MoSi2等)熔点以下的温度进行固相烧结。多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。粉末烧结合金多归于这一类。如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag-W等。多元系液相烧结以超越体系中低熔成分熔点的温度进行的烧结。如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu      ⑵按进料办法不同分类。分为为接连烧结和间歇烧结。   接连烧结   烧结炉具有脱蜡、预烧、烧结、制冷各功用区段,烧结时烧结材料接连地或平稳、分段地完结各阶段的烧结。接连烧结出产功率高,适用于大批量出产。常用的进料办法有推杆式、辊道式和网带传送式等。   间歇烧结   零件置于炉内静止不动,经过控温设备,对烧结炉进行需求的预热、加热及冷却循环操作,完结烧结材料的烧结进程。间歇烧结可依据炉内烧结材料的功用断定适宜的烧结准则,但出产功率低,适用于单件、小批量出产,常用的烧结炉有钟罩式炉、箱式炉等。   除上述分类办法外。按烧结温度下是否有液相分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,维护烧结(如钼丝炉、不锈钢管和炉等)和真空烧结。别的还有超高压烧结、活化热压烧结等新的烧结技能。   (2).影响粉末制品烧结质量的要素   影响烧结体功用的要素许多,主要是粉末体的性状、成形条件和烧结的条件。烧结条件的要素包含加热速度、烧结温度和时刻、冷却速度、烧结气氛及烧结加压情况等。      ⑴烧结温度和时刻   烧结温度的凹凸和时刻的长短影响到烧结体的孔隙率、细密度、强度和硬度等。烧结温度过高和时刻过长,将下降产品功用,乃至呈现制品过烧缺点;烧结温度过低或时刻过短,制品会因欠烧而引起功用下降。      ⑵烧结气氛   粉末冶金常用的烧结气氛有复原气氛、真空、氛等。烧结气氛也直接影响到烧结体的功用。在复原气氛下烧结防止压坯烧损并可使表面氧化物复原。如铁基、铜基制品常选用发作炉煤气或分化,硬质合金、不锈钢常选用纯氢。活性金属或难熔金属(如铍、钛、锆、钽)、含TiC的硬质合金及不锈钢等可选用真空烧结。真空烧结能防止气氛中的有害成分(H2O、O2、H2)等的晦气影响,还可下降烧结温度(一般可下降100~150℃)。   5后处理   指压坯烧结后的进一步处理,依据产品具体要求决议是否需求后处理。常用的后处理办法有复压、浸渍、热处理、表面处理和切削加工等。   (1).复压   为进步烧结体物理和力学功用而进行的施加压力处理,包含精整和整形等。精整是为到达所需尺度而进行的复压,经过精整模对烧结体施压以进步精度。整形是为到达特定的表面形状而进行的复压,经过整形模对制品施压以校对变形且下降表面粗糙度值。复压适用于要求较高且塑性较好的制品,如铁基、铜基制品。   (2).浸渍   用非金属物质(如油、白腊和树脂等)填充烧结体孔隙的办法。常用的浸渍办法有浸油、浸塑料、浸熔融金属等。浸油即在烧结体内浸入光滑油,改进其自光滑功用并防锈,常用于铁、铜基含油轴承。浸塑料是选用聚四氟乙烯涣散液,经固化后,完成无油光滑,常用于金属塑料减摩零件。浸熔融金属可进步强度及耐磨性,铁基材料常选用浸铜或铅。   (3).热处理   对烧结体加热到必定温度,再经过操控冷却办法等处理,以改进制品功用的办法。常用的热处理办法有淬火、化学热处理、热机械处理等,工艺办法一般与细密材料类似。关于不受冲击而要求耐磨的铁基制件可选用全体淬火,因为孔隙的存在能削减内应力,一般能够不回火。而要求外硬内韧的铁基制件可选用淬火或渗碳淬火。热锻是取得细密制件常用的办法,热铸造的制品晶粒细微,且强度和耐性高。   (4).表面处理   常用的表面处理办法有蒸汽处理、电镀、浸锌等。蒸汽处理是工件在500~560℃的热蒸汽中加热并坚持必定时刻,使其表面及孔隙构成一层细密氧化膜的表面工艺,用于要求防锈、耐磨或防高压浸透的铁基制件。电镀使用电化学原理在制品表面堆积出结实覆层,其工艺办法同细密材料。电镀用于要求防锈、耐磨及装修的制件。   此外,还可经过锻压、焊接、切削加工、特种加工等办法进一步改动烧结体的形状或进步精度,以满意零件的终究要求。电火花加工、电子束加工、激光加工等特种加工办法以及离子氮化、离子注入、气相堆积、热喷涂等表面工程技能已用于粉末冶金制品的后处理,进一步进步了出产功率和制品质量。

