废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
闪速炉熔剂及常用燃料
2019-03-06 09:01:40
一、熔剂
闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。
表1 闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2 As<0.1 F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8 Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3 Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4 直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。
二、燃料
闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。
因为烟气用于制酸,因而对燃料含硫无要求。
各厂闪速炉用燃料的实例见表2,表3。
表2 闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5 注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。
表3 闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm 14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90% 有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。
鼓风烧结配料所采用的熔剂
2019-01-07 17:38:01
鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。
一、硅质熔剂 一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。
二、铁质熔剂 多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。
三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。
表1为熔剂的化学成分实例。
表1 熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95 石灰石20.4155.731.340.330.59 石灰石30.353.970.620.230.89 石英石10.191.0891.80.14 石英石20.52.2197.12 石英石31.261.0894.86 河砂12.41.3575.853.04 河砂21.510.687.48 河砂33.02.074~80 0.30.10.1 烧渣147.44.158.2 烧渣243.866.29.31 烧渣347.554.3510.21 平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60 0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47 5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35 0.01 8~10140
注:Au、Ag的单位为g/t。
火法炼金常用熔剂及其作用
2019-01-07 07:52:09
火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。
铝合金熔体的熔剂精炼
2019-01-02 15:29:20
本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。
在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。
铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。
1 熔剂的作用
盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。
2 熔剂的分类和选择
2.1熔剂的分类和要求
铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。
①熔点应低于铝合金的熔化温度。
②比重应小于铝合金的比重。
⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。
④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。
⑤吸湿性要小,蒸发压要低。
⑥不应含有或产生有害杂质及气体。
⑦要有适当的粘度及流动性。
⑧制造方便:价格便宜。
2.2熔剂的成分及熔盐酌作用
铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。
2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4
,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。
2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;
b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。
3铝合金熔炼中常用熔剂
熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。
3.1常用熔剂
为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。
铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。
表1 常用熔剂的成分及应用
溶剂种类 组分含量,%
NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金
覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg
系,Al-Cu-Si系Al-Cu-Mg-Zn系
Na2CO385。CaF15 一般铝合金
50 50 一般铝合金
KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金
31 14 CaF210 CaCL244 Al-Mg系合金
8 67 CaF210,MgF215 Al-Mg系合金
精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金
8 67 MgF215,CaF210 Al-Mg系合金
KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金
42 46 Bacl26 (2号熔剂) Al-Mg系合金
22 56 22 一般铝合金
50 35 15 一般铝合金
40 50 NaF10 一般铝合金
50 35 5 CaF210 一般铝合金
60 CaF220,NaF20 一般铝合金
36-45 50-55 3-7 CaF 21。5-4 一般铝合金
Na2SiF630-50,C2Cl650-70 一般铝合金
40。5 49。5 KF10 易拉罐合金
从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。
综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。
3。2熔剂用量 .
熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。
3。2。1.主覆盖剂用量
a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合
注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。
b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。
表3: 覆盖剂用量
类 别 用量(占投料量的%)
小碎片碎 屑号外渣子 6-810-1515-20
3.2.2精炼剂用量
不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。
表4 精炼剂用量
合金及制品 熔炼炉 静置炉
高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t
特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t
LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝
其它合金 普通熔剂5-6kg/t
注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加
②对大规格的圆锭,其熔剂用量也应适当增加。
3。3熔剂使用方法
熔剂精炼法熔炼铝合金生产中常用以下几种方法
①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。
②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。
③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。
④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。
在这五种方法中,电熔剂精炼效果最好。
冶炼厂熔剂破碎设备选择
2019-01-07 17:38:04
冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。
一、破碎设备的选择
冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。
若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,
近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。
图1 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
图2 二段一次闭路破碎筛分流程实例
图3 三段半闭路破碎筛分设计流程图实例
二、破碎机生产能力计算
破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。
(一)颚式、圆锥(标准、中型和短头)破碎机
1、开路破碎的生产能力计算
Q=K1K2K3K4Q0 (1)
式中:
Q-设计条件下,破碎机的生产能力,t/h;
Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:
Q0=q0e
K1-熔剂的可碎性系数,由表1选取;
K2-熔剂密度修正系数,由下式计算:
K2=γ/1.6≈γT/2.7
K3-给料粒度或破碎比修正系数,由表2或表3选取;
K4-水分修正系数,进料水分5%以下时,可取1;
q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;
e-破碎机排料口宽度,mm;
γ-熔剂的堆积密度,t/m3;
γT-熔剂的密度,t/m3。
表1 熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易 碎8以下1.1~1.2中等可碎8~161.0难 碎16~200.9~0.95
表2 粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23
表3 中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20
注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;
2、设有预先筛分时取小值;不设预先筛分时取大值。
表4 颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30
表5 开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0
表6 开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0
表7 开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中 型2.765.4 9.620.0短头型4.256.7 14.025.0
表8 颚式破碎机生产实例厂 别设备规格
mm熔剂种类给料粒度
mm排料口宽度,mm生产能力
t/h大 冶450×750石英石、
石英石300~40010050白银一冶600×900石英石、
石英石48075~20035~120铜陵二冶400×600石英石、
石英石32040~10025~60云 冶400×600石英石30040~10012~32
2、闭路破碎时破碎机通过的熔剂量生产能力计算
Qc=KQ0 (2)
式中:
Qc-闭路时破碎机的生产能力,t/h;
Q0-开路时破碎机的生产能力,t/h;
K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。
(二)光面对辊破碎机
Q=60πDLdnγK (3)
式中:
Q-对辊破碎机的生产能力,t/h;
D-辊筒直径,m;
L-辊筒长度,m;
d-排料口宽度,m;
n-辊筒转数,r/min;
γ-破碎熔剂的堆积密度,t/m3;
K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。
(三)反击式破碎机
Q=60K1C(h+ɑ)dbnγ (4)
式中:
Q-反击式破碎机的生产能力,t/h;
K1-理论生产能力与实际生产能力的修正系数,一般取0.1;
C-转子上板锤数目;
h-板锤高度,m;
ɑ-板锤与反击板间的间隙,即排料口宽度,m;
d-排料粒度,m;
b-板锤宽度,m;
n-转子的转数,r/min;
γ-熔剂的堆积密度,t/m3。
(四)锤式破碎机
Q=60ZLCdμKnγ (5)
式中:
Q-锤式破碎机的生产能力,t/h;
Z-排料篦条的缝隙个数;
L-篦条筛格的长度,m;
C-筛格的缝隙宽度,m;
d-排料粒度,m;
μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。
K-转子圆周方向的锤子排数,一般为3~6;
n-转子转数,r/min;
γ-熔剂的堆积密度,t/m3。
由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:
Q=(30~45)DLγ (6)
式中:
Q-锤式破碎机的生产能力,t/h;
D-按转子外缘计的转子直径,m;
L-转子长度,m;
γ-破碎产物的堆积密度,t/m3。
以上经验公式都有局限性,应注意其使用条件。
三、需要破碎机台数的计算
n=Qn/Q (7) 式中:
n-需要破碎机台数;
Qn-破碎作业的设计产量,t/h;
Q-破碎机的生产能力,t/(h·台)。
表8至表10为铜冶炼厂熔剂破碎机生产实例。
表9 标准圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3给料粒度
mm排料口宽度,mm生产能力
t/h大 冶900石英石、
石英石1.490~15025~2850白银一冶1200石英石、
石英石1.6411520~3042~135铜陵二冶900石英石、
石英石1.511012~2540
表10 短头圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3排料口宽度,mm产品粒度
mm生产能力
t/h备注大 冶1200石英石、
石英石1.48~106~850闭路白银一冶1200石英石、
石英石1.5~1.66~10~1550开路
金、银锭熔铸的原理-熔剂和氧化剂
2019-02-21 13:56:29
在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。
熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。
熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。
熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。
冶炼厂熔剂磨碎分级流程的选择与计算
2019-01-07 17:38:01
一、流程选择
当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。
图1 三段开路破碎筛分流程图实例
图2 熔剂磨碎分级流程实例
二、流程计算
以图2为例,其计算方法如下:
Q1=Q4
Q5=CQ1
Q2=Q3=Q1+Q5
式中:
Q1Q2……-各产物数量,t/h;
C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。
表1 磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限
mmC值
%磨碎机与分级机闭路Ⅰ0.5~0.3
0.3~1.0150~350
250~600磨碎机与旋流器比例Ⅰ0.4~0.2
0.2~1.0200~350
300~600
鼓风炉化矿采用的原料、熔剂和燃料
2019-01-07 07:51:21
一、铅锌氧化矿
表1为会泽铅锌矿的铅锌氧化矿化学成分实例。
表1 铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1 铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4 二、熔剂
熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。 三、燃料
表2为焦炭性质及化学成分实例。
表2 焦炭性质及化学成分实例焦种块度
mm固定碳
%挥发分
%灰分
%灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81
电工铝杆用高效排杂净化熔剂介绍
2019-01-08 13:40:18
电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。
高炉炼铁对碱性熔剂3个质量要求
2019-01-04 11:57:16
高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.
