您所在的位置:
上海有色 >
有色金属产品库 >
高铝粉煤灰算铝土矿吗
高铝粉煤灰算铝土矿吗
高铝粉煤灰综合利用原因浅探
2019-03-08 11:19:22
凡是以煤炭作为动力直接焚烧的进程,都会发生粉煤灰。在火力发电厂,煤粉在高温焚烧的进程中,其间的碳、硫、磷、氮等蒸发分大多以气体的方式排入大气,无机矿藏中的绝大部分经熔融、聚合而构成粉煤灰粒子,随烟气进入收尘设备被搜集为粉煤灰。粉煤灰一般占电厂灰渣总量的80% ~90%。近年来,一种叫做“高铝粉煤灰”的粉煤灰引起留意。这种粉煤灰中的 A12O3+SiO2+ Fe2O3≥80%,其特点是含A12O3高,一般≥38% ,高者乃至超越 50% ,相当于国外三水铝石矿的A12O3含量。这种粉煤灰首要产于我国山西省的中北部和内蒙的广阔区域。山西朔州和内蒙区域的粉煤灰中A12O3含量显着高于国内平均值,也大大高于国际其它区域。这些区域的煤炭中含有丰厚的A12O3。上述区域的煤炭资源储量极为丰厚,又是火电厂会集的区域,每年可产出很多的高铝粉煤灰,且产值逐年递加。
中国是铝土矿耗费大国,跟着国内铝土矿资源的快速干涸,高铝粉煤灰的收回使用得到越来越多人的重视。充分使用好这个储量巨大、有着杰出的远景预期的重要资源,将高铝粉煤灰用作是铝土矿的重要代替品,远景可观,含义严重。
铝土矿一般指的是 A12O3≥40%的含铝矿藏。单从A12O3含量一项来看,高铝粉煤灰现已彻底具有了铝土矿的特征。可是,高铝粉煤灰中含有比铝土矿要高得多的硅。因而,高铝粉煤灰要成为真实含义上的铝土矿代替资源,就必须首要尽可能脱除其间的SiO2。
沈阳铝镁规划研究院提出了一种法处理粉煤灰出产氧化铝的办法,其过程如下: 将粉煤灰与硫酸铵混合,磨制成生料,其间硫酸铵与粉煤灰中的氧化铝分量比 4.5~8 ∶ 1; 将生料加热至 230~600℃,烧成时刻控制在 0.5~5h,制成含硫酸铝铵的熟料和气; 烧成的熟料用热水溶出,溶出时刻0.1~2h,铝以硫酸铝铵的方式进入溶液,硅留在残渣中构成高硅渣; 向硫酸铝铵溶液参加气或,得到含杂质的粗氢氧化铝和硫酸铵溶液;粗氢氧化铝用循环碱溶液进行低温拜耳法处理,除掉其间铁、钙等杂质,得到冶金级氧化铝和高铁渣。
山西省朔州市每年产出很多的高铝粉煤灰,其数量高达 400万吨之多。为了充分使用这些资源,湖南中大冶金规划公司为中煤平朔煤业集团规划了粉煤灰综合使用项目。该项目采用了最新技能,能够出产出优质白炭黑和冶金级氧化铝产品,且其SiO2提取率也达到了比较高的水平。平朔煤业集团的这项作业一起完成了高铝粉煤灰中铝和硅的使用,为高铝粉煤灰的综合使用供给了有利的经历。
总归,高铝粉煤灰是我国独有的高含铝资源,储量丰厚,具有极大的使用潜能,怎么使用好这个资源,以补偿我国铝土矿资源的匮乏,是一个十分重要的课题。
粉煤灰中的铝矿
2019-01-21 10:39:02
我国是全球第一产铝大国,2008年产出原铝1318万吨,占全球总产量的33.4%;同时也是全球第一消费大国,2008年消费量达1260万吨,占全球总消费量的32.89%。但我国铝土矿资源量却只占全球的3%,另一方面,粉煤灰开发利用是国内重要铝资源之一,相当于一个特大型铝矿。如能加大投资力度,其潜力、前景不可限量。高附加值利用尚未形成产业规模近年来,科技工作者着眼于粉煤灰理化特性,进行高技术含量、高附加值产品研发,从粉煤灰中提取氧化铝、羟基硅、固态铝酸钠、硅酸铝、硅酸钾、莫来石、水泥助磨剂、稀土农肥等,已日益为人们所重视,前景十分广阔。粉煤灰的化学成分主要是二氧化硅、三氧化二铝、三氧化二铁、二氧化钛、氧化镁、氧化钙以及其他碱金属氧化物和稀有元素。其中三氧化二铝含量较高的粉煤灰被称为高铝粉煤灰,具有很高的开发利用价值。依据目前技术水平,含三氧化二铝30%以上的就可视为高铝粉煤灰。普通粉煤灰三氧化二铝含量平均为25%~28%,我国35处粉煤灰样品三氧化二铝平均含量为27.1%。国外粉煤灰亦大体类似,日本粉煤灰三氧化二铝平均含量为25.86%,美国为20.81%,英国为26.99%,德国为24.93%,只有波兰高达32.39%。上世纪60年代,波兰人曾以石灰石烧结法制取氧化铝,我国安徽、宁夏、江苏等地也曾以类似方式作过试验,在提取氧化铝同时生产活性硅酸钙,但未能形成规模产业。技术研发不断突破,应用领域不断开拓经国家发改委批准,两年前,内蒙古鄂尔多斯以高铝粉煤灰为原料,用石灰石烧结法在制取氧化铝同时联产水泥项目成功实现产业化。项目投资18亿元,年产氧化铝40万吨,近期即将投产。去年初,大唐国际托克托电厂与同方环境公司合作,利用托克托电厂粉煤灰制取氧化铝联产羟基硅及电热法炼制铝硅钛合金技术成果发布。托克托电厂年耗煤1600万吨,排放粉煤灰400万吨,灰中氧化铝含量高达54%以上,在提取羟基硅后三氧化二铝/二氧化硅(A/S)达2.2。如用于制取氧化铝,回收率按85%计,每2.2吨粉煤灰即可制取1吨氧化铝,400万吨灰可产出180万吨氧化铝,这比山东“非中铝”企业用进口矿石生产氧化铝还更具有优势(每3吨矿石产出氧化铝1吨)。此外,河南巩义成功进行了运用常温常压波加速溶出新技术将粉煤灰与废弃低品位铝土矿制取氧化铝的半工业化试验,郑州龙昌公司利用上述技术从粉煤灰中提取羟基硅的小型试验也获得成功,羟基硅成本不到2000元/吨,所产未经脱水羟基硅以3000元/吨售出。这些技术为粉煤灰高附值开发利用打下了基础。粉煤灰的另一个高附加值开发利用领域是电热熔炼铝硅钛合金和铝硅铁合金。氧化铝含量大于30%的粉煤灰用作炼制铝硅铁时可炼得含铝40%以上的合金,除了用于炼钢脱氧外,还可取代硅铁用作炼镁还原剂。炼制铝硅铁合金,应力求提高合金中铝含量,降低铁含量。焦作李封铁合金厂,试生产期间产出的铝硅铁成分平均如下:硅为34%,铁为12.5%,铝为47.8%,钛为3.3%。郑州轻金属研究院曾以铝硅铁取代硅铁作还原剂炼镁,试验所采用的铝硅铁合金成分为:铝含量35.41%,硅含量41.54%,铁含量16.76%。还原温度1100℃时,镁收率为65.5%。