粉末冶金基础知识

2019-03-06 09:01:40

粉末的化学成分及功能   尺度小于1mm的离散颗粒的集合体一般称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。   1.粉末的化学成分   常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超越1%~2%,否则会影响制品的质量。   2.粉末的物理功能   ⑴粒度及粒度散布   粉猜中能分隔并独立存在的最小实体为单颗粒。实践的粉末往往是团聚了的颗粒,即二次颗粒。图7.1.1描绘了由若干一次颗粒集合成二次颗粒的景象。实践的粉末颗粒体中不同尺度所占的百分比即为粒度散布。   ⑵颗粒形状   即粉末颗粒的外观几许形状。常见的有球状、柱状、针状、板状和片状等,可以经过显微镜的调查断定。   ⑶比表面积   即单位质量粉末的总表面积,可经过实践测定。比表面积巨细影响着粉末的表面能、表面吸附及凝集等表面特性。   3.粉末的工艺功能   粉末的工艺功能包含活动性、填充特性、紧缩性及成形性等。   ⑴填充特性   指在没有外界条件下,粉末自在堆积时的松紧程度。常以松装密度或堆积密度表明。粉末的填充特性与颗粒的巨细、形状及表面性质有关。   ⑵活动性   指粉末的活动才能,常用50克粉末从标准漏斗流出所需的时刻表明。活动性受颗粒粘附效果的影响。   ⑶紧缩性   表明粉末在约束进程中被压紧的才能,用规则的单位压力下所到达的压坯密度表明,在标准模具中,规则的光滑条件下测定。影响粉末紧缩性的要素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的紧缩性好;颗粒的形状和结构也影响粉末的紧缩性。   ⑷成形性指粉末约束后,压坯坚持既定形状的才能,用粉末可以成形的最小单位约束压力表明,或用压坯的强度来衡量。成形性受颗粒形状和结构的影响。 粉末冶金的机理   1.约束的机理   约束就是在外力效果下,将模具或其它容器中的粉末严密压实成预订形状和尺度压坯的工艺进程。钢模冷压成形进程如图7.1.2所示。粉末装入阴模,经过上下模冲对其施压。在紧缩进程中,跟着粉末的移动和变形,较大的空地被填充,颗粒表面的氧化膜破碎,颗粒直接触面积增大,使原子间发作吸引力且颗粒间的机械楔合效果增强,然后构成具有必定密度和强度的压坯。   2.等静约束   压力直接效果在粉末体或弹性模套上,使粉末体在同一时刻内各个方向上均衡受压而取得密度散布均匀和强度较高的压坯的进程。按其特性分为冷等静约束和热等静约束两大类。   ⑴冷等静约束   即在室温劣等静约束,液体为压力传递前言。将粉末体装入弹性模具内,置于钢体密封容器内,用高压泵将液体压入容器,使用液体均匀传递压力的特性,使弹性模具内的粉末体均匀受压。因而,冷等静约束压坯密度高,较均匀,力学功能较好,尺度大且形状杂乱,已用于棒材、管材和大型制品的出产。   ⑵热等静约束   把粉末压坯或装入特制容器内的粉末体置入热等静压机高压容器中,施以高温文高压,使这些粉末体被约束和烧结成细密的零件或材料的进程。在高温下的等静约束,可以激活分散和蠕变现象的发作,促进粉末的原子分散和再结晶及以极缓慢的速率进行塑性变形,气体为压力传递前言。粉末体在等静压高压容器内同一时刻饱尝高温文高压的联合效果,强化了约束与烧结进程,制品的约束压力和烧结温度均低于冷等静约束,制品的细密度和强度高,且均匀共同,晶粒细微,力学功能高,消除了材料内部颗粒间的缺点和孔隙,形状和尺度不受约束。但热等静压机报价高,出资大。热等静约束已用于粉末高速钢、难熔金属、高温合金和金属陶瓷等制品的出产。   3.粉末轧制   将粉末经过漏斗喂入一对旋转轧辊之间使其压实成接连带坯的办法。将金属粉末经过一个特制的漏斗喂入滚动的轧辊缝中,可轧出具有必定厚度、长度接连、强度适合的板带坯料。这些坯体经预烧结、烧结,再轧制加工及热处理等工序,就可制成具有必定孔隙度的、细密的粉末冶金板带材。粉末轧制制品的密度比较高,制品的长度原则上不受约束,轧制制品的厚度和宽度会遭到轧辊的约束;成材率高为80%~90%,熔铸轧制的仅为60%或更低。粉末轧制适用于出产多孔材料、冲突材料、复合材料和硬质合金等的板材及带材。   4.粉浆浇注   是金属粉末在不施加外力的情况下成形的,行将粉末加水或其它液体及悬浮剂调制成粉浆,再注入石膏模内,使用石膏模汲取水分使之枯燥后成形。常用的悬浮剂有聚乙烯醇、甘油、藻肮酸钠等,效果是避免成形颗粒集合,改进潮湿条件。为确保构成安稳的胶态悬浮液,颗粒尺度不大于5μm~10μm,粉末在悬浮液中的质量含量为40%~70%。粉浆成形工艺拜见本书6.2.2。   5.揉捏成形   将置于揉捏筒内的粉末、压坯或烧结体经过规则的模孔压出。依照揉捏条件不同,分为冷揉捏和热揉捏。冷揉捏是把金属粉末与必定量的有机粘结剂混合在较低温度下(40℃~200℃)揉捏成坯块;粉末热揉捏是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热揉捏法可以制取形状杂乱、功能优秀的制品和材料。揉捏成形设备简略,出产率高,可取得长度方向密度均匀的制品。   揉捏成形能揉捏出壁很薄直经很小的微形小管,如厚度仅0.01mm,直径1mm的粉末冶金制品;可揉捏形状杂乱、物理力学功能优秀的细密粉末材料,如烧结铝合金及高温合金。挤约束品的横向密度均匀,出产接连性高,因而,多用于截面较简略的条、棒和螺旋形条、棒(如麻花钻等)。   6.松装烧结成形   粉末未经约束而直接进行烧结,如将粉末装入模具中振实,再连同模具一同入炉烧结成形,用于多孔材料的出产;或将粉末均匀松装于芯板上,再连同芯板一同入炉烧结成形,再经复压或轧制到达所需密度,用于制动冲突片及双金属材料的出产。   将置于揉捏筒内的粉末、压坯或烧结体经过规则的模孔压出。依照揉捏条件不同,分为冷揉捏和热揉捏。冷揉捏是把金属粉末与必定量的有机粘结剂混合在较低温度下(40℃~200℃)揉捏成坯块;粉末热揉捏是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热揉捏法可以制取形状杂乱、功能优秀的制品和材料。揉捏成形设备简略,出产率高,可取得长度方向密度均匀的制品。   7.爆破成形   借助于爆破波的高能量使粉末固结的成形办法。爆破成形的特点是爆破时发作压力很高,施于粉末体上的压力速度极快。如爆破后,在几微秒时刻内发作的冲击压力可达106MPa(相当于107个大气压),比压力机上约束粉末的单位压力要高几百倍至几千倍。爆破成形约束压坯的相对密度极高,强度极佳。如用爆破约束电解铁粉,压坯的密度挨近纯铁体的理论密度值。   爆破成形可加工普通约束和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可约束普通压力无法约束的大型压坯。   除上述办法外,还有打针成形及热等静约束新技术等新的成形办法。

粉末冶金和粉末喷涂介绍

2019-01-02 14:54:46

粉末冶金和粉末喷涂介绍     粉末冶金 粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。      粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。      (1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。       (2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。       (3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。       (4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。       (5)可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。       (6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。        我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。 粉末冶金材料的应用与分类      (1)应用:(汽车、摩托车、纺织机械、工业缝纫机、电动工具、五金工具.电器.工程机械)等各种粉末冶金(铁铜基)零件。      (2)分类:粉末冶金多孔材料、粉末冶金减摩材料、粉末冶金摩擦材料、粉末冶金结构零件、粉末冶金工模具材料、和粉末冶金电磁材料和粉末冶金高温材料等。 粉末喷涂 粉末喷涂是用喷粉设备(静电喷塑机)把粉末涂料喷涂到工件的表面,在静电作用下,粉末会均匀的吸附于工件表面,形成粉状的涂层;粉状涂层经过高温烘烤流平固化,变成效果各异(粉末涂料的不同种类效果)的最终涂层;粉末喷涂的喷涂效果在机械强度、附着力、耐腐蚀、耐老化等方面优于喷漆工艺,成本也在同效果的喷漆之下。

