您所在的位置: 上海有色 > 有色金属产品库 > 高炉炼铁用的熔剂 > 高炉炼铁用的熔剂百科

高炉炼铁用的熔剂百科

高炉炼铁

2019-03-06 10:10:51

现代炼铁的首要办法,钢铁出产中的重要环节。这种办法是由古代竖炉炼铁开展、改善而成的。虽然国际各国研讨开展了许多新的炼铁法,但由于高炉炼铁技能经济目标杰出,工艺简略,出产值大,劳动出产率高,能耗低,这种办法出产的铁仍占国际铁总产值的95%以上。 高炉出产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从坐落炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅佐燃料)中的碳同鼓入空气中的氧焚烧生成的和,在炉内上升过程中除掉铁矿石中的氧,然后复原得到铁。炼出的铁水从铁口放出。铁矿石中不复原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。发生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。前期高炉运用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改凉风为热风(见冶金史)。20世纪初高炉运用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速开展。20世纪初美国的大型高炉日发生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197米3高炉,日发生铁超越1万吨,燃料比低于500公斤/吨生铁。我国在清朝末年开端开展现代钢铁工业。1890年开端筹建汉阳铁厂,1号高炉(248米3,日产铁100吨)于1894年5月投产。1908年组成包含大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,我国高炉总容积约8万米3,其间1000米3以上的26座。1980年全国产铁3802万吨,居国际第四位。 70年代末全国际2000米3以上高炉已超越120座,其间日本占1/3,我国有四座。全国际4000米3以上高炉已超越20座,其间日本15座,我国有1座在建设中。 50年代以来,我国钢铁工业开展较快,高炉炼铁技能也有很大开展,首要表现在:①归纳选用精料、上下部调剂、高压炉顶、高风温、富氧鼓风、喷吹辅佐燃料(煤粉和重油等)等强化冶炼和节省能耗新技能,特别在喷吹煤粉上有独到之处。1980年我国重点厂商高炉均匀使用系数为1.56吨/(米3·日),焦比为539公斤/吨生铁;②归纳使用含钒钛的铁矿石取得了突破性发展,含稀土的铁矿石的使用也取得了较大的发展。 高炉冶炼首要技能经济目标 分述如下: 高炉使用系数每立方米高炉有用容积一昼夜出发生铁的吨数,是衡量高炉出产功率的目标。比方1000米3高炉,日产2000吨生铁,则使用系数为 2吨/(米3·日)。 焦比 每炼一吨生铁所耗费的焦炭量,用公斤/吨生铁表明。高炉焦比在 80年代初一般为450~550公斤/吨生铁,先进的为380~400公斤/吨生铁。焦炭报价昂贵,下降焦比可下降生铁本钱。 燃料比高炉选用喷吹煤粉、重油或天然气后,折合每炼一吨生铁所耗费的燃料总量。每吨生铁的喷煤量和喷油量别离称为煤比和油比。此刻燃料比等于焦比加煤比加油比。依据喷吹的煤和油置换比的不同,别离折组成焦炭(公斤),再和焦比相加称为归纳焦比。燃料比和归纳焦比是判别冶炼一吨生铁总燃料耗费量的一个重要目标。 冶炼强度 每昼夜高炉焚烧的焦炭量与高炉容积的比值,是表明高炉强化程度的目标,单位为吨/(米3·日)。 休风率 休风时刻占全年日历时刻的百分数。下降休风率是高炉增产的重要途径。一般高炉休风率低于2%。 生铁合格率 化学成分符合规定要求的生铁量占悉数生铁产值的百分数,是点评高炉优质出产的首要目标。 生铁本钱 是从经济方面衡量高炉作业的目标。

高炉炼铁对碱性熔剂3个质量要求

2019-01-04 11:57:16

高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.

非高炉炼铁

2019-01-04 17:20:15

非高炉炼铁法是指除高炉炼铁以外的其它还原铁矿石的方法。当前非高炉炼铁法可归纳为两大类:直接还原法和熔融还原法.都是炼铁冶金技术中的新工艺。 直接还原法是指在铁矿石熔化温度下把铁矿石还原成海绵铁的炼铁生产过程,产品叫直接还原铁或海绵铁。由于低温还原,得到的直接还原铁未能充分渗碳,因而含碳较低( 熔融还原法是指一切不用高炉冶炼液态生铁的方法。它是不用焦炭在一个容器中完成高炉炼铁过程的,基本上不改变目前传统钢铁生产的基本原理。 近年来,非高炉炼铁法发展比较快,其原因是: (1)不用焦炭炼铁。高炉冶炼需要高质量冶金焦,而焦煤从世界储量而言,只占煤总储量的5%,且日渐短缺,价格越来越高。非高炉炼铁可以使用非炼焦煤和其它能源作燃料与还原剂。近几十年来,大量开发了天然气、石油、水、电和原子能等新能源,为非高炉炼铁发展提供了条件。 (2)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好代用品。 (3)省去了炼焦设备,总的基建费用比高炉炼铁法少。虽然非高炉炼铁法的生产效率远赶不上高炉,但对于缺乏焦煤资源的国家和地区,用;r中小型企业生产,前途是光明的. 非高炉所得还原铁的用途可分为以下三类: (1)炼钢原料.主要是代替电炉废钢,但也可以用于转炉。应以还原度高、杂质少的为佳. (2)高炉原料。经过预还原的矿石可作为高炉炉料,以增加产量,降低焦比。 (3)铁粉。铁粉可用于粉末冶金或用作电焊条的原料等。 还原度越低,所得的还原铁越容易二次氧化,因此若要贮藏或远距离特别是海上运输,则必须进行钝化处理。常用的钝化处理方法有在控制气氛下形成氧化膜,用化学物质处理,或者进行压块。 非高炉炼铁的发展及特点    非高炉炼铁法在很早以前就为人们采用了。自20世纪初为了获得生产特殊钢的原料和充分利用当地资源而将非高炉炼铁法用于工业生产以来,特别是在瑞典,非高炉炼铁法得到了迅速的发展,诸如韦伯(Wiberg)法和霍冈勒斯(H6gan;s)法直至现在仍继续运用于生产中.二次大战前,大多数地方以煤和电为能源,战后改进的回转炉法及回转炉与电炉相结合的电炉炼铁法,开始投入实际工业生产。从1950—1960年,开始研制以天然气和石油作还原剂的直接炼铁法,到70年代,又进一步发展到工业规模上采用竖炉法和流比床法。 非高炉炼铁法,虽然很早就进行了研究,但工业化生产的规模很小。1972年世界粗钢产量为63000万吨,正在建造中的或者已签订合同的生产能力为年产1400万吨。若将计划中的生产能力也包括在内,可以预计,在不久的将来非高炉炼铁的生产能力将有相当大的增加。    非高炉炼铁与高炉炼铁相比,除了不用焦炭以外,工艺上的显著特点是温度和还原度的关系不同。 在高炉方式中,铁矿石A在高炉内升温、还原、熔化成为铁水B:因为铁水被过度地还原,含碳量达到饱和状态,所以必须在纯氧顶吹转炉内进行氧化、脱碳,使铁水中C变成处于状态E的钢液而出钢,最后经过脱氧去除多余的氧即成为成品钢液F。 在非高炉炼铁方式中,还原是按虚线所示的路线进行的。如在直接还原方式中,矿石A被升温、还原成海绵铁D。在此状态下,还原度和温度都较低,因此还须在电炉中熔化,还原其中未还原的部分,从而得到钢液E。 非高炉炼铁的方法及分类 非高炉炼铁法根据原料和产品用途分类的方法很多,已发表的方法就有百余种。各种分类方法是根据以下不同的观点来进行划分的: (1)按还原装置进行分类:有固定床法、回转炉法、竖炉法和流化床法等。 (2)按还原剂进行分类:有固体还原剂法、气体还原剂法等。 (3)按生产方式进行分类:有预还原法、直接炼钢法、熔融还原法、原子能炼铁法等。 直接还原法 如前所述,直接还原法种类很多。其产品主要是固态的海绵铁、粒铁及液态生铁。图6—2概括了生产固态海绵铁的各种直接还原法的工艺原理。这种海绵铁在下一步生产工序中用电炉熔炼成钢。 使用固体还原剂法 使用固体还原剂进行直接还原的主要设备是回转窑,利用回转窑还原铁矿石的主要产品是海绵铁。其工作原理是:将固体还原剂(煤)、铁矿石和熔剂(石灰石或白云石)混匀后,由回转窑生产。

高炉炼铁爆炸原因分析

2019-01-04 17:20:18

烧结工艺   ■ 人员若未遵守安全操规程、煤气检修安全规程、未穿戴好劳保用品,可能导致煤气中毒、煤气爆炸、灼烫、触电、机械伤害等事故。   ■ 煤气管道、阀门、脱水器应每班检查、维护,若阀门故障或发生泄漏。可能导致煤气中毒、煤气爆炸事故。   ■ 启动设备前必须确认烧结机内无人或其他杂物时,方可启动。否则可能导致煤气中毒、煤气爆炸、灼烫、触电、机械伤害等事故。   ■在燃烧器点火过程中,未进行爆破试验,因无快速切断阀、煤气压力低、泄漏煤气、煤气管道混有空气、点火前未对各阀门进行确认、现场无煤气泄漏监控系统或系统失效都有可能造成爆炸、火灾、中毒窒息。   ■在生产过程中,因停水、停电,导致煤气水封水不能保证供应或煤气水封系统故障致使水封无水,煤气管道泄漏、煤气压力过大等原因、煤气放散口高度过低都会导致现场有煤气聚集,当遇高温、明火后也会发生爆炸、火灾,同时也会造成中毒、窒息。   ■ 点火时要先送火种,后开煤气。否则可能导致煤气爆炸事故。 高炉炼铁工艺 炉顶设备系统   ■ 休风检修完毕,未经休风负责人同意,送风,有发生中毒窒息,煤气爆炸危险。   ■ 需要休风时,未先停止打水,并点燃炉顶煤气,有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。   ■ 炉顶压力不断增高又无法控制时,不及时减风,未打开炉顶放散阀,有发生爆炸危险。   ■停炉前,高炉与煤气系统未可靠地分隔开;采用打水法停炉时,未取下炉顶放散阀或放散管上的锥形帽;采用回收煤气空料打水法时,未减轻炉顶放散阀的配重;均有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。   ■冷风管未保持正压;除尘器、炉顶及煤气管道未通入蒸汽或氮气或未彻底驱除残余空气;送风后,高炉炉顶煤气压力低于标准,未作煤气爆发试验,确认不会产生爆炸,就接通煤气系统,都有发生煤气爆炸的危险。   ■ 长期休风(≥4小时)不进行炉顶点火、炉喉点火,有发生中毒窒息,煤气爆炸的危险。   ■ 休风前及休风期间,如有损坏未及时更换或采取有效措施,有漏水入炉,有发生炉体爆炸危险。 高炉本体   ■炉内各物料处于1150℃~1450℃的高温和还原性气氛中,在熔融的过程中进行还原反应。如操作不当、可能导致爆炸。高温熔体如遇炉套破裂漏水等情况,因剧烈汽化而可能发生爆炸。   ■ 铁水混入水冲渣系统可能引发爆炸。   ■ 在冶炼过程中,高炉长期使用,未及时检修,导致耐火层破坏,可能造成炉底烧穿铁水流出发生爆炸。   ■ 冷却壁不能保证冷却水供应,可能使炉底烧穿铁水流出发生爆炸   ■ 炉基、炉底、炉缸等部位水测试装置损坏,致使炉温测试不准,或炉温测试不及时,可能导致高炉烧穿铁水流出发生爆炸。   ■ 炉体炉壳开裂由于热膨胀超出极限出现纵向或径向裂缝,导致煤气泄漏与空气混合形成爆炸性混合物,泄漏的高温煤气本身具备点火能量,可发生爆炸。   ■ 炉基周围有积水,有发生铁水爆炸危险   ■冷却件有渗漏现象,有发生铁水爆炸危险。   ■大修高炉,放残铁之前,未设置作业平台,彻底清除炉基周围的积水,有发生残铁爆炸的危险。   ■高炉突然断风,未按紧急休风程序休风,有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。   ■送水不分段、快速进行,可产生大量蒸汽而引起爆炸   ■停水事故处理,进水阀门通水时过快,致使冷却设备急冷或猛然产生大量蒸汽而炸裂。   ■高炉悬料时间长,炉内形成较大空间,且炉顶温度逐步升高超过规定,可能打水降温,而产生大量蒸汽。当料柱塌下时,炉顶瞬间产生负压,空气和混有煤气的冷料进入炉内,上密、下密不严,遇高温煤气后,可能发生炉顶爆炸。 热风炉除尘系统   ■热风炉煤气总管未按GB6222的要求设可靠隔断装置。煤气支管未装煤气自动切断阀,当燃烧器风机停止运转,或助燃空气切断阀关闭,或煤气压力过低时,该切断阀不能自动切断煤气,不发出警报。煤气管道未设煤气流量检测及调节装置。管道最高处和燃烧阀与煤气切断阀之间未设煤气放散管,有发生燃烧爆炸、中毒窒息的危险。   ■热风炉管道及各种阀门不严密。热风炉与鼓风机站之间、热风炉各部位之间,未设必要的安全联锁。突然停电时,阀门不向安全方向自动切换,有发生燃烧爆炸的危险。   ■在热风炉混风调节阀之前未设切断阀,一旦高炉风压小于0.05 MPa,不关闭混风切断阀,有发生燃烧爆炸的危险。   ■热风炉烧炉期间,火焰熄灭时,未及时关闭煤气闸板,重新点火,有爆炸危险。   ■热风炉及供气管网高炉需要煤气为燃料在加热炉燃烧加热,则高炉煤气供气及燃烧系统发生操作不当或煤气泄漏,有可能发生爆炸。   ■在生产及设备检修过程中,要按照有关安全操作要求执行,除尘器内的煤气可导致火灾、爆炸、中毒事故。   ■煤气净化布袋除尘系统,高炉顶温异常上升,超过管道膨胀补偿能力,引起管道破裂,煤气泄漏,导致火灾、爆炸、中毒事故。   ■高炉除尘系统维修需用氮气吹扫,若未设置氮气,吹扫不彻底可能导致中毒或火灾爆炸事故。 高炉煤气系统   ■煤气管道出现负压、煤气管道进入空气有爆炸危险。   ■煤气系统若未设置低压报警、快速切断、放散装置等安全装置,可能造成煤气泄漏,导致火灾爆炸或人员中毒窒息事故。   ■除尘器未设带旋塞的蒸汽或氮气管头,或其蒸汽管或氮气管未与炉台蒸汽包相联接,或堵塞或冻结,有发生燃烧爆炸、中毒窒息的危险。   炉前出铁场和炉台构筑物   ■开铁口、出铁、出渣、堵铁口过程中,因违规操作使用潮湿的工具,可能发生铁水爆炸。   ■铁水沟或平台上积水,一旦铁水外溢可能发生铁水爆炸。   ■撇渣器烧穿、损坏,铁口潮湿、渣中带铁等可能发生铁水爆炸。 渣、铁处理 铸铁机    ■铸铁机地坑内不应有积水。否则可能造成铁水爆炸事故