与当时以75硅铁为还原剂炼镁的各项指标相比,还原剂单耗略有降低,镁收率则提高5%~6%,温度降低50℃,具有一定优势。利用途径多样,节能减排优势明显我国具有高铝粉煤灰资源优势,除了内蒙古外,还有“煤都”山西朔州。朔州煤储量423亿吨,年产煤上亿吨,煤灰中氧化铝含量高于高岭土,而氧化铁含量却相对较低。经对平鲁一矿、二矿及怀仁煤矿等3个煤矿煤灰的化学成份进行化验分析,氧化铝含量依次为:45.73%,41.24%,54.22%;氧化铁含量分别为:2.4%,0.44%,0.8%。此外,经验证,煤矸石中氧化铝含量亦在40%以上。朔州的南邻原平,电厂排放粉煤灰氧化铝含量也高达40%,并有大量废弃铝土矿。以粉煤灰为主要原料,电热熔炼铝硅中间合金,以原铝或再生铝进行稀释,配制各种牌号铝硅合金,不仅是综合利用环保项目,而且与以原铝或再生铝与工业硅重熔合成的铝硅合金相比,成本低,可节省能耗约20%,减排大量二氧化碳及固体废弃物,降低建设用地和投资,还可大大改善产品质量,提高产品成品率,是国家政策支持的项目。虽然如此,但铝硅合金毕竟是高能耗产品,其适用范围有一定局限性。一般说来,在高铝粉煤灰出产地、电力充裕电价低的地区、电铝联营企业,以及因政策规定进入门槛提高而被迫停产、有闲置适用(便于改造)的矿热炉、整流设备的企业,都是其用武之地。在不具备发展、推广条件的地区、企业,笔者认为仍应以通常方式开发利用,如上所述,利用粉煤灰生产氧化铝、羟基硅、固态铝酸钠等高附加值产品,既可大批量消化粉煤灰,又有着可观的经济效益。(作者系中国铝冶炼技术开发中心专家顾问)
相关链接 利用率仅为发达国家一半对燃煤电厂而言,粉煤灰曾是一大包袱。近年来,随着循环经济的推行、发展,国家鼓励政策陆续出台,特别是粉煤灰综合利用技术的新发展,情况有所改变,但因旧灰堆存量大,新灰利用率仍较低(国内粉煤灰利用率只有40%,是发达国家利用率的一半),全国每年仍有约两亿吨新灰未被消化。因而,如何开展综合利用,提高利用率,使其化害为利、变废为宝,仍然是循环经济的重要课题。国内目前粉煤灰的综合利用方式,仍以大批量利用为主,用作建筑材料的部分占总消化量的50%以上,如粉煤灰水泥、加气混凝土砌块、烧结陶粒、烧结砖、蒸压砖、轻型中空隔墙板、复合保温外墙板、保温屋面板、轻质中空楼板等系列板材等;作为填充料,用于道路、机场、港区建设工程的约占总消化量的20%以上;用于农业方面改良土壤、制取农用肥料的约占消化量的20%以上。炼制铝硅钛合金应注意什么?虽然铝硅钛合金与铝硅铁合金以粉煤灰为主要原料时其氧化铝含量并无一定额度区分,但两种合金性质截然不同,前者是铝合金,后者是铁合金,铝合金对含铁量有严格要求,原料含三氧化二铁量一般不得大于0.8%,中间合金含铁量不大于1.2%,不是所有粉煤灰都适用。炼制铝硅合金氧化铝含量必须使A/S达到1.3以上才能练出含铝55%以上的粗合金。此外,灰的化学活性也不可忽视,化学活性差反应速度下降,会导致电耗增加,产量降低。一般来说,灰中氧化铝含量应大于40%。托克托电厂所排放的灰或怀仁煤产出的灰,氧化铝含量都在50%以上,可直接用于配料制团。含氧化铝40%以下的粉煤灰为使其A/S达到1.3以上,必须添加适量含铝矿物,如被废弃精选低品位铝土矿、红柱石、硅线石等,如无上述含铝矿物,可先行提取羟基硅,也可使其A/S达到工艺要求。例如含氧化铝28%以上的粉煤灰,经高梯度除铁后,三氧化二铁降至0.6%以下,氧化铝含量可提高达30%以上。若其活性良好(须经测试),每3吨灰可提取羟基硅1吨,产出渣两吨,渣中氧化铝A/S可达1.3以上,可用作炼制铝硅钛合金原料。
粉煤灰提铝技术
2019-02-21 13:56:29
粉煤灰是煤炭在燃煤锅炉中焚烧所残留的固体废物,首要是燃煤电厂的副产品。到2007年,我国粉煤灰的年排放已超越2亿t(且仍在逐年添加),累计堆存量超越25亿t,占地面积5万hm2以上。粉煤灰既占用许多犁地,对土壤、水资源和空气形成严峻污染。粉煤灰归纳运用是我国多年来研讨处理的重要课题。现在,粉煤类中氧化铝含量一般在17%~35%,部分区域粉煤灰铝含量更可高达40%~60%,是一种十分重要的非传统氧化铝资源。从高铝粉煤灰中提取氧化铝归于粉煤灰精细化运用技能,对减轻粉煤灰环境污染、扩展粉煤灰资源化运用途径、拓宽我国氧化铝工业质料来历具有积极意义,且契合国家中长期科学和技能开展规划大纲(2006~2020年)要点范畴的优先主题要求。跟着国家环保方针日益严厉及高品位铝土矿资源缺少危机加重,从高铝粉煤灰中提取氧化铝的技能办法近年来已成为重视和研讨的热门。
一、粉煤灰化学组成与物相形状
粉煤灰的化学组成与物相形状是研讨粉煤灰提铝技能的根底。我国粉煤灰以低钙灰(CaO<10%)为主,高钙灰仅产于单个区域,表1和表2给出了我国低煤灰化学组成与物相形状的一般规模。
表1 我国低煤灰的化学成分 %成分SiO2Al2O3Fe2O3CaOMgONa2O和K2OSO3L.O.I含量40~6017~352~151~100.5~20.5~40.1~21~26
表2 我国低煤灰的根本矿藏组成成分玻璃相莫来石石英赤铁矿磁铁矿规模
平均值5~79
60.42.7~34.1
21.20.9~18.5
8.10~4.7
1.10.4~13.8
2.8
由表1和表2可知,粉煤灰不只在化学成分和元素组成上千差万别,在物相构成上也相去甚远。粉煤灰化学组成与物相形状受煤产地、煤种、焚烧办法和焚烧程度等要素影呼较大。我国华东、华北区域粉煤灰遍及是氧化铝含量超越30%的高铝粉煤灰,在山西、内蒙古等地氧化铝含量超越40%的高铝粉煤灰也有许多发现。物相构成上,Barbara G·Kutchko等对不同燃煤电厂12个F级粉煤灰进行分析,发现无定表态物质(首要是玻璃体)含量均超越65%,结晶相(包含石英、莫来石等)均低于50%。张占军等对内蒙古某热电厂高铝粉煤灰的研讨标明,Al2O3含量高达48.5%,粉煤灰中莫来石-刚玉相占73.7%,玻璃相却仅占24.6%。粉煤灰铝含量和物相构成的不确定性为粉煤灰提铝技能的深入研讨及推广带来困难。一起,粉煤灰的首要物相是莫来石(2 Al2O3·2SiO2)和铝硅玻璃相(两者之和>80%),莫来石性质比较安稳,铝硅玻璃相因保持着高温液态结构摆放办法的介稳结构,也表现出较高的化学安稳性,使得粉煤灰中可溶性SiO2、Al2O3活性较低。因而直接选用普通的酸或碱法,从高铝粉煤灰中提取氧化铝作用很差。需求采纳必定手法首要对粉煤灰进行矿藏改性,打破Al-O-Si的安稳结构,进步粉煤灰中铝的活性。