铜合金粉

2017-06-06 17:50:04

铜合金粉以下为各类铜合金粉相关特点,用途,化学物理性能黄铜粉1、形状:金黄色非规则形状;2、用途:轴瓦材料、金刚石、粉末冶金制品、高强度含油轴承;3、理化性能:编号XJ/CZ20化学性质% Zn18~22 Cu余量 氢损≤0.3物理性质松装密度g/cm3 2.6~3.8流速s/50g ≤35粒度(目) -100/-200/-300编号XJ/CZ23化学性质% Zn28~32 Cu余量 氢损≤0.3物理性质松装密度g/cm3 2.6~3.8流速s/50g ≤35粒度(目) -100/-200/-300高品质特种铜锡10(特Cu-Sn10)1、形状:棕黄色不规则形状;2、特点:松装密度低、成形性好、良好的烧结强度及烧结性能;3、用途:高强度高性能的微细含油轴承;4、理化性能:编号 XJ/CS10化学性质% Cu 89~91 氢损9~11物理性质松装密度g/cm3 2.6~2.9流速s/50g ≤35粒度(目)-100/-200标准 相当于美国OMG(SCM)球形纯铜粉1、形状:圆球形;2、用途:焊料、过滤哭等;3、特点:球型度好,成分均匀,成型性好,烧结性好,表面氧化小;4、理化性能:编号 XJ/Cu球化学性质% Cu≥99.8 杂质总和 ≤0.2物理性质松装密度g/cm3 4.8~5.5流速s/50g ≤15粒度(目) -100/-200/-300铜锡10合金粉(Cu-Sn10)1、形状:浅棕色珊瑚状或全球形2、特点:合金化程度高、成份均匀、良好的压制性和烧结强度3、用途:金刚石工具、磨具、磨擦材料、焊料、高档锡青铜工艺品等4、理化性能:编号 XJ/CS10化学性质% Cu 89~91 Sn9~11物理性质松装密度g/cm3 3.0~4.0流速s/50g /粒度(目) 100/-200/-300标准 相当于美国OMG(SCM)663青铜粉1、形状:呈青色球形粉末2、用途:广泛应用于粉末冶金含油轴承及金刚石工具铜锡扩散粉1、呈桔黄色或土黄色类枝状,具有雾化青铜粉的高流性和铜锡元素混合粉的高压制强度及松装密度较低的优点。2、广泛应用于制造高精度、超细微、低噪音、自润滑含油轴承及高档金刚石专业锯片等。高强度纯铜粉1、形状:浅玫瑰红色或红色、不规则形状;2、特点:成形性好、保存时间长、可代替电解铜粉;3、用途:粉末冶金制品、电碳制品、化工触媒、金刚石制品、电工合金、电子等 行业 。4、理化性能:编号 化学性质% 物理性质Cu 氢损 杂质总和 松装密度g/cm3 流速s/50g 粒度(目)XJ/Cu ≥99.7 ≤0.15 ≤0.2 2.0~4.0 25~60 -100-200-3005、工艺性能(成形压力180Mpa)松装密度g/cm3 生坯密度g/cm3 生坯强度(Mps) 粒度分布%75(μm) 63-75(μm) 45-63(μm) 45(μm)2.28 6.39 13.45 0 15.9 21.7 62.4粉末铜合金采用粉末冶金技术将铜粉和其他 金属 粉末直接成型的铜合金。常用的有Cul0Fe5Sn5Pb8C3SiO23MoSi合金、Cu50W合金、Cu50Cr合金和CuAl2O3合金。上列第一种铜合金主要用作刹车材料;Cu50W合金主要用于真空电路中,≤10kA的高压开关电接点,电火花放电电极;Cu50Cr合金用于真空开关电器;CuAl2O3合金有高的强度、导电和导热性,特别是有高的抗软化温度和再结晶温度,用于电阻焊机的电极、X射线管、微波管、混合电路封装、换向器、开关部件等。铜粉及铜合金粉 市场 看好近年来,随着铜粉和铜合金粉广泛应用于装饰、喷涂,铜粉及铜合金粉 市场 前景看好,国内 市场 供需缺口将逐年扩大,数十亿元的利润有待挖掘。目前国内多家企业对铜粉和铜合金粉生产项目表现出极大的投资兴趣,重冶集团公司、铜陵 有色金属 集团公司、北京 有色金属 研究总院、湖南省博力科技有限公司等企业正在寻求合作厂家。  1、重冶集团公司寻求 有色金属 粉末生产合作项目  经国家批准,重冶集团公司拟将公司建成我国中西部地区 有色金属 粉末生产基地。项目对原生产工艺及设备进行技术改造和引进水雾化法生产新技术,将 有色金属 粉末产品生产能力提高到6000吨/年以上,投资总额1.38亿元人民币(未含流动资金),投资回收期7年,合作方式意向:合资、合作(时限在10年或10年以上)。  2、铜陵 有色金属 集团公司寻求合作铜粉项目  铜陵 有色金属 公司金昌冶炼厂现有的水、电、气等设施,在原中试生产线的基础上扩大生产规模,形成年产铜及铜合金粉5000吨的生产能力。总投资6287万元(含外汇106万美元),已列为省高技术 产业 化项目,可合资建设。  3、北京 有色金属 研究总院寻求合作生产纳米铜粉项目  纳米铜粉因其具有的小尺寸效应、体积效应和量子隧道效应,在电子、化工、冶金等工业领域有广泛的应用, 市场 前景广阔。纳米铜粉在冶金和石油化工中是优良的催化剂。随着电子工业的发展,由纳米铜粉制备的超细厚膜浆料将在大规模集成电路中有重要的应用。将纳米铜粉用作润滑剂中的添加剂,可阻止磨损和避免润滑表面的划伤,用于汽车引擎上,能提高运行速度,延缓发动机的使用寿命。  北京 有色金属 研究总院拟投资规模与效益分析适合建立年产10吨纳米铜粉生产线。纳米铜粉采用化学湿法工艺制备,设备简单,工艺稳定,所用原材料易购,成本低,附加值高,适合建设中小型生产企业。设备投资约60万元,现有原材料成本为每吨20万元,而售价可达每吨100万元,经济效益十分可观。合作可以风险投资、技术转让、合作兴办新企业等方式进行。  4、湖南省博力科技有限公司拟合资建立年产1000吨喷涂抗氧化仿金铜合金粉生产线项目  湖南省博力科技有限公司是隶属湖南省科委的厂家,拥有具有自主知识产权的高品质仿金铜合金粉制造技术。这个项目总投资2930万元,设备采用国产设备和引进国外关键设备相结合,技术工艺采用自主开发的技术,形成年产1000吨,销售收入7000万元,利润总额可达2655万元。这一项目投资回收期(静态)为2年。  据悉,铜基粉体材料用途十分广泛,它不仅可作为粉末冶金制造的原料,而且可作为仿

铜锡合金粉

2017-06-06 17:50:09

铜锡合金粉是铜锡合金的一种材料,呈粉末状.铜锡合金粉用途和化学成分1. 本产品用于汽车及高速微型马达用的低噪音含油轴承的制造;2. 产品略呈黄色;3. 产品化学成分;化学成分% 粒度组成(Mesh ,%) 松比 g/cm 3 流动性 -100~+150 -150~+200 -200~+250铜锡合金粉(9010,8515,8020,7733)粒度:-80目、-200目、-300目用途:金刚石工具,磨具,摩擦材料,焊料等。形状:棕黄Se珊瑚状锡含量:10%  随着铜锡合金粉 市场 竞争的愈发激烈,快速有效的掌握 市场 发展情况成为企业及决策者成功的关键。 市场 分析是一个科学系统的工作,直接影响着企业发展战略的规划、产品营销方案的设计、公司投资方针的制定以及未来发展方向的确定。 市场 分析并非单纯从某一个层面对 市场 进行评价,要得到有实际价值、具有指导意义的结论,就必须从专业的角度对 市场 进行全面细致的分析。如此,才能时刻保持清晰的发展思路,不因纷繁的信息而迷失,在日益激烈的 市场 竞争中立于不败之地。

镍铝合金粉

2017-06-06 17:49:58

镍铝合金粉英文名:Raney nickel catalysts(series)化学组分:含Ni25%~48%(通用型),其余为Al。根据用户实际反应条件,也可加入其他少量元素,如Fe、Cr、Mn等。镍铝合金粉物理化学特性:雷尼镍催化剂活化前为银灰色无定型粉末(镍铝合金粉),具有中等程度的可燃性,有水存在的情况下部分活化并产生氢气易结块,长久暴露于空气中易风化。镍铝合金粉活化后为灰黑色颗粒,附有活泼氢,极不稳定,在空气中氧化燃烧,须浸在水或乙醇中保存。镍铝合金粉用途:本产品主要应用于基本有机化工的催化加氢反应中。可用于有机物碳氢键的加氢,碳氮键的加氢,亚硝基化合物与硝基化合物的加氢;偶氮与氧化偶氮化合物、亚胺、胺与连氮二苄的加氢,还可以用于脱水反应、成环反应、缩合反应等。最典型的应用是葡萄糖加氢、脂肪腈类的加氢。在医药、染料、油脂、香料、合成纤维等领域有广泛的应用。镍铝合金粉历史1897年法国化学家保罗·萨巴捷发现了痕量的镍可以催化有机物氢化过程。随后镍被应用于很多有机物的氢化。1920年代起美国工程师莫里·雷尼开始致力于寻找更好的氢化催化剂。1924年他采用镍/硅比例为1:1的混合物,经过氢氧化钠处理后,硅和氢氧化钠反应掉,形成多孔结构。雷尼发现这种催化剂对棉籽油氢化的催化活性是普通镍的五倍。随后雷尼使用镍/铝为1:1的合金来制造催化剂,发现得到的催化剂活性更高,并于1926年申请专利。直到今天,1:1的比例仍然是生产雷尼镍所需的合金的首选比例。     

粉末冶金及其特点

2019-01-04 09:45:48

粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。 粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。 (1)粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。 (2)可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材料,这些材料具有优异的电学、磁学、光学和力学性能。 (3)可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。 (4)可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。 (5)可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。 (6)可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。  我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。