无需焦炭的非高炉炼铁技术

2019-03-07 09:03:45

珀斯──澳大利亚西澳州首府,从前被称为“国际上最孤单的城市”。但是,这些年来,我国客人却对这“最孤单的城市”情有独钟,一再到访。2007年9月4日,领导在相关人员的陪同下,观赏了澳大利亚力拓矿业集团的直接熔融复原炼铁工厂。炼铁车间观看了复原铁的冶炼进程,并就环保、出产成本、工艺先进性,以及非高炉炼铁技能在我国使用的远景等具体询问了技能人员。此前,我国人大常委会委员长,以及我国多家大型钢铁厂商的管理者都观赏过这个炼铁项目。“熔融复原”炼铁技能有何奇特之处,引得许多政界商界要人的垂青? 资源压力下的新路当今国际的干流高炉炼铁技能仍然是自古就有的竖炉炼铁,这种办法炼制的铁占国际铁产值的95%以上。         我国钢研科技集团公司先进钢程及材料国家重点实验室郭培民教授介绍,通过数百年开展,现代高炉炼铁工艺现已适当老练,但流程杂乱、能耗高、环境污染严峻和出资巨大这些高炉炼铁与生俱来的问题仍未处理。更要害的是,高炉炼铁对冶金焦炭依赖性太强,从现在已探明国际煤炭储量中,焦煤仅占5%,且散布很不均匀,正是这个资源约束,催生了无高炉炼铁技能。北京科技大学冶金与生态工程学院副院长张建良教授介绍说,现在的无高炉炼铁首要有两种办法,即直接复原法和熔融复原法,国际上现已根本老练的三大非高炉炼铁技能,别离是奥钢联的COREX、韩国浦项的INEX、力拓矿业的HIsmelt,都选用熔融复原法。真实完成了商业化出产的非高炉炼铁技能的只要一家,即奥钢联的COREX技能。它是在奥地利和德国政府的财务支持下,于20世纪70年代开端研制,1989年完成商业出产。榜首代完成商业化出产的非高炉炼铁COREX-1000工厂年产能40万吨,1989年在南非完工。1995年至1999年间,国际上又先后建成四座年产能60万~80万吨的第二代COREX-2000出产厂,别离坐落韩国的浦项、南非的撒丹那(Saldanha)和印度的两个城市。全球专一在建的第三代COREX工厂是我国宝钢年产能150万吨的COREX-3000工程,该工厂方案2007年下半年开端商业化出产。          非高炉炼铁技能间的竞赛奥钢联的COREX尽管先行一步,却也存在先天缺点:国际上大部分铁矿资源是粉矿,并且粉矿比块矿报价低,奥钢联开发的COREX技能却只能炼块矿。可以炼粉矿的熔融复原技能随即应运而生,韩国浦项制铁研制的“FINEX”和力拓矿业的“HIsmelt”就是在这样的布景下诞生的。韩国浦项制铁公司于1992年和奥钢联签署协议,引进COREX-2000技能,并在此基础上研制出以粉矿为复原目标的FINEX技能。2007年5月30日,FINEX商业化项目正式开工。这个历时15年之久的项目共花费7亿美元研制经费,取得300多项专利。澳大利亚力拓矿业集团亚洲及我国区总裁路久成介绍,力拓矿业集团从上世纪80年代初开端研制HIsmelt技能,历经20余年,累计出资已超越10亿美元。现在实验性的HIsmelt工厂发展程度“已到达试营产值的80%,估计到2008年到达年产80万吨的设计能力,并进行商业化运营”。 我国的非高炉炼铁远景1996年我国钢铁产值初次超越1亿吨大关,跃居国际榜首位后,现已接连10年保持着国际榜首,一起,我国仍是专一钢铁总产值超越2亿吨的最大钢铁出产国、最大钢铁消费国、最大钢铁净进口国和最大铁矿石进口国。拿到这些“桂冠”的一起,我国也顶着一顶“钢铁能耗全球榜首”的帽子,在首要炼钢国中,我国吨钢能耗排在首位,是日本的3倍,美国的1.7倍。而非高炉炼铁技能的首要优势就是节能环保。力拓矿业集团亚洲及我国区总裁路久成说,力拓的HIsmelt技能,不只比奥钢联的COREX技能能耗低,也比国际上绝大多数传统高炉炼铁技能能耗低20%左右,废气排放更是远远低于高炉炼铁。

非高炉炼铁工艺—Hlsmelt熔融还原炼铁工艺

2019-03-07 11:06:31

由澳大利亚的力拓矿业集团开发的HIsmelt熔融复原炼铁工艺,选用了铁矿粉及钢厂废料和非炼焦煤直接熔融的复原技能出产高质量的铁产品,可直接用于炼钢或铸成生铁。还能够循环运用热能,以到达下降本钱和削减污染的意图。从不断优化高炉炼铁和开发新式非高炉炼铁工艺考虑,可对炼铁出产完结节能减排和保护环境起到活跃的效果。HIsmelt熔融复原炼铁工艺作为习惯钢铁工业开展的需求而开发的熔融复原炼铁的出产工艺,可为炼铁出产供给了一种新的挑选。钢铁出产工艺包含传统的高炉—氧气顶吹转炉的长流程和依据电弧炉的短流程。近年来,受环保等方面要素的影响,短流程工艺遭到越来越多的重视。1996年以来,国际规划内有很多短流程优质扁平材出产厂投产。这些短流程钢厂仅承当较低的折旧费用,还能运用废钢来削减出产本钱。因而,短流程钢厂的热轧出产本钱要比钢铁联合厂商的低。推进这种趋势开展的首要原因有以下几个方面:高炉出产对质料的规格要求较严厉,质料预加工(焦化、球团和烧结厂)使高炉出产成为环境污染的首要排放源,新建或改造高炉的出资额巨大,国际规划内的焦炉遍及呈老化状况,也需求很多出资。正常状况下,为了取得规划经济效益,钢铁联合厂商的缔造规划都很大,因而,温室气体排放和环境污染的问题比较严重。电炉炼钢厂的状况则有所不同,与钢铁联合厂商比较,其竞争力相对较强。关于电炉炼钢厂来说,优质、安稳的铁直销可显着进步电炉炼钢的出产率,下降出产本钱。因而,在炉猜中调配铁水就具有较高的运用价值。在此条件下,开发具有动力运用率高、质料及炉料习惯性强、出资本钱低、操作灵敏等特色的炼铁工艺,已成为钢铁联合厂商重视的课题之一。 首要,HIsmelt工艺将金属熔池作为根本的反响前言,炉料直接注入到金属中,熔炼进程首要经过熔解碳进行。而其他熔融复原炼铁的出产工艺一般都选用顶装矿石和煤炭工艺,经过渣层中的碳化物(及少数金属)进行熔炼。与渣中的碳比较,金属中的熔解碳作为复原剂的反响功率更高,其原因首要是因为渣中的碳需求转换为气相复原介质。也就是说,HIsmelt工艺是经过运用更具活性的碳(溶解碳)取得了更快的熔炼速率。其次,HIsmelt工艺中熔体的混合度与其他工艺不同。在HIsmelt工艺中,将炉料直接注人到金属中,发生很多的“深层”气体,这会构成一个微弱的上浮气流,导致熔液快速翻转。核算标明,翻转的流量到达每秒数吨的等级。在这种条件下,在液相中构成实质性温度梯度(大于20~30℃)的可能性很小,体系实质上以等温熔体的方式作业。此外,熔体的快速翻转促进了从炉顶空间到熔池的热传递,一起杜绝了单一液滴显着过热的现象。这关于渣区的炉膛耐火材料的保护含义严重,因为熔体的杰出混合可使耐火砖仅露出于低FeO含量及温度较低的介质中。 在熔炼中,经过运用大规划的煤种、矿石和典型的钢厂废料(回炉料),HIsmelt工艺的适用性得到了充沛证明。试用煤种的规划广泛,使其对工艺性能的影响能够被量化。因为汽化和蒸发割裂解效果导致的热能丢失,高蒸发分(最高达38%)煤对HIsmelt炼铁工艺具有负面影响。煤中氧、水分和灰分的含量对出产也有潜在影响。实验标明,该工艺中间实验用的一切煤种均可用于实践出产,在煤种的挑选上,仅需从经济方面的考虑。对选用各种矿石炉料复原水平的产能进行评价,包含赤铁矿、赤铁矿/针铁矿、针铁矿和直接复原铁。对矿粉/直接复原铁混合料进行了预复原的中间实验。此外,运用热风氧富集(最高含氧量达30%)成功地进步了熔炉的作业功率。收回料包含高炉和氧气转炉的粉尘、泥渣、铁鳞等。因为收回猜中的碳得到充沛的运用,可使全体煤耗量大幅下降。此外,因为炉猜中铁的预复原水平较高,出产功率得到进步。与铁矿石冶炼比较,收回料无须额定进行处理和加工。表1示出了对高炉和HIsmelt炼铁体系的出资进行比照的研究结果。从表1可看出,HIsmelt工艺的吨钢出产本钱为180~310美元,而钢铁联合厂商的典型吨钢出产本钱为320~450美元。此外,HIsmelt工艺还具有以下特色:质料要求的预处理量很小,熔炼前无须选矿;具有较高灵敏性,能够依据钢厂的出产进行大幅度的调整;可出产质量优异且安稳的铁水;炉料的反响时刻以毫秒核算,温度操控优于高炉;具有高度集成的在线工艺操控体系,设备运转和操作简略,全体设备保护量小;具有显着的环保优势。与高炉炼铁工艺比较,一座装备了矿石加热体系的HIsmelt炼铁厂有望将每吨铁水的二氧化碳排放量削减约20%,并能够有用地操控二口恶英的生成。因为在HIsmelt工艺中能够撤销焦化和烧结工序,因而较为环保。此外,很多运用钢厂废料的潜力可进一步稳固HIsmelt工艺的环保优势。 表1典型的Hismelt和高炉工艺的出资和出产本钱项目产值,万吨出产本钱,美元/吨出资,百万美元高炉1109326355高炉2236373880高炉3109356388高炉42434481088Hlsmelt 1(冷矿)50310155Hlsmelt 2(冷矿及废料)58259150Hlsmelt 3(预加热)63286180Hlsmelt 4(预复原)150191286Hlsmelt 5(预加热)110181200表2 不同工艺出产铁水的化学成分比较表项目高炉HIsmeltCorexC, %4.54.3±0.24.5~4.7Si, %0.5±0.300.6±0.2P, %0.09±0.020.0±0.0<0.10S, %0.04±0.020.1±0.10.01±0.02温度,℃1430~15001480±151490~15203 Hlsmelt工艺的铁水质量除出产本钱外,对不同工艺出产铁水的化学成分进行了比较。表2列出了高炉、HIsmelt以及Corex工艺出产铁水的化学成分。各种铁水的化学成分首要存在3方面差异。(1)硅(Si)含量。炼钢厂能够运用HIsmelt出产的铁水不含硅这一特色进行低硅铁水操作,可削减造渣量,并下降造渣剂的消耗量。事实上,为了进步氧气转炉的出产率,下些钢厂一般需求对高炉出产的铁水进行脱硅处理。(2)磷(P)含量。在HIsmelt工艺中,能够运用高磷铁矿粉(磷含量0.12%)进行出产。铁矿中的磷大部分被氧化转变成炉渣,使铁水中的磷含量低于0.04%。与此构成鲜明比照的是,高炉和Corex工艺中,铁矿石中的磷含量均彻底进入到铁水中,给后续的炼钢出产带来不必要的费事。因而,高磷矿一般不适用于高炉和Corex工艺。(3)硫(S)含量。HIsmelt工艺出产铁水的硫含量高于高炉和Corex工艺。但现有的铁水脱硫技能能有用地处理HIsmelt工艺出产的铁水,且不会发生剩余的费用。4 Hlsmelt工艺的含义 1)关于短流程钢厂的含义。电炉炼钢厂运用的炉猜中可增加30%~50%的铁水。HIsmelt工艺出产的铁水能够作为生铁、直接复原铁和高档次废钢的优质替代品,在炉猜中供给很高的运用价值。其长处首要包含:进步出产率,缩短炼钢周期,削减吨钢能耗;下降制品钢中的剩余搀杂含量,产品质量愈加安稳;有用削减造渣剂的消耗量和吨钢耐火材料的消耗量。此外,HIsmelt工艺的开炉、停炉、停产等操作均十分简略易行,这关于电炉炼钢厂来说是至关重要的。HIsmelt工艺能够使炼铁和炼钢工序有用地结合起来,无须为保存和处理剩余铁水而额定建造贵重、且运用率较低的配套设备。(2)关于钢铁联合厂商的含义。关于钢铁联合厂商来说,HIsmelt工艺的首要价值在于不需求焦化厂和烧结厂所带来的流程缩短。HIsmelt工艺能运用低档次铁矿粉,无须预处理,大大增加了钢厂质料直销的灵敏性,使钢铁产品的本钱更具竞争力。别的,与运用优质炼焦煤比较,运用气煤也能大幅下降出产本钱。Hismelt炼铁厂的设备大多与高炉相同,因而,HIsmelt工艺的设备也极易融人到钢铁联合厂商的全体布局中。HIsmelt工艺可随时调整操作参数(如热风速率及氧富集水相等)和质料挑选,能够高效地习惯后续炼钢工艺改变带来的灵敏性要求。此外,HIsmelt工艺可轻易地开炉、停炉或停产,为钢铁联合厂商的出产操作供给了极大的挑选空间。即便产能较低的HIsmelt设备也可发生经济效益,因而钢角联合厂商可选用多座HIsmelt炉。这样做能够大幅下降停产检修或出产调整所带来的负面影响。此外,HIsmelt工艺出产的铁水可直接与高炉铁水混合运用,为氧气转炉供给精确硅含量的铁水。在日本,“无渣炼钢”工艺被广泛选用。高炉铁水在进入氧气转炉之前必须先进行脱硅、脱磷和脱硫处理,而运用Hismelt工艺出产的铁水能够革除脱硅处理,有用下降了处理本钱。Hismelt工艺还具有以下特色:削减复吹,削减造渣剂的消耗量,削减耐火材料的消耗量;削减铁合金的消耗量,进步铁水收率;吹炼时刻削减,出产率进步,可出产优质的高档(低磷)钢号,也可出产超洁净钢。 相关链接: ★1982~1984年期间: (1)HIsmelt工艺最早能够追溯到开端由德国KlocknerWerke公司在其Maxhütte工厂开发的底吹氧气转炉工艺(OBM)和随后不断开展的顶底复合吹炼工艺。 (2)1981年,CRA公司(现为力拓集团,RioTinto)认识到,Klöckner的转炉技能能够用于冶炼铁矿石,而不仅仅是废钢。因而,CRA公司与KlöcknerWerke公司组建了合资公司,一起开发炼钢和熔融复原技能。运用60吨的OBM转炉进行的测验证明了熔融复原工艺根本原理的合理性和可行性。 ★1984~1990年期间: (1)熔融复原工艺概念测验成功后,在KlöcknerWerke公司的Maxhütte钢厂建造了一座小型实验工厂(SSPP)。该厂规划能力年产1.2万吨,选用卧式可旋转的复原炉方式(SRV)。煤、溶剂和铁矿石均经过炉底喷喷入炉内。(2)SSPP工厂的实验出产从1984年持续到1990年,期间证明了该技能的工艺可行性。但出产规划问题依然没有得到解决。(3)在此期间,协作出资方发生了改变。1987年,Klöckner公司撤出了该项目,两年后CRA公司与Midrex公司按照50:50的份额组成了合资公司,持续一起开发该技能。(4)实验工厂取得成功后,协作两边认为有必要在更大的出产规划上对该工艺进行测验。(5)两边经洽谈后决议,在西澳大利亚奎那那区域建造HIsmelt工艺研制的工厂设备(HRDF)。 ★1991年期间: (1)年产能10万吨的HIsmelt研制工厂设备在奎那那建成。(2)建造HRDF研制工厂设备的意图是进一步证明规划扩展后该工艺的可行性,一起为终究的商业化出产供给操作数据。(3)奎那那工厂最早规划的复原炉方式是直接把SSPP小型实验厂的炉型扩展,即按照可按90度角旋转的卧式炉炉型进行建造。 ★1993~1996年期间: (1)奎那那工厂卧式炉的出产从1993年10月持续到1996年8月。(2)尽管工艺规划的扩展得到了成功验证,可是卧式炉规划杂乱, 对进一步商业化造成了困难。为战胜卧式炉的缺乏,合资公司开发出了水冷管结构的立式炉。(3)立式熔融复原炉(SRV)的工程规划于1996年完结。首要的改善包含固定的立式炉体,设置在上部的炉料喷,简略的热风喷,用于接连出铁的外置出铁炉,以及用以战胜耐材腐蚀的水冷管结构。(4)1994年,Midrex公司撤出合资项目,CRA公司进入单独开发阶段。 ★1997~1999年期间:(1)1997年上半年对HRDF立式炉进行了调试,随后的出产一向持续到1999年5月份。与卧式炉比较,立式炉在耐材损耗、可靠性、作业率、产值和规划简化等方面都有很大的改善。(2)HRDF立式炉的出产指标成功证明了熔融复原炼铁技能的可行性、工程概念的合理性以及工厂技能的简化。(3)立式炉出产状况证明,该工艺能够进一步扩展规划,建成商业化工厂。 ★2002年期间:(1)2002年,由力拓集团(出资份额60%)、纽柯公司(出资份额25%)、三菱公司(出资份额10%)和首钢集团(出资份额5%)一起出资,成立了不合法人性质的合营公司——HIsmelt公司。其意图是建造并实验年产能80万吨的HIsmelt工厂。该工厂坐落西澳大利亚的奎那那工业区,出发生铁的设备是一座炉缸内径为6米的熔融复原炉。 ★2003~2004年期间: (1)HIsmelt工厂于2003年1月开端建造,并于2004年下半年开端调试。 ★2005~2006年期间: (1)HIsmelt奎那那工厂的铁水热调试作业于2005年第二季度开端。(2)榜首船由HIsmelt奎那那合资工厂出产的生铁产品(约4万吨)于2006年6月外运。(3)HIsmelt公司仍在持续优化该技能,以期为商场供给产能更大、灵敏性更强且出产功率更高的HIsmelt工艺技能。