冶炼厂熔剂破碎筛分流程的计算
2019-01-07 17:38:01
破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。
计算破碎筛分流程必须具备以下原始资料:
一、按原矿计的生产能力。
二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。
图1 原矿粒度特性曲线
三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。
图2 颚式破碎机产品粒度特性曲线
图3 标准圆锥破碎机产品粒度特性曲线
图4 中型圆锥破碎机闭路破碎产品粒度特性曲线
图5 短头圆锥破碎机开路破碎产品粒度特性曲线
(因本图表不清,需要者可来电免费索取)
图6 短头圆锥破碎机闭路破碎产品粒度特性曲线
(因故图表不清,需要者可来电免费索取)
图7 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。
破碎筛分流程的基本类型及计算公式列于表1。
表1 破碎筛分流程的基本类型及计算公式
Q1-原矿两,t/h;
Q2,Q3,Q4……Qn-各产物的重量;
β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;
E-筛分效率,%;
Cc-破碎机的循环负荷,%;
Cs-筛分机的循环负荷,%。
破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。
表2 d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口
e筛孔
ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85
以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。
图8 三段一次闭路破碎筛分流程图实例
图9 熔剂破碎筛分流程计算图
该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。
按破碎比: ί=ί 1 ί 2 ί 3
ί=300/6=50
参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。
(一)各段破碎产品最大粒度的计算:
d2=D最大/ ί 1=300/3=100mm
d3=d2/ ί 2=100/3=33.3mm
d7=d3/ ί 3=33.3/5.5=6mm
(二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)
e2=d2/Z=100/1.6=62.5mm(取65mm)
e3=d3/Z=33.3/1.9=17.5mm(取20mm)
短头圆锥破碎机的排矿口e7,参照表2。
e7=0.8,d7=0.8×6=4.8mm(取5mm)
(三)筛孔尺寸和筛分效率
根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。
设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。
(四)破碎作业计算
参照表1,
Q1=Q2=Q3=Q4+Q5=Q8=50t/h
Q6=Q7=C Q3
循环负荷率
式中:
β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;
β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。
参照表1,
Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下
=50×0.25×0.65+25×0.52×0.65
=16.58t/h
式中:
β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;
β30~6-产物3中小于6mm粒级含量,%,查图3得出;
β70~6-产物7中小于6mm粒级含量,%,查图6得出。
Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h
任一产物的产率
式中:
Qn-任一产物的产量,t/h;
Q1-流程的给矿两,t/h。
(计算从略)
冶炼厂熔剂破碎筛分流程的选择
2019-01-07 17:38:01
破碎作业一般分为粗、中、细碎三段,其粒度的划分见表1。
表1 粗、中、细碎粒度的划分项 目给料粒度,mm出料最大粒度,mm粗 碎>30100~150中 碎100~30030~100细 碎50~1005~30
注:冶炼厂一般要求矿山供应300mm左右的熔剂。
表1的划分是相对的,可以大致说明破碎分段的情况。有些破碎机可兼有粗、中碎或中、细碎的作用。破碎段数的确定主要依给料粒度、产品粒度及所选用的破碎设备型号、性能而定。
熔剂破碎设备的破碎比用i=D/d表示,式中i为破碎比,D与d分别为破碎前后物料的最大粒度。
总破碎比等于各段破碎比的乘积。主要破碎机的破碎比范围可参照表2选取,熔剂硬度大的取值小,硬度小的取大值。
表2 破碎机在不同情况下的破碎比范围破碎段数破碎机型式流程类型破碎比第Ⅰ段
第Ⅱ段
第Ⅱ段或第Ⅲ段
第Ⅲ段
颚式破碎机
标准圆锥破碎机
中型圆锥破碎机
同上
对辊破碎机(光面)
同上
对辊破碎机(齿面)
反击式破碎机
同上
捶式破碎机(单转子)
捶式破碎机(双转子)
细碎颚式破碎机
短头圆锥破碎机
同上开路
开路
开路
闭路
开路
闭路
开路
开路
闭路
开路
开路
开路
开路
闭路3~5
3~5
3~6
4~8
3~8
3~15
10~15
10~15
8~40
10~15
30~40
10~21
3~6
4~8
几种主要破碎机排料中大于排矿口尺寸的过粗颗粒含量β和最大颗粒与排矿口尺寸之比Z见表3。
表3 破碎机排矿中大于排矿口颗粒含量β和最大颗粒与排矿口尺寸之比Z矿石硬级颚式破碎机标准圆锥破碎机短头圆锥破碎机β,%Zβ,%Zβ,%Z硬
中硬
软38
25
131.75
1.60
1.4053
35
222.4
1.9
1.675
60
382.9~3.0
2.2~2.7
1.8~2.2
注:1、短头圆锥破碎机闭路时取小值,开路时取大值;
2、最大颗粒度为95%的熔剂通过筛孔尺寸的粒度,用d最大表示。
熔剂破碎作业的总破碎比:i=D最大/d最大。式中D最大和d最大分别为进厂熔剂和最终破碎产品的最大粒度。
在实际应用中,要求的总破碎比往往较大,物料需经几段破碎才能达到最终的粒度。破碎机常和筛子组成破碎筛分流程。
破碎筛分流程中的筛分主要有预先筛分和检查筛分之分。预先筛分的作用是把给料中小于破碎机排料粒度的粒级分出,以减轻破碎机的负荷和磨损检查筛分的目的是控制破碎产品的粒度以及充分发挥破碎机的能力,其筛孔尺寸大致为所要求粒度的大小,筛上产品为不合格产品,返回破碎机再行破碎,筛下产品为合格产品。
冶炼厂用作熔剂破碎的设备能力,一般均比较富余,同时为避免增加设备和厂房,通常不单设预先筛分而在最后一段设检查筛分,也可兼作预先筛分之用。凡是不带筛分或仅有预先筛分的为开路流程,凡是有检查筛分的为闭路流程。
在设计中通常用普氏硬度系数f作为物料的硬级分类,f=16~20为难碎性矿石或硬矿石;f=8~16为中等可碎性矿石或硬矿石;f<8为易碎性矿石或软矿石。f大致等于抗压强度(MPa)的1/10,可以用试验室测定的为标准。
图1至图9为熔剂破碎筛分流程图实例。
图1 三段一次闭路破碎筛分流程图实例
图2 三段开路破碎筛分流程图实例
图3 二段一次闭路破碎筛分流程图实例(1)
图4 二段一次闭路破碎筛分流程图实例(2)
图5 二段一次闭路破碎筛分流程图实例(3)
图6 二段开路破碎设计流程图实例
图7 二段一次闭路破碎筛分流程图实例(4)
图8 二段开路破碎筛分设计流程图实例
图9 三段半闭路破碎筛分设计流程图实例
开路流程的优点是比较简单,设备少,扬尘点也较少。缺点是当要求破碎产品粒度较细时,破碎效率较低。闭路流程的破碎效率较高,但需要设备较多,流程较复杂。
闭路流程的检查筛分是先筛去合格产品,筛上物入最后一段破碎,破碎产物返回筛分。当入筛粒度较大且有一部分产物符合某种产品要求时,宜采用双层筛。
重有色冶金炉对入炉熔剂的粒度要求
2019-01-07 17:38:01
火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。
表1 重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉
铜密闭鼓风炉
铜熔炼反射炉
铜白银炉
铜电炉
铜闪速炉
铜转炉
铜火法精炼炉
铅鼓风炉
铅锌鼓风炉
锡反射炉
锡电炉
氧气底吹炼铅炉
镍闪速炉
镍电炉<3
40~50
<6
<6
3~5
<0.5
5~25
2~3
<6
<3~6
<10
<3
<0.3
5~10<3
30~80
<6
<6
3~5
(石灰)
(石灰)
<6
<6
<5~6
<10