现代先进粉末冶金材料

2019-03-07 11:06:31

(1) 信息范畴的粉末冶金材料 信息范畴的粉末冶金材料首要是指粉末冶金软磁材料,软磁材料详细 能够分为金属类材料和铁氧体材料2种。其间,呈现时刻比较早的是铁氧体磁性材料,这种材料的制作技能极为有限,现阶段只能经过粉末冶金技能进行制作。在金属中,铁以及铁的合金是制作金属软磁材料的首要来历,例如硅钢、磷铁和铁钴合金等。 在20世纪初,人们现已开端用磁性材料记载信息。1941年,人们开端用磁粉用作记载的前言材料。20世纪80 时代以来,人们不断对磁性记载材料进行研讨,扩大了新式磁记载材料的品种,也大大促进了磁记载技能的开展,滋生了磁性材料商场,商场对磁带以及计算机的磁性记载信息存储器的需求不断添加。这些磁性材料与传统的磁性材料有很大的不同,其首要的存在方式是:以粒子的方式存在于有机介质中;将磁粉堆积成为磁膜的状况后运用。别的,磁粉还许多用于出产磁头,磁头的首要功用是对现有的信息进行加工处理,详细表现为:榜首,记载音频、视频、文字资料;第二,对信息进行重读,依据需要进行回放;第三,能够抹除原有的信息,尤其是没有运用价值的信息。现在,铝硅铁合金和铝铁合金是制作磁头材料的首要磁性合金;别的,铁的氧化物也能够用现在,在制作高功用稀土永磁材 料过程中,粉末冶金技能占有着重要 的位置,运用这种技能能够制作出高功用钕铁硼,这种化合物在商场上大 受欢迎,不管是军用仍是民用商场都 有极大的需求量。 (2) 动力范畴的粉末冶金材料 动力材料是在动力范畴具有严峻效果的材料,能够对动力的开展有促进效果,对树立新动力系统有关键效果,能够满意节能新技能所需的一系列材料。这些材料依照必定的标准,能够分为储能材料、新动力材料2大类。氢能的运用根底就是氢能的储存和运送。在20世纪90时代,许多国家活跃对储氢材料进行研制。如美国储氢技能的研制经费占悉数氢能研讨经费一半以上,日本一次性的出资了50亿美元用于“新阳光方案”中氢能发电技能的研制。现阶段,储氢合金材料的品种较多,首要有稀土类、镁镍类以及钛铁类等。跟着化石燃料开采量的不断添加,地球动力日益干涸,这就迫切需要新式的替代动力。其间,核能是比较抱负的清洁动力,其开展潜力巨大,各国在核能范畴都不甘落后,纷繁加大研制力度,都想在国际动力商场上占有一席之地。据有关部门统计:到现在,核能的发电量现已占国际总发电量的20%左右。现在,国际核能技能日益老练,用于发电的核电堆是热中子堆,这类反应堆在运转过程中不会发作二次辐射污染,而且跟着运用量的添加,出产成本大幅度下降,报价也就较为低价,成为不少具有核能开发技能的国家竞相追捧的清洁动力技能之一。新动力材料关于新动力范畴的开展具有至关重要的效果,新动力材料的开发和运用能够促进燃料电池和太阳能电池的研制及推行。现阶段,新动力材料首要有硅类太阳能电池、核能等清洁动力,粉末冶金技能关于新动力材料的出产具有重要的效果。 (3) 生物范畴的粉末冶金材料 生物材料的研讨对社会有着巨大的效果,生物技能在高新技能中占有很大份额。我国已将生物材料列入国家战略方案,生物材料是未来首要的研讨目标。有些生物材料能够修正生物体的功用或许结构,这些材料就是生物医用材料。生物医用材料关于人类的身心健康有着重要的效果。在生物材料中,有一大批金属合金或许化合物就是粉末冶金材料。 从20世纪初,人们就开端用金属及合金作为医用生物材料,其间运用比较广泛的是运用生物材料替代人类骨骼。如人工关节和人工牙齿等,在外科手术中具有特殊的效果。不锈钢、钛和钛合金是在医学中运用比较多的金属材料,其间钛合金与人类骨骼具有生物类似性,具有类似的弹性,耐磨损以及耐腐蚀,是运用最多的1种金属材料。 生物陶瓷具有某些与人体类似的生理特征,因而,这种材料常被用来制成人工骨骼和牙齿,用这种材料部分或许全体替代人体的某些器官,增强身体的机能。生物陶瓷所具有的特殊生理行为就是其具有以下的特性:榜首,与原有的生物机体具有类似性,因而能够相交融,对生物体不会发作危害和影响,其根本功用和被替换的安排相匹配,具有较好的安排亲和性;第二,生物陶瓷不会引起机体的病变;第三,生物陶瓷有杰出的化学功用,有必定的强度和硬度,还要有较好的柔韧性和弹性,能够起到原有生物体的效果。依据生物陶瓷所发作的化学反应不同,其详细能够分为3类,榜首类是具有生物慵懒的生物陶瓷,这类首要有氧化铝和氧化锆等氧化物陶瓷,首要能够作为人工关节和负重骨骼运用;第二类是表面具有活性的生物陶瓷,这一类首要如生物活性微晶玻璃;第三类是可降解的生物陶瓷,这一类有石膏陶瓷和铝酸钙陶瓷等,在失效后不会对环境发作影响。 军事范畴用粉末冶金材料在军事工业中粉末冶金材料也具有重要的效果,能够大幅度进步武器装备的功用,因而,其在航空航天、武器制作等军事范畴被广泛运用。首要,航空航天工业对材料功用有着十分严厉的要求,不只要求材料具有相应的强度和硬度,还要求材料具有较高的稳定性,乃至对其耐高温、耐腐蚀功用也有严厉要求,这就要求材料有必要要有较高的归纳功用。在航空工业中,运用了许多的粉末冶金材料。这些粉末冶金材料首要有2种。榜首种是以减磨材料、防辐射材料等为代表的特殊功用材料,这类材料首要用在飞机及其他航天器的外表和机载设备上;另一种材料是高温、高强度材料,这种材料首要用在发起机上,能够进步发起机的寿数和功用。 20世纪70时代,美国运用粉末冶金技能制作的发起机零件,制作技能比较老练。1973年,美国在其F-104战斗机发起机上运用了粉末涡等13个零件,关于飞机尤其是战斗机发起机来说,运用粉末冶金涡和凝结涡轮叶片无疑是一种巨大的技能打破,使得F-104战斗机达到了国际领先的水平。20世纪末,美国普惠公司选用粉末冶金技能制作出了双功用粉末,并将其在美国的第5代战斗机F22的发起机上运用,大大进步了战斗机的机动性和灵活性。其次,核军工业自身的特性就导致了对核材料有着特殊的要求,有些金属特性只要粉末冶金技能才干完成,或许在选用粉末冶金技能后,材料的功用进一步进步。所以说,粉末冶金材料在核军工业中是1种不可或缺的材料。 关于新式的核反应堆,更需要加强其和安全,从源头上避免核辐射和核泄漏,这对核能的储能设备提出了更高的要求,选用粉末冶金技能制作储能设备,能够增强核反应堆的安全性,能够在事端发作后,在不需要任何动力的支撑下对反应堆冷却循环约5min,能够为处理事端供给名贵的时刻,乃至还能够有效地下降核辐射的严峻程度。

粉末冶金的知识简介

2018-12-10 14:19:22

粉末冶金是制取金属粉末,及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成材料和制品的工艺技术。它是冶金和材料科学的一个分支学科。    粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。

铜铅合金粉

2017-06-06 17:50:09

  铜铅合金粉   用途:高铅铜合金粉是双 金属 轴瓦、高速减摩材料等 行业 的主要原材料    本公司是生產金屬粉末、雙金屬板材及機車軸瓦、襯套和焊料的專業生產廠家。本公司引進美國先進的制粉工藝和生產線,專業生產霧化高、低松比純銅粉、黃銅粉、含油軸承用錫青銅粉,以及雙金屬襯套、軸瓦用銅鉛合金粉。年產1500噸銅鉛合金粉、1000噸水霧化純銅粉和3000噸銅鉛鋼帶。產品廣泛用於汽車工業、工程機械、家用電器、航空等領域。    另外在中国铜铅合金粉 市场 发展及投资价值分析报告指出,随着铜铅合金粉 市场 竞争的愈发激烈,快速有效的掌握 市场 发展情况成为企业及决策者成功的关键。 市场 分析是一个科学系统的工作,直接影响着企业发展战略的规划、产品营销方案的设计、公司投资方针的制定以及未来发展方向的确定。 市场 分析并非单纯从某一个层面对 市场 进行评价,要得到有实际价值、具有指导意义的结论,就必须从专业的角度对 市场 进行全面细致的分析。