二、粉煤灰提铝技能研讨现状
自20世纪50年代,波兰J.Grzymek教授以高铝煤矸石或高铝粉煤灰(Al2O3>30%)为首要质料从中提取氧化铝并运用其残渣出产水泥以来,国内外许多学者对粉煤灰提铝技能做了许多研讨。从粉煤灰中提取氧化铝(氢氧化铝)或铝盐工艺有许多,但首要有碱法烧结和酸浸法两类,且大部分工艺还处于实验室研讨阶段,工业化运用很少。
(一)碱法烧结
现在,碱法烧结粉煤灰提铝技能的研讨可分为钙盐助剂烧结法和钠盐助剂烧结法两大类。
钙盐助剂烧结法是将石灰石、石灰、石膏等钙盐中的一种或几种与粉煤灰在1200~1400℃下烧结,使粉煤灰中活性低的铝硅酸盐在高温下生成易溶于Na2CO3溶液的铝酸钙和不溶的硅酸二钙而完成铝硅别离。石灰石烧结法是国内外最早提出的粉煤灰提铝技能办法,也是现在国内仅有见诸报导的已工业化运用的工艺。石灰石烧结法根本工艺流程如图1所示。
图1 石灰石烧结法工艺根本流程
刘埃林、赵建国等在该工艺根底上作了改善:对铝酸钠粗液直接进行碳分、过滤,所得高硅氢氧化铝固体运用低温拜耳法溶出,得到的铝酸钠精液,再经过种分、煅烧,得到氧化铝,碳分母液回来熟料溶出工序。现在该工艺已在内蒙古投产建造。石灰石烧结法现在虽已产业化,但其本身缺陷约束了它的推广运用:能耗高(1200~1400℃烧结),工艺冗杂,因烧结参加许多石灰石,使得渣量是氧化铝产品的7~10倍,为此只能运用渣联产水泥,但因泥商场有用半径小,导致对当地水泥需求量依靠加大,商场危险较高。
为处理石灰石烧结法能耗高、渣量大等缺陷,可选用Na2CO3等钠盐部分或悉数代替钙盐作为烧结助剂,以下降烧结温度,节省能耗,削减渣量。但用Na2CO3等钠盐悉数代替钙盐时,因为粉煤灰中硅铝比较高,用碱液浸出熟料时,会因为生成水合铝硅酸钠盐沉积而带走部分铝和碱,下降铝的回收率,碱消耗量添加,因而只能用酸浸出熟料。如马鸿文等提出以Na2CO3为助熔剂,在750~880℃下运用高铝粉煤灰分化,生成酸溶性铝硅酸盐物料后,用硫酸浸取,使粉煤灰中氧化铝与氧化硅别离,并进一步出产氧化铝和白炭黑,当用98%浓硫酸浸取时,氧化铝浸取率大于90%。运用Na2CO3等钠盐部分代替钙盐,熟料用碳酸钠溶液浸出,既下降烧结温度,节省能耗,一起也防止了酸浸带来的设备质料要求严厉、本钱增高级问题。如郑国辉将粉煤灰和石灰、碳酸钠经高温烧结成可溶性铝酸钠及不溶性硅酸二钙,二者别离后制备氧化铝,碱液回来熟料溶出工序,残渣做硅酸盐水泥质料,氧化铝溶出率在90%以上,能耗比石灰石烧结法低,但CO2需求额定供给。
现在,国内外许多学者正对碱法烧结粉煤灰提铝技能进行深入研讨。在考虑对废渣、废气及废液进行运用,推广清洁出产的一起,还应在挑选适宜助熔剂下降烧结温度、熟料自粉化、铝硅别离、高品质铝产品、渣精运用等技能方面加大研讨力度,进一步下降能耗和产品本钱、进步产品质量、增强商场竞争力,争夺提前走向大规模工业化运用。
(二)酸浸法
关于酸浸法粉煤灰提铝技能的研讨有许多,美国Oak Ridge国家实验室规划的DAL法(直接酸浸出——Direct Acid Leaching)是对后来酸浸法开展研讨影响较大的一种办法。DAL法的特点是尽可能使整个粉煤灰资源变成各种产品,而不考虑对某种金属获取最高的提取率,即DAL法着重的是工艺的归纳效益。直接酸浸法粉煤灰提铝的根本反响如下:
3H2SO4+Al2O3=Al2(SO4)3+3H2O
或
6HCl+Al2O3=2AlCl3+3H2O
如孙雅珍等用60%硫酸与粉煤灰混合后加热,使粉煤灰中活化的氧化铝与硫酸充沛反响,经过滤、冷却、结晶、抽滤等工序,制取铝盐(硫酸铝),氧化铝提取率60%~65%。
针对直接酸浸法铝浸出率较低的缺陷,可采纳参加氟化物(如、、等)作助溶剂来损坏铝硅玻璃体及莫来石,然后进步Al2O3的溶出作用。根本反响如下:
3H2SO4+6NH4F+SiO2(-Al2O3)=H2SiF6+3(NH4)2SO4+2H2O
3H2SO4+Al2O3=Al2(SO4)3+3H2O
或
6HCl+6NH4F+SiO2(-Al2O3)=H2SiF6+6NH4Cl+2H2O
6HCl+Al2O3=2AlCl3+3H2O
如赵剑宇等选用助溶法从粉煤灰中提铝,氧化铝溶出率高达97%以上。参加氟化物助溶剂,虽可改善粉煤灰中铝的活性,进步浸出率,但氟化物易对环境形成二次污染,且操作也有必定的危险性。因而,又有学者研讨了在酸浸提铝前,预先采纳必定手法活化粉煤灰中的铝,以进步其浸出率。如秦晋国等提出运用300~760℃下焙烧活化-硫酸浸出工艺从粉煤灰中提铝,在常压且不加任何助剂情况下,用硫酸可使粉煤灰中的氧化铝溶出率达85%以上,并在此根底上又提出粉煤灰混合浓硫酸焙烧-热水浸出工艺,省去前面的酸渣别离工序,简化工艺流程,并使氧化铝有用溶出率进步到90%以上。高温焙烧-硫酸浸出法及其相关工艺尽管可使铝浸出率高达85%以上,但因为选用浓硫酸浸出,浸出液残酸浓度很高,不只导致渣带走的酸损耗增大,并且浸出、过滤、物料运送设备的质料难以处理,操作困难。因而,酸浸法至今还未见有工业化运用的报导。
(三)其他办法
环绕怎么进步粉煤灰中铝的浸出活性,不少学者还尝试了其他办法。如李来时等将粉煤灰细磨活化后与硫酸铵在400℃下烧结,硫酸浸出,氧化铝提以率可达95.6%,硫酸铝铵重结晶后可制取纯度大于99.9%的高纯氧化铝。与石灰石烧结法比较,该工艺烧结温度显着下降,且氧化铝提取率高、渣量少,因而具有必定的积极意义,值得进一步重视。赵剑宇等研讨了根据微波助熔的氧化铝提取办法,虽可使氧化铝的溶出率进步到95%以上,但该技能仍需凭借烧结来完成粉煤灰的活化,且能耗、微波技能的扩大运用等问题还有待于进一步处理,现在很难扩大到工业出产。