高炉锰铁的生产---高炉锰铁冶炼用原料

2019-01-25 15:49:34

高炉锰铁冶炼用原料主要有锰矿、焦炭和熔剂。    1.锰 矿    高炉冶炼用的锰矿有氧化矿、碳酸盐矿、焙烧矿和烧结矿。    矿石中的锰是高炉锰铁冶炼中的主要回收元素。锰矿石含锰量的高低直接影响锰铁冶炼技术经济指标。高炉生产实践表明,锰矿中含锰量波动1%,焦比波动50~80kg,产量波动3%~5%,因此对入炉矿中含锰量要求越高越好。    锰矿中SiO2的含量是影响渣量的主要因素。据分析,入炉锰矿中的m(SiO2)/m(Mn)波动10%,相当于含锰量波动1%,应当尽量选用m(SiO2)/m(Mn)低的矿石入炉。我国各厂家入炉混合矿的m(SiO )/m(Mn)一般控制在0.3~0.8。    锰矿中的m(Mn)/m(Fe)决定产品的含锰量,生产不同牌号的锰铁,需用不同m(Mn)/m(Fe)比值的锰矿。    锰矿中的磷是高炉锰铁生产中的控制元素,希望越低越好。磷在钢铁产品中大都属有害元素。磷在高炉冶炼中理论上百分之百还原。因此锰铁产品中的磷含量取决于矿石、焦炭中的含磷量。但在高炉冶炼中,Mn的回收率和锰矿石的品位会在较大范围内变化,因此产品中的含磷量也随之变化。    锰矿石中允许的含磷量按下式计算:                        w(P矿)={[P]/np-(w′pK+w″pФ+w″pD)}÷H    式中  w(P矿)——入炉锰矿石的含磷量,%;          [P]——产品中允许含磷量上限,%;          np——磷在高炉中的还原率(理论上100%,实际上80%左右);          w′p,w″p,w″p——分别为焦炭,熔剂 和其他附加物的含磷量,%;          H,K,Ф,D——分别为冶炼每吨锰铁所需矿石、焦炭、熔剂和其他附加物单耗,kg/t.    某厂高炉锰铁冶炼对入炉锰矿的m(Mn)/m(Fe)及m(P)/m(Mn)要求下见表。  各牌号高炉锰铁对锰矿m(Mn)/m(Fe)、m(P)/m(Mn)的要求牌号锰铁成分 (%)对入炉锰矿要求MnPm(Mn)m(P)/m(Mn)Ⅰ组Ⅱ组m(Fe)Ⅰ组Ⅱ组≥≤≥≤FeMn78780.330.56.220.003750.00493FeMn74740.380.54.680.003960.00521FeMn68680.40.63.590.004410.00662FeMn64640.40.62.90.004690.00703FeMn58580.50.62.380.006250.0075     锰矿中的铅在冶炼时易还原也易挥发,还原后沉积在炉底,严重时会破坏炉底,炉温高时易挥发,在高炉上部结瘤。一般为要求锰矿中Pb含量<0.1%。锰矿中的锌易挥发在高炉上部沉积,对炉墙砖衬和炉壳有破坏作用,也可能和炉衬混合形成炉瘤。通常要求锰矿中Zn含量<0.2%。    锰矿石入炉粒度一般为5~60mm,含粉率要求小于5%。    2.焦 炭    焦炭在高炉冶炼中不但是还原剂和发热剂,而且是整个高炉料柱的骨架。焦炭质量的好坏一方面要看其化学成分,另一方面要看其物理性能——粒度和强度。锰铁高炉冶炼用焦炭主要有冶金焦、气煤焦和土焦。不同焦炭质量差别较大,使用时应综合考虑。    对焦炭的基本技术要求:    (l)高而稳定的固定碳含量。固定碳含量越高,作为还原剂和发热剂的能力越大,对降低焦比,改善技术经济指标有利。    (2)较低的灰分可以减少渣量及灰分带入的磷含量。    (3)较高的机械强度,可防止和减轻焦炭在炉内下降过程中产生粉末、恶化料柱透气性。挥发分低的焦炭机械强度比较好。    焦炭中的水分虽然对高炉冶炼过程无影响,但水分波动会影响配料的准确性。因此,希望焦炭水分稳定为好。焦炭入炉粒度一般为20~60mm。    3.熔 剂    高炉锰铁冶炼所用熔剂为石灰石、生石灰、白云石等。    对石灰石和生石灰要求CaO含量越高越好。CaO含量高,带入的渣量相对减少。使用白云石调节渣时,要求白云石的MgO含量尽量高。    熔剂入炉粒度要求:石灰石和白云石15~75mm,生石灰为20~l00mm,小高炉偏下限,中型高炉偏上限。

非高炉炼铁技术低温快速还原新工艺

2019-03-06 10:10:51

钢铁产品是人类社会最首要的结构材料,也是产值最大、覆盖面最广的功用材料。在可预见的未来,钢铁产品仍将是一种非常重要且不行替代的材料。近年来,跟着我国经济的快速稳定增长,钢铁工业得到了史无前例的开展,2005年我国粗钢产值已打破3亿吨,其间绝大部分来自高炉—转炉流程。高炉炼铁工艺历经数百年的开展,工艺已日趋老练。即使如此,高炉工艺也存在一些问题:工艺流程杂乱、能耗高、环境污染严峻与出资巨大等。别的高炉工艺对冶金焦有很强的依靠性,可是从已探明的国际煤炭储量来看,焦煤仅占总储煤量的5%,并且散布很不均匀,因而高炉炼铁的开展面对着焦煤缺少的困难。为处理这一困难,很多的非高炉炼铁技能就应运而生了,并且得到了较快的开展。非高炉炼铁技能依据其工艺特征、产品类型及用处不同可以分为熔融复原和直接复原两大类。熔融复原法是以非焦煤为动力,在高温熔态下进行铁氧化物复原,渣铁能彻底别离,得到相似高炉的含碳铁水。直接复原规律是以气体燃料、液体燃料或非焦煤为动力,在铁矿石(或含铁团块)软化温度以下进行复原得到金属铁的办法。其产品呈多孔低密度海绵状结构,被称为直接复原铁(DRI)或海绵铁。熔融复原熔融复原法是20世纪20年代开端提出的。50年代研讨开发的熔融复原法大多设想在一个反响器内完结悉数熔炼进程,称一步法。可是因为复原反响发生的CO的焚烧热不能敏捷传递到吸热的复原反响区,迫使熔炼间断而告失利。70年代以来遍及选用了两步法的准则:行将整个熔炼进程分红固态预复原和熔态终复原两步,分别在两个反响器内完结。其间最具重要意义的COREX法是由KORF和VOEST-ALPINE在奥地利和德国政府的财务支撑下联合开发的,现在现已进入工业化运用阶段。还有其它处于研讨阶段的熔融复原流程,比方:HISMELT、FINEX、DIOS、AISI、COIN等。下面将遭到广泛重视的几种工艺进行扼要的介绍。   1 COREX             多年来,COREX流程是仅有工业化的熔融复原流程,现在稀有套COREX设备在运转中,我国上海宝钢引进了一套COREX-3000正在建设中。COREX法工艺流程为,矿石的复原和熔融分别在两个炉子中进行,选用预复原竖炉及熔融气化炉分别对铁矿石进行复原和熔化。COREX法预复原竖炉选用高架式结构,熔融气化炉发生的高温复原气被送入预复原竖炉,逆流穿过下降的矿石层。从复原竖炉扫除的预复原矿石的复原率约为95%,料温为800~900℃。熔融气化炉的使命是熔化预复原矿石及出产复原煤气。COREX法的长处是:以非焦煤为动力,摆脱了高炉炼铁对优质冶金焦的依靠;对原、燃料习惯性较强,出产的铁水可用于氧气转炉炼钢;出产灵敏,必要时可出产高热值煤气以处理钢铁厂商的煤气平衡问题;直接运用煤和氧,不需求焦炉及热风炉等设备,削减污染,下降基建出资,出产费用比高炉削减30%以上。可是COREX也存在一些缺乏,对矿石的质量要求较为严厉,有必要运用球团矿、天然块矿和烧结矿等中等均匀粒度的块状质料,不能运用磷含量高的矿石。别的COREX要求运用块煤也是一个潜在问题。   因为当今采煤多已机械化,原煤中含粉率较高,且块煤在储运进程中,发生粉末是不行避免的。因而,COREX需求处理粉煤的运用问题。COREX煤的消耗量(吨铁约1000kg)远高于高炉流程,其终究能耗及操作本钱很大程度上依靠于尾气的归纳运用。   2 FINEX   因为COREX运用的矿石粒度为8~30mm的块矿,很多廉价的粉矿不能直接运用,因而浦项钢铁公司和奥钢联共同开发了FINEX流程,用于粒度1~10mm的粉矿。FINEX的特征是选用多级流化床反响器替代COREX的竖炉对铁矿进行复原。在流化床反响器中运用熔融气化炉供给的热复原气体对合作增加剂的铁粉矿进行复原。选用恰当的气流速度,使炉料在流态化状况下进行复原。因而不存在炉料的透气性问题,可悉数运用铁粉矿为质料。现在韩国浦项钢铁公司的FINEX演示设备已于2003年5月底投入出产,有望在近期内投入工业化出产。   FINEX工艺是两种老练工艺的组合,即流化床工艺和COREX的熔融气化炉工艺。其特征是:①不需求炼焦厂和烧结厂,然后节约设备出资和削减环境污染;②可运用粉状铁矿石和普通煤作为炼铁质料。从出产本钱上看,粉矿的报价要比块矿低20%左右,普通煤比炼焦煤报价低约25%,因而其质料本钱比较低价。一起FINEX工艺也存在一些缺乏。FINEX计划固定出资较高,比高炉计划总出资约高20%。其燃料及动力费用也高于高炉,若要下降FINEX的本钱,有必要进一步下降吨铁的耗煤量。FINEX可以处理的矿粉是有选择性的,要求矿粉粒度1~10mm。因为FINEX选用了流化床工艺,将会出现粉料的粘结问题,致使其作业率   3 HISMELT   HISMELT(HighIntensitySmelting)技能是德国Klockner和CRA公司联合开发的。该流程可直接运用粉矿和煤粉冶炼。可向铁浴炉熔池中喷入煤粉,在其顶部吹入1200℃富氧热风,使炉内发生的煤气进行二次焚烧,发生热量满意熔池反响需求,终复原炉发生的复原性气体作为复原剂进入预复原体系。HISMELT流程可直接将铁矿粉吹入熔融复原炉中,现在已完结中试,正向工业化跨进。2003年2月首钢参加出资的HISMELT工厂(年产80万t)在澳大利亚Kwinana开端筹建,已于2005年5月基本完结调试作业。   HISMLET工艺可直接运用粉矿和煤粉,其熔融复原炉中发生激烈的拌和并且温度很高,所以铁矿粉的复原速度很快,HISMELT的另一个特征可处理廉价的高磷铁矿粉。因为熔融复原炉中选用较高的二次焚烧率,致使高温尾气的运用价值很低,只能用于预热粉矿。为了使尾气得到归纳运用,HISMELT拟采纳增加天然气的办法,这样可使尾气用于发电,或用于预复原铁矿粉(复原率30%以下)。因为熔融复原炉内选用二次焚烧办法,致使炉内出现氧化性气氛,严峻腐蚀炉衬。炉子压力小于1kg,使煤气不能有用运用。别的,HISMELT选用虹吸式出铁,不能确保铁水的温度。   直接复原   依据复原剂的不同可以分为气基和煤基直接复原工艺,气基直接复原仍然主导着直接复原程,2004年气基DRI产值占总DRI产值的88%。MIDREX和HYL-III是最首要的气基直接复原工艺,它们将天然气转化成所需的复原剂,然后在竖炉中复原块矿或球团矿。其它首要的直接复原工艺还有FIOR(FINMET)、ITMK3、FASTMET等。   1 气基直接复原工艺   选用气体作为复原剂的直接复原工艺开展较快的有MIDREX和HYL-Ⅲ工艺以及选用流化床作为反响器的FINMET和Circored工艺。MIDREX直接复原工艺是Midrex公司开发成功的。它归于气基直接复原法,以天然气经催化裂解后得到的气体(首要成分H2、CO)为复原剂,在800~900℃复原铁矿得到海绵铁。MIDREX法具有工艺老练、操作简略、出产率高、热耗低、产品质量高级长处,因而在直接复原工艺中占控制位置。可是MIDREX也存在必定的局限性,首先是它要求有丰厚的天然气资源作保证;其次MIDREX的反响温度低,反响速度较慢,炉料在复原带大约逗留6h,在整个炉内逗留时间在10h左右。别的MIDREX工艺要求铁矿石粒度适合且均匀,粒度过大会影响CO和H2的分散使反响速度下降;粒度过小,透气性差,复原气散布不均匀,一般小于5mm粉末的含量不能大于5%。一起关于铁矿石的档次要求也高,这是直接复原出产海绵铁的通病,关于矿石中的S和Ti的含量要求很严。   因为运用块矿或球团,出产能力相对较低,为了进步气基竖炉流程的出产能力,MIDREX最近在竖炉中吹入少数氧气来进步复原气体及炉料的温度,研讨标明:将料温从789℃进步到898℃,竖炉的出产能力进步了50%。运用流化床作为反响器的FIOR(FINMET)工艺开展较快,别的运用循环流化床的Circored工艺也得到了广泛的重视。在1976年,FIOR工艺被提出,它是运用流化床复原铁矿粉出产热压块铁的办法。运用该工艺在委内瑞拉缔造的工业设备现已运转了25年,总产值超过了600万t。在1991年,FIOR工艺得到了进一步的开展,VAI和Exxon公司在FIOR的基础上联合开发了一种新的炼铁工艺流程FINMET。该工艺运用的矿石粒度小于12mm。选用的仍为四级流化床反响器(榜首级流化床温度为500℃,压力为1.1MPa;最终一级流化床温度为800℃,压力为1.4MPa)。热直接复原铁粉运用气流传输到热压体系直接得到热压块铁。复原所用的气体是由新出产的气体与循环气体组成。循环气体经过除尘后与新气体混合,再经过去除CO2,被预热到850℃后通入反响器中。FINMET是现在仅有投入出产的粉矿直接复原技能。可是FINMET工艺还存在一些缺陷,它的复原剂一般都选用天然气(每吨HBI耗天然气约15GJ),因而只要在天然气报价低价的区域才或许推行。一起它对矿石的要求也比较高,无法处理很多低档次的铁矿。FINMET选用普通的流化床工艺(FB),气体流速较慢,出产能力较低(1.5~2t/(m3·d)),并且还容易发生粘结现象,别的运用高压操刁难设备及操作要求极高,这些都影响该工艺的进一步推行。   Circored流程在循环流化床(CFB)中运用纯复原粒度小于1mm的铁矿粉,研讨标明,在650℃,铁矿粉逗留15min的复原率可达70%,为了进步整个流程的出产功率,还需求将CFB出来的铁矿粉进一步在FB中运用复原4h到达95%的金属化率。可是它有必要处理廉价的来历问题,并且它仍然选用了普通流化床,随之而来的就是粉料的粘结问题。   2 煤基直接复原工艺   煤基直接复原工艺的研讨热门是转底炉流程,其特征是在高温状况下在转底炉中完结铁矿的固态复原,现在现已发生一些变种流程,如FASTMET和ITMK3流程等。ITMK3流程在美国动力部的支撑下(200万美元),已完结前期实验,这种流程可得到珠铁,它的吨铁归纳能耗为615kg标煤(其间煤12GJ,燃气6GJ)。转底炉的长处是可以处理低强度的含碳球团,但高温尾气带走很多热量导致能耗过高。因为经过气体热辐射传热,转底炉内只能铺2~3层球团,导致设备运用率低下(~100kg/(m2·h))。   由以上比照可知,气基复原工艺具有冶炼温度低、能耗下降、产品质量好的长处,可是受我国资源特征的约束,难以在我国得到开展。转底炉的特征是可运用低强度的含碳球团,可是其能耗高、出产能力低、产品质量较差。低温快速复原炼铁新技能依据对炼铁工艺的深入研讨和我国详细国情的分析,钢铁研讨总院提出了低温快速复原炼铁新流程,即首先在高效球磨机中对铁矿粉进行细化和活化,然后在低温复原设备中进行快速复原。经过近几年的研讨,开发了超细粉体催化低温冶金新技能,此技能充沛结合了超细粉体和催化剂改进动力学条件的优势,因而可以更大起伏下降反响活化能、下降复原反响温度(降至700℃左右),完结低温快速反响,是一种能耗低、污染少、资源运用率高的新式绿色冶金工艺流程。新流程可经过煤气化技能发生复原性气体,也可运用国内日益过剩的焦化煤气,不用像FINMET和Circored流程依靠天然气资源,契合我国的动力结构。新流程还可直接运用我国的铁精矿粉,省去造球工艺及相应的能耗。钢铁研讨总院发明晰多级循环流化床反响器,不只处理了普通流化床容易发生粘结现象,并且也大大进步了设备的运用率(可达50t/(m3·d)),除此之外,新式反响器还能进步复原气体的运用率、下降进程能耗和固定出资等。新流程与其它炼程的比较见表1,从表1可见,新流程的能耗远低于其它炼程,CO2等废气排放量也将远低于其它流程。   表1 各种炼程的数据比较流程动力构成吨铁净能耗/GJ电耗/KWh低温快速复原煤9.3200高温转底炉煤+天然气20.54 高炉炼程焦炭和煤23 COREX流程煤+少数焦炭26.2 Finmet天然气15175Hismelt煤粉+天然气22.6(其间天然气2.2) 现在,低温快速复原新工艺得到国家支撑,基本上完结了基础理论研讨作业,正进行反响器研制及工艺研讨,有望成为新一代炼铁新流程。当今冶金界较为重视的非高炉炼铁工艺中COREX、FINEX和HISMELT流程都可以不运用焦煤,然后避免了炼焦工艺引发的环境污染。COREX选用竖炉-熔融气化炉冶炼流程,FINEX选用流化床—熔融气化炉冶炼流程,而HISMELT选用铁浴复原,因而就决议了这些流程的特征和习惯规模:COREX有必要运用块矿,HISMELT和FINEX则可用粉矿;老练的竖炉气基复原工艺是COREX流程工业化的重要保证,粉体流化床因为粘结等问题没有彻底处理、铁浴炉二次焚烧和炉衬腐蚀之间的固有对立注定了FINEX和HISMELT完结的难度远高于COREX流程。COREX和FINEX流程发生很多高热值的复原性尾气,尾气运用的途径将决议工艺的经济性,而HISMELT高温低热值尾气却成为工艺的“鸡肋”。各种气基复原工艺都能在较低温度下出产海绵铁或热压块,竖炉流程(MIDREX,HYL-III)比流化床流程(FINMET)老练,因而竖炉流程仍然操纵着气基复原工艺,气基复原流程现在都要运用天然气资源,很难在我国得到开展。转底炉流程可运用低强度的含碳球团,给煤基直接复原流程注入新的生机,但其能耗高、出产功率低、产品质量差将会限制它的开展。现在,国际各国都在进行实验研讨,把非高炉炼铁工艺作为钢铁工业技能的办法,尽力寻求新的打破。为了跟上国际钢铁工艺技能的脚步,我国亦有必要加强这方面的研讨开发作业。根据这种状况,钢铁研讨总院提出了新式低温快速复原新工艺,完结低温快速反响。该工艺可运用国内日益过剩的焦化煤气或煤气化得到复原性气体,不用依靠天然气资源;还可直接运用我国的铁精矿粉,省去造球工艺及相应的能耗。故此是一种能耗低、污染少、资源运用率高的新式绿色冶金工艺流程,现在处于研讨开发阶段,具有很好的开展前景。