镍铝合金粉

2017-06-06 17:49:58

镍铝合金粉、镍基催化剂是以镍元素为基础的金属催化剂,应用于有机合成工业加氢,脱氢。在金属镍中添加铝及其它微量元素,熔融成多元合金,再经粉碎,筛选成20-400目金属粉末。镍基催化剂是一种灰黑色颗粒状的活泼合金。经过活化处理后,镍具有多孔性骨架结构,呈现出很高的加氢,脱氢活性。由于骨架镍催化剂活性好,机械强度高,可重复使用多次。应用于各种不饱和烃的加氢,而且也是脱氢、氧化、脱卤、脱硫等某些转化过程的良好催化剂。在石油、化工、医药、双氧水、香料、合成纤维等领域有着广泛的应用。镍铝合金粉经碱处理,形成骨架镍催化剂(又名雷尼镍催化剂),它具有加氢,脱氢,脱酸,氧化,甲烷化等作用,它广泛应用于石油化工,制药,油脂,香料,染料,合成纤维等工业上,由于骨架镍的催化性高,价格较同类作用的催化剂低,导热性能好,机械强度高,对毒物不敏感等优点,深受各用户欢迎。产品中各金属(镍铝等)的百分含量及颗粒强度,活性稳定性等性能指标可根据用户的不同要求进行配制生产也可代料加工。镍铝合金粉用途:各种不饱和烃的加氢(还原反应)催化剂,也可用于脱氢、脱硫、脱卤、 氧化过程,使用前在50±2℃下用20-25%NAOH作用而活化,使铝反应脱去,形成骨架镍,产生新生态氢。 

铜锡合金粉

2017-06-06 17:50:01

铜锡合金粉是一种投资者想知道,因为了解它可以帮助操作。铜锡合金粉可制成古铜色至金古铜色。它们用于文教用品、油墨和涂料等。品 种          规 格                     产地/牌号       参考价铜锡合金粉  -200目、-300目(含锡10%)      沪产      65-75(元/公斤) 雾化铜合金粉  铜合粉末是以铜为基本原料,配以锡、铅、锌等合金元素,经高温熔炼,然后以水(气)为介质进行高压雾化所制成的合金粉末.根据合金粉末成份不同和生产工艺的区别,品种规格较多,产品性能和用途各不相同,广泛应用于粉末冶金、化工、电工合金等诸多 行业 。 A:铜锡合金粉(铜锡10)1、 形状:棕黄色非规则形状或类球状,亦可加工为片状。2、 用途:金刚石制品、含油轴承、轴套多孔过滤器等:B:铜锌合金粉(黄铜粉)1、 形状:金黄色不规则状或类球状;亦可加工为片状.2、 用途:轴瓦材料、金刚石、粉末冶金制品、高强度含油轴承应用于润滑油添加剂等领域;3:产品粒度:-100目~-325目如果你想更多的了解关于铜锡合金粉的信息,你可以登陆上海 有色 网进行查询和关注。

粉末冶金多孔材料制造工艺

2018-12-12 17:59:44

本发明公开了一种粉末冶金多孔材料制造工艺。它包括混合备料、压制成型、烧结和切割等工序。它解决已有工艺制得的多孔材料存在贯通孔少,孔道曲折,孔的排布不能根据需要而设计等不足。其特点1.工艺简单、无污染;2.按该工艺制得粉末冶金多孔材料贯通孔多,孔道平直,又可根据需要进行排布等。用该工艺制得的粉末冶金多孔材料可用于制造分离、过滤、导流、限流、阻尼等元件。