三、展望
跟着环保要求日益严厉和高品位铝土矿资源的日趋干涸,能够预见粉煤灰作为一种非传统铝资源具有杰出的运用开展前景。现在,约束粉煤灰提铝技能大规模工业化运用的要素许多,除了国家、当地相关方针的鼓舞扶持和商场需求等原因外,从上述分析可知技能上也有许多不足之处。因而应进一步深入研讨,对现有粉煤灰提铝技能进行改善完善,一起还应积极探索新的粉煤灰提铝技能工艺,在满意环保要求的一起,努力进步其归纳经济效益,到达社会、环境、经济的有机一致。从这个意义上讲,完成高效、节能、低耗、减量(废渣、废气),防止二次污染是粉煤灰提铝技能开展的趋势。
粉煤灰选铁技术介绍
2019-02-20 15:16:12
粉煤灰选矿是依据粉煤灰中各种组分的物理、化学性质不同,可别离选用浮选、磁选、电选、重选和化学选矿等办法收回,加以使用。
怎么从粉煤灰中收回铁?
粉煤灰中的铁主要以Fe2O3、Fe3O4和硅酸铁的方式存在。粉煤中的黄铁矿颗粒在焚烧中,铁得到了富集;阅历磁化焙饶后,部分变为磁铁矿,Fe3O4晶体。x一衍射分析指出,在其内部包藏有很多Fe2O3,这对全铁的收回很有利 。
而粉煤灰中铁的收回。一般选用磁选法,选别作用较好。
关于原粉煤灰渣中全铁的含量偏低,应先预选富集,预选的设备可用水力旋流器。例如某火电厂因为磁铁矿对原灰渣米说比严重,经旋流器预选后,从排砂口出来的粉煤灰渣中全铁得到了富集。其全铁档次由13.91%上升到20.84%,全铁的收回率为65.91%,富集全铁的粉煤灰渣经过圆筒式弱磁选矿机进行分选,所得铁精矿全铁档次45.22%,收回率为39.17%。
从粉煤灰中收回铁矿藏不需剥离、挖掘、破碎、磨矿等工段,其出资仅为从矿石中选铁的1/4左右,然后节省了大批基建和运营费用。
从粉煤灰中选取的磁铁矿首要能够给水泥厂作烧制水泥的质料,其次能够掺入含铁档次较高的铁矿中作炼铁质料。
粉煤灰中氧化铝和其它稀散元素的收回与使用
粉煤灰中的Al2O3是以非活性的富铝玻璃体红柱石(3Al2O3·SiO2)的方式存在,可选用化学选矿时办法收回。如美国使用酸浸浩从粉煤灰中取得。因为粉煤灰的比表面积大,吸附能力强、具有高缩聚的特性。固此粉煤在焚烧构成粉煤灰的过中,有或许吸附、复原、富集某些稀散元素。这就为稀散元素的收收回供给了或许。
粉煤灰作为一种新的矿藏资源.其开发使用远景非常宽广.国内外很多的研讨与实践证明.选用适宜的选矿办法.综台收回和用.是处理粉煤灰环境污染和使之资源化的重要方向。也是进步粉煤灰综台使用价值的有用手法。
研讨更有用的联合选矿工艺。如选用浮选-磁选-重选、浮选-脱泥,浮选-超细分级等联台流程。从粉煤灰中选取多种有经济价值的产品。
粉煤灰中的铝矿提取与利用
2019-01-02 14:54:42
粉煤灰的化学组成与物相形态是研究粉煤灰提铝技术的基础。我国粉煤灰以低钙灰(CaO<10%)为主,高钙灰仅产于个别地区
自20世纪50年代,波兰J.Grzymek教授以高铝煤矸石或高铝粉煤灰(Al2O3>30%)为主要原料从中提取氧化铝并利用其残渣生产水泥以来,国内外许多学者对粉煤灰提铝技术做了大量研究。从粉煤灰中提取氧化铝(氢氧化铝)或铝盐工艺有很多,但主要有碱法烧结和酸浸法两类,且大部分工艺还处于实验室研究阶段,工业化应用很少。
我国是全球第一产铝大国,2008年产出原铝1318万吨,占全球总产量的33.4%;同时也是全球第一消费大国,2008年消费量达1260万吨,占全球总消费量的32.89%。但我国铝土矿资源量却只占全球的3%,另一方面,粉煤灰开发利用是国内重要铝资源之一,相当于一个特大型铝矿。如能加大投资力度,其潜力、前景不可限量。
高附加值利用尚未形成产业规模
近年来,科技工作者着眼于粉煤灰理化特性,进行高技术含量、高附加值产品研发,从粉煤灰中提取氧化铝、羟基硅、固态铝酸钠、硅酸铝、硅酸钾、莫来石、水泥助磨剂、稀土农肥等,已日益为人们所重视,前景十分广阔。
粉煤灰的化学成分主要是二氧化硅、三氧化二铝、三氧化二铁、二氧化钛、氧化镁、氧化钙以及其他碱金属氧化物和稀有元素。其中三氧化二铝含量较高的粉煤灰被称为高铝粉煤灰,具有很高的开发利用价值。依据目前技术水平,含三氧化二铝30%以上的就可视为高铝粉煤灰。
普通粉煤灰三氧化二铝含量平均为25%~28%,我国35处粉煤灰样品三氧化二铝平均含量为27.1%。国外粉煤灰亦大体类似,日本粉煤灰三氧化二铝平均含量为25.86%,美国为20.81%,英国为26.99%,德国为24.93%,只有波兰高达32.39%。
上世纪60年代,波兰人曾以石灰石烧结法制取氧化铝,我国安徽、宁夏、江苏等地也曾以类似方式作过试验,在提取氧化铝同时生产活性硅酸钙,但未能形成规模产业。
技术研发不断突破,应用领域不断开拓
经国家发改委批准,两年前,内蒙古鄂尔多斯以高铝粉煤灰为原料,用石灰石烧结法在制取氧化铝同时联产水泥项目成功实现产业化。项目投资18亿元,年产氧化铝40万吨,近期即将投产。去年初,大唐国际托克托电厂与同方环境公司合作,利用托克托电厂粉煤灰制取氧化铝联产羟基硅及电热法炼制铝硅钛合金技术成果发布。托克托电厂年耗煤1600万吨,排放粉煤灰400万吨,灰中氧化铝含量高达54%以上,在提取羟基硅后三氧化二铝/二氧化硅(A/S)达2.2。如用于制取氧化铝,回收率按85%计,每2.2吨粉煤灰即可制取1吨氧化铝,400万吨灰可产出180万吨氧化铝,这比山东“非中铝”企业用进口矿石生产氧化铝还更具有优势(每3吨矿石产出氧化铝1吨)。
此外,河南巩义成功进行了运用常温常压波加速溶出新技术将粉煤灰与废弃低品位铝土矿制取氧化铝的半工业化试验,郑州龙昌公司利用上述技术从粉煤灰中提取羟基硅的小型试验也获得成功,羟基硅成本不到2000元/吨,所产未经脱水羟基硅以3000元/吨售出。这些技术为粉煤灰高附值开发利用打下了基础。
