高岭石-三水铝石型铝土矿
2019-02-12 10:07:54
首要矿藏为三水铝石、高岭石、赤铁矿、针铁矿等。关于低档次的三水铝石的铝土矿,一般以为浮选都是比较有用的,有主线正浮选三水铝石,也有建议反浮选含硅矿藏,药方与一般氧化矿浮选根本相同。以为参加和辅佐捕收剂(火油、机油)能够强化浮选,浮选流程方面留意泥沙分选及分支浮选等。
某高岭石-三水铝石型铝土矿选用泥、水分选,粗等级(-50mm+3mm)磨矿后用磁选除铁,矿泥磨矿后浮选,其选别工艺流程如图1所示。选别后得三种产品,铝土精矿用于出产电炉刚玉或拜耳法炼铝氧,高岭石产品用烧结法收回,含铁产品出产铁精矿,从而使铝土矿得到归纳收回。图1 某高岭石-三水铝石铝土矿选别示意图
磁选磁场强度为3000~3500奥斯特,浮选捕收剂为油酸:塔尔油:机油=1:1:1,其总用量为300g/t。其选别成果见表1。从表1中可见,铝土矿精矿含Al2O3为49.8%、收回率为58.8%,铝硅比从4.7提高到8.4,取得了必定分选作用。
表1 某高岭石-三水铝石型铝土矿选别目标产品名称产率/%Al2O3/%SiO2/%Fe2O3/%铅硅比档次收回率档次收回率档次收回率铝土矿精矿
高岭石产品
含铁产品
原矿50.10
21.70
25.10
100.0049.80
39.30
30.70
24.4058.80
23.00
18.20
100.005.95
21.80
2.97
9.1332.70
59.10
8.20
100.0014.00
23.00
30.40
17.5340.10
16.30
43.60
100.008.4
1.8
10.3
4.7
铝土矿床的主要成分--三水铝石
2018-12-28 09:57:34
三水铝石(Gibbsite) Al(OH)3 三水铝石是铝的氢氧化物矿物,在铝土矿床中它是主要的成分。三水铝石的晶体极细小,晶体聚集在一起成结核状、豆状或土状,一般为白色,有玻璃光泽,如果含有杂质则发红色。它们主要是长石等含铝矿物风化后产生的次生矿物。
化学组成为Al(OH)3﹑晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯 (Gibbs)的姓于1822年命名。晶体结构与水镁石相似﹐由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成﹐只是Al3+不占满夹层中的全部八面体空隙﹐仅占据其中的2/3。三水铝石的晶体一般极为细小﹐呈假六方片状﹐并常成双晶﹔通常以结核状﹑豆状﹑土状集合体产出。白色﹐或因杂质染色而呈淡红至红色。玻璃光泽﹐解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5﹐比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物﹐是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。
[结构与形态] 单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm;Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3 具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。
[物理性质] 白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶。Ng=1.587,Nm=Np=1.566。
[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。