电工铝杆用高效排杂净化熔剂介绍

2019-01-08 13:40:18

电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。

废铝熔剂

2017-06-06 17:50:04

废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收 金属 的废铝熔剂,特别适用于从铝渣中回收 金属 铝(铝合金),属于 金属 处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收 金属 铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3])  (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60%  Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30%  NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海 有色 网查询,更多合作伙伴也可以在商机平台中寻找到! 

炼铁用铁矿石一般工业指标

2019-01-07 07:51:16

炼铁用铁矿石一般工业指标矿石类型 ω(TFe) 主要有害物质 其他有害物质  ω(SiO2) ω(S) ω(P)  磁铁矿石 赤铁矿石 褐铁矿石 菱铁矿石 ≥50% ≤18% ≤0.30% ≤0.25% ω(Cu)≤0.2% ω(Pb)≤0.1% ω(Zn)≤0.1% ω(Sn)≤0.08% ω(As)≤0.07% ω(F)≤1.0%  注1:褐铁矿石、菱铁矿石为扣除烧损后折算的标准;自熔性矿石全铁质量分数[ω(TFe)]可降至≥40%。磷含量为一般要求,按炼铁品种不同对矿石含磷量要求也不同:酸性转炉炼钢生铁矿石ω(P)≤0.03%;碱性平炉炼钢生铁矿石ω(P)≤(0.03~0.18%);碱性侧吹炉炼钢生铁矿石ω(P)≤(0.2~0.8%);托马斯生铁矿石ω(P)≤(0.8~1.2%);普通铸造生铁矿石ω(P)≤(0.05~0.15%);高磷铸造生铁矿石ω(P)≤(0.15~0.6%)。注2:矿石块度要求:8~40mm。

高炉锰铁的生产---高炉锰铁冶炼原理

2019-01-25 15:49:34

高炉锰铁冶炼以炭作发热剂和还原剂,在高炉中将锰和铁的氧化物还原,生成锰铁合金及炉渣、煤气,是一系列复杂的物理化学过程。    1.锰在高炉内的还原过程    在高炉上部的较低温度区域,锰的高价氧化物易分解,逐级还原为MnO,但由于锰矿石中含有SiO2,MnO在未达到还原温度以前,即与脉石中(或燃料熔剂中)的SiO2结合生成硅酸锰进入渣中,锰的还原实际上是在液态炉渣中进行的。炉渣中的硅酸锰比自由状态的MnO更稳定,使锰的还原更加困难,需要的温度更高。    2.锰铁炉渣的形成及其对冶炼的影响    在冶炼锰铁高炉不同高度取样进行岩相分析,并测定炉渣粘度、温度,将测定结果编制锰铁高炉造渣过程示意图(图1)。图中表明,在温度600~700℃区间内,炉料以固相存在,这里MnO2还原为Mn3O4,吸附水和结晶水蒸发。到750~900℃区间锰矿石局部进入到塑性状态——矿石熔结,新的矿相如3CaO·SiO2,2CaO·SiO2及3CaO·2SiO2开始出现。800~1000℃温度范围内,除塑性体外还出现了液相。由于在该区域内存在着钙锰橄榄石(2CaO·SiO2,2MnO·SiO2)而生成液相,使得该区域透气性变差。在此温度区间矿石已经软化并转变成为塑性状态并生成含锰的液相初渣。当温度高于1100℃以后,除塑性体外主要的是液相,其成分基本上与上区域相似,大部分石灰仍为固相。在炉腹区域,由于大量锰从炉渣中由碳进行直接还原,渣中CaO含量急剧增加,MnO含量相应降低。在炉缸中,熔渣最终吸收焦炭中的灰分及熔剂中的CaO,MgO等,形成终渣。[next]    在高炉锰铁炉渣的形成过程中,炉渣中各组分对冶炼有不同程度的影响。表1             CaO含量与炉渣、铁水温度的关系CaO含量/%铁水温度/℃炉渣温度/℃281295135035144514803915151587     炉渣中的CaO可以改善硅酸锰的还原条件,将硅酸锰中的MnO置换出来,增加渣中自由MnO的浓度,利于MnO的还原。炉渣中CaO含量与MnO含量的关系见图2。炉渣中的CaO可以提高炉渣及铁水温度,对MnO还原有利。表1说明了CaO含量与炉渣、铁水温度的关系。在生产中,渣中CaO含量不应超过高炉工作条件允许范围,还和炉料中SiO2的含量有一定关系,n(CaO)/n(SiO2)之比为炉渣碱度,CaO含量过高使炉渣碱度过高,会使炉缸阻塞,炉况不顺。    炉渣中合适的MgO既可调节炉渣碱度,又可改善渣的流动性,为MnO的还原创造有利条件,从而促使高炉各项指标的改善。根据国内生产实践,n(CaO)/n(SiO2)=1.40~1.55时,渣中MgO含量增加1%,渣中MnO含量可降低0.5%~1%。    渣中的A12O3对MnO的还原也有影响,如图3所示。在相同碱度下,渣中MnO含量随其中Al2O3的增加而降低。这是因为A12O3含量的增加,提高了炉渣的熔点.初渣在高炉中形成的位置降低,炉料预热充分,带入炉缸的热量增加,MnO的还原速度加快创造了条件。但A12O3含量过高,会使炉渣粘度增高,反而恶化MnO的还原条件。高炉生产实践证明:炉渣中A12O3的含量应控制在10%~15%为宜,最高不要超过20%。[next]    3.煤气流在高炉内的形成及运动规律    高炉内煤气产生于风口区的焦炭燃烧(2C+O2===2CO).风口前生成的煤气分布称煤气初始分布。其分布情况决定于风口布置、风口个数、风口直径、风口角度及伸入炉内的长度、风量大小和风温高低。以上因素综合体现为鼓风功能。鼓风动能高,煤气流向中心集中,中心气流发展,反之边缘气流发展。    煤气的第二次分布发生在高炉中部的软融带。软融带的形状大体可分为V型、倒V型和W型。软融带形状与高炉上下部调节、炉内温度分布、炉料性质等有关。软融带形状不同,煤气通过后流向也不同。根据对炉喉CO2曲线的检测分析,高炉内煤气流的分布主要有四种类型。    (1)边缘发展型——煤气主要沿炉墙附近的边缘通过。    (2)双峰型——煤气主要由边缘与中心两条通路经过。    (3)中心发展型——也称双峰漏斗型、煤气主要由中心区通过。    (4)平坦型——煤气沿高炉截面均匀通过。    以上四种类型煤气分布对高炉冶炼过程影的响如表2.所示。    生产实践表明,锰铁高炉炉喉煤气CO2径向分布采用双峰漏斗型曲线控制较为理想,如图4所示。采用此种曲线操作,其软融带为倒V型,“气窗”面积大,煤气易于通过,使高炉操作顺行。

高炉锰铁的生产---高炉锰铁冶炼操作

2019-01-25 15:49:34

锰铁高炉冶炼操作与生铁高炉相似,但锰铁高炉具有以下不同特点:    ①锰矿中MnO含量较铁矿中FeO含量低,MnO较FeO难还原。冶炼过程中渣量大,锰的回收率较低。    ②由于锰与氧的亲和力比铁强,还原MnO时需要较高的温度和较大的能量,因此高炉锰铁的冶炼焦比要比生铁冶炼高得多,焦炭负荷轻。    ③由于焦比高、焦炭负荷轻,焦炭和矿石之间粒度相差大。边缘气流易于发展,造成煤气流紊乱,易产生偏行管道。    ④锰铁高炉煤气量大,发热值高,造成炉顶温度高,煤气含尘量大,净化困难。    ⑤炉衬侵蚀快,炉底易堆积,使得炉衬寿命低于生铁高炉。    以上特点决定了锰铁高炉的操作制度有别于生铁高炉而具有自身的特点。    1.高炉锰铁冶炼的装料制度    高炉锰铁冶炼中原料、燃料及熔剂的装入方法直接影响高炉断面料层分布及上升煤气流的分布,高炉装料制度包括料线、料批、装料顺序和布料器工作制度。    (1)料线,即大钟下降后的下沿至料面距离,根据锰矿粒度小、密度大、滚动性差,焦炭粒度大、滚动性好的特点,锰铁高炉的料线选在碰焦点以下,通过反弹布料,使矿石布到边缘,焦炭布到中心,有利于中心煤气流的发展。    (2)批重,指每一批料矿石重量。小料批加重边缘,大料批发展边缘。根据锰铁高炉的冶炼特点,一般采用小料批加重边缘。    (3)装料顺序,指一批料中矿石、焦炭、熔剂装入料斗的顺序。矿石先装为正装(加重边缘),焦炭先装为倒装(发展边缘)。此外还有分装、半正装、半倒装等。    (4)布料器工作制度,采用布料器是使炉料在高炉断面分布均匀的一项措施,它还可用来纠正炉料下降和煤气上升的不均匀。锰铁高炉通常采用六点式布料器布料,即每批料旋转60度。    生产实践证明:锰铁高炉采用深料线、较小料批、正装或正分装为主的装料制度有利于炉况顺行。    2.送风制度    锰铁高炉的送风制度直接影响煤气的初始分布及炉况。送风制度的确定体现为鼓风动能,即风压、风量、风温及风口尺寸等参数的选择。    在原料强度好、粒度均匀且粉末少的情况下,可采用大风量及较小风速(大风口)。反之则采用小风量、较大风速(小风口)。高炉容积与鼓风动能成正比。即高炉容积越大、鼓风动能也越大。冶炼产品含Mn量越高,炉缸越易堆积,为此需要的鼓风动能也越大。    在高炉锰铁冶炼中,为保炉缸活跃,要采取措施吹透中心。除力争全风操作外,还应保持较高风速和较大的鼓风动能,以及调节风口长度和角度来实现这一目的。    3.热制度    高炉锰铁冶炼的热制度是指冶炼中炉温水平及维持手段。炉温水平的确定应建立在保证锰的还原率及有利于降低焦比的基础上。    炉温的高低主要取决于焦炭负荷、风温、煤气热能和化学能的利用情况。    焦炭负荷与矿石中的锰、铁含量,冶炼中的渣量,熔剂消耗量以及风温、高炉容积和工作状态有关。在以上条件较稳定的前提下,应保持较合适而稳定的焦炭负荷。当以上条件变化时应根据变化相应调整焦炭负荷,以保证炉温的稳定。    在高炉锰铁冶炼中,热风带入的热量是高炉热量的主要来源之一。提高风温可降低焦比,减少煤气生成量,有利炉况顺行。因此在设备条件许可下应尽量提高风温。    4.造渣制度    高炉锰铁造渣制度与原料条件有关。当锰矿品位高,Mn,Fe质量比高时,可采用无熔剂或少熔剂法生产高碳锰铁,此时炉渣为低磷、低铁富锰渣,可作为硅锰合金的原料。我国锰矿石含锰品位低,国内以熔剂法生产高碳锰铁,以碱性渣操作为主。炉渣碱度一般控制在生产实践表明:渣中MgO含量由5%提高到8%时,渣中MnO由8%降至5%。为此,在高炉锰铁冶炼中合适的炉渣成分为:CaO为30%~44%;SiO2为25%~30%;MgO为8%~12%;Al2O3为10%~15%,MnO为3%~7%。