<3
湿式配料时<0.2
其它块度20~100
铜连续吹炼炉
石英石3~25
铅和铅锌鼓风烧结对原料、熔剂的一般要求
2019-01-07 17:38:01
原料、熔剂的一般要求:
铅和铅锌烧结对原料、熔剂的一般要求列
表1 烧结原料、熔剂、焦粉的一般要求物料名称化学成分,%粒度,mm水分,%备注铅精矿按国家(部)标准或协议按选矿定<12,北方冬天<8含砷不大于0.5%铅锌混合精矿Pb+Zn>48%同上同上同上铅块矿(杂矿)含Pb>25%<10<2含铜不大于1%石灰石CaO≥50;Mg≤3.5;SiO2+Al2O3≤3<6<2 石英石SiO2≥90;Al2O3≤2~5<6<2以河沙或含金石英砂作熔剂时,SiO2含量可适当降低。焦粉固定碳>75<10<1
注:表中粒度系指配料工序的要求。
什么是可燃冰?中国首次海域天然气水合物(可燃冰)试采成功
2019-03-07 09:03:45
我国初次海域天然气水合物(可燃冰)试采成功!据央视新闻今日(18日)征引国土资源部我国地质调查局音讯,这标志着我国成为全球榜首个完结了在海域可燃冰试挖掘中取得接连安稳产气的国家。中央国务院对海域天然气水合物试采成功发去贺电。
可燃冰,学名天然气水合物(Natural Gas Hydrate,简称GasHydrate),是散布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下构成的类冰状的结晶物质。因其外观像冰相同并且遇火即可焚烧,所以又被称作“可燃冰”或许“固体瓦斯”和“气冰”。
焚烧后,可燃冰仅会生成少数的二氧化碳和水,污染比煤、石油、天然气小许多,但能量高出十倍。此外,可燃冰储量巨大,所含有机碳资源总量相当于全球已知煤、石油和天然气总量的两倍,被国际公认为石油、天然气的顶替动力。
我国统辖海域和陆区也蕴藏有丰厚的可燃冰资源,因而走近、知道可燃冰显得含义特殊。
正式出气至今 已累计产出超12万立方米含量高达99.5%的天然气
据央视新闻报道,我国南海北部的神狐海域,也是我国正在进行的可燃冰试挖掘的现场。这个继续不断焚烧的火焰,就是正在从1000多米的水下分化提取出的可燃冰所发生的气体。这标志着我国初次试挖掘得到了全面成功。
国土资源部地质调查局在本年2月标明,现在我国现已初步查明我国可燃冰的资源潜力,本年,我国将展开海上可燃冰的试挖掘。
经过勘查,2016年,在我国海域,已圈定了6个可燃冰成矿前景区,在青南藏北已优选了9个有利区块,据猜测,我国可燃冰前景资源量超越1000亿吨油当量,潜力巨大。
国土资源部我国地质调查局资源点评部负责人邢树文说,可燃冰在我国的海域圈定了一系列的找矿前景区,也猜测了资源量。本年咱们正在活跃进行这方面的试采预备。
南海北部神狐海域的天然气水合物试挖掘现场距香港约285公里,采气点坐落水深1266米海底下200米的海床中。自5月10日正式出气至今,已累计产出超12万立方米含量高达99.5%的天然气。完结接连超一周的安稳产气,标志着我国进行的初次天然气水合物试采宣告成功。
我国地质调查局副总工程师、天然气水合物试采现场总指挥叶建良标明,从5月10日正式出气试焚烧成功,到现在为止,咱们现已接连挖掘八天了,日产超越一万方以上,最高日产到达了3.5万方,这种接连安稳的出气,到达了咱们本来预订的方针。
可燃冰,是由天然气和水在高压低温的条件下构成的类冰状的结晶化合物,猜测资源量相当于已发现煤、石油、天然气等化石动力的两倍以上,是国际公认的一种清洁高效的未来代替动力。
因绝大部分埋藏于海底,所以可燃冰挖掘难度非常巨大。现在,日本、加拿大等国都在赶紧对这种未来动力进行试挖掘测验,但都因种种原因未能完结或未到达接连产气的预订方针。
此次试挖掘成功,不只标明我国天然气水合物勘查和开发的核心技能得到验证,也标志着我国在这一范畴的归纳实力到达国际顶尖水平。
国土资源部我国地质调查局副局长李金发:这一次天然气水合物的试挖掘成功,咱们是优先抢占了领跑和技能高地,完结了我国在天然气水合物开发上的领跑。它将会是继美国引领页岩气革新之后的,由我国引领的天然气水合物革新,将会推进整个国际动力使用格式的改动。
我国可燃冰挖掘技能领跑国际
日均安稳产气超越一万方,以及继续超一周的接连产气时刻,这两个方针在之前还没有一个国家可以成功完结。而完结这一历史性的腾跃,我国科学家们又是在怎么做到的呢?
天然气水合物的试挖掘一直是一项国际性难题。2013年日本曾测验进行过海域天然气水合物的试挖掘作业,尽管成功出气,但六天之后,因为泥沙堵住了钻井通道,试采被逼中止。
李金发说,榜首每日试采的取气量要到达一万方以上,第二是接连产气一周。咱们一切的方针都超越了预订方针,所以我国是国际海域天然气水合物开发成功的榜首个国家。
为完结这一方针,我国科学家使用降压法,将海底本来安稳的压力下降,然后打破了天然气水合物储层的成藏条件,之后再将涣散在相似海绵空地中相同的可燃冰集合,使用我国自主研制的一套水、沙、气别离核心技能最终将天然气取出。
叶建良受访时标明,咱们这次运用了地层流体抽取法,从单纯考虑降压变成了重视流体的抽取,经过确保流体的抽取来完结安稳的降压。降压计划充分体现了优越性,也是确保咱们这次试采成功一个关键因素,这也是在国际上从理论到技能办法的一个立异。
陶瓷装甲战车
2019-03-11 11:09:41
陶瓷装甲开始是美国陆军为进步其直升机生存力而研发的,由于1962年美军直升机在越南遭受巨大损失。随后陶瓷装甲被主张用到轻型装甲战车上,但直到1990~1991年海湾战争之前这项主张还未来得及履行。海湾战争期间,这种轻型附加体系才匆促地装到美国海军陆战队的8×8LAV坦克车上,陶瓷装甲从此在轻型坦克车辆上广泛选用。
运用最早、最广泛的陶瓷是氧化铝,又称铝钒土(Al2O3)。铝钒土包含的材料很广,从含85%氧化铝的普通铝钒土到最新开发的含量为99.5%的高品质钢玉,后者的报价为前者的两倍多。其它类陶瓷更贵,例如没有使用到车辆装甲上的碳化硅(SiC)及陶瓷装甲材料中最贵重的碳化硼(B4C)。
陶瓷装甲抗屡次冲击才能很低,但是经过参加增强颗粒或晶须就能大大进步这种才能,例如在氧化铝基体中掺有碳化硅的LAST装甲块。在运用陶瓷进步轻型战车防之前,陶瓷承担着坦克抵挡空心装药弹药的重担——一般以为,用来抵挡空心装药以及的陶瓷是氧化铝。而抵挡长杆最有用的、最经济,最有或许运用的陶瓷仍是氧化铝。
现在,轻型坦克车如加拿大M113、瑞典Pbv302履带式装甲人员输送车、德国TPz狐式6×6运输车、新加坡M113履带式装甲人员输送车都选用了陶瓷装甲。上世纪50年代,美苏都曾企图在自己的主战坦克上使用陶瓷装甲:美国M48坦克选用附加装甲,却在1958年抛弃了该项目;苏联在60年代继续进行该研讨,陶瓷终究被嵌在T-64坦克的铸造炮塔的正面部分,该技能已广泛地用于T-72和后来的T-80坦克上。此外,南非为T55坦克研发了陶瓷附加装甲,日本也曾泄漏Kyoto陶瓷公司参加为日本90式坦克研发复合装甲。
废钢铁的辨识
2019-03-13 10:03:59
常用的辨别办法有火花辨别法、点试辨别法、听音辨别法、磁性辨别法、断口辨别法等。 1. 火花辨别法经过钢铁材料砂轮上研磨进程中所发作的火花特征来判别其化学成分的办法,可用于现场快递辨认材料之用。但用这种办法一般只能得到主要成分的定性估量,欲知其含量有必要具有极其丰富的经历。 (1) 火花发作的根本原理 钢铁材料在砂轮上研磨时,因为砂轮转速很快,发作高热,使材料研磨出的颗粒到达熔融状况,这些高温、熔融的细颗粒被砂轮的离心效果抛射在空气中发作亮光,其表面层与空气中的氧发作氧化效果,构成一层氧化铁薄膜。此外,钢中的碳化物( Fe3C )在高温下分化,分出碳原子,反应式为: Fe3C --- 3Fe+C 碳原子和表面层氧化亚铁发作复原效果,构成,反应式为: FeO+C--- Fe+CO 氧化亚铁被复原后,与空气中的氧复兴氧化效果,在瞬时氧化复原的循环效果下颗粒的温度越升越高,内部的积累也越来越多,因为内部胀大,发作爆裂,就构成火花。钢铁材料中的碳元素是发作火花的根本元素,而当钢中含有猛、硅、钨、钼、铬等元素时,它们的氧化物将影响火花的一致线条、色彩和形状,由此能够判别钢的化学万分。 ( 2 )火花的特性 以火束、流线、芒线分叉、爆花等的形状、色彩加以描绘。其间,火束是指钢铁在研磨时所发作的悉数火花,如图 1-1 所示;流线是指火热粉末在空气中飞过韶光亮线条的运动轨道,如图 1-2 所示;芒线是火花爆裂时所射出的线条,含碳量纷歧起其分叉状况纷歧,如图 1-3 所示;爆花是指由芒线及其节点所组成的火花形状,如图 1-4 所示。涣散在爆花之间的亮堂小点,称为花粉;在流线的尾部的爆花,称为尾花,如图 1-5 所示。 ( 3 )碳素钢火花特征的规则跟着含碳量的添加,流线逐步增多,火束长度逐步缩短,粗流线变细,芒线逐步细而短,由一次爆花转向屡次爆花,花的数量和花粉逐步增多。当 C
0.35% 时,则有逐步增多的三次火花。光亮度跟着含碳量的升高而添加。砂轮研磨时,手感觉钢件由软逐渐变硬。不同碳含量碳素钢的火花特征如表 1-1 所列。 钢铁中含合金元素量不同,火花特征也不同,有的元素能增强火花,有的则按捺火花。如表 1-2所示。.