三水铝石
2018-12-29 09:43:03
三水铝石的化学组成为Al(OH)3、晶体属单斜晶系 P21/n空间群的氢氧化物矿物。与拜三水铝石(bayerite)和诺三水铝石 (nordstrandite)成同质多象。旧称三水铝矿或水铝氧石。以矿物收藏家C.G.吉布斯(Gibbs)的姓于1822年命名。晶体结构与水镁石相似,由夹心饼干式的(OH)-Al-(OH)配位八面体层平行叠置而成,只是Al3+不占满夹层中的全部八面体空隙,仅占据其中的2/3。三水铝石的晶体一般极为细小,呈假六方片状,并常成双晶﹔通常以结核状、豆状、土状集合体产出。白色,或因杂质染色而呈淡红至红色。玻璃光泽,解理面显珍珠光泽。底面解理极完全。摩斯硬度2.5~3.5,比重2.40。三水铝石主要是长石等含铝矿物化学风化的次生产物,是红土型铝土矿的主要矿物成分。但也可为低温热液成因。俄罗斯南乌拉尔的兹拉托乌斯托夫斯克的热液脉中产出有达5厘米大小的晶体。用途见铝土矿。
三水铝石(Gibbsite)
Al(OH)3
[晶体化学] 理论组成(wB%):Al2O3 65.4,H2O 34.6。常见类质同像替代有Fe和Ga,Fe2O3可达2%,Ga2O3可达0.006%。此外,常含杂质CaO、MgO、SiO2等。
[结构与形态]单斜晶系,a0=0.864nm,b0=0.507nm,c0=0.972nm,β=94°34';Z=8。晶体结构与水镁石相似,属典型的层状结构。不同者是Al3 仅充填由OH-呈六方最紧密堆积层(∥(001))相间的两层OH-中2/3的八面体空隙,因为Al3具有比Mg2 高的电荷,故以较少的Al3 数即可平衡OH-的电荷。
斜方柱晶类,C2h-2/m(L2PC)。晶体呈假六方板状,极少见。主要单形:平行双面a、c,斜方柱m。常依(100)和(110)成双晶。常见聚片双晶。集合体呈放射纤维状、鳞片状、皮壳状、钟乳状或鲕状、豆状、球粒状结核或呈细粒土状块体。主要呈胶态非晶质或细粒晶质。 [物理性质]白色或因杂质呈浅灰、浅绿、浅红色调。玻璃光泽,解理面珍珠光泽。透明至半透明。解理极完全。硬度2.5~3.5。相对密度2.30~2.43。具泥土臭味。
偏光镜下:无色。二轴晶( ),2V=0°。Ng=1.587,Nm=Np=1.566。
[产状与组合] 主要由含铝硅酸盐经分解和水解而成。热带和亚热带气候有利于三水铝石的形成。在区域变质作用中,经脱水可转变为软水铝石、硬水铝石(140~200℃);随着变质程度的增高,可转变为刚玉。
三水铝石(Gibbsite)
2019-01-21 10:39:10
Al(OH)3
【化学组成】常有少量的Fe2+和Ga3+呈类质同像替换Al3+。
【晶体结构】单斜晶系, ;a0=0.864 nm,b0=0.507 nm,c0=0.972 nm,β=94°34′;Z=8。具水镁石型结构,但Al3+只充填于每两层相邻的OH-羟离子之间的2/3八面体空隙,组成配位八面体的结构层。
【形态】单晶呈假六方形极细片状。通常成结核状、豆状集合体或隐晶质块状集合体。
【物理性质】白色,常带灰、绿和褐色;玻璃光泽,解理面呈珍珠光泽,集合体和隐晶质者暗淡。解理平行{001}极完全。硬度2.5~3.5。相对密度2.30~2.43。
【成因及产状】主要是长石等铝硅酸盐经风化作用而形成。部分三水铝石为低温热液成因。在区域变质作用中,三水铝石经脱水作用变为一水硬铝石;而在更深的区域变质条件下,可变为刚玉;如有SiO2存在时则变为含铝硅酸盐矿物。
【主要用途】为铝的主要矿石矿物。也可用于制造耐火材料和高铝水泥原料。
堆积型铝土矿洗矿厂址与配矿方案研究