什么是熔融还原炼铁

2019-03-07 09:03:45

COREX是现在仅有已投入实践运用的高炉以外的炼铁技能(南非伊斯科钢铁公司:日产1000t;韩国浦项钢铁公司和印度京德勒钢铁公司等,日产2000t),它运用的是普通煤。其工艺流程是先把普通煤装入熔融气化炉,然后吹入氧使煤焚烧、分化,将发作的煤气作为复原煤气导入复原竖炉,接着在复原竖炉内将块矿石和矿石颗粒复原到金消融率为95%左右。浦项公司在将日产从1000t进步到2000t的规划扩展阶段中,为安稳熔融气化炉的操作,除了运用粉煤外,还运用了大约10%的焦炭,别的为保证复原煤气量,发现煤的挥发份存在着最佳值等,它受煤档次的约束。现在因为对煤种的挑选和复原竖炉中金属化率的安稳化等采取了办法,焦炭的运用量能够削减到大约3%~5%。因为矿石几乎是在竖炉内完结复原,因而复原所需的煤气量大,熔融气化炉的煤单耗也高。成果用于体系外的能量也必定增大。印度京德勒钢铁公司Vijayanagar厂运用日产2000t的2座COREX设备发作的煤气来带动2台13MW的发电设备。         别的,在南非的Saldanha钢铁公司还一起设置了直接复原铁出产法(MIDREX),能日产大约2500t的直接复原铁(DRI)。为处理铁矿石粒度约束的问题,浦项公司开发了运用3段气泡流化床的FINEX来替代复原竖炉,现在日产2000t的COREX所发作的煤气以分流的方式用于日产150t规划实验流化床炉的实验。计划在2003年之前与COREX本体衔接,到达年产60万t规划,其后到2010年浦项公司的1号和2号高炉就要开端大修,到时除了将这两座高炉更换成FINEX外,还预备向海外推行这一技能。          我国钢铁工业的快速开展对焦炭需求日趋添加。我国焦炭资源有限,炼焦厂商出于环保要求又被约束开展,焦炭求过于供已成为必定趋势,非焦炼铁也将势在必行。熔融复原炼铁工艺是前沿炼铁技能,它运用非焦煤出产液态铁,流程短,本钱低,污染小,铁水质量好。熔融复原炼铁附产很多煤气,可运用化工进程将之转化为甲醇或清洁燃料。工艺概算标明,联合工艺可使动力运用功率进步一倍,产品能耗下降60%,吨钢本钱下降50%。关于传统的炼焦—钢铁联合厂商,运用很多剩下焦炉煤气作为质料出产化工产品亦是进步资源运用功率,减轻环境污染的可行途径。在新技能基础上构建新式钢铁—煤化工联合厂商或生态工业园区,对未来的冶金、化工环保和动力的开展具有重要意义。

鼓风烧结配料所采用的熔剂

2019-01-07 17:38:01

鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。       一、硅质熔剂  一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。       二、铁质熔剂  多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。       三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。       表1为熔剂的化学成分实例。   表1  熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95       石灰石20.4155.731.340.330.59     石灰石30.353.970.620.230.89     石英石10.191.0891.80.14      石英石20.52.2197.12       石英石31.261.0894.86       河砂12.41.3575.853.04      河砂21.510.687.48       河砂33.02.074~80  0.30.10.1  烧渣147.44.158.2       烧渣243.866.29.31       烧渣347.554.3510.21       平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60  0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47  5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35  0.01  8~10140     注:Au、Ag的单位为g/t。

悬浮炼铁新技术

2019-01-03 09:36:49

该方法可以简化冶炼过程,主要表现在∶ (1)直接使用氧化铁精矿,不需要球团和烧结过程; (2)不需要炼焦(如果用煤来产生热还原气体,可在现场燃烧各种煤粉); (3)因为没有颗粒粘结或熔化问题,可使用高温,该工艺可能是强度的; (4)生产固体颗粒或铁水的可能性; (5)低级耐火材料问题; (6)容易供给原材料(铜和镍硫化物精矿颗粒已供给闪速熔炼炉,50多年来没有出现诸如堵塞和粘结问题。氧化铁精矿应该更容易,因为它们接近气体比硫化物颗粒接近氧气更加稳定了; (7)在一套设备中直接炼钢的可能性。 根据这些理由,悬浮法作为高强度工艺是最好的选择,特别是从细过筛氧化铁精矿开始。 将这种悬浮法的生产能力作为一个例子,闪速熔化炉(比用于铁闪速还原的更小)每年(约0.6~0.8吨/分)生产铜为0.3~0.4x10^6吨。 物料和CO2还原 使用这个新技术所得到的三种燃料的输入和输出流和输入和输出量以及从传统高炉操作得到的三种燃料的输入和输出流和输入和输出量。特别的是为了这个新技术而大量还原产生的CO2,甚至使用的煤还原高炉中产生的CO2比较。由于淘汰了炼焦/燃烧、球团和烧结阶段,这个被建议的技术将具有其他环境效益。在USDOE报告中提供了当前高炉操作中产生的污染散发物的典型数量。

高炉锰铁标准

2019-01-04 17:20:15

高炉锰铁标准高炉锰铁(GB/T3975-1996)牌号化学成分(%)Mn其余元素,≤CSiPS一组二组Ⅰ级Ⅱ级FeMn7875.0~82.07.5120.30.50.03FeMn7470.0~77.00.4FeMn6865.0~72.07FeMn6466.0~67.02.50.50.6FeMn5855.0~62.0

铝合金熔体的熔剂精炼

2019-01-02 15:29:20

本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。   在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。   铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。   1 熔剂的作用   盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。   2 熔剂的分类和选择   2.1熔剂的分类和要求   铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。   ①熔点应低于铝合金的熔化温度。   ②比重应小于铝合金的比重。   ⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。   ④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。   ⑤吸湿性要小,蒸发压要低。   ⑥不应含有或产生有害杂质及气体。   ⑦要有适当的粘度及流动性。   ⑧制造方便:价格便宜。   2.2熔剂的成分及熔盐酌作用   铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。   2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4   ,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。   2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;   b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。   3铝合金熔炼中常用熔剂   熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。   3.1常用熔剂   为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。   铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。   表1 常用熔剂的成分及应用   溶剂种类 组分含量,%   NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金   覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg   系,Al-Cu-Si系Al-Cu-Mg-Zn系   Na2CO385。CaF15 一般铝合金   50 50 一般铝合金   KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金   31 14 CaF210 CaCL244 Al-Mg系合金   8 67 CaF210,MgF215 Al-Mg系合金   精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金   8 67 MgF215,CaF210 Al-Mg系合金   KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金   42 46 Bacl26 (2号熔剂) Al-Mg系合金   22 56 22 一般铝合金   50 35 15 一般铝合金   40 50 NaF10 一般铝合金   50 35 5 CaF210 一般铝合金   60 CaF220,NaF20 一般铝合金   36-45 50-55 3-7 CaF 21。5-4 一般铝合金   Na2SiF630-50,C2Cl650-70 一般铝合金   40。5 49。5 KF10 易拉罐合金   从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。   综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。   3。2熔剂用量 .   熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。   3。2。1.主覆盖剂用量   a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合   注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。   b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。   表3: 覆盖剂用量   类 别 用量(占投料量的%)   小碎片碎 屑号外渣子 6-810-1515-20   3.2.2精炼剂用量   不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。   表4 精炼剂用量   合金及制品 熔炼炉 静置炉   高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t   特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t   LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝   其它合金 普通熔剂5-6kg/t   注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加   ②对大规格的圆锭,其熔剂用量也应适当增加。   3。3熔剂使用方法   熔剂精炼法熔炼铝合金生产中常用以下几种方法   ①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。   ②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。   ③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。   ④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。   在这五种方法中,电熔剂精炼效果最好。

锰铁高炉的技术改造

2019-01-04 13:39:36

1 市场呼唤技术改造,回顾过去,我国锰铁高炉有其蓬勃发展的历史,审视当前,高陆锰铁行业似乎正在丧失其往日的风采。各高炉锰铁厂的市场竞争力强弱不等,但从整体上看是在弱化。出现这种现象的原因,一是锰市场的变化;二是技术落后,对市场的变化不够适应。 西方国家锰市场早已出现变化,其锰合金消耗与钢产量的变化可以看出:(1)钢的增长幅度大于锰的消耗量,吨钢耗锰量下降.70年代西方将平炉淘汰后,炼钢用锰单耗下降,1980年平均7.3kg/t,到80年代后期降到6.4kg/t左右,其后保持或略低于这个水平;(2)在锰单耗下降的情况下,以硅锰形式消耗的锰量稳步上升. 1999年起,我国也出现了炼钢增加MnSi耗量的趋势,究其原因,定性地分析有3点:①建筑用钢产量比重大,而建筑用钢允许有较高的硅残余量;②我国硅锰合金成本、价格较低。这是由于我国高SiO2锰矿资源多,而且用贫杂锰矿冶炼的富锰渣是生产硅锰合金的优质原料。从炼钢看,有些钢种使用复合脱氧剂锰硅合金比用锰铁加硅铁更经济; ③市场对低炭洁净钢的需求日益增长,从而使精炼锰铁和MnSi受益。

闪速炉熔剂及常用燃料

2019-03-06 09:01:40

一、熔剂     闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。 表1  闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2  As<0.1  F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8  Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3  Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4    直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。     二、燃料     闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。     因为烟气用于制酸,因而对燃料含硫无要求。     各厂闪速炉用燃料的实例见表2,表3。 表2  闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5    注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。 表3  闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm  14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90%    有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。

金、银锭熔铸的原理-熔剂和氧化剂

2019-02-21 13:56:29

在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。 熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。 熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。 熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。

氧气顶吹熔融还原炼铁试验

2019-03-07 10:03:00

氧气顶吹熔融复原炼铁实验:介绍了氧气顶吹熔融复原技能的工艺、设备和氧在反响中最佳喷溅作用的模仿;此工艺选用浸入式水冷喷把富氧空气直接喷吹到渣层中来加强对熔池的拌和,强化传热传质.经过用昆钢供给的质料开始实验,得到了与传统高炉质量适当的优质铁水.该工艺能够运用传统高炉无法运用的高磷铁矿石作为炼铁质料,且能冶炼出含磷下降的铁水,脱磷也是这种工艺的特色之一。