镁精炼(三)
2019-03-04 16:12:50
电解法炼镁进程中从电解槽取出的镁和热复原法炼镁进程中从复原炉取出的镁,均称为粗镁,都达不到质量标准,有必要去除镁中杂质,才干到达质量标准。 电解法粗镁含有金属杂质和非金属杂质。金属杂质有Fe、Si、Al、Ni、Mn、Cu、K、Na和Ca。这些金属杂质,有的是电解进程中在阴极上分出的,有的是其氯化物或氧化物被镁复原出的。非金属杂质物质有MgCl2、NaCl、KCI、CaCl2、Mg3N2、MgO、SiO2、Fe2O3,CaO。非金属杂质中氯化物是出镁时从电解槽带出的电解质;Mg3N2是镁在空气中焚烧生成的;MgO是质料和电解质含有的,也有镁焚烧生成的;其他氧化物是从槽衬耐火材料磨损下来的。热复原法粗镁也含有金属杂质和非金属杂质。金属杂质有Si、Al、Fe、Mn、Ni、Zn、K和Na。金属杂质中Si、Fe、A1、Mn首要来源于复原剂硅铁粉尘;其他金属杂质是被复原出来的。非金属杂质有MgO、CaO、Fe2O3、 SiO2、CaF2,来源于球团料粉尘。不管电解法粗镁仍是热复原法粗镁,金属杂质含量较少,小于或等于重熔镁锭标准中较低等第的规定值;非金属杂质含量较多。 镁精粹办法有熔剂精粹、沉降精粹、添加剂精粹、真空蒸馏、区域熔炼和电解精粹。熔剂精粹和沉降精粹是精粹粗镁的办法。各镁厂或选用熔剂精粹办法或选用沉降精粹办法精粹粗镁。通过其间一种办法精粹过的镁称为精镁,镁质量到达了一般用处的重熔镁锭质量标准,铸成镁锭供应。添加剂精粹是去除一种或几种杂质的办法,是前两种精粹办法的弥补。真空蒸馏、区域熔炼和电解精粹是将精镁再精粹,进一步去除杂质,制取特殊用处的简直不含杂质的高纯镁,这儿不介绍了。 熔剂精粹是在熔融状态下用熔剂去除镁中杂质。熔剂精粹首要作用是去除非金属杂质,又能通过化学作用除掉碱金属K和Na。熔剂应具有以下性质:熔剂与镁和坩埚不起化学反响;熔剂熔点低于镁的熔点;熔剂与杂质间界面张力小,与液体镁界面张力大,因此熔剂既可以吸附杂质,又能与液体镁别离;熔剂与液体镁密度不同。按用处区分,有精粹熔剂和掩盖熔剂。精粹熔剂密度大于液体镁密度,用作去除杂质。掩盖熔剂密度小于液体镁密度,用作掩盖于液体镁表面,阻隔空气,避免镁氧化。 熔剂由碱金属和碱土金属氯化物与氟化物组成。各镁厂的熔剂配方不同。我国镁厂精粹粗镁用的熔剂成分见表2。表2 我国镁厂精粹熔剂成分/%熔剂称号MgCl2KClNaClCaCl2BaCl2MgO根底熔剂38±337±38±38±39±3精粹熔剂根底熔剂90~95+CaF26~10掩盖熔剂根底熔剂75~80+硫黄粉20~25[next]
熔剂精粹选用坩埚精粹炉。精粹炉由普通耐火砖砌筑,由电、天然气或煤气加热。坩埚有铸钢的,也有耐热钢板焊接的。首先把熔剂参加精粹炉坩埚,并开端加热,熔剂熔化后参加粗镁。待粗镁熔化、温度到达700℃时,用拌和器拌和液体镁,使液体镁与熔剂充沛触摸、吸附杂质,拌和时刻约20min,再升温至730-750℃,静置5-15min,使杂质和熔剂沉降,与液体镁别离。在以上进程中,经常向坩埚内撒些掩盖熔剂,避免液体镁焚烧。精粹进程中,非金属杂质被熔剂吸附、沉降,与镁别离。一起,碱金属K和Na与熔剂中MgCl2反响生成KCl和NaCl,进入熔剂而被除掉。静置期间,精粹炉中止加热。当液体镁温度降到680-710℃时,用气动泵抽取液体镁注入铸锭机铸成镁锭。精粹1t电解粗镁(液体镁)耗电300kW·h,熔剂30kg。精粹1t皮江法粗镁(结晶镁)耗电600kW·h,熔剂120kg。 热复原法镁厂均选用熔剂精粹法精粹粗镁。小型电解法镁厂也选用此法。 (二)沉降精粹 沉降精粹是大型电解镁厂精粹粗镁的办法。该法是在电加热熔盐炉(为接连精粹炉)中通过沉降去除镁中杂质。精粹炉见图,精粹炉为圆形,钢壳内衬耐火砖;炉顶直径约5.5m,炉底直径约3m,高约4.5m;炉中心部位是集渣井,炉体下部均匀分布6根石墨电极,加热功率300kW;加热介质氯盐温度720-730℃,氯盐成分为MgCl2 8%-12%、KCl 55%-65%、NaCl 18%-22%、CaCl2 0.5%-2%、BaCl2 5%-8%、CaF2 0.3%-1%。其密度大于液体镁的密度,因此坐落液体镁层下面。
[next]
电解槽中抽取出的液体镁,用台包运到精粹车间,从粗镁参加口注入接连精粹炉。因为加料管伸入氯盐熔体基层,液体镁从加料管出来后通过氯盐熔体层上浮到镁液层。这一进程与熔剂精粹进程相同。镁液层储存镁8-10t,温度710-720℃。镁在炉内逗留2h以上,镁中非金属杂质充沛沉降别离。精粹渣聚集于炉底中部集渣井内,定时翻开井盖用抓斗抓取渣。铸锭用的虹吸管从炉盖上刺进镁液层,开端铸锭时用真空泵将虹吸管抽成负压、使液体镁流出。为了避免液体镁焚烧,向炉内充氩气。接连精粹炉每天产精镁50-100t。精粹1t镁耗电50-100 kW·h,氯盐60kg。 (三)添加剂精粹 该办法是通过向液体镁中参加某种单质或化合物除掉镁中某些杂质的办法。添加剂精粹是对熔剂精粹或沉降精粹过的镁进一步精粹。 电解法粗镁和热复原法粗镁,通过熔剂精粹或沉降精粹,除掉了非金属杂质和碱金属K和Na,不能除掉其他金属杂质Fe、Si、Al、Mn、Cu和Ni。因为粗镁中金属杂质含量较少,通过熔剂精粹或沉降精粹,镁的质量一般能到达重熔用镁锭质量标准中我国标准Mg 99.90等第,可以满意普通用处要求。若要求镁含Fe 0.04%-0.003%、Si 0.01%-0.005%,应对熔剂精粹或沉降精粹的镁进行添加剂精粹。添加剂精粹除掉杂质最多的是Fe和Si,其次是Al和Mn,也能除掉一部分Cu和Ni。 用作精粹添加剂的有锰、钛和锆。锰以镁锰合金方式参加,钛和锆可以金属或氯化物方式参加。这几种添加剂可以与Fe、Si等金属杂质构成难溶于镁的金属间化合物,然后沉降别离出来。其间,钛和锆的精粹作用好,锆报价贵,因此常用的是钛。用钛添加剂精粹过的镁的杂质含量为Fe 0.004%、Si 0.005、Al 0.005%、Mn 0.01%、Cu 0.003%、Ni 0.0007%。镁的质量到达了我国标准Mg 99.95等第,行将熔剂精粹或沉降精粹过的镁进步一个等第或更高等第。 用钛添加剂精粹镁,运用的设备是坩埚精粹炉。先制备含钛熔剂,在坩埚精粹中熔化氯盐,氯盐成分为KCl 40%-70%、NaCl 20%-50%、MgCl2 10%,待氯盐熔化后参加粒度为18-60目海绵钛粉,拌和混合均匀。将熔剂精粹或沉降精粹过的镁参加坩埚精粹炉,然后参加含钛熔剂,当温度到达700-720℃时,用拌和器拌和5-15min,使钛与Fe等金属杂质充沛触摸、吸附、构成金属间化合物,静置沉降15-30min,最终进行铸锭。氯盐参加量为镁的20%,钛参加量为镁的0.05%-0.3%。 也可以用作添加剂。与镁反响生成钛,然后由所生成的钛吸附镁中金属杂质。但选用作添加剂精粹设备比较复杂。
熔融分解法的基本知识
2019-01-04 09:45:26
(一)熔融的基本原理
样品处理中的熔融是指将样品与某些固体试剂混合,加热到这些试剂熔点以上的温度,固体试样与熔剂间发生多相化学反应,样品被分解为可溶于水或酸的化合物,使其易于在下一步浸取成分过程。该法是一种高效分解方法,主要用于无法用酸分解或酸分解不完全的试样,如复杂矿石、合金等。
(二)熔融常用的熔剂及其注意事项
熔融分解要求使用过量的熔剂(通常为试样量4-8倍),助熔剂的加入量非常重要,试剂中的不纯物有可能成为元素痕量分析中潜在的污染源,因此试剂必须是高纯的。考虑到助熔剂的加入很可能引入新的基质元素,从而成为新的干扰源,所以最初的基质可能发生巨大的改变。这就要求在处理的时候要更加小心。另外,熔融过程中被熔剂腐蚀下来的容器材料成分将有可能污染分析物并会干扰待测元素的测定。基于这一原因,该法在痕量分析中的应用受到一定限制。