粉煤灰的另一个高附加值开发利用领域是电热熔炼铝硅钛合金和铝硅铁合金。氧化铝含量大于30%的粉煤灰用作炼制铝硅铁时可炼得含铝40%以上的合金,除了用于炼钢脱氧外,还可取代硅铁用作炼镁还原剂。
炼制铝硅铁合金,应力求提高合金中铝含量,降低铁含量。焦作李封铁合金厂,试生产期间产出的铝硅铁成分平均如下:硅为34%,铁为12.5%,铝为47.8%,钛为3.3%。郑州轻金属研究院曾以铝硅铁取代硅铁作还原剂炼镁,试验所采用的铝硅铁合金成分为:铝含量35.41%,硅含量41.54%,铁含量16.76%。还原温度1100℃时,镁收率为65.5%。与当时以75硅铁为还原剂炼镁的各项指标相比,还原剂单耗略有降低,镁收率则提高5%~6%,温度降低50℃,具有一定优势。 利用途径多样,节能减排优势明显
我国具有高铝粉煤灰资源优势,除了内蒙古外,还有“煤都”山西朔州。朔州煤储量423亿吨,年产煤上亿吨,煤灰中氧化铝含量高于高岭土,而氧化铁含量却相对较低。经对平鲁一矿、二矿及怀仁煤矿等3个煤矿煤灰的化学成份进行化验分析,氧化铝含量依次为:45.73%,41.24%,54.22%;氧化铁含量分别为:2.4%,0.44%,0.8%。此外,经验证,煤矸石中氧化铝含量亦在40%以上。朔州的南邻原平,电厂排放粉煤灰氧化铝含量也高达40%,并有大量废弃铝土矿。
以粉煤灰为主要原料,电热熔炼铝硅中间合金,以原铝或再生铝进行稀释,配制各种牌号铝硅合金,不仅是综合利用环保项目,而且与以原铝或再生铝与工业硅重熔合成的铝硅合金相比,成本低,可节省能耗约20%,减排大量二氧化碳及固体废弃物,降低建设用地和投资,还可大大改善产品质量,提高产品成品率,是国家政策支持的项目。 虽然如此,但铝硅合金毕竟是高能耗产品,其适用范围有一定局限性。一般说来,在高铝粉煤灰出产地、电力充裕电价低的地区、电铝联营企业,以及因政策规定进入门槛提高而被迫停产、有闲置适用(便于改造)的矿热炉、整流设备的企业,都是其用武之地。在不具备发展、推广条件的地区、企业,笔者认为仍应以通常方式开发利用,如上所述,利用粉煤灰生产氧化铝、羟基硅、固态铝酸钠等高附加值产品,既可大批量消化粉煤灰,又有着可观的经济效益。(作者系中国铝冶炼技术开发中心专家顾问) 相关链接 利用率仅为发达国家一半
对燃煤电厂而言,粉煤灰曾是一大包袱。近年来,随着循环经济的推行、发展,国家鼓励政策陆续出台,特别是粉煤灰综合利用技术的新发展,情况有所改变,但因旧灰堆存量大,新灰利用率仍较低(国内粉煤灰利用率只有40%,是发达国家利用率的一半),全国每年仍有约两亿吨新灰未被消化。因而,如何开展综合利用,提高利用率,使其化害为利、变废为宝,仍然是循环经济的重要课题。
国内目前粉煤灰的综合利用方式,仍以大批量利用为主,用作建筑材料的部分占总消化量的50%以上,如粉煤灰水泥、加气混凝土砌块、烧结陶粒、烧结砖、蒸压砖、轻型中空隔墙板、复合保温外墙板、保温屋面板、轻质中空楼板等系列板材等;作为填充料,用于道路、机场、港区建设工程的约占总消化量的20%以上;用于农业方面改良土壤、制取农用肥料的约占消化量的20%以上。
炼制铝硅钛合金应注意什么?
虽然铝硅钛合金与铝硅铁合金以粉煤灰为主要原料时其氧化铝含量并无一定额度区分,但两种合金性质截然不同,前者是铝合金,后者是铁合金,铝合金对含铁量有严格要求,原料含三氧化二铁量一般不得大于0.8%,中间合金含铁量不大于1.2%,不是所有粉煤灰都适用。炼制铝硅合金氧化铝含量必须使A/S达到1.3以上才能练出含铝55%以上的粗合金。
此外,灰的化学活性也不可忽视,化学活性差反应速度下降,会导致电耗增加,产量降低。一般来说,灰中氧化铝含量应大于40%。托克托电厂所排放的灰或怀仁煤产出的灰,氧化铝含量都在50%以上,可直接用于配料制团。含氧化铝40%以下的粉煤灰为使其A/S达到1.3以上,必须添加适量含铝矿物,如被废弃精选低品位铝土矿、红柱石、硅线石等,如无上述含铝矿物,可先行提取羟基硅,也可使其A/S达到工艺要求。例如含氧化铝28%以上的粉煤灰,经高梯度除铁后,三氧化二铁降至0.6%以下,氧化铝含量可提高达30%以上。若其活性良好(须经测试),每3吨灰可提取羟基硅1吨,产出渣两吨,渣中氧化铝A/S可达1.3以上,可用作炼制铝硅钛合金原料。 (一)随着温度升高,碳酸钠和生石灰的烧结效果逐渐变好。但随着温度升高,利用碳酸钠进行烧结时,粉煤灰烧结熟料中氧化铝溶出率增长速度要快得多,而利用生石灰烧结时,其氧化铝溶出率随着温度增长及其缓慢。
(二)碳酸钠与氧化钙的混合物作为烧结剂,在烧结过程中的主要影响因素为碱比,其次为烧结温度和钙比,影响最弱的是烧结时间。
随着环保要求日益严格和高品位铝土矿资源的日趋枯竭,可以预见粉煤灰作为一种非传统铝资源具有良好的利用发展前景。目前,限制粉煤灰提铝技术大规模工业化应用的因素很多,除了国家、地方相关政策的鼓励扶持和市场需求等原因外,从上述分析可知技术上也有很多不足之处。因此应进一步深入研究,对现有粉煤灰提铝技术进行改进完善,同时还应积极探索新的粉煤灰提铝技术工艺,在满足环保要求的同时,努力提高其综合经济效益,达到社会、环境、经济的有机统一。从这个意义上讲,实现高效、节能、低耗、减量(废渣、废气),避免二次污染是粉煤灰提铝技术发展的趋势。
利用高铝粉煤灰生产氧化铝联产活性硅酸钙技术成果
2019-01-02 14:54:42
利用高铝粉煤灰生产氧化铝联产活性硅酸钙技术成果
利用高铝粉煤灰生产氧化铝联产活性硅酸钙技术成果.pdf
铝土矿
2017-06-06 17:49:59