粉末冶金中的烧结

2019-03-07 11:06:31

烧结是粉末冶金进程中最重要的工序。在烧结进程中,因为温度的改动粉末坯块颗粒之间发作粘结等物理化学改动,然后增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构细密化。 一 . 界说 将粉末或粉末压坯通过加热而得到强化和细密化制品的办法和技能。 二 . 烧结分类 依据细密化机理或烧结工艺条件的不同,烧结可分为液相烧结、固相烧结、活化烧结、反响烧结、瞬时液相烧结、超固相烧结、松装烧结、电阻烧结、电火花烧结、微波烧结和熔浸等。 1 . 固相烧结 : 按其组元的多少可分为单元系固相烧结和多元系固相烧结两类。 单元系固相烧结 纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为肯定熔点温度的2/3一4/5)进行的粉末烧结。 单元系固相烧结进程大致分3个阶段: (1)低温阶段(T烧毛0.25T熔)。首要发作金属的回复、吸附气体和水分的蒸发、压坯内成形剂的分化和扫除。因为回复时消除了限制时的弹性应力,粉末颗粒直触摸面积反而相对削减,加上蒸发物的扫除,烧结体缩短不明显,乃至略有胀大。此阶段内烧结体密度根本坚持不变。 (2)中温阶段(T烧(0.4~。.55T动。开端发作再结晶、粉末颗粒表面氧化物被彻底复原,颗粒触摸界面构成烧结颈,烧结体强度明显进步,而密度增加较慢。 (3)高温阶段(T烧二0.5一。.85T熔)。这是单元系固相烧结的首要阶段。分散和活动充沛进行并挨近完结,烧结体内的很多闭孔逐渐缩小,孔隙数量削减,烧结体密度明显增加。保温必定时刻后,全部功用均到达安稳不变。 ( 2 )多元固相烧结: 组成多元系固相烧结两种组元以上的粉末系统在其中低熔组元的熔点以下温度进行的粉末烧结。 多元系固相烧结除发作单元系固相烧结所发作的现象外,还因为组元之间的彼此影响和作用,发作一些其他现象。关于组元不彼此固溶的多元系,其烧结行为首要由混合粉末中含量较多的粉末所决议。如铜一石墨混合粉末的烧结首要是铜粉之间的烧结,石墨粉阻止铜粉间的触摸而影响缩短,对烧结体的强度、耐性等都有必定影响。关于能构成固溶体或化合物的多元系固相烧结,除发作同组元之间的烧结外,还发作异组元之间的互溶或化学反响。烧结体因组元系统不同有的发作缩短,有的呈现胀大。异分散对合金的构成和合金均匀化具有决议作用,全部有利于异分散进行的要素,都能促进多元系固相烧结进程。如选用较细的粉末,进步粉末混合均匀性、选用部分预合金化粉末、进步烧结温度、消除粉末颗粒表面的吸附气体和氧化膜等。 2. 活化烧结: 是指选用物理或化学的手法使烧结温度下降、烧结时刻缩短、烧结体活化烧结功用进步的一种粉末冶金办法.活化烧结工艺分为物理活化烧结工艺和化学活化烧结工艺两大类。 物理活化烧结: 物理活化烧结工艺有依托周期性改动烧结温度、施加机械振动、超声波和外应力等促进烧结进程。 化学活化烧结工艺: (1)预氧化烧结。 (2)改动烧结气氛的成分和含量。(3)粉末内增加微量元素。(4)运用超细粉末、高能球磨粉末进行活化烧结。活化烧结首要用于钨、钼、铼、铁、钽、钒、铝、钛和硬质化合物材料等的烧结。 活化烧结进程烧结进程是一个物理化学反响进程,其烧结反响速度常数K可用下式表明[1]:K=AexP(-Q/RT)式中A为包含反响原子磕碰的“频率要素”在内的常数;Q为烧结进程活化能;T为烧结温度。由上式能够看出,进步烧结温度T、下降烧结活化能Q和增大A值均可进步烧结速度。活化烧结是指下降烧结活化能Q的烧结办法。 完成办法活化烧结 首要是从3个方面来完成的:(1)改动粉末表面状况,进步粉末表面原子活性和原子的分散才能。(2)改动粉末颗粒触摸界面的特性,以改进原子分散途径。 (3)改进烧结时物质的搬迁办法。 [2] 活化剂的挑选原则(1).活化剂在烧结进程中构成低熔点液相(2).活化剂在基体中的溶解度应低,而基体组元在活化剂中的溶解度要大。(3).活化剂应在烧结进程中偏聚在基体颗粒之间,为基体组元间的物质搬迁供给通道。 三 . 烧结气氛 为了操控周围环境对烧结制品的影响并调整烧结制品成分,在烧结中运用以下几类不同功用的烧结气氛: 1.氧化性气氛,包含纯氧、空气、水蒸气等,用于贵金属的烧结,氧化物弥散强化材料和某些含氧化物质点电触摸材料的内氧化烧结以及预氧化活化烧结; 2.复原性气氛,包含氢、分化、煤气、转化天然气等,用于烧结时复原被氧化的金属及维护金属不被氧化,广泛用于铜、铁、钨、钼等合金制品的烧结中; 3.慵懒或中性气氛,包含氮、氩、氦及真空等; 4.渗碳气氛,即CO,CH4及其他碳氢化合物的气体,关于铁及低碳钢具有渗碳作用; 5.渗氮气氛,即NH。以及关于某些合金系而言的N2。关于不同合金,上述分类能够有改动。在烧结进程中,在不同阶段或许选用不同的气氛。 四 . 烧结防氧化 假如是气氛烧结,首要操控气氛的露点,露点太高表明气氛水分含量高,会发作氧化。假如是真空烧结,首要操控真空度,保证炉子的密封功用 五.烧结准则 烧结准则包含升温、高温烧结、冷却等几个部分。在烧结时,依据需要,能够选用快速升温,也能够选用慢速升温;能够直接升温到最高烧结温度,也能够分阶段逐渐升温,如在需预烧或脱除成形剂和润滑剂时的状况,烧结温度和保温时刻由金属特性和制品尺度决议。冷却也有慢冷、快冷和淬火等几种状况。 六 . 粉体的改动 在烧结进程中,粉末体发作以下一系列改动:表面吸附的水分或气体蒸发或分化;应力松懈;发作回复和再结晶;原子在颗粒表面、晶界或晶内分散,使颗粒间的结合由机械结合逐渐转变为冶金结合,化学组分均匀化;在有液相存在时,发作颗粒重排,固相物质的溶解和分出,液相网络供给一物质输运的快速通道。在这些进程的归纳作用下,能获得满意必定物理、化学和几许特性要求的材料或零件。 七.烧结影响要素 烧结进程受许多要素影响,它们可分为3类 第1类与材料的温度特性有关,包含自在表面能、界面能和体积自在能,以及点阵、晶界、表面分散系数等。 第2类为粉体特性,包含有用触摸面积、表面活性、体积活性、触摸面取向等。 第3类为外部要素,包含烧结气氛、烧结温度、烧结保温时刻、升温及降温速度、颗粒表面层附层状况等。 八 . 烧结设备 常用的烧结设备有箱式炉、管式炉、马弗炉、碳管炉、感应炉、推舟炉、带式炉、辊式炉、反射炉等,分接连式、半接连、接连式等几类。选用的加热办法有电阻加热,以镍铬合金、铁铬铝合金、钨、钼、碳化硅、硅化钼等作为发热元件。还能够用碳管来通电发热,有时也运用坯块自身的电阻。感应加热的运用也很遍及。除电能外,天然气、燃油、煤亦可作为加热动力。依据对温度、升降温速度、气氛、出产的接连与否等要求,挑选烧结炉及加热办法。 九.烧结时刻的断定 应该依据不同不同的原料来断定烧结的时刻和温度,温度大概在它们熔点的80%左右。 十.举例 粉末冶金高速钢,简称粉冶高速钢,或PM高速钢。选用粉末冶金办法(雾化粉末在热态下进行等静压处理)制得细密的钢坯,再经锻、轧等热变形而得到的高速钢型材,简称粉末高速钢。粉末高速钢安排均匀,晶粒细微,消除了熔铸高速钢难以避免的偏析,因而比相同成分的熔铸高速钢具有更高的耐性和耐磨性,一起还具有热处理变形小、锻轧功用和磨削功用杰出等长处。粉末高速钢中的碳化物含量大大超越熔铸高速钢的答应规模,使硬度进步到HRC67以上,然后使耐磨功用得到进一步进步。假如选用烧结细密或粉末铸造等办法直接制成外形尺度挨近制品的刀具、模具或零件的坯件,更可获得省工、省料和下降出产成本的作用。粉末高速钢的报价尽管高于相同成分的熔铸高速钢,但因为功用优越、运用寿命长,用来制作贵重的多刃刀具如拉刀、齿轮滚刀、铣刀等,仍具有明显的经济效益。 长处 粉末冶金高速工具钢因为其制作工艺的共同性, 与铸锻高速钢比较, 具有一系列优异功用: 1) 无偏析, 晶粒细微, 碳化物细微;2) 热加工性好;3) 可磨削性好;4) 热处理变形小;5) 力学功用(耐性, 硬度, 高温硬度)佳;6)扩展了高速钢合金含量, 发明了新的超硬高速钢7) 扩展了运用范畴 十一 . 粉末冶金材料和制品的往后开展方向: 1、有代表性的铁基合金,将向大体积的精细制品,高质量的结构零部件开展。 2、制作具有均匀显微安排结构的、加工困难而彻底细密的高功用合金。 3、用增强细密化进程来制作一般含有混合相组成的特殊合金。 4、制作非均匀材料、非晶态、微晶或许亚稳合金。 5、加工共同的和非一般形状或成分的复合零部件。

粉末冶金基本知识

2019-01-04 09:45:48

粉末冶金中烧结分类

2019-01-07 07:51:16

根据致密化机理或烧结工艺条件的不同,烧结可分为液相烧结、固相烧结、活化烧结、反应烧结、瞬时液相烧结、超固相烧结、松装烧结、电阻烧结、电火花烧结、微波烧结和熔浸等。   1 . 固相烧结 : 按其组元的多少可分为单元系固相烧结和多元系固相烧结两类。   单元系固相烧结 纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为绝对熔点温度的2/3一4/5)进行的粉末烧结。   单元系固相烧结过程大致分3个阶段:   (1)低温阶段(T烧毛0.25T熔)。主要发生金属的回复、吸附气体和水分的挥发、压坯内成形剂的分解和排除。由于回复时消除了压制时的弹性应力,粉末颗粒间接触面积反而相对减少,加上挥发物的排除,烧结体收缩不明显,甚至略有膨胀。此阶段内烧结体密度基本保持不变。   (2)中温阶段(T烧(0.4~。.55T动。开始发生再结晶、粉末颗粒表面氧化物被完全还原,颗粒接触界面形成烧结颈,烧结体强度明显提高,而密度增加较慢。   (3)高温阶段(T烧二0.5一。.85T熔)。这是单元系固相烧结的主要阶段。扩散和流动充分进行并接近完成,烧结体内的大量闭孔逐渐缩小,孔隙数量减少,烧结体密度明显增加。保温一定时间后,所有性能均达到稳定不变。   ( 2 )多元固相烧结: 组成多元系固相烧结两种组元以上的粉末体系在其中低熔组元的熔点以下温度进行的粉末烧结。   多元系固相烧结除发生单元系固相烧结所发生的现象外,还由于组元之间的相互影响和作用,发生一些其他现象。对于组元不相互固溶的多元系,其烧结行为主要由混合粉末中含量较多的粉末所决定。如铜一石墨混合粉末的烧结主要是铜粉之间的烧结,石墨粉阻碍铜粉间的接触而影响收缩,对烧结体的强度、韧性等都有一定影响。对于能形成固溶体或化合物的多元系固相烧结,除发生同组元之间的烧结外,还发生异组元之间的互溶或化学反应。烧结体因组元体系不同有的发生收缩,有的出现膨胀。异扩散对合金的形成和合金均匀化具有决定作用,一切有利于异扩散进行的因素,都能促进多元系固相烧结过程。如采用较细的粉末,提高粉末混合均匀性、采用部分预合金化粉末、提高烧结温度、消除粉末颗粒表面的吸附气体和氧化膜等。   2. 活化烧结: 是指采用物理或化学的手段使烧结温度降低、烧结时间缩短、烧结体活化烧结性能提高的一种粉末冶金方法.活化烧结工艺分为物理活化烧结工艺和化学活化烧结工艺两大类。   物理活化烧结: 物理活化烧结工艺有依靠周期性改变烧结温度、施加机械振动、超声波和外应力等促进烧结过程。   化学活化烧结工艺: (1)预氧化烧结。 (2)改变烧结气氛的成分和含量。(3)粉末内添加微量元素。(4)使用超细粉末、高能球磨粉末进行活化烧结。活化烧结主要用于钨、钼、铼、铁、钽、钒、铝、钛和硬质化合物材料等的烧结。   活化烧结过程烧结过程是一个物理化学反应过程,其烧结反应速度常数K可用下式表示[1]:K=AexP(-Q/RT)式中A为包含反应原子碰撞的“频率因素”在内的常数;Q为烧结过程活化能;T为烧结温度。由上式可以看出,提高烧结温度T、降低烧结活化能Q和增大A值均可提高烧结速度。活化烧结是指降低烧结活化能Q的烧结方法。   实现方式活化烧结 主要是从3个方面来实现的:(1)改变粉末表面状态,提高粉末表面原子活性和原子的扩散能力。(2)改变粉末颗粒接触界面的特性,以改善原子扩散途径。 (3)改善烧结时物质的迁移方式。 [2]   活化剂的选择准则(1).活化剂在烧结过程中形成低熔点液相(2).活化剂在基体中的溶解度应低,而基体组元在活化剂中的溶解度要大。(3).活化剂应在烧结过程中偏聚在基体颗粒之间,为基体组元间的物质迁移提供通道。