2019-01-30 10:26:21
我国既是铝土矿资源丰富的大国,也是需铝量较多的国家之一。目前,铝已成为我国仅次于钢铁的第二主要金属,占有色金饱和总产量的40%以上。堆积型铝土矿是我国华南地区生产金属铝的主要来源,其矿石在冶炼前一般须先关往洗矿厂进行洗矿和配矿,以保证矿石具有较合适而稳定的铝硅比(Al2O3品位与SiO2品位的比值)。随着开采的不断进行,一些堆积型铝土矿山面临着资源接替,如何综合规划已探明的新资源和即将开采完的老资源,实现采场与洗矿厂的合理匹配,从而达到尽可能多地利用低品位矿石,延长矿山服务年限的目的,成为这些矿山企业急需解决的难题。本研究运用现代物流规划、运筹学和系统工程思想,将洗矿厂厂址与配矿方案从宏观上统一起来,建立了混合整数的优化模型,并在某实际堆积型铝土矿山进行了成功应用。
一、问题的抽象
设某堆积型铝土矿有n个开采单元,第i个开采单元的保有原矿石量为Ci,矿山的服务年限为N;m个备选洗矿厂位置,第j个位置记为Xj,在此建洗矿厂的费用为Fj,洗矿厂建成后的原矿年处理能力为qj,每年由第i个开采单元运来的原矿量为Cij,相应的洗后净矿石的量为C′ij(净出矿率为hi)、Al2O3和SiO2的品位为Aj和Sj,来自所有开采单元的净矿石在该洗矿厂的配矿堆场经过破碎、配矿后送往冶炼厂的成品矿年产量为Pj、铝硅比在K1与K2之间;各洗矿厂合计每年处理的原矿石总量为Q1,洗矿后的净矿石总量为Q2;第i个开采单元与Xj间的距离为Dij,Xj与冶炼厂间的距离为Dj;卡车的单位运输成本为a。铝土矿产品的产出过程如图1所示。图1 堆积型铝土矿产品产出过程
现在的问题是:应该修建哪些洗矿厂以及如何合理安排各个采场和洗矿厂的年产计划,才能在保证送往冶炼厂的铝土矿产品的铝硅比达到设计要求的前提下,使建厂投资和运输费用最小。
二、洗矿厂址和配矿方案综合优化数学模型
如前所述,研究的核心是在保证配矿产品的铝硅比达到设计标准的前提下,确定合适的洗矿厂个数和位置,从而达到洗矿厂建厂投资和和平运输费用最小的目的。
从采场采出的原矿石价值很低,如果洗矿厂离采场太远,将导致原矿石在洗矿厂的运费过高而使洗矿厂的产品丧失增值空间,因此,须对第i个开采单元与备选洗矿厂位置Xj间的距离Dij加以限制,并将Xj设置为取决于Dij的开关变量,当Dij不超限时Xj中选而赋值为1,当Dij超限时Xj落选而赋值为0,以解决洗矿厂的个数和位置问题;另外,可以通过对配矿后矿石的铝硅比实行上、下限约束,合理搭配贫富矿石,使贫矿石得到最大限度的利用,同时确保从各个配矿堆场输出的矿石均满足冶炼厂对铝硅比的要求。
根据第1节的假设和以上思路,可以得出某堆积型铝土矿山在服务期内建洗矿厂和生产运输的总费用为相应的约束条件为:
(一)第i个开采单元在矿山服务期内采出的原矿总量
(二)第i个开采单元到第j个备选洗矿厂的卡车运输距离
Dij≤L,
(三)第j个备选洗矿厂位置的赋值
Xj=1(中选)或0(落选)(j=1,2,…,m),
(四)第j个洗矿厂年处理原矿量 (五)第j个洗矿厂对来自第i个开采单元的原矿进行洗矿的净出矿率
hi=(C′ij/Cij)×100%,
(六)第j个洗矿厂的配矿堆场送往冶炼厂的成品矿年产量 (七)第j个洗矿厂的配矿堆场配出成品矿的铝硅比 (八)m个洗矿厂年处理矿石总量 (九)m个配矿场年处理矿石总量 如此,按洗矿厂建厂投资和生产运输费用最小原则,即可建立堆积型铝土矿洗矿厂厂址和配矿方案的综合优化数学模型为 三、应用实例
某实际堆积型铝土矿共有42个开采单元、3个备选洗矿厂。各开采单元的存矿量及与各备选洗矿厂间的距离如表1所示,各备选洗矿厂的设计处理能力和建厂费用如表2所示。
表1 各开采单元存矿量及与备选洗矿厂间的距离 开采单