铝土矿实际上是指工业上能利用的,以三水铝石、一水软铝石或一水硬铝石为主要矿物所组成的矿石的统称。它的应用领域有金属和非金属两个方面。 铝土矿是生产金属铝的最佳原料,也是最主要的应用领域,其用量占世界铝土矿总产量的90%以上。 中国铝土矿分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的90.9%(山西41.6%、贵州17.1%、河南16.7%、广西15.5%),其余拥有铝土矿的15个省、自治区、直辖市的储量合计仅占全国总储量的9.1%。 山西的铝土矿床(点)主要分布在孝义、交口、汾阳、阳泉、盂县、宁武、原平、兴县、保德、平陆等5大片42个县境内,面积约6.7万km2,探明铝土矿储量,居全国第一,该区的资源总量估计可达20亿t。 河南的铝土矿集中分布在黄河以南、京广线以西的巩县、登封、偃师、新安、三门峡、陕县、宝丰、鲁山、临汝、禹县等三大片10多个县境内,面积3万多km2,探明铝土矿储量居全国第2位,预测资源总量可达10亿t。 贵州的铝土矿床主要分布在“黔中隆起”南北两侧的遵义、息峰、开阳、瓮安、正安、道真、修文、清镇、贵阳、平坝、织金、苟江、黄平等十几个县境内,面积2400km2,探明铝土矿储量居全国第3位。预测资源总量逾10亿t。 广西的铝土矿集中分布在平果、田东、田阳、德保、靖西、桂县、那坡、果化、隆安、邕宁、崇左等县境内,探明铝土矿储量居全国第4位,预测铝土矿储量在8亿t以上。 山东的铝土矿主要分布在淄博、新泰、洪山等县境内,其探明铝土矿储量占全国总储量的3%。 此外,在海南、广东、福建、云南、江西、湖北、湖南、陕西、四川、新疆、宁夏、河北等省(区),也有铝土矿矿床产出。 更多关于铝土矿的资讯,请登录上海有色网查询。
高硫铝土矿除硫技术
2019-02-21 11:21:37
我国铝土矿资源丰富,已探明的铝土矿储量达23亿t。其间含硫高的一水硬铝石型铝土矿储量达1.5亿t,占总储量的11.0%左右。这类矿石以中高铝、中低硅、高硫、中高铝硅比矿石为主,且此类矿石高档次所占份额大,需加工脱硫才干运用,因而研讨经济合理的脱硫办法,具有巨大的潜在工业含义。
在氧化铝出产流程中,铝土矿中的硫不只构成Na2O的丢失,并且溶液中S2-进步后会使钢材遭到腐蚀,蒸腾和分化工序的钢制设备因腐蚀而损坏,添加溶液中铁含量。在拜耳法出产氧化铝过程中假如铝土矿中硫的含量超越0.3%,就能导致氧化铝档次因铁的污染而超支,别的还能使氧化铝的溶出率下降。跟着氧化铝工业的不断发展,科学研讨者对脱硫办法进行了许多的研讨工作,但效果及运用均不尽人意。因而有必要对高硫铝土矿进行进一步脱硫研讨,到达拜耳法氧化铝厂对铝土矿含硫的要求。
铝土矿中硫首要以黄铁矿(FeS2)办法存在,因为黄铁矿简略用黄药等捕收剂浮选,而含铝矿藏以氧化物和氢氧化物办法存在,亲水,不易被黄药捕收,因而,浮选用黄药理论上简略完成黄铁矿和含铝矿藏的别离。用浮选的办法下降铝土矿中硫的含量,最早被原苏联人员选用。在我国,浮选脱除铝土矿中的含硫矿藏还未见文献报导。因而,针对我国铝土矿的特色,用选矿脱除铝土矿中含硫矿藏的研讨具有重要含义。
针对河南某地出产的铝土矿的特色,选用黄药等作捕收剂,对反浮选除掉铝土矿中的硫化物进行了实验研讨。
一、实验部分
(一)实验质料
河南高硫矿,碳酸钠(分析纯,上海虹光化工厂),六偏磷酸钠(分析纯,天津市科密欧科技有限公司),(分析纯,天津市科密欧化学试剂开发中心),硫酸铜(化学试剂,天津市博迪化工有限公司),丁基黄药(株洲选矿药剂厂),戊基黄药(长沙矿冶研讨院选矿所),松醇油(株洲选矿药剂厂),单质碘和碘化钾(分析纯,汕头市西陇化工厂)。对河南高硫矿进行了化学分析。首要化学成分列于表1。
表1 试样的首要化学组成(质量分数)/%Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST61.6212.654.603.003.001.810.080.420.96
(二)实验设备及仪器
实验一切设备及仪器包含浮选机,拌和机,pH计,过滤设备,电炉,烘箱,管状炉,石英管,滴定管等。
(三)实验办法
各添加剂预先装备成必定的浓度备用。药剂添加次序为:六偏磷酸钠→→硫酸铜→丁基黄药→戊基黄药→松醇油,实验中各药剂的用量及添加药剂后的拌和时刻见表2。实验所用脱硫浮选办法为简略的一段浮选。浮选产品别离过滤、洗刷、烘干后分析。
表2 药剂用量及拌和时刻药剂称号药剂用量/(g·L-1)拌和时刻/min碳酸钠
六偏磷酸钠硫酸铜
丁基黄药
戊基黄药
松醇油2.5
7.65×10-3
4.00×10-4
1.88×10-2
3.13×10-2
3.13×10-2
0.125
1
1
2
1
2
1
二、条件实验
选用六偏磷酸钠作为按捺剂,和硫酸铜作为活化剂,丁基黄药和戊基黄药作为捕收剂,对高硫铝土矿进行一段浮选脱硫条件实验,研讨各添加剂用量对浮选成果的影响。
(一)碳酸钠用量的影响
在pH>11的高碱环境下,黄铁矿表面会有亲水的氢氧化物生成,进而浮选遭到按捺。碱性增强对黄铁矿的按捺不断增强。低pH值系统中难以浮选,乃至浮选没有泡沫,这与铝土矿结构以及实验条件有关。碳酸钠另一效果是对黄铁矿具有活化效果。在CO32-与HCO3-离子效果下,铁的氢氧化物又可转变成铁的碳酸盐,使黄铁矿表面掩盖的氢氧化物和硫酸盐脱落暴露出新鲜的表面。因而碳酸钠添加量对浮选的效果有较大的影响。按表2所示条件,进行了碳酸钠用量对脱硫效果的影响的研讨,成果见表3。
表3 碳酸钠用量条件实验成果碳酸钠用量/(g·L-1)pH值产品称号产率/%S档次/%S收回率/%0.59.70低硫铝土矿
高硫尾矿82.44
17.560.41
3.5435.25
64.751.010.10低硫铝土矿
高硫尾矿89.91
10.090.420
5.7739.35
60.652.510.43低硫铝土矿
高硫尾矿96
40.44
13.4444
563.510.78低硫铝土矿
高硫尾矿93.4
26.580.48
7.7846.67
53.33
由表3可知,跟着碳酸钠用量的添加和矿浆pH值升高,高硫尾矿中硫的档次越来越高,硫的收回率在逐步下降,低硫铝土矿的产率较大起伏的升高,到碳酸钠用量为2.5g/L,pH值为10.43时,硫的档次达最大值,随后又开端下降,硫的收回率持续下降,低硫铝土矿的产率也到达最大值后又下降。由此可见碳酸钠对浮选具有较大影响。归纳考虑以上要素,高硫矿浮选碳酸钠用量应为2.5g/L,pH值为10.43左右。