炼铁生产技术60问

2019-03-04 11:11:26

1、高炉常用的铁矿石有哪几种?各有哪些特色? 答:工业用铁矿石是以其间含铁量占全铁85%以上的该种含铁矿藏来命名的。 含铁矿藏分为氧化铁矿(Fe2O3、Fe3O4)、含水氧化铁矿(Fe2O3.nH2O)和碳酸盐铁矿(FeCO3)。高炉炼铁运用的铁矿石也就分为赤铁矿(红矿)Fe2O3、磁铁矿(黑矿)Fe3O4、褐铁矿Fe2O3nH2O和菱铁矿FeCO3。 赤铁矿的特征是它在瓷断面上的划痕呈赤褐色,无磁性。质软、易破碎、易复原。含铁量最高是70%。但有一种以γ-Fe2O3形状存在的赤铁矿,结晶安排细密,划痕呈黑褐色,而且具有强磁性,类似于磁铁矿。 磁铁矿在瓷断面上的划痕呈黑色,安排细密巩固,孔隙度小,复原比较困难。磁铁矿能够看作是Fe2O3和FeO的结合物,其间Fe2O369%,FeO31%,理论含铁量为72.4%。天然界中朴实的磁铁矿很少见到,因为遭到不同程度的氧化效果,磁铁矿中的Fe2O3成分添加,FeO成分削减。磁铁矿具有磁性,这是磁铁矿最杰出的特色。 褐铁矿是含有结晶水的氧化铁矿石,色彩一般呈浅褐色到深褐色或黑色,安排疏松,复原性较好。褐铁矿的理论含铁量不高,一般为37%~55%,但受热后去掉结晶水,含铁量相对前进,且气孔率添加,复原性得到改进。 菱铁矿为碳酸盐铁矿石,色彩呈灰色、浅黄色中褐色。理论含铁量不高,只要48.2%,但受热分化放出CO2后,不只前进了含铁量,而且变成多孔状结构,复原性很好。因而,虽然含铁量较低,仍具有较高的冶炼价值。 2、什么叫生铁? 答:生铁是含碳1.7%以上并含有必定数量的硅、锰、磷、硫等元素的铁碳合金的总称,首要用高炉出产。 3、生铁有哪些种类? 答:生铁一般分为三大类:即供炼钢用的炼钢铁;供铸造机件和东西用的铸造铁(包含制作球墨铸铁用的生铁);以及特种生铁,如作铁合金用的高炉锰铁和硅铁等。此外,还有含特殊元素钒的含钒生铁。 4、高炉出产有哪些产品和副产品? 答:高炉出产的产品是生铁。副产品是炉渣、高炉煤气和炉尘(瓦斯灰)。 5、高炉出产用哪些质料? 答:高炉出产的首要质料是铁矿石及其代用品、锰矿石、燃料和熔剂。 铁矿石包含天然矿和人工富矿。一般含铁量超越50%的天然富矿,能够直接入炉;而含铁量低于30%~50%的矿石直接入炉不经济,须经选矿和造块加工成人工富矿后入炉。 铁矿石代用品首要有:高炉炉尘、氧气转炉炉尘、轧钢皮、硫酸渣以及一些有色金属选矿的高铁尾矿等。这些质料一般均参加造块质猜中运用。 锰矿石一般只在出产高炉锰铁时才运用。 6、高炉为什么要用熔剂?常用的熔剂有哪几种?对熔剂的要求是什么? 答:因为高炉造渣的需求,高炉配猜中常参加必定数量的助熔剂,简称熔剂。其意图是使脉石中高熔点氧化物(SiO2 1713℃、Al2O3 2050℃、CaO 2570℃)生成低熔点化合物,构成流动性杰出的炉渣,到达渣铁别离和去除有害杂质的意图。 依据矿石中脉石和燃料灰分成分不同,以及冶炼生铁种类和质量的要求,高炉运用的熔剂有碱性的石灰石(CaCO3)、白云石[ (Ca、Mg)CO3];酸性的硅石(SiO2)。还有兼作含MgO和酸性熔剂的镁橄榄石和蛇纹石(3MgO·2SiO2·2H2O),以及洗炉用的莹石(CaF2) 等。近年来也有用转炉钢渣替代石灰石和白云石作为熔剂调炉渣碱度的。 跟着精料技能的前进,高碱度烧结矿加酸性料(天然块矿、球团矿和酸性烧结矿)的炉料结构的遍及推广,熔剂直接参加高炉的或许性越来越小,现在少数入炉的熔剂仅仅作为安稳炉况调理炉渣碱度的手法。 对直接入炉的熔剂的要求是:1、有用的熔剂性要高。2、有害杂质S、P含量愈少愈好。3、粒度要均匀。 7、高炉用哪些燃料?各有何优缺陷? 答:1、木炭。木炭由木材在满意温度下干馏而成,它固定碳含量高,灰分低;简直不含硫;气孔度高。但木炭机械强度差,报价高,因而作为高炉燃料已被筛选。 2、无烟煤(或称白煤)。它的化学成分能底子满意炼铁的要求;低温强度好,可远距离运送;但它的气孔度很低,热安稳性差,在高炉内受热后碎裂成粉末,而且含硫一般也较高。现已不再运用。 3、焦炭。由煤在高温下(900℃~1000℃)干馏而成。它的成分完全能满意高炉炼铁的要求;机械强度大大高于木炭;热安稳性比白煤好;气孔度虽不如木炭,但比白煤大得多。焦炭是现代高炉抱负的燃料,也是现在高炉的首要燃料。 喷吹用燃料。为了下降焦比,现在世界各国遍及选用从高炉风口喷入部分燃料以替代部分焦炭。喷吹燃料有煤粉、重油和天然气。 4、型焦。作为代用燃料,现在国内外都在研讨用无烟煤、贫煤、褐煤等非结焦煤的成型技能,按工艺出产流程可分为热压成型和冷压成型两类。(在高炉上运用型焦现在尚处于冶炼实验阶段)。 8、焦炭在高炉出产中的效果? 答:1、供给高炉冶炼所需求的大部分热量;     2、供给高炉冶炼所需的复原剂;     3、焦炭是高炉料柱的骨架;     4、生铁构成进程中渗碳的碳源。 9、高炉冶炼进程中对焦炭质量提出哪些要求? 答:为了保证高炉冶炼进程的顺畅和获得杰出的出产目标,焦炭质量有必要满意以下几个方面的要求: 1、固定碳含量要高,灰分要低。一般经历是,焦炭灰分添加1%,焦比升高2%,产值下降3%。 2、含S、P杂质要少。高炉冶炼进程中的S,80%以上来自焦炭,因而,下降焦炭含S量对下降生铁含S量具有重大意义。焦炭中含P较少,对生铁质量无大影响。我国焦炭含P一般都低于0.05%。 3、焦炭的机械强度要好。焦炭在高炉下部高温区作为支撑料柱的骨架跟着上部料柱的巨大压力,假如焦炭的机械强度不大,则构成许多碎焦,恶化炉缸透气性,损坏高炉运转,严峻时无法进行正常出产。别的,强度欠好的焦炭,在运送进程中发作许多的粉末,构成丢失。 4、粒度要均匀,粉末要少。气体力学研讨标明,巨细粒度不均匀的散料,空地度最小,透气性差。而粒度均匀的散料,空地度大,煤气阻力小。因而,为了改进高炉透气性,保证煤气流颁合理和高炉顺行,不只要求焦炭粒度适宜,而且要求粒度均匀,粉末少。一般高炉运用40~60mm大块焦。 5、水分要安稳。焦炭中水分是湿法熄焦时进入的,一般达2%~6%。水分对高炉冶炼无影响,但因为焦炭是按分量入炉的,水分动摇必定要引起干焦量的动摇,然后引起炉况动摇。 6、焦炭的反响性要低,抗碱性要强。焦炭反响性指的是焦炭在高温下与CO2反响构成 CO(C焦+ CO2=2CO)的才干。焦炭在与CO2反响进程中会使焦炭内部的气孔壁变薄,然后下降焦炭的强度,加速焦炭破损对高炉冶炼发作如下不得影响:铁的直接复原开展,煤气运用变坏,焦比升高;一起焦炭破损发作的焦粉恶化了高炉料柱的透气性,影响高炉顺行。下降焦炭反响性的办法是:炼焦配煤中恰当多用低、中蒸发性煤;前进炼焦的终了温度;闷炉操作;选用干熄焦;下降焦炭灰分等。 焦炭抗碱性是焦炭在高炉内反抗碱、钠及其盐类效果的才干。钾、钠是C+CO2=2CO反响的催化剂,还能与焦炭反响生成C8K、C36K等。所以碱腐蚀会下降焦炭强度,给高炉出产构成损害。前进焦炭抗碱才干的办法有:配煤中恰当配用低蜕变程度弱黏结性气煤,采纳办法下降焦炭的反响性等。 10、什么叫精料?它的方针是哪些? 答:精料是指原燃料入高炉前,采纳办法使它们的质量优化,成为满意高炉强化冶炼要求的炉料,在高炉冶炼运用精料后可获得优秀的技能经济目标和较高的经济效益。做好精料作业的内容提法许多,例如“高、熟、净、小、匀、稳”,也就是入炉档次要高,多用烧结矿和球团矿,筛除小于5mm的粉末,操控入炉矿的上限,保证粒度均匀,化学成分安稳等。较全面的提法是“渣量小于300kg/t;成分安稳、粒度均匀;具有杰出的冶金功能;炉料结构合理。” 11、什么是含铁矿粉烧结? 答:广义的烧结是必定温度下靠固体联合力将散状粉料固结成块状的进程。炼铁领域内的烧结是指把铁矿粉和其他含铁物料通过熔化物固结成具有杰出冶金功能的人工块矿的进程,它的发作物就是烧结矿。 12、铁矿粉烧结出产有何意义? 答:首要,烧结出产是一种人工富矿的出产进程,有了这种造块办法,天然界中许多存在的贫矿便可通过选矿和烧结成为能满意高炉冶炼要求的优质人工富矿,然后使天然资源得到充分运用。其次,烧结进程中能够运用富矿粉、高炉炉尘、转炉炉尘、轧钢皮、铁屑、硫酸渣等其他钢铁及化工工业的若干废料,使这些废料得到有用运用,做到变“废”为宝,变“害”为利。 通过烧结出产制成的烧结矿,与天然矿比较,粒度适宜,复原性和软熔性好,成分安稳,造渣功能杰出,保证了高炉出产的顺行。 最终,烧结进程能够除掉80%~90%的S和部分F、As等有害杂质,大大减轻了高炉冶炼进程中的脱硫使命,前进了生铁质量。 13、烧结矿出产中运用哪些熔剂?对它们有什么要求? 答:烧结矿出产中运用的熔剂有:石灰石、生石灰、消石灰、白云石、轻烧白云石、蛇纹石等。对它们总的要求是有用成分高,有害成分少,粒度适宜(1~3mm)。 14、烧结矿有哪些质量目标? 答:1、烧结矿档次。是指烧结矿含铁量凹凸,一般指扣除烧结矿中的碱性氧化物含量今后的含铁量。     2、烧结矿碱度。     3、烧结矿复原性。烧结矿转鼓指数,它是指烧结矿在常温下抗磨剥和抗冲击才干的目标。     4、烧结矿落下强度:表明烧结矿抗冲击才干的目标。     5、烧结矿热复原粉化率。系指烧结矿在400~600℃复原条件下的机械强度。     6、软熔功能。 15、什么是球团矿?它有何特色?      答:球团矿是细精矿粉(-200目,即粒度0.074mm的矿粉占80%以上、比表面积在1500cm2/g以上)参加少数的添加剂混合后,在造球上加水,依托毛细力和旋转运动的机械力构成直径8~16mm的生球,然后在焙烧设备上枯燥,在高温氧化性气氛下Fe2O3再结晶的晶桥键固结成的档次高、强度好、粒度均匀的球状炼铁质料。它有以下特色:     1、运用档次很高的精矿粉出产,酸性氧化球团矿的档次可达68%,SiO2在1%~2%;    2、无烧结矿具有的大气孔,悉数气孔都以微气孔方式存在,有利于气-固相复原;     3、FeO含量低(一般在1%左右),矿藏首要是Fe2O3,复原性好; 4、冷强度好,每个球可耐2800~3600N(300~400kg·f)的压力粒度均匀,运送功能好; 5、天然堆角小在24°~27°,在高炉内布料易滚向炉子中心; 6、含硫很低,因为在强氧化性气氛下焙烧,能够去除质猜中95~99%的硫; 7、具有复原胀大的缺陷,在有K2O、Na2O等催化的效果下会出现异常胀大; 8、酸性氧化球团矿的软熔功能较差,即它的软化开端温度低,软熔温度区间窄,但它仍比天然富块矿的好,仍是适宜炉料结构中高碱度烧结矿的最佳搭配料。16、精矿粉是怎样成为8~16mm的生球的? 答:精矿粉的成球是由其在天然状况下滴水成球的特性和在机械力效果下密布的才干构成的。在造球机上成球的进程按下列3个阶段进行: 母球构成。装入造球盘中的物料一般水分含量为8%~10%,处于比较松懈的状况,各个矿粉颗粒为吸附水和薄膜水所掩盖,毛细水仅存在于各颗粒间的触摸点上,其他空间为空气所充填,颗粒之间触摸不严密,薄膜水还不能起效果。别的,因为毛细水数量太少,毛细孔过大,毛细压力小,颗粒间结合力较弱,不能成球,为此,须进行不均匀的点滴潮湿,并通过机械力的效果,使部分颗粒触摸得更严密,构成更细的毛细孔和较大的毛细压力,将周围矿粒拉向水滴中心,构成较严密的颗粒集合体,然后构成母球。 母球长大。母球在造球盘上持续翻滚,母球进一步压紧,内部毛细管变细,过剩的毛细水被挤到母球表面,这样过湿的母球靠毛细力效果将周围含水较少的矿粉粘结起来,使母球长大。当母球到达所需求的粒度,有必要向母球表面弥补喷水。但喷水量要适度,假如过大,颗粒完全为水所饱满而发作重力水,使颗粒脱离触摸,分裂母球,对造球极为不力。 生球压实。仅靠毛细力结合起来的生球,强度不大。为了前进生球强度,有必要中止喷水,使生球在造 球盘上翻滚,将生球内部的毛细水悉数挤出,为周围矿粉所吸收;一起使生球内的矿粉颗粒摆放得更严密,使薄膜水层有或许彼此触摸,构成许多颗粒共有的水化膜而加强结合力,然后使生球强度大大前进。当生球到达必定粒度和密度后,因为造球盘的离心力效果,生球主动被抛出盘外。 从造球机出来的生球用瓷辊筛筛去粒度大于16mm和8mm的,生球抗压强度要到达15~20N/个球,落下强度(单个生球从0.5m高处落到钢板上重复下跌,直到生球损坏中止的次数)不4小于次,契合以上两个目标便是合格生球。 17、现在首要有哪几种球团焙烧办法? 答:现在国内外焙烧球团矿的办法有3种:竖炉焙烧;带式焙烧;链箅机-回转窑焙烧。 竖炉是最早选用的球团矿焙烧设备。现代竖炉在顶部设有烘干床,焙烧室中心设有导风墙。焚烧室内发作的高温气体从两边喷入焙烧室向顶部运动,生球从上部均匀地铺在烘干床上被上升热气体枯燥、预热,然后沿烘干床斜坡滑入焙烧室内焙烧固结,在出焙烧室后与从底部鼓进的冷习尚相遇,得到冷却。最终用排矿机排出竖炉。 竖炉的结构简略,对质料无特殊要求;缺陷是单炉产值低,只适用于磁精粉球团焙烧,因为竖炉内气体流难于操控,焙烧不均匀构成球团矿质量也不均匀。 带式焙烧机是现在运用最广的焙烧办法。带式焙烧的特色:1、选用铺底料和铺边料以前进焙烧质量,一起维护台车延伸台车寿数;2、选用鼓风和抽风枯燥相结合以改进枯燥进程,前进球团矿的质量;3、鼓风冷却球团矿,直接运用冷却带所得热空气助燃焙烧带燃料焚烧、以及枯燥带运用;只将温度低含水分高的废气排入烟囱;5、适用于各种不同质料(赤铁矿浮选精粉、磁铁矿磁选精粉或混合粉)球团矿的焙烧。 18、 钢与铁的不同 铁在天然界中蕴藏量极为丰厚,占地壳元素含量的5%,居地球物质中的第四位。铁元素很生动,简单与其它物质结合。习惯上常说的钢铁是对钢和铁的总称。钢和铁是有差异的,所谓钢铁,首要由两个元素构成,即铁和碳,一般碳和元素铁构成化合物,叫铁碳合金。含碳量多少对钢铁的性质影响极大,含碳量添加到必定程度后就会引起质的改变。由铁原子构成的物质叫纯铁,纯铁杂质很少。含碳量多少是差异钢铁的首要标准。生铁含碳量大于2.0%;钢含碳量小于2.0%。生铁含碳量高,硬而脆,简直没有塑性。钢不只要杰出塑性,而且钢制品具有强度高、耐性好、耐高温、耐腐蚀、易加工、抗冲击、易提炼等优秀物化运用功能,因而被广泛运用。 19、白口铁和灰口铁的不同 碳(C)在铁中有石墨和碳化铁两种状况。石墨是碳的一种形状。石墨是片状的碳,滑润柔软,像煤屑相同,很不巩固,散存在铁中,将铁基体分裂,如同铁中有许多条状的窟窿,损坏了铁的巩固性。这种以石墨状况存在于铁中的碳,将铁染成灰色,所以叫灰口铁。灰口铁因含柔软的石墨,做成机器零件,易被机床切削。石墨在液体铁水中有“光滑”效果,使铁水流动性变好,适合于浇注铸件,所以灰口铁又名铸造铁。 碳化铁是白色的,又硬又脆,含量过多时,铁会像石头相同。失掉可塑性。用这种铁做的零件,切削困难,所以白口铁首要用来炼钢,故又名炼钢铁。 石墨和碳化铁也能够互相转化,决定性条件有两个:一是铁水的化学成分,假如铁水含硅量高,能促进碳化铁分化,变成石墨所以铸造铁的含硅量总是高的;另一个要素是铁水凝结的快慢在成分适合时,假如冷得太快,铁水中的碳化铁来不及分化,便成为白口铁。假如冷得慢,碳化铁分化成石墨和铁,这样就变成灰口铁。 20、高炉炼铁的冶炼原理 高炉出产是接连进行的。一代高炉(从开炉到大修停炉为一代)能接连出产几年到十几年。出产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风,喷入油、煤或天然气等燃料。装入高炉中的铁矿石,首要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳焚烧生成的将铁矿石中的氧攫取出来,得到铁,这个进程叫做复原。铁矿石通过复原反响炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与参加炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口别离排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还能够运用炉顶的高压,用导出的部分煤气发电。 高炉内的复原气体发作于风口前的燃料焚烧,这一进程发作了两大运动流:一个是上升的热煤气流,一个是下降的炉料流(铁矿石、焦炭、熔剂等)。高炉内的悉数反响均发作于煤气和炉料的相向运动和彼此效果之中。它包含炉料的加热、蒸腾、蒸发和分化;铁及其它元素的复原;炉猜中非铁氧化物的熔化、造渣和生铁的脱硫;铁的渗碳及生铁的构成;炉料和煤气之间的热交换等等,是一系列物理化学反响进程的总和。 21、什么叫高炉煤气 答:高压鼓风机(轴流风机)鼓风,而且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,发作的是二氧化碳和,二氧化碳又和炙热的焦炭发作,在上升的进程中,复原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学进程。铁水在炉底暂时存留,守时放出用于直接炼钢或铸锭。 这时候在高炉的炉气中,还有许多的过剩的,这种混和气体,就是“高炉煤气”。 这种含有可燃的气体,是一种低热值的气体燃料,能够用于冶金厂商的自用燃气,如加热热轧的钢锭、预热钢水包等。也能够供给民用,假如能够参加焦炉煤气,就叫做“混和煤气”,这样就前进了热值。 22、高炉煤气的成分 答:高炉煤气为炼铁进程中发作的副产品,首要成分为:CO, C02, N2、H2、CH4等,其间可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2, N2的含量别离占15%,55 %,热值仅为3500KJ/m3左右。 高炉煤气的成分和热值与高炉所用的燃料、所炼生铁的种类及冶炼工艺有关,现代的炼铁出产遍及选用大容积、高风温、高冶炼强度、高喷煤粉量的出产工艺,选用这些先进的出产工艺前进了劳动出产率并下降能耗,但所产的高炉煤气热值更低,添加了运用难度。高炉煤气中的CO2, N2既不参加焚烧发作热量,也不能助燃,相反,还吸收许多的焚烧进程中发作的热量,导致高炉煤气的理论焚烧温度偏低。高炉煤气的着火点并不高,好像不存在着火的妨碍,但在实践焚烧进程中,受各种要素的影响,混合气体的温度有必要远大于着火点,才干保证焚烧的安稳性。高炉煤气的理论焚烧温度低,参加焚烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,焚烧安稳性欠好。 焚烧反响能够发作的另一条件是气体分子间能够发作有用磕碰,即具有满意能量的彼此之间能够发作氧化反响的分子间发作的磕碰,许多的C02,N2的存在,削减了分子间发作有用磕碰的几率,微观上表现为焚烧速度慢,焚烧不安稳。 高炉煤气中存在许多的CO2, N2,焚烧进程中底子不参加化学反响,简直等量转移到焚烧发作的烟气中,燃高炉煤气发作的烟气量远多于燃煤。 23、惯例气体分类 高炉煤气:CO,CO2,N2, ----------------------炼铁炉尾气 炼钢棕色烟气:Fe2O3,CO---------------------炼钢炉尾气,天然气:CH4 焦炉煤气:H2,CH4,少数CO,CO2,C2H4,N2--------煤的干馏的尾气裂解气:乙烯,,丁二烯还有,等 几种常见煤气发作炉煤气成份与热值表煤种│项目嘉阳焦煤大同烟煤抚顺气煤鹤壁贫煤铜川贫煤阳泉无烟煤营城长焰煤淮南气煤焦作无烟煤鹤岗气煤西山无烟煤煤气体积成份%CO22.242.353.04.693.255.826.23.86.634.786.17H2S0.060.050.10.0350.85/0.1/0.04/0.15CmHn0.20.40.4/0.3/0.30.3///O20.10.20.20.20.20.3/0.20.10.10.02CO29.331.628.525.826.724.1625.028.525.927.323.28H212.513.314.013.4515.414.6215.011.315.313.9811.42CH42.21.82.52.081.21.252.41.70.82.92.07N53.450.351.353.7552.153.815154.251.2351.0456.89Qd(Kj/Nm3)59806320628055205110558058605760523060304980 24、熔融复原法出发作铁 熔融还 法是指不必高炉而在高温熔融状况下复原铁矿石的办法,其产品是成分与高炉铁水附近的液态铁水。