尽管熔融在机制上与溶解没有实质区别,但它的一个显著特点是利用样品与熔剂在高温下的多相反应,解决了一些通常用溶解方法不能解决的问题,是一种不可缺少的溶样手段。熔融操作比一般溶解操作复杂,要选择合适的熔剂,注意熔剂的用量。要讲究加热的方式、温度及时间,浸取用的试剂及方式也应妥善。熔融的一个缺点是所用熔剂必须充分过量,从而易造成玷污,并且反应过程中生成各种盐,使后续处理复杂化。
熔剂可以分为酸性熔剂、碱性熔剂、配位性熔剂、还原性熔剂,现将常用的熔剂列于表3-4中。
高碳锰铁的高炉法和电炉法生产
2019-01-04 11:57:12
高碳锰铁的生产方法有高炉法和电炉法两种。下面分别介绍这两种方法的特点。 (1)高炉法。高碳锰铁最早是采用高炉生产的,其产量高,成本低,目前国内外还在广泛采用.我国江西新余铁合金厂、山西阳泉铁合金厂为高炉生产高碳锰铁的定点厂家。 高炉法是把锰矿、焦炭和石灰等原料分别加人高炉内进行冶炼、得到含锰52%—-76写、含磷。.4%-0.6%的高炉锰铁。由于高炉与电炉冶炼高碳锰铁唯一的区别是热源不同,所以两者的炉体结构、几何形状及操作方法不一样,但两种炉子冶炼高碳锰铁的原理是相同的。 但是.两种炉子使用同一种锰矿冶炼时得到的产品磷含量不一样,高炉产品约高于电炉产品。.07%-0. 11%。这是由于高炉冶炼的炉料组成中的焦炭配量为电炉冶炼时的5-6倍,因而焦炭中有更多的磷转人合金内,而且高炉冶炼时的炉膛温度较低,因而冶炼过程中磷的挥发量较电炉低约10%, (2)电炉法。电炉法冶炼高碳锰铁有三种方法。 1)无熔剂法。对于含氧化锰较高的富锰矿,可以用无熔剂法冶炼锰铁、冶炼时炉料中不配加石灰,设备和操作类似硅铁,并且是在还原剂不足的条件下采用酸性渣操作。炉膛温度比熔剂法低约1320-1400 *C,用这种方法生产既要获得合格的高碳锰铁,又要得到含锰大于vG鉴供冶炼硅锰合金用的低磷、低铁富锰渣。此时锰的分配如下:入合金率为58%-60%,入渣率为30D%-’32D%D,挥发10YO。显然,用无熔剂法冶炼高碳锰铁必须使用含锰高的富锰矿,并且要求矿中有颇低的磷含量。该法虽然锰的回收率低,但用富锰渣冶炼硅锰合金时还可以回收绝大部分的锰,其锰的总回收率比熔剂法高。
无熔剂法冶炼高碳锰铁的过程是连续的,炉料随着熔化过程不断加入炉内,料批可由300kg锰矿、60 —- 70kg焦炭、1520kg钢屑组成。无熔剂法冶炼时,产品单位电耗很低,并且容易生产出低硅的高碳锰铁,这是因为大部分硅富集到渣中。
2)熔剂法.熔剂法是冶炼高碳锰铁普遍采用的一种方法。炉料组成中除锰矿、焦炭外,还有石灰。冶炼时采用高碱度渣操作碱度,B=1.3-1.4,使用足够的还原剂,以尽量降低废渣中锰含量,提高锰的回收率。这种方法用于以贫、富锰矿搭配冶炼高碳锰铁,以后还要详细讨论这种方法。
3)少熔剂法。这种方法是采用介于熔剂法和无熔剂法之间的所谓“弱酸性渣法”进行操作。该法是往炉料中配加适量的石灰或石灰石,把炉渣碱度m (CaO) /m (Siq)或m (CaO-}-M妇)/m (Siq)的比值控制在0.6—-0.8之间,借以既能提高锰的回收率,又能获得含锰25%-30%和适量含CaO的炉渣,把该渣配入冶炼硅锰合金的炉料中,既可节约石灰,又能减少因石灰潮解而增加的炉料粉尘量,从而改善炉料的透气性。 国外电炉冶炼高碳锰铁多采用无熔剂法和少熔剂法的酸性法。我国20世纪50年代也曾采用过无熔剂法冶炼,用含锰46%—-47%的富锰矿生产出含锰76%-80%碳锰铁,并同时获得含锰35%-40%的富锰渣。但因我国贫锰矿较多,所以目前多采用熔剂法或少量熔剂法。
铝灰加工的技术发展趋势
2019-01-15 09:51:40
铝的回收率一直是铝灰加工厂的较重要指标。熔炉和重熔炉的实际操作和冷却技术对于铝灰的回收率具有重大的影响。
倾斜式回转炉及干熔剂熔化技术
1.倾斜式回转炉。众所周知,大多数铝灰加工厂的关键设备是回转炉,采用回转炉来回收铝灰中的铝灰今至已有50余年的历史。但是,传统的回转炉都是固定铺式,采用圆柱型钢结构容器,内有耐火材料的内衬,水平安装在一耳轴上。回转炉的运行包括在炉内熔化熔剂和向炉内加入铝灰,炉子的回转迫使铝灰在熔剂表面之下,不会受到烧嘴火焰的直接冲击。炉子按周期运行持续几个小时,每一个工作周期包括:装入熔剂并熔化熔剂、装入铝灰熔化铝灰、放出铝水并运走用过的熔剂或盐饼。随着全球对废气和固体废物的环保立法日趋严格以及对铝回收率较大化的竞争需要,回转炉技术也在不断地改进。采用先进的氧气一燃料燃烧系统的倾斜式回转炉技术、先进的计算机控制技术和拥有SCADA系统,将为实现铝灰中铝回收率较大化提供可靠的保证。
2.干熔剂熔化技术。采用干熔剂熔化技术能够使铝的回收率提高几个百分点,明显降低所需熔剂及所产生盐饼的数量,从而降低了生产成本,其熔剂和非金属比例比0.3:1。传统的固定轴式回转炉是在液态下运行的,因此要向炉内添加足够数量的熔剂,以保持其液态,熔剂和非金属比例为1:10。
对于一家每个月有500吨铝灰产生的企业,如果熟练掌握倾斜式回转炉技术,将使铝灰中铝回收率提高3%~8%,一年就会增加46万美元的收入。先进的铝灰加工技术、采用氧气一燃料燃烧系统倾斜式回转炉技术加上干熔剂熔化技术,才能实现铝灰中铝回收率的较大化。
较佳熔剂配方及铝灰的保存
1.较佳熔剂配方。在加工铝灰时,熔剂添加比例、熔剂配方及化学成分对铝灰中铝回收率有着很大的影响。熔剂应当具备下述性能:在较低熔化温度下迅速熔化;保护铝不会氧化;溶解并吸收铝氧化物、污物和其他杂质,同时能够降低液态铝颗粒的表面张力;促进液态铝滴的凝聚并形成较大的熔池。
加工铝灰的盐熔剂是NaCl 和KCl的混合物,较低共晶熔点的盐熔剂的构成是58%KCl和42%NaCl,因为KCl比NaCl的价格高一些,所以采用30%KCl和70%NaCl的配比是一个有效的配方。但是较佳回收率的熔剂配方是47.5%KCl、47.5%NaCl和5%冰晶石。所用盐熔剂数量取于所加工铝灰中铝百分比含量,铝灰中非金属物数量越大,例如氧化物和杂物数量较大,则所需要盐熔剂数量越多。熔剂颗粒大小也是影响铝回收率的重要因素。
2.铝灰的保存。铝灰作为二次使用的材料,要注意防止混入地面的杂质和其他废料,保持铝灰干燥,才能获得较佳铝灰质量和回收率。如果铝灰储存在露天或者受潮,铝的回收率就会大受影响。
发展铝灰加工的技术
2018-12-28 09:57:11
铝的回收率一直是铝灰加工厂的最重要指标。熔炉和重熔炉的实际操作和冷却技术对于铝灰的回收率具有重大的影响。 倾斜式回转炉及干熔剂熔化技术 1.倾斜式回转炉。众所周知,大多数铝灰加工厂的关键设备是回转炉,采用回转炉来回收铝灰中的铝灰今至已有50余年的历史。但是,传统的回转炉都是固定铺式,采用圆柱型钢结构容器,内有耐火材料的内衬,水平安装在一耳轴上。回转炉的运行包括在炉内熔化熔剂和向炉内加入铝灰,炉子的回转迫使铝灰在熔剂表面之下,不会受到烧嘴火焰的直接冲击。炉子按周期运行持续几个小时,每一个工作周期包括:装入熔剂并熔化熔剂、装入铝灰熔化铝灰、放出铝水并运走用过的熔剂或盐饼。随着全球对废气和固体废物的环保立法日趋严格以及对铝回收率最大化的竞争需要,回转炉技术也在不断地改进。采用先进的氧气一燃料燃烧系统的倾斜式回转炉技术、先进的计算机控制技术和拥有SCADA系统,将为实现铝灰中铝回收率最大化提供可靠的保证。 2.干熔剂熔化技术。采用干熔剂熔化技术能够使铝的回收率提高几个百分点,明显降低所需熔剂及所产生盐饼的数量,从而降低了生产成本,其熔剂和非金属比例比0。3:1。