(二)按捺剂用量的影响
六偏碳酸钠在含量高时对一水硬铝石具有按捺效果,但在pH>10时,其按捺效果较弱,只要在较高用量的条件下才具有较强的按捺效果。六偏磷酸钠的按捺效果为在浮选过程中损坏和削弱一水硬铝石与捕收剂之间相互效果,增强一水硬铝石表面的亲水性。它的效果办法有3种:消除活化离子;在矿藏表面构成亲水薄膜;消除矿藏表面的活化薄膜。六偏磷酸钠一起可对矿浆起涣散效果。按表2所示条件,进行六偏磷酸钠用量对脱硫效果的影响,成果见表4。
表4 六偏碳酸钠用量条件实验成果六偏碳酸钠用量/(×10-3g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿
高硫尾矿93
70.54
6.5852.02
47.987.65低硫铝土矿
高硫尾矿96
40.44
13.4444
5615.30低硫铝土矿
高硫尾矿95.34
4.660.48
10.7947.68
52.32
由表4可知,跟着六偏碳酸钠用量的添加,高硫尾矿中硫的档次先进步然后下降,硫的收回率也是先进步后下降,低硫铝土矿的产率在小起伏规模内改变。六偏碳酸钠用量以7.65×10-3g/L为宜。
(三)活化剂用量的影响
活化剂的效果是在矿藏表面生成促进捕收剂效果的薄膜。浮选电化学以为,某些硫化矿藏具有半导体性质和必定的电子传导才能,表面的静电位是HS-离子能否在其表面氧化生成元素S0的要害,当表面静电位Ems高于HS-氧化成S0的平衡电位时,则这种氧化在热力学上能够完成。黄铁矿表面静电位Ems高于HS-氧化成S0的平衡电位,因而HS-可能在黄铁矿表面氧化成元素(S0)。王淀佐等人测定了黄铁矿的表面静电位,在pH>8今后一直高于EHS-/S0,所以HS-能够在其表面氧化。Na2S参加矿浆中后,矿浆中存在许多的HS-离子,黄铁矿因为表面静电位较高,对HS-离子有较强的电催化效果,HS-在其表面有如下反响:
HS(aq)-→HS(ad)-
HS(aq)-→H++S(ad)0+2e-
S0吸附于黄铁矿表面使其变得疏水,因而黄铁矿具有杰出的诱导可浮性。
当黄铁矿表面氧化较深时,可被Cu2+活化。其机理为Cu2+可替代黄铁矿品质中的Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。铜离子比较简略进入黄铁矿的晶格,铜和硫的亲和性比铁和硫的亲和性更大,使黄铁矿表面构成铜膜,铜离子不影响矿藏晶格深处,在黄铁矿表面上掩盖铜相当于分散处理黄铁矿表面,即影响到黄铁矿表面的导电类型。黄铁矿为电子型半导体,晶格表面层上富集电子的表面,因而不能安稳的吸附黄药。一些二价Cu2+从其表面取得电子,Cu2+浓度下降为Cu2+,使黄铁矿表面层电子浓度下降。黄铁矿表面导电性的转化,这时能安稳地吸附黄药。
综上所述,首要对黄铁矿起到诱导浮选效果,但因为黄铁矿镶嵌于结构杂乱的铝土矿中,且黄铁矿的含量小,尤其是当黄铁矿表面氧化较深时,对黄铁矿就起不了诱导浮选效果,而Cu2+能够进入黄铁矿晶格中替代Fe2+使表面生成含铜硫化膜然后增强对黄药的吸附效果。因而和硫酸铜均可起到活化效果,其用量多少对硫档次影响很大。按表2所示条件,别离进行了和硫酸铜用量对脱硫效果的影响研讨,成果别离见表5和表6。
表5 用量条件实验成果用量/(×10-4g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿
高硫尾矿95.25
4.750.50
10.1649.73
50.272低硫铝土矿
高硫尾矿94.12
5.880.48
8.5747.51
52.494低硫铝土矿
高硫尾矿96
40.44
13.4444
5610低硫铝土矿
高硫尾矿96.62
3.380.61
1161.27
38.73
表6 硫酸铜用量条件实验成果硫酸铜用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿
高硫尾矿92.89
7.110.48
7.2348.59
51.411.88低硫铝土矿
高硫尾矿96
40.44
13.4444
563.75低硫铝土矿
高硫尾矿93.20
6.800.55
6.5553.6
46.4
由表5可知,跟着用量的添加,高硫尾矿中硫的档次先下降后升高,随后又下降,硫的收回首先升高后下降,低硫铝土矿的产率改变不大。用量以4×10-4g/L为宜。
由表6可知,跟着硫酸铜用量的添加,高硫尾矿中硫的档次先升高后下降,改变的起伏比较大,硫的收回首先逐步升高然后较大起伏的下降,低硫铝土矿的产率改变不大。硫酸铜用量以1.88×10-2g/L为宜。
(四)捕收剂用量及其品种的影响
在浮选中运用捕收剂,能够进步有用矿藏表面的疏水性。黄铁矿捕收剂首要是黄药类等捕收剂。在许多情况下,已成功地运用单一种捕收剂。但混合运用多种硫代捕收剂可大大进步硫化矿浮选目标。按表2所示条件,丁基黄药及戊基黄药用量对脱硫效果的影响成果别离见表7和表8。
表7 丁基黄药用量条件实验成果丁基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿
高硫尾矿94.29
5.710.55
7.8253.49
46.511.56低硫铝土矿
高硫尾矿95.10
4.900.57
8.5456.41
43.593.13低硫铝土矿
高硫尾矿96
40.44
13.4444
566.25低硫铝土矿
高硫尾矿97.06
3.740.50
12.9251.68
48.32
表8 戊基黄药用量条件实验成果戊基黄药用量/(×10-2g·L-1)产品称号产率/%S档次/%S收回率/%0低硫铝土矿
高硫尾矿96.62
3.380.56
12.4556.17
43.831.56低硫铝土矿
高硫尾矿95.69
4.310.45
12.344.78
55.223.13低硫铝土矿
高硫尾矿96
40.44