无序号保有原矿量/万t洗后总净矿量/万t洗后矿品位/%到备选洗矿厂运距/(10-3km)Al2O3SiO2到X1到X2到X31
2
┆
424.6740
67.1659
┆
8.74591.86960
26.86636
┆
3.4983686.26
84.28
┆
81.089.20
11.28
┆
14.654350.180
3492.979
┆
9570.0247865.217
7008.016
┆
6532.3961504.898
8598.146
┆
5084.180合计2750.29501100.11800
表2 备选洗矿厂设计年处理能力和建厂费用备选洗矿厂位置X1X2X3年处理能力qj/万t
建厂费用Fj/万元90
20000105
2130095
20950
该矿山设计服务年限为11a,洗矿厂处理原矿石的任务总量Q1为250万t/a、产出洗后矿的任务总量Q2为100万t/a、配矿产品的综合铝硅比为10±0.5,卡车的单位运输成本a为1.2万元/(万t·km),卡车从开采单元到洗矿厂的单次运输距离上限L为11km,位于X1、X2、X3处的3个备选洗矿厂到冶炼厂的距离分别为34.7km、34.8km、3km,要求确定洗矿厂的个数和位置,并合理安排各开采单元和洗矿厂的年生产计划,使洗矿厂建厂投资和生产运输费用最小,同时保证各洗矿厂配矿产品的铝硅比达到设计要求。
将已知条件代入堆积型铝土矿洗矿厂厂址和配矿方案综合优化数学模型,运用Dash Optimization 软件编程求解,结果如表3所示。
表3 计算结果变量名值变量名值变量名值变量名值minF
Q1
Q2
X1
X2
X3
C(1,1)
C(2,1)
C(3,1)
C(4,1)
C(5,1)
C(6,1)875357
250
100
1
0
0
0.4249
6.106
8.6785
6.7920
12.5719
4.415.3C(7,1)
C(8,1)
C(9,1)
C(10,1)
C(11,1)
C(12,1)
C(13,1)
C(14,1)
C(15,1)
C(16,1)
C(17,1)
C(18,1)13.9644
3.5108
6.5542
16.3778
7.0202
7.8822
24.3702
6.1299
10.6006
10.5779
3.1672
5.8375C(19,1)
C(20,1)
C(21,1)
C(22,1)
C(23,1)
C(24,1)
C(25,1)
C(26,1)
C(27,1)
C(28,1)
C(29,1)
C(30,1)3.7922
4.1683
21.7519
1.8961
2.0356
1.4621
2.9068
0.1910
0.0351
0.0937
0.9400
5.1418C(31,1)
C(32,1)
C(33,1)
C(34,1)
C(35,1)
C(36,1)
C(37,1)
C(38,1)
C(39,1)
C(40,1)
C(41,1)
C(42,1)0.6911
4.9106
8.6051
9.5356
3.8387
0.2523
2.3108
18.7689
0.1109
0.7848
0.7951
0.6911
注:C(i,1)表示Cil。
由表3可知:在矿山整个服务期间,只需要建立位于X1处的1个洗矿厂即可,建厂和生产运输总费用为875357万元;第i个开采单元运往该洗矿厂的计划年原矿量为C(i,1);该洗矿厂用于配矿的洗后矿计划年产出量为100万t。此方案已经在某实际堆积型铝土矿的前期生产中得到了成功应用。
四、结论