铜锌合金粉

2017-06-06 17:50:09

     铜锌合金粉是一种重要的 金属 颜料,它具有酷似黄金的颜色和随角异色等特点,在装饰、油墨等方面得到广泛应用。本文在铜锌合金粉色相分析,提高铜锌合金粉的光泽度,以及提高铜锌合金粉的耐酸,耐高温性能方面,开展了研究工作。     为了表征铜锌合金粉的色相,以色相产生的光学原理为基础,与湖南技术物理研究所合作研制了色相测量仪,该仪器能快速有效地描述铜锌合金粉的色相,并可有效表征表面改性所引起的色相变化。 在提高铜锌合金粉的光泽度方面,采用了两种氧化方法对粉体进行表面改性。第一种是采用双氧水氧化,研究结果表明该法能有效提高粉体的光泽度,在H_2O_2与铜锌合金粉的用量比为8ml:10g,反应1小时,光泽度可提高25%;第二种方法采用高温部分氧化法,研究了氧化时间,温度对光泽度提高的影响,当温度为100℃,氧化时间1小时,光泽度可提高9%。 在提高铜锌合金粉的耐酸碱,耐高温的性能方面,研究了粉体包覆SiO_2的作用,其包覆原料分别为硅酸钠,正硅酸乙酯,分别考察了包覆前后析出氢气量的变化。以Na_2SiO_3为包覆原料时,析出氢气量,最高减少到原粉的六分之一;以正硅酸乙酯为包覆原料时,析出氢气量,最高减少到原粉的二分之一。在研究粉体在高温中的表现时,通过所研制的色相测量仪,对样品在高温中的性能进行了表征,研究结果表明粉体包覆SiO_2后,其耐高温性能方面有明显提高。  铜锌合金粉粒度:-100目,-200目,-300目锌含量:30%       目前,铜锌合金粉也是 市场 比较热销的工业材料。另外,铜锌合金粉有再结晶行为。实验结果表明:湿磨铜锌合金粉具有再结晶温度低、相同温度再结晶时间短的特性。通过雾化法制和是的原始粉末的微晶结构和大量变形是促进再结晶的主要原因。再结晶开始温度为250℃,经350℃×2h或400℃1h退火可完成再结晶。温度的降低对防氧化、防脱锌有利。 

硅锰合金粉

2017-06-06 17:50:03

硅锰合金粉是硅锰合金其中一种形态的产品。硅锰合金,是由锰、硅、铁及少量碳和其它元素组成的合金,是一种用途较广、 产量 较大的铁合金。硅锰合金呈块状,有银色光泽,比重在6.0—6.4之间,是生产中,低碳锰铁和电硅热法生产 金属 锰的还原剂,又是炼钢常用的复合脱氧剂。硅锰合金都是在矿热炉中用炭同时还原锰矿石(包括富锰渣)和硅石中的氧化锰和二氧化硅而炼制生产的。生产硅锰合金的原料有锰矿、富锰渣、硅石、焦炭等。常见牌号:FeMn68Si18  FeMn65Si17  FeMn60Si14。硅锰合金粉用途非常广泛。 

铝镁合金粉

2017-06-06 17:50:12

铝镁合金粉,其实就是以铝镁合金所制造的粉状工业用 金属 粉,铝镁合金粉构成和概述:铝镁合金主要元素是铝,再掺入少量的镁或是其它的 金属 材料来加强其硬度。以Mg为主要添加元素的铝合金,由于它抗蚀性好,又称防锈铝合金。因本身就是 金属 ,其导热性能和强度尤为突出。铝镁合金粉的特性:由于物理形态的不同,铝镁合金粉的相关物理性质会由一些改变,但是物理性状的改变并不影响铝镁合金粉的相关化学性质,铝镁合金铝板质坚量轻、密度低、散热性较好、抗压性较强,能充分满足3C产品高度集成化、轻薄化、微型化、抗摔撞及电磁屏蔽和散热的要求。其硬度是传统塑料机壳的数倍,但重量仅为后者的三分之一。铝镁合金 价格 由于其应用的广泛:电子产品:通常被用于中高档超薄型或尺寸较小的笔记本的外壳。而且,银白色的镁铝合金外壳可使产品更豪华、美观,而且易于上色,可以通过表面处理工艺变成个性化的粉蓝色和粉红色,为笔记本电增色不少,这是工程塑料以及碳纤维所无法比拟的。因而铝镁合金成了便携型笔记本电脑的首选外壳材料,目前大部分厂商的笔记本电脑产品均采用了铝镁合金外壳技术。铝镁合金粉种类:铝镁合金铝板又可称为5×××系列合金铝板,其代表有5052铝板、5005铝板、5083铝板、5754铝板,5A02l铝板,5A05铝板等。铝镁合金铝板合金元素主要是镁,含镁量在3-5%之间。主要特点为密度低,抗拉度高,延伸率高。在相同面积下铝镁合金的重量低于其他系列。故常用在航空方面,比如飞机油箱。在常规工业中应用也较为广泛。加工工艺为连铸连轧,属于热轧铝板系列故能做氧化深加工。在我国5×××系列铝板属于较为成熟的铝板系列之一。铝镁合金粉的 价格 由于其缺点而决定:镁铝合金并不是很坚固耐磨,成本较高,比较昂贵,而且成型比ABS困难(需要用冲压或者压铸工艺),所以笔记本电脑一般只把铝镁合金使用在顶盖上,很少有机型用铝镁合金来制造整个机壳。综上所述对于铝镁合金粉的描述,铝镁合金粉材质性能出色,强度高,耐腐蚀,持久耐用,易于涂色,用来制作高档门窗。铝镁合金种类介绍:5083铝板常用于船舶、舰艇、车辆用材、汽车和飞机板焊接件、需严格防火的压力容器、致冷装置、电视塔、钻探设备、交通运输设备、导弹元件、装甲等。铝镁合金简略介绍,5154铝板应用在焊接结构、贮槽、压力容器、船舶结构与海上设施、运输槽罐。