传统的固定轴式回转炉是在液态下运行的,因此要向炉内添加足够数量的熔剂,以保持其液态,熔剂和非金属比例为1:10。 对于一家每个月有500吨铝灰产生的企业,如果熟练掌握倾斜式回转炉技术,将使铝灰中铝回收率提高3%~8%,一年就会增加46万美元的收入。先进的铝灰加工技术、采用氧气一燃料燃烧系统倾斜式回转炉技术加上干熔剂熔化技术,才能实现铝灰中铝回收率的最大化。 最佳熔剂配方及铝灰的保存 1.最佳熔剂配方。在加工铝灰时,熔剂添加比例、熔剂配方及化学成分对铝灰中铝回收率有着很大的影响。熔剂应当具备下述性能:在最低熔化温度下迅速熔化;保护铝不会氧化;溶解并吸收铝氧化物、污物和其他杂质,同时能够降低液态铝颗粒的表面张力;促进液态铝滴的凝聚并形成较大的熔池。加工铝灰的盐熔剂是NaCl 和KCl的混合物,最低共晶熔点的盐熔剂的构成是58%KCl和42%NaCl,因为KCl比NaCl的价格高一些,所以采用30%KCl和70%NaCl的配比是一个有效的配方。但是最佳回收率的熔剂配方是47。5%KCl、47。5%NaCl和5%冰晶石。所用盐熔剂数量取于所加工铝灰中铝百分比含量,铝灰中非金属物数量越大,例如氧化物和杂物数量较大,则所需要盐熔剂数量越多。熔剂颗粒大小也是影响铝回收率的重要因素。 2.铝灰的保存。铝灰作为二次使用的材料,要注意防止混入地面的杂质和其他废料,保持铝灰干燥,才能获得最佳铝灰质量和回收率。如果铝灰储存在露天或者受潮,铝的回收率就会大受影响。
火法炼金的基本原理
2019-01-25 10:19:01
火法炼金是将含金原料与熔剂(氧化剂和造渣溶剂)混合,然后置于火法炼金炉中,在1200~1350℃的温度下进行熔炼,得到金银合金。冶炼时,铜铅锌等杂质与熔剂(氧化剂和造渣熔剂)发生氧化反应并生成炉渣: 氧化反应:氧化剂与铜、铅、锌、铁等杂质反应生成金属氧化物,与硫反应生成气体放出。 6Cu+2NaNO3═Cu2O+Na2O+2NO 3Me+2NaNO3═ 3MeO+Na2O+2NO (上式是以硝石为氧化剂,Me为Zn、Pb、Fe等) S+2NaNO3═ Na2O+2NO+SO3↑ 造渣反应:造渣熔剂与金属氧化物反应生成炉渣。 mMeO+nSiO2═ mMeO nSiO2 mMeO+nNa2B4O7═ mMeO nNa2O 2nB2O3 (上式是分别以石英和硼砂为造渣熔剂)由于炉渣密度只有2~3克/厘米3,比金银密度(金19.32克/厘米3,银10.5克/厘米3)低得多,冶炼过程中炉渣会浮在上层而被排除。
铝棒铸造净化技术的介绍
2019-03-01 09:02:05
6061铝棒从电解槽吸出的铝液中含有各种杂质,因而铸造之前需求进行净化。工业上首要选用弄清、熔剂、气体等净化办法,也有尝试用定向凝结和过滤办法进行净化。 1.熔剂净化熔剂净化是使用参加铝液中的熔剂构成许多的纤细液滴,使铝液中的氧化物被这些液滴湿润吸赞同溶解,组成新的液滴升到表面,冷却后构成浮渣除掉。净化用的熔剂选用熔点低、密度小,表面张力小、活性大、对氧化渣有很强吸附才能的盐组成。使用时,先将小块熔剂装入铁笼里,再刺进混合炉底部来回搅动,至熔剂化完后取出铁笼,停止5~10min.捞出表面浮渣即可浇铸。根据需求也可将熔剂撤在表面上起掩盖作用。 2.气体净化气体净化是一种首要的6061铝棒净化法,所用气体是、氮气或氯氮混合气体。 (1)净化。曾经选用活性气体作净化剂(氯化法)。在氯化法中,把通入铝液内时生成许多反常纤细的AlCl3,气泡,充分地混合在铝液内。溶解在铝液中的氢,以及一些机械夹杂物便吸附在AlCl3气泡上,跟着AlCl3气泡上升到铝液表面而排出。通入时还能使某些比6061铝棒愈加负电性的元素氯化,如钙、钠、镁等均因通入而生成相应的氯化物,得以别离出来。所以氯化法是一种十分有用的原铝净化法。用量为每吨铝500-700g.但由于氧气有毒并且比较宝贵,为了防止空气被污染和下降铝锭出产的本钱,故在现代铝工业上已逐步废去了氯化法改成惰性气体——氮气净化法。 (2)氮气净化法。又称为无烟接连净化法,用氧化铝球(418mm)作过滤介质。N2直接通入铝液内。铝液接连送入净化炉内,经过氧化铝球过滤层,并遭到氮气的冲刷,所以铝液中的非金属夹杂物以及溶解的氢得以铲除,然后接连排出,从而使纤细的氮气泡均匀分布在受处理的铝液内起到净化的作用。氮气对大气无污染,且净化处理量大,每分钟可处理200~600kg铝液,净化过程中形成的铝丢失量相对削减,故现在广泛应用。但它不象那样可以铲除铝液中的钙、钠、镁。 (3)混合气体净化法。选用和氮气的混合物来净化铝液,6061铝棒作用是一方面脱去和别离氧化物,另一方面铲除铝中某些金属杂质(如镁),常用的组成是90%氮气+10%。也有选用10%+10%二氧化碳+80%氮气。这样作用更好,二氧化碳能使与氮气很好的分散,可缩短操作时刻。
6061铝棒铸造的净化技术
2019-03-01 09:02:05
6061铝棒从电解槽吸出的铝液中含有各种杂质,因而铸造之前需求进行净化。工业上首要选用弄清、熔剂、气体等净化办法,也有的试用定向凝结和过滤办法进行净化。 1.熔剂净化熔剂净化是使用参加铝液中的熔剂构成许多的纤细液滴,使铝液中的氧化物被这些液滴湿润吸赞同溶解,组成新的液滴升到表面,冷却后构成浮渣除掉。净化用的熔剂选用熔点低、密度小,表面张力小、活性大、对氧化渣有很强吸附才能的盐组成。使用时,先将小块熔剂装入铁笼里,再刺进混合炉底部来回搅动,至熔剂化完后取出铁笼,停止5~10min.捞出表面浮渣即可浇铸。根据需求也可将熔剂撤在表面上起掩盖作用。 2.气体净化气体净化是一种首要的6061铝棒净化法,所用气体是、氮气或氯氮混合气体。 (1)净化。曾经选用活性气体作净化剂(氯化法)。在氯化法中,把通入铝液内时生成许多反常纤细的AlCl3,气泡,充分地混合在铝液内。溶解在铝液中的氢,以及一些机械夹杂物便吸附在AlCl3气泡上,跟着AlCl3气泡上升到铝液表面而排出。通入时还能使某些比6061铝棒愈加负电性的元素氯化,如钙、钠、镁等均因通入而生成相应的氯化物,得以别离出来。所以氯化法是一种十分有用的原铝净化法。用量为每吨铝500-700g.但由于氧气有毒并且比较宝贵,为了防止空气被污染和下降铝锭出产的本钱,故在现代铝工业上已逐步废去了氯化法改成惰性气体——氮气净化法。 (2)氮气净化法。又称为无烟接连净化法,用氧化铝球(418mm)作过滤介质。N2直接通入铝液内。铝液接连送入净化炉内,经过氧化铝球过滤层,并遭到氮气的冲刷,所以铝液中的非金属夹杂物以及溶解的氢得以铲除,然后接连排出,从而使纤细的氮气泡均匀分布在受处理的铝液内起到净化的作用。氮气对大气无污染,且净化处理量大,每分钟可处理200~600kg铝液,净化过程中形成的铝丢失量相对削减,故现在广泛应用。但它不象那样可以铲除铝液中的钙、钠、镁。 (3)混合气体净化法。选用和氮气的混合物来净化铝液,6061铝棒作用是一方面脱去和别离氧化物,另一方面铲除铝中某些金属杂质(如镁),常用的组成是90%氮气+10%。也有选用10%+10%二氧化碳+80%氮气。这样作用更好,二氧化碳能使与氮气很好的分散,可缩短操作时刻。
鼓风炉熔炼再生铜(5)
2019-01-24 17:45:41
鼓风炉熔炼的配料计算 鼓风炉熔炼时需根据原料性质计算出所加熔剂量,常用的方法有两种。
一、有效熔剂法
原料为含铜炉渣。
(1)已知条件
a、含铜炉渣的化学成分为SiO2 21.50%、CaO 2.20%、FeO 14.40%、其他61.90%。
b、石英石成分为SiO2 92.4%、CaO 1.2%、FeO 0.3%。
c、石灰石成分为SiO2 1.3%、CaO 54%、FeO 0.5%。
d、选择的渣型为SiO2 30%、CaO 28%、FeO 14%。