对于一些面临资源接替的堆积型铝土矿山而言,在确保配矿产品的铝硅比满足设计要求的前提下,尽可能地延长矿山服务年限和获得最大的经济效益是其共同目标。本研究借助于现代物流规划、运筹学等理论,结合矿山生产实践经验,建立了堆积型铝土矿洗矿厂厂址和配矿方案的综合优化数学模型,达到了如下目的:
(一)在资源储量及分布已知的情况下,确定了洗矿厂的位置和个数,实现了采场与洗矿厂之间的合理匹配。
(二)通过对不同品位的矿石进行合理调配,既实现了贫富矿兼采,降低了生产成本,延长了矿山服务年限,又保证了配矿产品的铝硅比满足要求。
(三)本模型的约束条件较为普遍,矿山企业可以根据实际生产情况灵活调整年作业计划,从而达到费用最省的目的。
(四)通过对约束条件进地增减,本模型的应用范围可以扩展。
阳离子捕收剂反浮选——水硬铝石型铝土矿研究
2019-01-17 09:43:54
以十二胺醋酸盐为捕收剂,SA3为抑制剂,研究了一水硬铝石、高岭石及叶腊石的反浮选分离,结果表明,在pH=6-8的范围内,SA3与十二胺醋酸盐组合,能抑制90%以上的一水硬铝石的浮出,而高岭石与叶蜡石的上浮率大于80%。作为一水硬铝石的高效抑制剂,SA3还具有用量少、适用性强、选择性高等特点。
高岭石-水软铝石铝土矿选矿技术
2019-01-29 10:09:51
这种类型矿石微细分散,用常规浮选法有可能获得高铝硅土(6~8.9)的铝土矿精矿;但精矿产率仅有20%~30%。铝土矿精矿产率低,是由于经磨矿的矿浆中小于5μm精级含量很高所致,不同类型铝土矿小于5μm粒级产率为50%~80%。和其他矿石浮选一样,细粒铝土矿可浮性低是由于其颗粒表面积增大、实现基本浮选行为率小以及其他因素所造成。
预先将细粒矿物选择性絮凝是提高浮选效率最有前途的方法之一。无论是研究具有高效能絮凝作用的捕收剂,或是录找选择性聚合絮凝剂均可达到选择性絮凝的目的。当处理铝土矿悬浮体所含需分离矿物量较高时,要把选择性絮凝作为一独立选矿作业来合理应用。选择性絮凝过程包括:(1)用物理-化学方法分散和稳定矿浆;(2)用聚合物选择性絮凝矿浆;(3)按一定粒级将物料分级,获得絮凝沉淀物和溢流两种产品,溢流为分散状态下的矿浆分出物。
某高岭石-一水软铝石铝土矿,采用粗粒机械碎解-细粒选择性絮凝流程处理,如图1a所示。其选别结果见表1,从表中可见,原矿含的Al2O353.3%,SiO217.5%,铝土矿精矿含Al2O362.4%、SiO210.2%,铝回收率58.1%,铝硅比从3.1提高到6.2,取得了一定分选效果。
表1 某高岭石-一水软铝石型矿石选别指标产品名称产率/%品位/%回收率/%铝硅比Al2O3SiO2Al2O3SiO2铝土矿精矿
中间产品
高岭石产品
原 矿50
30
20
100.062.4
54.0
31.2
53.510.2
24.0
25.9
17.558.1
30.2
11.7
100.029.2
41.2
29.6
100.06.2
2.3
1.2
3.1图1 一水软铝石型铝土矿选别工艺流程图
a-某高岭石;b-某鲕绿泥石
铝土矿
2017-06-06 17:49:59
铝土矿实际上是指工业上能利用的,以三水铝石、一水软铝石或一水硬铝石为主要矿物所组成的矿石的统称。它的应用领域有金属和非金属两个方面。 铝土矿是生产金属铝的最佳原料,也是最主要的应用领域,其用量占世界铝土矿总产量的90%以上。 中国铝土矿分布高度集中,山西、贵州、河南和广西四个省(区)的储量合计占全国总储量的90.9%(山西41.6%、贵州17.1%、河南16.7%、广西15.5%),其余拥有铝土矿的15个省、自治区、直辖市的储量合计仅占全国总储量的9.1%。 山西的铝土矿床(点)主要分布在孝义、交口、汾阳、阳泉、盂县、宁武、原平、兴县、保德、平陆等5大片42个县境内,面积约6.7万km2,探明铝土矿储量,居全国第一,该区的资源总量估计可达20亿t。 