磷铜合金粉

2017-06-06 17:50:06

       磷铜合金粉,磷铜是的概念很广泛,是一个大类,而其中包括了锡磷青铜。就我的理解而言,磷铜合金可能是在化学元素磷和铜的基础而进行的加工。磷14%。由于铜的导电性比较好,所以磷铜合金在缩短零件的加工上颇有成效,铜 价格走势 也有所升高。磷铜合金粉是磷铜合金里的一种。工业上的一种材料。加工与成形容易,导电与导热佳,适宜作电蚀加工电极。     如今 金属市场 上贵 金属价格行情 逐渐上涨,磷铜合金但是不知道广大读者对于锇贵 金属 有没有一定的了解,那么就可以看一看磷铜合金锇贵 金属价格行情 及其用途分布介绍   元素来源: 存在于锇铱矿中。将含锇的固体在空气中焙烧,将挥发出的四氧化物吸收在醇碱溶液中。所得锇酸盐,再用氢气还原而制得。锇的密度最大,锇的共价半径特别小,也就是说锇原子相互之间排列得非常紧密,密度也就相当大,密度排名第二的铱共价半径比锇略小一点,所以密度也很大了。从密度来看,蓝灰色的 金属 锇是 金属 中的冠军,锇的密度为 22.48 克/立方厘米,相当于铅的2倍,铁的3倍,锂的42倍。1立方米的锇就有22.48吨重。金属 锇极脆,放在铁臼里捣,就会很容易地变成粉末,锇粉呈蓝黑色。贵 金属价格行情金属 锇在空气中十分稳定,熔点是2700摄氏度,它不溶于普通的酸,甚至在王水里也不会被腐蚀。可是,粉末状的锇,在常温下就会逐渐被氧化,并且生成四氧化锇。四氧化锇在48摄氏度时会熔化,到 130摄氏度时就会沸腾。锇的蒸气有剧毒,会强烈地刺激人眼的粘膜,严重时会造成失明。   锇在工业中可以用做催化剂。合成氨时,如果用锇做催化剂,就可以在不太高的温度下获得较高的转化率。如果在铂里掺进一点锇,就可做成又硬又锋利的手术刀。利用锇同一定量的铱可制成锇铱合金。铱金笔笔尖上那颗银白色的小圆点,就是锇铱合金。锇铱合金坚硬耐磨,铱金笔尖比普通的钢笔尖耐用,关键就在这个“小圆点”上。用锇铱合金还可以做钟表和重要仪器的轴承,十分耐磨,能使用多年而不会损。    元素用途: 用来制造超高硬度的合金。锇同铑、钌、铱或铂的合金,用作电唱机、自来水笔尖及钟表和仪器中的轴承。氯化锇锇属铂系元素。铂系元素几乎完全成单质状态存在,高度分散在各种矿石中,例如原铂矿、硫化镍铜矿、磁铁矿等。铂系元素几乎无例外地共同存在,形成天然合金。在含铂系元素矿石中,通常以铂为主要成分,而其余铂系元素则因含量较小,必须经过化学分析才能被发现。由于锇、铱、钯、铑和钌都与铂共同组成矿石,因此它们都是从铂矿提取铂后的残渣中发现的。铂系元素化学性质稳定。它们中除铂和钯外,不但不溶于普通的酸,而且不溶于王水。铂很易溶于王水,钯还溶于热硝酸中。所有铂系元素都有强烈形成配位化合物的倾向。 

粉末冶金的特点及冶金材料分类

2019-01-04 09:45:26

粉末冶金是一项具有悠久历史的材料冶炼技术。在古代,人们就已经掌握了冶炼生铁的技术,这就是现代粉末冶金最原始的表现;18世纪的欧洲,在制造铂金过程中的冶炼技术就是粉末冶金,这标志着近代粉末冶金技术开始得到了发展;进入20世纪之后,粉末冶金技术得到了高速的发展,新型材料不断涌现,应用范围逐步扩大。目前,粉末冶金已经成为材料领域不可或缺的技术。 粉末冶金是利用金属粉末作为生产的原料,经过一系列的生产工艺后,可以制造材料以及材料制品的技术。粉末冶金技术的发展促进了社会的变革。例如,1909年科学家用粉末冶金技术制造的钨丝制成白炽灯,极大地改变了人们的生活。随着经济的迅速发展,粉末冶金技术不断发展,粉末冶金技术应用范围也不断扩大。 一、 粉末冶金技术的特点 粉末冶金制成品具有传统铸造技术不具有的化学性能,这些特性只能由粉末冶金技术实现。利用粉末冶金技术可以制造一些结构复杂或者精密的零件,如汽车上的小型零件。粉末冶金技术可以对多种材料进行复合加工,对材料的特性扬长避短,最大限度发挥各种材料具有的优良特性,生产出具备高性能的金属或者陶瓷材料,生产成本却可以大幅度降低。不仅如此,利用粉末冶金技术可以制造出具有特殊结构和特殊性能的产品(多孔分离膜材料以及功能性陶瓷材料),这是普通的铸造冶炼技术无法实现的。利用废矿石、回收废旧金属以及冶炼残渣作为制造的原料,是一种对材料综合利用的新型冶炼技术,可以有效节约资源。如家庭用的磨刀石等,就是用粉末冶金技术制成。 二、 粉末冶金材料的分类 传统的粉末冶金材料 (1) 铁基粉末冶金材料 在诸多粉末冶金材料中,铁基粉末冶金材料是最传统的一种,同时也是最重要的一种冶金材料,这种材料广泛应用于汽车制造行业。随着现代经济技术的快速发展,汽车生产的规模不断扩大,汽车生产者对其需求不断增加,铁基粉末冶金材料的应用领域也越来越多。在一些传统的机械加工行业对其需求也较多。 (2) 铜基粉末冶金材料 铜基粉末冶金材料种类比较多,用铜及铜合金生产的零件具有较好的耐腐蚀性,青铜材料、黄铜材料以及铜合金等因其具有的优良特性,在机械、电器制造行业中铜基粉末冶金材料被大规模的应用。 (3) 难熔金属材料 难熔金属材料一般是指熔点高于1650℃并有一定储量金属的材料,这类材料的熔点比较高,因此具有较高的硬度和强度。这一类材料主要用于一些高端技术领域,主要应用在武器装备、航空航天、核能等领域。 (4) 硬质合金材料 硬质合金材料是由熔点较高的金属经过氧化后形成的一种材料。这种材料的制作过程主要有2个环节,首先利用冶炼技术对硬质材料进行粘结和融合,之后通过粉末冶金环节进行相应的加工制作。硬质合金材料具有特殊的性能,如较高的熔点、较强的硬度和强度等,此种材料大量应用在工业切削领域中。 (5) 粉末冶金电工材料 这类材料通常应用在电子领域,其中以电器元件居多。另外,一些公司在电极的制造过程中使用粉末冶金电工材料。进入21世纪之后,我国的通讯技术得到了迅速发展,这就意味着对电阻器件的需求量增多,进而增加了对粉末冶金电工材料的需求。另外,电子管在一些涉及到真空技术的领域中应用较多,因此,粉末冶金电工材料在真空领域也具有极其重要的作用。 摩擦材料顾名思义,本身具有极强的耐摩擦性,这类材料主要应用在一些易于产生摩擦的机械零部件中,例如汽车的摩擦离合器和摩擦制动器等。这些零件的制造利用了其耐摩擦、耐磨损的特点,能够使运动的物体减速甚至停止等。

粉末冶金技术让废钢废铁变为新型材料

2018-12-14 15:07:41

新华社济南10月12日电 从针鼻大小的电器零部件,到盘子大小的机械齿轮,无一不是用炼钢炼铁的下脚料经粉末冶金技术加工而成。   这是记者从正在此间举行的中国(莱芜)钢铁博览会上看到的一幕。业内人士认为,随着我国粉末冶金技术的发展与应用,位于钢铁产业下游的粉末冶金产业方兴未艾。   莱芜钢铁集团粉末冶金有限公司销售部经理张安国向记者介绍说,粉末冶金属于新材料产业,国外日本、瑞典、美国有上百年的历史,而我国才刚刚开始。用粉末冶金技术制造的零部件可以广泛应用于机械、汽车、家电等领域,具有广阔的市场前景。粉末冶金技术与传统的零部件制造工艺相比,它主要通过模具压制而成,具有少切削、少耗材等十分经济的优点。从其创造的价值看,原来的钢铁废料主要用来做一些低档铁,每吨只能卖几百元,而加工成铁粉后每吨却能卖到四五千元。去年,这家粉末冶金公司共生产3.1万吨铁粉,产值1.5亿元,是目前国内最大的冶金粉末厂,占有国内30%的市场份额。   作为粉末冶金的下游产品,粉末冶金制件可以最大限度地满足机械、汽车、家电等领域对复杂零部件的要求。山东金珠粉末注射制造有限公司韩善东说,利用注射技术制造粉末冶金件是当前一种比较特殊的制造技术,这种新型制造技术的出现,表明我国粉末冶金产业进入一个新的发展阶段。