(2)配料计算 以100kg含铜炉渣为计算基础
a、计算石英石和石灰石的有效溶剂率
100kg石英石中含有1.2kg CaO,炉渣中CaO与SiO2之比是28:30
1.2kg CaO造渣需1.2×30/28=1.2kg SiO2
100kg 石英石中游离的SiO2=92.4-1.29=91.11kg,即石英石的有效熔剂率为91.11%。
同样,100kg石灰石中有1.3kg SiO2,因此石灰石中有1.3×28/30=1.2kg CaO与SiO2造渣,故石灰石的有效熔剂率为(54-1.2)÷100=52.8%
b、计算炉渣量和各组成的量
通过渣型和铜炉渣中含FeO量计算出渣量为14.4/14×100=103kg
渣型各组成的量如下
SiO2=103×0.30=30.9kg
CaO=103×0.28=28.84kg
FeO=103×0.14=14.40kg
c、计算补加的石英石和石灰石量
除去原料中SiO2、CaO的含量,炉渣中还缺的量为
SiO2=30.9-21.5=9.4kg
CaO=28.8-2.2=26.64kg
需补加的石英石熔剂为9.4/91.11%=10.3kg
补加的石灰石熔剂为26.64/52.8%=10.3kg
故造渣率为103/(100+10.3+50.5)×100%=64%
当熔剂质量稳定且加入量不大时,可近似取石英石的有效熔剂率为92%,石灰石的有效熔剂率为53%。此时可算出
补加的石英石为9.4/92%=10.21kg
补加的石灰石为26.64/53%=49.7kg[next]
二、代数法
通常用于计算黄杂铜、白杂铜熔炼时的配料。
(1)已知条件
a、选择炉渣成分为:SiO2 30%、CaO 32%、FeO 8%。
b、石英石成分为SiO2 92.4%、CaO 1.2%、FeO 0.3%。
c、石灰石成分为SiO2 1.3%、CaO 54%、FeO 0.5%。
d、焦炭中含SiO2 6.8%、CaO 0.5%、FeO 1.4%。
e、原料、熔剂和焦炭加入量及造渣成分见表1。
表1 原料、熔剂和焦炭中氧化物含量物料名称重量/kgSiO2CaOFeO黄杂铜
石英石
石灰石
焦炭200
X
Y
Z-
0.924X
0.013Y
0.068Z-
0.012X
0.054Y
0.005Z-
0.003X
0.005Y
0.014Z
(2)配料计算
由渣型得出:
SiO2:CaO:FeO=30:32:8 (1)
由表中数据得出:
FeO=0.003X+0.005Y+0.014Z (2)
CaO=0.012X+0.054Y+0.005Z (3)
SiO2=0.924X+0.013Y+0.068Z (4)
由(1)可得:
FeO=8/30SiO2 (5)
FeO=8/32CaO (6)
将式(2)代入公式(5)、公式(6),公式(4)代入公式(5),公式(3)代入公式(6)得:
0.003X+0.005Y+0.014Z=8/30(0.924X+0.013Y+0.068Z) (7)
0.003X+0.005Y+0.014Z=8/30(0.012X+0.054Y+0.005Z) (8)
设焦率为25%,解方程式得:
石英石 X=0.9kg
石灰石 Y=5.6kg
焦 炭 Z=52kg
废钢渣用作冶金原料(2)
2018-12-17 09:42:53
(2) 作高炉或化铁炉熔剂 钢渣中含有10%~30%的Fe、40%~60%的CaO和2%左右的Mn。若把其直接返回高炉作熔剂,从而节省大量石灰石、白云石资源。钢渣中的 Ca、Mg等均以氧化物形式存在,不需经过碳酸盐的分解过程,因而还可以节省大量热能。由于目前高炉利用高碱度烧结矿或熔剂性烧结矿,基本上不加石灰石,所以钢渣直接返回高炉代替石灰石的用量将受到限制。但对于烧结能力不够、高炉仍加石灰石的炼铁厂,用钢渣作高炉熔剂的使用价值仍很大。 钢渣也可以作化铁炉熔剂代替石灰石及部分萤石。使用证明,其对铁水温度、铁水含硫量、熔化率、炉渣碱度及流动性均无明显影响,在技术上是可行的。使用化铁炉的钢厂及相当一部分生产铸件的机械厂都可以应用。 (3) 作炼钢返回渣 转炉炼钢每吨钢使用高碱度的返回钢渣25kg左右,并配合使用白云石,可以使炼钢成渣早,减少初期渣对炉衬的侵蚀,有利于提高炉龄,降低耐火材料消耗,同时可取代萤石。我国有部分钢厂已在生产中使用,并取得了很好的技术经济效果。 (4) 回收废钢铁 钢渣中一般含有7%~10%的废钢及钢粒,我国堆积的 1亿多吨钢渣中,约有700万吨废钢铁。在基本建设可以回收大量废钢铁及部分磁性氧化物。水淬钢渣中呈颗粒状的钢粒,磁选机很容易提取,可以作炼钢调温剂。 总之,钢渣在钢铁厂内部作冶金原料使用效果良好,利用价值也高。我国矿源磷含量低于 0.01%~0.04%的地区,钢渣在本厂内的返回用量可以达到 50%~90%。.
锰铁的冶炼方法
2019-01-04 11:57:16
高炉冶炼一般采用1000米3以下的高炉,设备和生产工艺大体与炼铁高炉相同。锰矿石在由炉顶下降的过程中,高价的氧化锰(MnO2,Mn2O3,Mn3O4)随温度升高,被CO逐步还原到MnO。但MnO只能在高温下通过碳直接还原成金属,所以冶炼锰铁需要较高的炉缸温度,为此炼锰铁的高炉采用较高的焦比 (1600公斤/吨左右)和风温(1000℃以上)。为降低锰损耗,炉渣应保持较高的碱度(CaO/SiO2大于1.3)。由于焦比高和间接还原率低,炼锰铁高炉的煤气产率和含CO量比炼铁高炉为高,炉顶温度也较高 (350℃以上)。富氧鼓风可提高炉缸温度,降低焦比,增加产量,且因煤气量减少可降低炉顶温度,对锰铁的冶炼有显著的改进作用。
电炉冶炼 锰铁的还原冶炼有熔剂法(又称低锰渣法)和无熔剂法(高锰渣法)两种。熔剂法原理与高炉冶炼相同,只是以电能代替加热用的焦炭。通过配加石灰形成高碱度炉渣(CaO/SiO2为1.3~1.6)以减少锰的损失。无熔剂法冶炼不加石灰,形成碱度较低(CaO/SiO2小于 1.0)、含锰较高的低铁低磷富锰渣。此法渣量少,可降低电耗,且因渣温较低可减轻锰的蒸发损失,同时副产品富锰渣(含锰25~40%)可作冶炼锰硅合金的原料,取得较高的锰的综合回收率(90%以上)。现代工业生产大多采用无熔剂法冶炼碳素锰铁,并与锰硅合金和中、低碳锰铁的冶炼组成联合生产流程见图。
现代大型锰铁还原电炉容量达40000~75000千伏安,一般为固定封闭式。熔剂法的冶炼电耗一般为2500~3500千瓦•时/吨,无熔剂法的电耗为2000~3000千瓦•时/吨。锰硅合金用封闭或半封闭还原电炉冶炼。一般采用含二氧化硅高、含磷低的锰矿或另外配加硅石为原料。富锰渣含磷低、含二氧化硅高是冶炼锰硅合金的好原料。冶炼电耗一般约3500~5000千瓦•时/吨。入炉原料先作预处理,包括整粒、预热、预还原和粉料烧结等,对电炉操作和技术经济指标起显著改善作用。
电炉精炼中、低碳锰铁一般用1500~6000千伏安电炉进行脱硅精炼,以锰硅、富锰矿和石灰为原料,其反应为:MnSi+2MnO+2CaO─→3Mn+2CaO•SiO2 采用高碱度渣可使炉渣含锰降低,减少由弃渣造成的锰损失。联合生产中采用较低的渣碱度(CaO/SiO2小于1.3)操作,所得含锰较高(20~30%)的渣用于冶炼锰硅合金。炉料预热或装入液态锰硅合金有助于缩短冶炼时间、降低电耗。精炼电耗一般在1000千瓦•时左右。中、低碳锰铁也用热兑法,通过液态锰硅合金和锰矿石、石灰熔体的相互热兑进行生产。
吹氧精炼 用纯氧吹炼液态碳素锰铁或锰硅合金可炼得中、低碳锰铁。此法经过多年试验研究,于1976年进入工业规模生产。
电炉高碳锰铁的生产(二)
2019-01-25 15:49:34