13.4444
566.25低硫铝土矿
高硫尾矿96.5
3.50.57
11.5957.74
42.26
由表7可知,跟着丁基黄药用量的添加,高硫尾矿中硫的档次和收回率都随之添加,然后下降,低硫铝土矿的产率在小规模内增大。丁基黄药对浮选效果具有较大影响。丁基黄药用量以3.13×10-2g/L为宜。
由表8可知,跟着戊基黄药用量的添加,高硫尾矿中硫的档次在小起伏内先升高后下降,硫的收回率在较大起伏内先升高后下降,低硫铝土矿的产率改变不大。戊基黄药对硫的收回率影响较大。戊基黄药用量以3.13×10-2g/L为宜。
三、优化条件的浮选成果
通过以上各条件实验的影响,得出高硫铝土矿一段浮选除硫的最佳条件实验为:碳酸钠用量2.5g/L,六偏磷酸钠用量为7.65×10-3g/L,拌和1min,用量为4.0×10-4g/L,拌和1min,硫酸铜用量为1.88×10-2g/L,拌和2min,丁基黄药用量为3.13×10-2g/L,拌和1min,戊基黄药用量为3.13×10-2g/L,拌和2min,松醇油用量为0.125g/L,拌和1min,实验成果见表9。
表9 原矿一段浮选实验成果产品称号产率/%S档次/%S收回率/%低硫铝土矿
高硫尾矿
原矿96
4
1000.44
13.44
0.9644
56
100
由表9可知,在优化的浮选条件下,原矿通过一段浮选即可取得硫档次高达的13.44%,收回率56%,而产率仅为4%的高硫尾矿;一起取得产率为96%,硫档次为0.44%的低硫铝土矿。这一成果比前苏联研讨人员浮选高硫铝土矿一段浮选尾矿含硫达9%的工艺目标还好。
对浮选所得低硫铝土矿和高硫尾矿进行化学分析,分析成果见表10。为了便于对照,将原矿相应数据也列于表10中。
表10 浮选产品化学分析成果(质量分数)/%产品称号Al2O3SiO2Fe2O3TiO2CaOK2ONa2OMgOST1)低硫铝土矿
高硫尾矿
原矿62.10
51.96
61.6212.83
8.18
12.654.17
14.94
4.602.95
4.71
3.003.07
1.43
3.001.85
0.95
1.810.08
0.11
0.080.42
0.40
0.420.44
13.44
0.96
1) 此为化学分析成果,不是荧光分析成果
由表10可知,一段浮选高硫尾矿的A/S比为6.35,与A/S比为4.87的原矿比较,高硫尾矿的A/S比高,这是因为铝比硅更简略浮选,成果导致高硫尾矿中A/S比稍高。因为被浮选的高硫尾矿产率不大,因而对低硫铝土矿的A/S比的影响不大。高硫尾矿中硫和铁含量比原矿明显进步,铁略有进步,其它元素含量都偏低。而低硫铝土矿与原矿比较,除了铝,硅以及钾比原矿略低高外,其它元素都有所下降。
四、结语
(一)选用浮选的办法,以碳酸钠为pH调整剂,六偏磷酸钠为按捺剂,和硫酸铜为活化剂,丁基黄药和戊基黄药为捕收剂,松醇油为起泡剂,进行高硫铝土矿的一段反浮选,取得硫含量高达13.44%,收回率56%,氧化铝含量为51.96%,而产率仅为4%的高硫尾矿,一起取得产率为96%,氧化铝含量为62.10%,硫档次为0.44%的低硫铝土矿。因为铝比硅更简略浮选,高硫尾矿的A/S比升高,但因为高硫尾矿的产率低,仅为4%,因而对低硫铝土矿的A/S比影响不大。
(二)对原矿进行一段浮选的最佳条件是:碳酸钠用量为2.50g/L,六偏磷酸钠用量为7.65×10-3g/L,用量为4.00×10-4g/L,硫酸铜用量为1.88×10-2g/L,丁基黄药用量为3.13×10-2g/L,戊基黄药用量为3.13×10-2g/L,松醇油用量为1.25×10-1g/L。矿浆最佳浮选pH值规模是10.4~10.5左右。
(三)本研讨测验一起运用2种活化剂,即和硫酸铜,活化的效果大于单一活化剂的效果,进步硫的浮选收回率。丁基黄药与戊基黄药2种捕收剂按份额混合运用可进步硫的档次及收回率。
铝土矿(高铝矾土)的分类
2019-01-15 09:51:32
基本类型
亚类型主要分布地区一水型铝土矿1)水铝石-高岭石型(D-K型)
山西、山东、河北、河南、贵州2)水铝石-叶蜡石型(D-P型)
河南3)勃姆石-高岭石型(B-K型)
山东、山西4)水铝石-伊利石型(D-I型)
河南5)水铝石-高岭石-金红石(D-K-R型)
四川三水型铝土矿
三水铝石型(G型)
福建、广东
水泥混凝土用粉煤灰的标准和分级
2019-03-07 10:03:00
导读
粉煤灰是燃煤电厂中磨细煤粉在锅炉中焚烧后从烟道排出、被收尘器搜集的物质。一般所讲的粉煤灰混凝土是指制造混凝土混合料时将粉煤灰作为一种组分参加搅拌机制造而成的混凝土。
粉煤灰是燃煤电厂中磨细煤粉在锅炉中焚烧后从烟道排出、被收尘器搜集的物质。一般所讲的粉煤灰混凝土是指制造混凝土混合料时将粉煤灰作为一种组分参加搅拌机制造而成的混凝土。在水泥混凝土中增加粉煤灰,不只能够削减水泥的用量、节约能源、削减环境污染,还能对混凝土进行改性,进步混凝土的各方面功能。
粉煤灰的分类
现在,我国粉煤灰尚无公认的分类办法,仅仅抽象地将氧化钙含量较高的粉煤灰称作高煤灰,氧化钙含量较低的则称为低煤灰。美国自1977年开端在ASTM C618中将粉煤灰分红F类灰及C类灰,其界说如下:
(1) F类粉煤灰(相当于我国的低煤灰):一般是由焚烧无烟煤或烟煤所得的,并能契合这一类技能条件的粉煤灰。这一类粉煤灰具有火山灰功能。
(2)C类粉煤灰(相当于我国的高煤灰):一般是由焚烧褐煤或次烟煤所得的,并能契合这一类技能条件的粉煤灰。这一类粉煤灰除具有火山灰功能外,一起显现某些胶凝性。某些C类灰的氧化钙含量高于10%。
水泥和混凝土用粉煤灰的标准
现在,我国现行的水泥和混凝土用粉煤灰的标准是:GB/T 1596-2005。
拌制混凝土和砂浆用粉煤灰技能要求水泥活性混合材料用粉煤灰技能要求2017年7月12日,我国发布了用于水泥和混凝土中的粉煤灰新标准-GB/T 1596-2017。该标准将于2018年6月1日起代替GB/T1596-2005 正式施行。