开发熔融复原法的意图是替代或弥补高炉法炼铁。与高炉法炼程比较,熔融法炼铁有以下特色: (l)燃料用煤而不必焦炭,可不建焦炉,削减污染。 (2)可用与高炉相同的块状含铁质料或直接用矿粉作质料。如用矿粉作质料,可不建烧结厂或球团厂。 (3)全用氧气而不必空气,氧气耗费量大。 (4)可出产出与高炉铁水成分、温度底子相同的铁水,供转炉炼钢。 (5)除出产铁水外,还发作许多的高热值煤气。 现在世界上熔融复原法许多,其间只要Corex法技能比较老练并已构成工业出产规模,其它诸法仍在开展和工业化进程中。熔融复原法在我国没有得到很大开展,现在处于实验室实验和半工业实验阶段。25、炼铁产品种类 炼铁产品按其出产办法、用处及类型分,可分为生铁、直接复原铁、熔融复原铁、炼铁副产品、球墨铸铁和铸铁管等几大类。26、出发作铁直接复原法 是指在低于熔化温度之下将铁矿石复原成海绵铁的炼铁出产进程,其产品为直接复原铁(即DRI),也称海绵铁。 该产品未经熔化,仍坚持矿石外形,因为复原失氧构成许多气孔,在显微镜下观察团形似海绵而得名。海绵铁的特色是含碳低(<1%),并保存了矿石中的脉石。这些特性使其不宜大规模用于转炉炼钢,只适于替代废钢作为电炉炼钢的质料。 直接复原法分气基法和煤基法两大类。前者是用天然气经裂化产出H2和CO气体,作为复原剂,在竖炉、罐式炉或流化床内将铁矿石中的氧化铁复原成海绵铁。首要有Midrex法、HYL Ⅲ法、FIOR法等。后者是用煤作复原剂,在回转窑、隧道窑等设备内将铁矿石中的氧化铁复原。首要有FASMET法等。 直接复原法的长处有:     (1)流程短,直接复原铁加电炉炼钢;     (2)不必焦炭,不受炼焦煤缺少的影响;     (3)污染少,取消了焦炉、烧结等工序;     (4)海绵铁中硫、磷等有害杂质与有色金属含量低,有利于电炉冶炼优质钢种。直接复原法的缺陷有:     (l)对质料要求较高:气基要有天然气;煤基要用灰熔点高、反响性好的煤;     (2)海绵铁的报价一般比废钢要高。     直接复原法已有上百年的开展前史,但直到20世纪60年代才获得较大打破。进入20世纪90年代,其出产工艺日臻老练并获得长足开展。其首要原因是:     (1)天然气的许多开发运用,特别是高效率天然气转化法的选用,供给了适用的复原煤气,使直接复原法获得了来历丰厚、报价相对廉价的新动力。     (2)电炉炼钢迅速开展以及冶炼多种优质钢的需求,大大扩展了对海绵铁的需求。     (3)选矿技能前进,可供给许多高档次精矿,矿石中的脉石量下降到复原冶炼进程中不需加以脱除的程度,然后简化了直接复原技能。     当时世界上直接复原铁量的90%以上是选用气基法出产的。 我国天然气首要直销化工和民用,不或许许多用于钢铁工业。因为我国煤炭储量相对丰厚,20世纪90年代以来煤基直接复原法已在天津、辽宁、吉林、山东等地构成了必定的出产规模 27、非炼钢生铁 非炼钢生铁有: (l)铸造生铁,含硅量较炼钢生铁高,一般含硅量大于1.25%,有多种牌号,首要用于铸造出产。 铸造生铁可分为球墨铸铁用生铁和普通铸造用生铁(其它铸造用生铁)。球墨铸铁用生铁与普通铸造用生铁比较,锰、磷、硫的含量要求更低一些,首要用于铸造球墨化铁铸件(在铸造时还要参加金属镁或稀土铁合金),各项功能优于普通铸造用生铁。 球墨铸铁用生铁不包含用生铁冶炼的球墨铸铁。 (2)含钒生铁。是指用含钒钛铁矿石冶炼的含钒钛的生铁。冶炼时许多钛金属都富集到高炉渣里去,把钒留在生铁里。含钒生铁在提钒后还能够炼钢。含钒生铁还可用于铸造。含钒生铁属高耐磨生铁,用其铸出的铸件,耐磨性特别好。 以上各种生铁的一起特色是含碳量到达饱满程度,这是生铁与钢在化学成分上的底子差异。 生铁是高炉产品(指高炉冶炼生铁),而高炉的产品不只仅生铁,还有锰铁等,归于铁合金产品。锰铁高炉不参加炼铁高炉各种目标的核算。高炉炼铁进程中还发作副产品水渣、矿渣棉和高炉煤气等。 28、直接复原铁 直接复原铁是指用直接复原法在低温固态下复原的金属铁。按出产办法可分为煤基直接复原铁和气基直接复原铁;按用处可分为炼钢用直接复原铁和其它用直接复原铁;按产品方式可分为海绵铁(DRI)和压块铁(HBI)。 29、熔融复原铁 熔融复原铁是指用熔融复原法从铁矿石中复原出的液态金属铁。按出产办法可分为一步法产熔融复原铁和二步法产熔融复原铁;按用处可分为炼钢用熔融复原铁和其它用熔融复原铁。 30、炼铁副产品 炼铁副产品包含出格生铁、炼铁水渣、矿渣棉、矿渣和高炉煤气等。 31、炼铁出产首要技能经济目标     技能经济目标是反映专业出产开展、技能前进的相应水平的直观标志。一个厂商经营效果的好坏,完全能够通过技能经济目标的对比来加以点评。炼铁出产因冶炼办法不同、出产工艺不同,应别离进行核算。     炼铁首要技能经济目标可分为质量目标、耗费目标、劳动出产率目标、技能操作目标等几大类。     32、生铁产值     生铁产值是指特守时期内出产的契合国家标准的合格生铁数量。合格生铁量是各种牌号生铁什物量之和。出格生铁另行核算,不计入生铁产值中。化铁炉重熔的再生铁和高炉铁合金,均不计入生铁产值中。   生铁产值的核算时刻规则为陈述期最终一天、最终一班、24时前翻开出铁口所出的铁量(即出铁时刻或许延至零时今后,但生铁量仍计入陈述期内)。 高炉出渣带出的铁水,凡铸成标准铁块并经查验合格的,可计为生铁产值;不合格的不核算生铁产值,也不核算出格生铁量。 33、出格生铁量 出格生铁是指不合乎国家标准的各种牌号的出格铁。 出产中发作的大铁、跑铁、漏铁、铁沟残铁,不管其成分怎么,均视为废铁,既不计入生铁产值中,也不计入出格生铁中。 34、实发作铁量和折算生铁量 实发作铁量和折算生铁量,是为了习惯核算某些炼铁技能经济目标而规则的产值,不作为生铁方案产值是否完结的查核运用。 实发作铁量为生铁产值与出格生铁量之和。折算生铁量是以炼钢生铁为基数,将其它各牌号生铁按不同系数一致折算成炼钢生铁的产值。 此外,高炉出产的水渣、矿渣棉高炉出产的水渣、矿渣棉应别离核算其产值。 35、生铁合格率 生铁合格率是指查验合格生铁占悉数查验生铁的百分比。其核算公式为:       核算阐明:     (1)高炉开工后,不管任何原因构成的出格生铁,均应参加生铁合格率目标的核算。     (2)用于炼钢的不合格铁水,不允许混罐,应按罐断定。     (3)入库前的混号铁,按出格铁核算      36、生铁一级品率     生铁一级品率是指一级品生铁量占合格生铁总量的百分比。其核算公式为: 生铁一级品率(%)= (一级品生铁总量(吨)/合格生铁查验总量(吨))×100%    核算阐明:一级品生铁量是指国标一类及一类以上的生铁量。以现行国家标准为例:炼钢生铁一级品是指硫属一类及一类以上为一级品;含钒生铁一级品是指硫属一类为一级品;铸造生铁和球墨铸造用生铁契合国家标准,硫属一类及一类以上为一级品。                       37、生铁原材料耗费     生铁原材料耗费是指出产每一吨合格生铁所耗费某种原材料的数量。其底子核算公式为:         某种原材料耗费量(千克/吨) = 某种原材料耗费总量(千克)/ 合格生铁产值(吨)     核算阐明:生铁原材料耗费目标要求按质料矿石(含人工块矿、天然矿石两项)、碎杂铁、熔剂别离填列。均按实践入炉量核算。       质料矿石指铁矿石、锰矿石、钛矿石等(均包含天然矿石和人工块矿)。碎杂铁包含回炉重炼的出格铁及其它杂铁。       熔剂包含石灰石、白云石、萤石、硅石、钛渣等。     38、焦比     焦比(即焦耗)是指高炉冶炼每一吨合格生铁所耗费的干焦炭量。因为高炉冶炼的铁种和运用的燃料不同,焦比要求用4个不同的目标表明。其核算公式别离为:入炉焦比(千克/吨) = 干焦耗用量(千克)/合格生铁产值(吨) 归纳焦比(千克/吨) = 归纳干焦耗用量(千克)/合格生铁产值(吨) 折算入炉焦比(千克/吨)=  干焦耗用量(千克)/ 合格生铁折算量(吨) 折算归纳焦比(干克/吨)=  归纳干焦耗用量(千克)/合格生铁折算量(吨)     核算阐明:     (1)干焦耗用量是指扣除水分后的入炉焦炭量,不包含入炉前加工及运送等方面的损耗,但包含开炉、闷炉等所耗费的数量。     (2)干焦量= 湿焦量×(1一湿焦含水(%))。     (3)归纳干焦量= 干焦量十其它各种燃料量×折合干焦系数。各种燃料折干焦系数见表2-3-1。     (4)合格生铁折算量是以炼钢生铁为基数,将其它各牌号生铁一致折算成炼钢生铁的产值,其折合系数见表2-3-2。表2-3一1 各种燃料折干焦系数燃料称号核算单位折合干焦系数焦炭(干焦)千克/千克1.0焦丁千克/千克0.9重油(包含原油)千克/千克1.2喷吹用煤粉(灰分≤10%)千克/千克1.0(10%千克/千克0.9(15%千克/千克0.8(12%千克/千克0.4(灰分>20%)千克/千克0.6沥青千克/千克1.0天然气千克/米31.1焦炉煤气千克/米30.5木炭、石油焦千克/千克1.0型焦或硫焦千克/千克0.8                 表2-3-2    各牌号生铁折合炼钢生铁系数生铁种类铁号折合产值系数炼钢生铁各号1.00铸造生铁铸141.14 铸181.18 铸221.22 铸261.26 铸301.30 铸341.34球墨铸铁用生铁球101.00 球131.13 球181.18 球201.20含钒生铁钒>0.2%各号1.05含钒、钛生铁钒>0.2%、钛>0.1%各号1.10    39、喷煤比     喷煤比是指高炉冶炼一吨合格生铁所耗费的煤量。其核算公式为: 喷煤比(千克/吨)=煤耗用量(千克)/合格生铁量(吨)    40、喷重油比(本公司不选用)     喷重油比是指高炉冶炼一吨合格生铁所耗费的重油量。其核算公式为:喷重油比(千克/吨)= 重油耗用量(千克)/合格生铁量(吨)     41、燃料比     燃料比是指高炉冶炼一吨合格生铁所耗费的燃料量。其核算公式为:         燃料比(千克/吨) = 燃料耗用总量(千克)/合格生铁量(吨)     42、生铁电力耗费     生铁电力耗费是指出产每一吨合格生铁所耗费的电力。其核算公式为:生铁电力耗费(千瓦·时/吨) = 电力耗费量(千瓦·时)/ 合格生铁产值(吨)    43、炼铁工序单位能耗     炼铁工序单位能耗是指炼铁工序(厂、车间)出产每吨合格生铁所耗费的动力量。其核算公式为:       核算阐明:工序标煤耗费总量可依据热能平衡表获得。所耗费的各种燃料和动力等动力一致折组成标准煤核算,各种动力折算标准煤的系数见附录四。为使工序单位能耗横向可比,上式母项也可一起用合格生铁折算量核算。    44、炼铁全员什物劳动出产率     炼铁全员什物劳动出产率是指陈述期内炼铁全员的人均生铁产值,一般都是按折算产值核算的。其核算公式为:        炼铁全员什物劳动出产率(吨/人)=合格生铁折算产值(吨)/炼铁全员(人)     核算阐明:炼铁全员包含炼铁厂出产安排和管理人员、各出产工序的出产人员(含学徒工)、日常修理人员。     45、高炉有用容积运用系数     高炉有用容积运用系数是指高炉每立方米有用容积均匀每天(24小时)出产的合格生铁产值,一般都是按折算产值核算的。其核算公式为:       核算阐明:     (1)高炉有用容积(米3),料钟式高炉有用容积是大钟敞开时,底边线至出铁口中心线之间的炉内容积;料钟式加可调炉喉高炉有用容积是以大钟敞开时,底边线至出铁口中心线之间的容积减去为增设可调炉喉而添加的容积;无料钟式高炉有用容积是炉喉上沿至出铁口中心线之间的容积;通过技能改造的高炉,按改造后的容积核算。     (2)规则作业天数= 日历天数一大、中修体风天数。     46、休风率     体风率是指高炉休风时刻占规则作业时刻的百分比。其核算公式为:          依据需求还能够核算慢风率目标,其核算公式为:           核算阐明:     (1)休风时刻不包含大、中修停炉的休风时刻。     (2)大修是指拆换高炉悉数砌砖(包含炉底砖),拆换悉数或部分炉壳和炉顶设备,替换悉数冷却水箱,检修或替换其它悉数设备。     (3)中修是指拆换高炉部分砌砖,拆换悉数或部分炉喉砖和炉顶设备,检修或替换高炉附属设备的部件。     (4)规则作业时刻(分)= 日历时刻(分)一大、中修时刻(分)。     (5)休风是指风压、风量降到零,高炉中止送风。慢风是指高炉因为某种原因,风量减到小于正常风量的80%。其区分标准见表2-3-3。 表2-3-3  高炉休、慢风区分标准项目占正常风量(或风压)的百分比(%)休风0慢风≤80全风100+10     注:正常风量(或风压)是指在详细条件下习惯于该高炉的恰当风量(或风压)。    47、人工块矿运用率     人工块矿运用率是指入炉人工块矿占入炉矿石总量的百分比。它是反映高炉运用精料状况的目标。其核算公式为:人工块矿运用率(%) =( 入炉人工块矿量(吨)/ 入炉矿什物总量(吨))×100%      核算阐明:  (1)人工块矿包含烧结矿、球团矿;                  (2)入炉矿总量包含人工块矿和天然矿。     48、入炉铁矿档次     入炉铁矿档次是指入炉铁矿(包含人工块铁矿和天然铁矿石)的均匀含铁量。这项目标可分为不扣除氧化钙、氧化镁和扣除氧化钙、氧化镁两种核算办法。其核算公式为:     入炉铁矿档次(不扣氧化钙、氧化镁)(%) =(入炉铁矿含铁总量(吨)/ 入炉铁矿什物总量(吨)) ×100%                 入炉铁矿档次(扣除氧化钙、氧化镁)(%)=  (入炉铁矿含铁总量(吨)/ 入炉铁矿扣除氧化钙、氧化镁后什物总量(吨))×100%     核算阐明:     (1)入炉铁矿含铁总量,应按各种铁矿耗用量乘该矿含铁量加权均匀求得。     (2)入炉铁矿扣除氧化钙、氧化镁后的什物总量,是指从入炉铁矿总量中减今该铁矿所含的悉数氧化钙、氧化镁量后的数量。   悉数氧化钙、氧化镁量,可按各种铁矿耗用量与该矿中含氧化钙(%)、氧化镁(%)之和的乘积核算。     (3)各种铁矿含铁量和氧化钙、氧化镁含量,均以实践化验数据为准。      49、入炉焦炭灰分      入炉焦炭灰分是反映入炉焦炭质量的首要目标之一。      其核算公式为:      入炉焦炭灰分(%) =(入炉焦炭灰分总量(吨)/ 入炉焦炭总量(吨)) ×100%       核算阐明:       (l)入炉焦炭灰分总量,应按各种入炉焦炭耗用量乘以该批焦炭灰分(%)加权均匀求得。       (2)在焦炭的种类、含灰量改变不大的状况下,入炉焦炭灰分也可按算术均匀求得。即:   入炉焦炭灰分(%)= 各次测定焦炭灰分(%)之和     50、入炉焦炭硫分     入炉焦炭硫分是反映入炉焦炭质量的首要目标之一。其核算公式为: 入炉焦炭硫分(%) =  (入炉焦炭硫分总量(吨)/入炉焦炭总量(吨))×100%      核算阐明:入炉焦炭硫分总量,应按各种入炉焦炭耗用量乘以该批焦炭硫分(%)加权均匀求得。       51、均匀热风温度     热风温度是指高炉实践运用的热风温度。它反映热风炉热风才干和高炉对热风的运用状况。其核算公式为:各高炉均匀热风温度(℃)=各高炉均匀风温(℃)之和/高炉座数     如各高炉有用容积不同较大,可按下式加权算术均匀法核算: 各高炉均匀热风温度(℃)= ∑(高炉均匀风温(℃)×高炉有用容积(米3 ))÷ ∑ 高炉有用容积(米3) 某高炉均匀热风温度(℃) = 逐日(月)均匀风温(℃)之和÷实践出产日(月)数     核算阐明:热风温度可从外表中查得,每小时一次记载在高炉日报上。 日均匀风温(℃)= 日内记载的风温合计量(℃)÷记载次数     52、冶炼强度     冶炼强度可分为归纳冶炼强度和焦炭冶炼强度。它是指高炉均匀每立方米有用容积在一天内所能焚烧的归纳干焦量或干焦量。它反映炉料下降及冶炼的速度。其核算公式为:   归纳冶炼强度(吨/米3·日)= 入炉归纳干焦量(吨)/ (高炉有用容积(米3 )×实践作业天数(日))   焦炭冶炼强度(吨/米3·日)=入炉干焦量(吨)/(高炉有用容积(米3)×实践作业天数(日))     核算阐明: 实践作业天数= 日历天数一悉数休风天数(包含大、中修休风)     53、渣铁比     渣铁比是指高炉每炼一吨生铁所发作的炉渣量。其核算公式为:      渣铁比(千克/吨)= 炉渣总量(千克)/实发作铁总量(吨)    核算阐明:     (1)炉渣总量一般按测定分量核算。不能按测定分量核算的,可选用氧化钙平衡理论法核算,其核算公式为: 炉渣总量(吨)= 入炉氧化钙总量(吨)-煤气灰中氧化钙总量(吨)/高炉炉渣均匀含氧化钙量(%)     入炉氧化钙总量(吨)= 入炉铁矿含氧化钙总量(吨)十入炉熔剂含氧化钙总量(吨)十焦炭和其它燃料含氧化钙总量(吨)     (2)渣铁比目标的母项为实发作铁总量,实发作铁总量为合格生铁量与出格生铁量之和。     54、焦炭负荷     焦炭负荷可分为归纳焦炭负荷和焦炭负荷。它是指每一吨归纳干焦或干焦能熔化多少吨炼铁料和锰矿等。其核算公式为:     ( 归纳焦炭负荷(吨/吨)= 铁矿(吨)十锰矿(吨)+钛矿+金属附加物(吨)×0.3)÷归纳干焦耗用量(吨) 铁矿(吨)十锰矿(吨)     焦炭负荷(吨/吨)= +钛矿+金属附加物(吨)×0.3)÷干焦耗用量(吨)     核算阐明:归纳干焦耗用量和干焦耗用量应与归纳焦比和入炉焦比目标中的子项数据相一致。     55、灰铁比     灰铁比是指高炉每炼一吨生铁所发作的煤气灰量。其核算公式为: 灰铁比(千克/吨)=煤气灰总量(千克)÷ 实发作铁总量(吨)     核算阐明:     (1)煤气灰总量按高炉除尘器清灰量与湿式(或电气)除尘清灰量之和核算。     (2)实发作铁总量为合格生铁量与出格生铁量之和。     56、直接复原铁合格率     直接复原铁合格率是指合格直接复原铁占悉数查验直接复原铁的百分比。其核算公式为: 直接复原铁合格率(%)=(直接复原铁查验合格量(吨)/直接复原铁查验总量(吨))×10O%     57、直接复原铁复原度     直接复原铁复原度是指复原进程中总的失氧率,即(1一氧化度)。悉数铁氧化成Fe2O3 时,氧化度为100%。其核算公式为:        式中Fe3+——产品中三价铁量(%);         Fe2+——产品中二价铁量(%)。     58、直接复原铁金属化率     直接复原铁金属化率是指直接复原铁中金属铁量与全铁量之比,它表明矿石中氧化铁被复原到金属铁的程度。其核算公式为:       59、煤气运用率    煤气运用率是指参加瓜的气体与复原生成的气体之比,它表明煤气化学能运用的程度。其核算公式为:     式中CO、CO2、H2、H2O——别离为复原生成物气相应成分的百分浓度(%)     60、质料耗费     质料耗费是点评直接复原法质料耗费水平的目标,是指体系内每炼一吨合格直接复原铁所耗费的质料矿石量(含人工块矿和天然矿石)。其核算公式为:        质料耗费(吨/吨)=质料矿石耗费量(吨)/合格直接复原铁产值(吨)     61、熔剂耗费     熔剂耗费是点评直接复原法熔剂耗费水平的目标,它是指体系内每炼一吨合格直接复原铁所耗费的熔剂量。其核算公式为:   熔剂耗费(吨/吨)=熔剂耗费量(吨)/ 合格直接复原铁产值(吨)