河南的铝土矿集中分布在黄河以南、京广线以西的巩县、登封、偃师、新安、三门峡、陕县、宝丰、鲁山、临汝、禹县等三大片10多个县境内,面积3万多km2,探明铝土矿储量居全国第2位,预测资源总量可达10亿t。 贵州的铝土矿床主要分布在“黔中隆起”南北两侧的遵义、息峰、开阳、瓮安、正安、道真、修文、清镇、贵阳、平坝、织金、苟江、黄平等十几个县境内,面积2400km2,探明铝土矿储量居全国第3位。预测资源总量逾10亿t。 广西的铝土矿集中分布在平果、田东、田阳、德保、靖西、桂县、那坡、果化、隆安、邕宁、崇左等县境内,探明铝土矿储量居全国第4位,预测铝土矿储量在8亿t以上。 山东的铝土矿主要分布在淄博、新泰、洪山等县境内,其探明铝土矿储量占全国总储量的3%。 此外,在海南、广东、福建、云南、江西、湖北、湖南、陕西、四川、新疆、宁夏、河北等省(区),也有铝土矿矿床产出。 更多关于铝土矿的资讯,请登录上海有色网查询。
铝土矿床类型
2019-02-15 14:21:10
依照廖士范等人的定见,我国铝土矿矿床可分为两大类型:古风化壳型铝土矿矿床(Ⅰ型)和红土型铝土矿矿床(Ⅱ型)。前一类又分为四个亚类:修文式、新安式、平果式和遵义式。后一类只要一个亚类,称漳浦式。 1)修文式:又称碳酸盐岩古风化壳异地堆积亚型铝土矿矿床。其成因与碳酸盐岩喀斯特红土化古风化壳有关。又因为铝土矿与下伏碳酸盐岩基岩之间稀有米厚的湖相铁矿扁豆体堆积,铝土矿不是原地堆积的,而是这个已挨近干燥的湖泊邻近的红土化风化壳异地迁移来堆积成的。该类矿床以贵州修文县小山坝铝土矿矿床较为典型。这是我国最重要的一类铝土矿,其储量占本类型(Ⅰ型)的74.76%。 2)新安式:又称碳酸盐岩古风化壳原地堆积亚型铝土矿床,以河南新安张窑院铝土矿床较为典型。其储量占本类型(Ⅰ型)的5%。 3)平果式:又称碳酸盐古风化壳原地堆积-近代喀斯特堆积亚型铝土矿床。该矿床的层状矿之上覆及下伏基岩数百米厚度规模以内均为石灰岩,通过第四纪喀斯特化,石灰岩、铝土矿石再风化成钙红土及铝土矿石碎块掉落成堆积矿石。其占古风化壳型铝土矿总储量的15.04%。 4)遵义式:又称铝硅酸盐古风化壳原地堆积亚型铝土矿床,下伏基岩是细碎屑岩或基性火山岩,是下伏基岩红土化风化壳原地堆积(少量坡积)的铝土矿床。铝土矿与下伏基岩之间有接连过渡现象,铝土矿与上覆地层有腐蚀间断面。其占Ⅰ型矿床储量的5.2%。 红土型铝土矿矿床只要一个亚类,称漳浦式红土型铝土矿床,是第三纪到第四纪玄武岩通过近代(第四纪)风化作用构成的铝土矿床,其储量很少,仅占我国铝土矿总储量的1.17%。
铝土矿知识
2018-12-29 09:43:01
铝土矿是铝氧、陶瓷、耐火工业的天然原料,我国已探明储量25亿吨,占世界总储量2.4%,每年开采量占世界总开采量8%。建国后,国家先后在铝土矿资源丰富的山西阳泉、贵州贵阳、河南渑池建立了铝土矿原料生产基地,满足了当时国民经济建设快速发展的需求,同时也积累了铝土矿原料生产的经验和教训。改革开放后,民营企业得到迅猛发展,铝土矿原料产量大幅增加,但一直以煅烧天然块料为主,资源利用差,能耗高,污染严重。
铝土矿是可用尽且不可再生的宝贵资源,我国耐火材料约有65%属于Al2O3-SiO2系产品,其中的65%左右产品都以铝土矿为原料,尤其近年来随着氧化铝生产的高速发展,过度地开采和生产加工致使我国铝土矿资源日趋匮乏,资源保有储量快速下降,高铝富矿供给矛盾更是严重突出。因此,在保障耐火材料和铝工业健康发展的前提下,加强对提高我国铝土矿资源利用率的研究,采取均化、提纯等先进技术使天然原料品位、质量发生质的提升,不仅提高铝土矿综合利用水平和生产附加值,还为研发大量优质合成新材料打下了坚实的基础。