三、电炉锰铁冶炼用的原料 原料为锰矿、焦炭和熔剂 1.锰矿 锰矿的品种主要有氧化锰矿、烧结矿、焙烧矿和人选富锰渣等。 锰矿中除了主要成分Mn外,还含有一定数量的Fe,CaO,Al2O3,SiO2,P,S等杂质,应根据冶炼产品的要求进行控制。 锰矿中的锰铁比是决定产品含锰量的重要技术参数,秤不同牌号的高碳锰铁,对入炉锰矿的m(Mn)/m(Fe)要求不同,某厂采用熔剂法冶炼 时对入炉锰矿的含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求见表2。表2 熔剂法治炼对入炉锰矿含锰量、m(Mn)/m(Fe)、m(P)/m(Mn)要求牌号Mn含量m(Mn)m(P)/m(Mn)m(Fe)ⅠⅡ≥≤FeMn78C8.040%8.80.0020.004FeMn74C7.535%6.40.0020.0042FeMn68C7.034%4.50.0030.0057
锰矿中的CaO,MgO均为碱性氧化物,对调整炉渣碱度和流动性有利,一般不予限制。锰矿中的Al2O3在一定范围内能控制渣中含锰量,但Al2O3过高,会使炉渣熔点升高,流动性变差,渣铁分离困难,影响冶炼技术经济指标。一般要求入炉锰矿中Al2O3含量不超过10%。采用熔剂法生产时入炉锰矿中的SiO2含量越低越好。因SiO2含量高,会增大石灰用量,增大渣量,电耗升高。锰矿中的硫一般以MnS,CaS的形式进入渣或挥发,只有约1%进入合金,一般不作限制。 对入炉锰矿的水分庆控制在8%以下,因水分太高,波动大会影响配料的准确性。在熔剂法生产时会使石灰吸水粉化,造成炉内透气性差,产生刺火、塌料,使炉况恶化,电耗增加。 入炉锰矿粒度根据电炉容量大小而定,对6000KVA以上电炉入炉粒度一般为10~80mm,小于10mm的粉矿不超过总量的10%。 2.焦炭 作为还原剂用的焦炭主要有冶金焦、气煤焦、半焦等。对入炉焦炭,要求固定碳含量高、电阻率大、灰分低、磷低。灰分低带入的渣量少,含磷相应减少,可降低冶炼电耗。电阻率大,容易使电极下插,对稳定操作有利。 入炉焦炭粒度一般为3~25mm,小于3mm的焦末不得入炉。焦炭所含水分不得超过7%,而且波动量应尽量小。 3.溶剂(石灰) 要求石灰中CaO含量高,SiO2及P,S杂质含量低。一般CaO含量大于80%,SiO2含量不超过6%,P,S应分别低于0.05%和0.8%。石灰入炉粒度一般为10~60mm.[next] 四、电炉高碳锰铁冶炼工艺操作 1.冶炼方法 电炉高碳锰铁的冶炼 是连续进行的,即连续加料冶炼,定时出铁。根据入炉锰矿品位的不同及炉渣碱度控制的不同,在电炉内生产高碳锰铁有熔剂法、无熔剂法、少熔剂法三种方法。 (1)熔剂法 采用碱性渣操作,炉料中除锰矿、焦炭外,还配入一定量的熔剂(石灰)并用足还原剂。采用高碱度渣操作,炉渣碱度n(CaO)/n(SiO2)控制在1.3~1.4,以便尽量降低渣中含锰量,提高锰回收率。 (2)无熔剂法 采用酸性渣操作,炉料中不配加石灰,在还原剂不足的条件下冶炼,用这种方法生产,既可获得高碳锰铁,又可获得生产硅锰合金和中、低锰铁的含Mn30%的低磷富锰渣。其优点是电耗低,锰的综合回收率高。其不足是采用酸性渣操作,对碳质炉衬侵蚀严重,炉衬寿命较短。 (3)少熔剂法 采用介乎熔剂法和无熔剂法之间的“偏酸性渣法”。该法是配料中加入少量石灰或白云石,将炉渣大碱度控制在0.6~0.8之间,在弱碳的条件下冶炼。生产出合格的高碳锰铁和含锰25%~40%及适量CaO低磷、低铁锰渣。此渣用于生产硅锰合金时既可减少石灰加入量又可减少因石灰潮解而增加的粉尘量,因而可改善炉料的透气性。 采用何种方法与入炉矿的品位有关。入炉矿石的品位较低一般采用熔剂法,入炉矿石的品位高(高品位进口矿)则用无熔剂法或少熔剂法生产高碳锰铁。 2.冶炼工艺操作 电炉高碳锰铁的生产操作过程主要有配料、加料、炉况维护及出铁浇铸等。 (1)配料及加料 根据配料计算得出配料比后,按锰矿石、焦碳、石灰(白云石)的顺序进行称量配料,然后通过运输系统将配好的料送到炉顶料仓或加料平台。根据炉内需要分批加入炉内。 (2)炉况维护 在电炉冶炼过程中,由于原料的波动、电气及机械设备等因素的影响,炉况难以长期保持稳定状态,总是在波动变化。因此要对炉况随时、监测,并根据其变化作出准确判断,及时采取措施调整和处理,使炉况恢复到正常状态。 (3)炉况判断及处理 炉况正常的标志是: ①操作电流稳定,电极插入深度合适,电极电压正常。 ②料面高度合适,冒火均匀,炉料化料均匀,电极周围刺火及塌炎现象少。 ③封闭炉内炉气压力、成分、温度正常。 ④炉渣成分稳定,产量稳定,各项技术经济指标良好。 ⑤合金成分稳定,产量稳定,各项技术经济指标良好。 炉况的变坏不多是由于还原剂配入过多或不足以及炉渣碱度过高或过低造成的。 还原剂过多时,由于炉料电阻率减小,电流增大,电极上抬,炉内化料速度减慢,电极周围刺火严重,炉气压力与温度上升,锰的挥发损失增大,炉底温度下降,出炉困难,产品含硅量增高。此时应向电极周围适量减碳,并调整料批中焦炭的配入量。 还原剂不足时,电极下插过深,电极消耗增大,负荷上不去,电流不稳定;炉口翻渣;炉渣中含锰量升高,产品中硅低磷高,渣多铁少。此时可向电极周围附加适量焦炭,并在料批中提高焦炭配比。 炉渣碱度过高时,在炉内表现为电极上抬;料面刺火,翻渣;炉渣流动性差,出铁量少,炉渣发暗百粗糙,断面孔,冷却后很快粉化。炉渣碱度过低时,电极插入深,炉渣稀,流动性好,渣表面皱纹少,渣中跑锰多。针对上述情况,应及时调整石灰配入量将渣碱度调整到正常范围。 (4)出铁及浇铸 正常生产电炉要按一定时间间隔定时出铁,出铁次数根据电炉大小容量而定。一般大电炉每班出铁4~5次,中小型电炉每班2~3次。根据一些厂的生产经验,在炉内冶炼状况正常的情况下,适当延长出铁间隔单间,对提高产品质量,降低焦比、电耗有较好作用。[next] 五、配料计算 在铁合金生产中因为生产中的诸多因素不可能精确测算。因此要做到精确的配料计算是不容易的。而且在实际中意义也不大。通常以原料成分、生产中的控制参数及经验数据为依据,进行初步测算,投入生产后再根据其炉内情况进行调整。计算条件如下: 冶炼合金成分为:Mn66%,SiO22%,C6.8%,P0.3%,Fe23%,其他0.9%。 原料成分为: 锰矿:(综合矿)Mn34%,Fe10%,P0.12%,SiO29%,CaO1.5% 焦矿:C80% 石灰:CaO80% 炉渣碱度:n(CaO)/n(SiO2)=1.4 各元素在冶炼产物中的分配如表3所示。焦炭利用率为90%。表3 锰矿中元素分配(%)元素入合金入渣挥发MN781012Fe955/P751015
以100kg锰矿为计算基础计算。 (1)焦炭用量计算 焦炭用量为锰、铁、硅还原用碳量及合金渗碳量之和: ①100kg锰矿还原得合金部量 锰、铁、磷总量为: 100×34%×78%+100×10%×95%+100×0.12%×75%=36.11kg 锰、铁、磷所占合金比例为: 100%-C含量-Si含量-其他=100%-6.8%-2%-0.9%=90.3% 100kg锰矿得合金总量为: 36.11kg÷90.3%=40.12kg 合金中的硅含量为: 40.12kg×2%≈0.824kg ②合金渗碳量 40.12kg×6.8%=2.728kg ③锰、铁、硅还原用碳量 还原MnO,用碳量为:MnO+C===Mn+CO 还原FeO用碳量为:FeO+C===Fe+CO 焦炭总用量(干基)为: (2.72+6.672+2.036+0.686)÷90%÷80%=16.83kg (2)石灰用量 渣中的SiO2含量为 石灰用量为:(6.22×1.4)÷80%=10.89kg (3)原料配比为:锰矿100kg;焦碳16.8kg;石灰10.89kg.