高炉渣提钛技术

2019-01-04 17:20:18

过去,对于高炉流程而言,仅得到了大部分铁、钒的回收,而高炉渣中的钛,没有回收利用。因此,研究开发高炉渣中钛的回收技术,提高钛的回收利用率,具有十分重要的意义。 目前,从高炉渣中提取回收钛的技术大致可分为三种:一是传统的酸浸流程,为了降低处理成本,使用废酸或低浓度酸解技术,废酸液可循环使用,也可以作为钢铁厂内部循环水的处理剂使用。采用该工艺,一方面充分利用了生产过程中产生的废酸,另一方面节约了废酸和废水的处理费用,显着降低了生产成本。二是“高温炭化,低温氯化”处理工艺,以高钛型高炉渣为原料,采用火法冶金处理方法,在高温下首先进行高炉渣的炭化,将其中的TiO2转变为TiC和TiN,然后在较低温度下氯化,将TiC 和TiN 转变为TiCl4,通过进一步的精制,获得硫酸法钛白或氯化法钛白的优质原料。根据现有技术,高炉渣炭化率可达到90%以上,目前关键是如何降低生产能耗,使之具备经济优势,实现规模化生产。三是高炉渣“再冶再选”工艺技术,针对高炉渣中含钛物相多且分散、粒度细小的特点,通过冶金方法促进高炉渣中的钙钛矿长大,然后通过选矿方法选出其中的钛,达到钛富集的目的。 采用该方法处理,钙钛矿粒度可由原来的10μm长大到40μm左右,经选矿后,TiO2品位可由目前的22%提高到40%左右。但存在处理时间长、产品品位低等不足,尚需进一步研究解决。

火法炼金常用熔剂及其作用

2019-01-07 07:52:09

火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。

冶炼厂熔剂磨碎分级流程的选择与计算

2019-01-07 17:38:01

一、流程选择       当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。    图1  三段开路破碎筛分流程图实例    图2  熔剂磨碎分级流程实例       二、流程计算       以图2为例,其计算方法如下:   Q1=Q4 Q5=CQ1 Q2=Q3=Q1+Q5       式中:          Q1Q2……-各产物数量,t/h;          C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。   表1  磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限 mmC值 %磨碎机与分级机闭路Ⅰ0.5~0.3 0.3~1.0150~350 250~600磨碎机与旋流器比例Ⅰ0.4~0.2 0.2~1.0200~350 300~600

鼓风炉化矿采用的原料、熔剂和燃料

2019-01-07 07:51:21

一、铅锌氧化矿     表1为会泽铅锌矿的铅锌氧化矿化学成分实例。 表1  铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1  铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4    二、熔剂     熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。    三、燃料     表2为焦炭性质及化学成分实例。 表2  焦炭性质及化学成分实例焦种块度 mm固定碳 %挥发分 %灰分 %灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81

高炉高铝渣问题的探索与解决

2019-03-11 13:46:31

高炉出产实践标明,炉渣Al2O3含量超越16%就会对炉况的安稳顺行发生较大的不良影响,乃至引起高炉异常。例如,武钢7号高炉是3200m3大型高炉,配备水平先进,投产后,取得了很好的操作目标,但到2009年6月,因为质料成分大幅动摇,烧结质量变差,矿石Al2O3含量高,渣动性变差,渣铁不能及时排放,致使炉况顺行渐差,造成了炉况的异常,给高炉出产造成了巨大损失。为此,武钢尽力探究处理高炉高铝渣问题的有用办法。   依据出产实践经验,在Al2O3含量到达18%以上时,依托高MgO渣来下降炉渣黏度是不可行的,因为进步炉渣MgO含量要靠进步烧结矿中白云石等熔剂配比来完成,当烧结矿中MgO含量增加时,粘结相的流动性变差,如燃耗不增加则必定引起烧结矿强度下降。最近实验室研讨的结论是,烧结矿中MgO含量以2.5%为宜,超越此规模,烧结矿转鼓指数将趋于下降。因而,要应对质料来历失控引起的Al2O3含量过高的状况,需求研讨适合的高炉造渣准则。下降黏度的途径有2个,一是加锰矿(MnO);二是加萤石(CaF2)。因为加锰矿会影响生铁中Mn的含量,所以应研讨恰当参加萤石量的办法。    武钢7号高炉在2009年7月高炉渣中Al2O3含量全天均匀高达18.6%,最高时达22.81%,严峻影响了渣铁的流动性和渣铁的别离,直接导致了渣铁排放困难。尽管采取了许多办法,如加锰矿、热洗炉等办法,但因为炉缸堆积严峻,炉况长期不见好转,最终决议用萤石洗炉。从2009年7月24号到7月28号,8月3号至7号,参加萤石,萤石用完后再运用Mn矿。洗炉期间补加很多净焦,用于弥补炉缸热量。从运用效果来看,萤石对炉身粘结的洗刷、对炉缸堆积的处理效果较为显着。参加萤石今后,显着下降了炉渣的熔点,改进了炉渣的流动性,对炉前出铁排渣效果显着,这关于炉况的康复起到了非常重要的效果。    应该指出,尽管增加萤石有利于改进炉渣流动性,但萤石对炉腹炉缸的冷却壁有严峻的侵蚀效果,所以选用萤石洗炉要非常稳重。武钢在处理7号高炉2009年7月的炉缸堆积时,萤石是经过炉料均匀参加炉内的,萤石散布于整个料面,萤石大面积和炉腹、炉缸处冷却系统触摸,造成了很多风口损坏,延缓了康复时刻,今后在处理因炉渣中Al2O3偏高而引起的炉缸堆积时应加以改进。    实践标明,CaF2能下降高Al2O3炉渣黏度,但CaF2对高炉内的耐火材料也起损坏效果,因而CaF2的运用一般是在因Al2O3含量高,黏度大引起炉缸不活、炉缸堆积等状况下运用。在武钢炉渣中Al2O3含量日均匀小于18%的状况下,CaF2含量在2.0%左右就可以了。如果在正常出产中长期参加CaF2运用,则需求考虑高炉内耐火材料的承受能力等问题。

高炉富锰渣的冶炼工艺特点

2019-01-04 17:20:15

高炉富锰渣的冶炼工艺特点 高炉冶炼生产富锰渣在我国较普遍,其工艺流程、生产设备与高炉生铁、锰铁、锰硅合金基本相同,但与其它高炉产品在工艺操作上有自己的特点: 1.在所有高炉产品中,高炉富锰渣冶炼温度是最低的。理论上要求炉温控制在保证铁、磷从相图研究和生产实践来看渣的熔化温度一般在1000—1200℃,将炉温控制在1280—1350℃之间能使锰的入渣率达到85%左右,铁、磷入渣率在5%左右。 2.在所有高炉产品中,高炉富锰渣的炉渣碱度是最低的。大部分为自然碱度的酸性渣冶炼,碱度一般控制在0.3以下。而生铁炉渣碱度为1.0左右,硅锰合金渣碱度在0.6—0.8左右。 3.高炉冶炼富锰渣一般是高负荷低风温操作,其负荷与入炉的矿的含铁量有关。含铁低时风温低负荷高,含铁高时风温高负荷低。 4.高炉冶炼富锰渣煤气热能利用好。顶温一般只有200—300℃,但化学能利用相对较差,混合煤气中CO2一般仅10%左右。 5.富锰渣冶炼为大渣量冶炼渣铁比高的达3—4,低的也在1以上。其含锰的高低主要取决于矿石中的含锰和含铁量,锰的回收率一般可达到85%—90%。 6.入炉原料粒度一般锰矿为5—50mm,冶金焦碳为15—100mm。 电炉富锰渣的生产 1)电炉富锰渣的工艺过程与高炉冶炼富锰渣的工艺过程基本相同,都是渣中锰的富集过程,但在冶炼操作上则有所不同。主要有:①电炉冶炼的热源靠电源,电炉的炉料可以搭配部分粉焦和粉矿。 ②电炉的炉身矮,料柱短,煤气量少,故煤气通过料柱的压力降小。③电炉冶炼富锰渣质量较好,渣中含锰量高,含磷和铁较低,可以冶炼出w(SiO2) 48%的富锰渣(没有焦炭的灰分参加造渣)。④电炉富锰渣不仅可作为冶炼锰硅合金的原料,而且还可以作为冶炼金属锰的优质原料。⑤出炉后,为使渣中的铁珠完全沉淀(降低富锰渣含铁、磷)需要在渣坑或渣包内镇静一定时间再放渣浇铸。 2)电炉冶炼富锰渣的原料电炉冶炼富锰渣的主要原料是含铁的锰矿石、焦炭和萤石(或硅石)。为了满足富锰渣质量要求,普通电炉富锰渣对入炉锰矿石的化学成分要求如下:m(Mn)/m(Fe)=0.3~2.5,w(Mn+Fe)≥38%,w(Mn)≥18%,w(A12O3+SiO2)≤35%,m(SiO2)/m(A12O3)≥1.7,m(CaO)/m(SiO2)0.3。锰矿石的入炉粒度,一般为5~50mm,含粉率小于8%,锰矿石含水要控制在8%以下。焦炭主要是做还原剂用,要求固定碳含量≥80%,灰分≤18%,焦炭粒度为3~15mm。萤石要求CaF2含量≥85%,粒度为5~80mm。硅石要求,SiO2含量大于97%,粒度为20~80mm

冶炼厂熔剂破碎筛分流程的计算

2019-01-07 17:38:01

破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。       计算破碎筛分流程必须具备以下原始资料:       一、按原矿计的生产能力。       二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。    图1  原矿粒度特性曲线       三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。    图2  颚式破碎机产品粒度特性曲线    图3  标准圆锥破碎机产品粒度特性曲线    图4  中型圆锥破碎机闭路破碎产品粒度特性曲线    图5  短头圆锥破碎机开路破碎产品粒度特性曲线   (因本图表不清,需要者可来电免费索取)    图6  短头圆锥破碎机闭路破碎产品粒度特性曲线   (因故图表不清,需要者可来电免费索取)    图7  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较       计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。       破碎筛分流程的基本类型及计算公式列于表1。   表1  破碎筛分流程的基本类型及计算公式      Q1-原矿两,t/h;     Q2,Q3,Q4……Qn-各产物的重量;     β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;     E-筛分效率,%;     Cc-破碎机的循环负荷,%;     Cs-筛分机的循环负荷,%。       破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。   表2  d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口 e筛孔 ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85       以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。    图8  三段一次闭路破碎筛分流程图实例    图9  熔剂破碎筛分流程计算图       该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。       按破碎比: ί=ί 1 ί 2 ί 3   ί=300/6=50       参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。       (一)各段破碎产品最大粒度的计算:   d2=D最大/ ί 1=300/3=100mm   d3=d2/ ί 2=100/3=33.3mm   d7=d3/ ί 3=33.3/5.5=6mm       (二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)   e2=d2/Z=100/1.6=62.5mm(取65mm)   e3=d3/Z=33.3/1.9=17.5mm(取20mm)       短头圆锥破碎机的排矿口e7,参照表2。   e7=0.8,d7=0.8×6=4.8mm(取5mm)       (三)筛孔尺寸和筛分效率       根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。       设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。       (四)破碎作业计算       参照表1,   Q1=Q2=Q3=Q4+Q5=Q8=50t/h   Q6=Q7=C Q3       循环负荷率                      式中:          β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;          β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。       参照表1,   Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下                                 =50×0.25×0.65+25×0.52×0.65                                 =16.58t/h       式中:          β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;          β30~6-产物3中小于6mm粒级含量,%,查图3得出;          β70~6-产物7中小于6mm粒级含量,%,查图6得出。   Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h       任一产物的产率       式中:          Qn-任一产物的产量,t/h;          Q1-流程的给矿两,t/h。             (计算从略)