乌红鸡血石岩矿鉴定报告
2019-01-24 14:01:24
核心提示:产地:内蒙古自治区巴林右旗大板镇雅玛吐山 产状:中生代流纹岩类蚀变岩带 颜色:紫乌红色、白色、浅褐黄色相间 矿物产地:内蒙古自治区巴林右旗大板镇雅玛吐山 产状:中生代流纹岩类蚀变岩带 颜色:紫乌红色、白色、浅褐黄色相间 矿物成分:地开石、辰砂、炭质、铁质、水云母、石英、方解石。 结构构造:角砾构造、柔皱变晶结构(相片1印章石) 矿物成分以显微晶―微晶片状地开石为主,结晶粘度在0.01―0.1mm,在应力作用下地开石碎裂成角砾状,角砾大小由2―20mm不等或更大些,由于又遭受后期应力作用角状显得棱角不明显,角砾大小也分布不均一,局部地段地开石集合体柔皱现象明象。 以上地质现象说明,热液作用下形成的蚀变角砾地开石岩,应力的作用的反复性,重结晶作用现象产物,是地开石角砾中的净边产生,炭质类富集到角砾的中部。 角砾化形成过程中又有新的地开石形成,地开石及炭质构成了早期形成角砾状地开石的胶结物。 晚期含矿溶液沿裂隙、胶结物浸染充填,乌红色的辰砂伴炭质分布,辰砂结晶粒度为0.004―0.01mm,集合成团粒或成细脉分布。 岩石名称:辰砂化角砾地开石蚀变岩 乌红鸡血石:是巴林鸡血石的一种,辰砂呈乌红色,岩石颜色、花纹独特,是印章石、雕件的好原料,古朴而典雅。
锑铅锌矿岩矿鉴定
2019-01-30 10:26:34
(一)、含矿原岩成矿作用经历如下演化过程: 1、含矿原岩主要有两种:含铁泥质粉砂-细砂岩和蚀变(绢云母化)花岗细晶岩,两者接触带上发育韧脆性剪切带变形构造,分别造成泥质粉砂-细砂岩的片理化和花岗细晶岩的强烈绢云母化。 2、经中等强度韧-脆性剪切构造作用变形-变质重结晶,致使泥、硅质胶结物重结晶为鳞片微晶绢云母和微晶石英,粉砂-细砂石英屑拉长或眼球体化(照片1),使岩石显示片理化构造。含硫铁岩石变形-变质重结晶为微细黄铁矿均匀散布。花岗细晶岩强烈绢云母化。 3、再经碎裂、角砾岩化,含矿热液强烈活动,导致铅锌锑的成矿作用发生,充填交代于碎裂含铁泥质粉砂-细砂岩及角砾岩化含铁泥质粉砂-细砂岩裂隙与构造胶结物基质中。 (二)、矿化特征及成矿演化 1、热液早期阶段表现为黄铁矿及少量毒砂化,与之同步的构造作用为岩石的片理化,该矿化极有可能与金矿化有密切关系,显微镜下发现特征的黄铁矿的增生环带构造(照片6、15、16),望矿山取样化验分析金的含量。 2、热液中期阶段黄铁-闪锌-方铅矿化,与碎裂-角砾岩化构造作用密切,从变形岩石碎裂开始即发生矿化作用(黄铁矿-闪锌矿化),持续到角砾岩化之初(方铅矿化)。 3、热液晚期阶段辉锑矿-铁碳酸盐化,该阶段成矿与角砾岩化密切同步,部分辉锑矿沿方铅矿晶粒边缘交代形成两种矿物的混晶交生。 4、形成两种矿石类型:片理化黄铁泥质粉砂-细砂岩型角砾状锑-铅锌(金)矿石(照片2)和蚀变花岗细晶岩型角砾状锑-铅锌(金)矿石。 该锑-铅锌多金属矿床属于与构造变形有关的中-低温热液矿床,值得注意片理化阶段可能有金的矿化作用发生,应采样化验验证。 (三)、矿石矿物组成、组构与矿石类型 委送样品可划分为两种矿石类型,具体特征如下: 1、片理化黄铁泥质粉砂-细砂岩型角砾状锑-铅锌(金)矿石 矿化岩石先经韧脆性构造变形片理化,同时出现微细浸染型含毒砂-黄铁矿化;进一步的脆性构造碎裂使蚀变矿化的片理化黄铁泥质粉砂-细砂岩角砾岩化,多期多阶段的金、铅-锌、锑矿化作用伴随递进型构造活动,同步发生。矿石结构构造及矿物组成如下: (1)石英(21%)有三种成因类型:①石英粉砂、细砂f=0.02~0.05´value=".1" unitname="mm" style="word-break: break-all; line-height: 26px;">0.1mm,由于变形呈显微拉长状或显微眼球体变微晶(照片1),岩石显然经受中等程度的韧脆性构造变形,成矿与该构造活动有关;②硅质胶结物经变形形成变微晶f=value=".01" unitname="mm" style="word-break: break-all; line-height: 26px;">0.01mm以下,与重结晶绢云母混生一起,约含8%;③硅化石英细团块-浸染状、微细脉状,半自形多边形状及条柱细晶,f=0.05~0.1´value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm,与黄铁矿、闪锌矿密切交生。 (2)绢云母(18%)显微鳞片状集合体,并呈集合消光,显示岩石片理化(照片1、2),为原岩泥质重结晶所致。 (3)黄铁矿(14%)两种成因类型:①沿岩石片理化分布微细立方体黄铁矿变晶,f=0.02~value=".1" unitname="mm" style="word-break: break-all; line-height: 26px;">0.1mm,为含硫铁粉砂泥质岩变质-变形重结晶形成;②热液成因者细脉络状、团块聚晶浸染分布,f=0.05~value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm立方体状自形晶,最大颗粒f=value="2" unitname="mm" style="word-break: break-all; line-height: 26px;">2.0mm。 (4)闪锌矿(17%)他形-半自形不等粒等轴状粒晶,f=0.1~value="1.4" unitname="mm" style="word-break: break-all; line-height: 26px;">1.4mm中粗粒集合体,与硅化、黄铁矿化密切。 (5)方铅矿(5%)半自形、他形不等粒状f=0.1~value="1.6" unitname="mm" style="word-break: break-all; line-height: 26px;">1.6mm,沿闪锌矿晶粒边缘交代或填于闪锌矿粒间,晶粒内部黑三角发育(照片5),部分中粗粒方铅矿边缘被辉锑矿交代(照片3)。 (6)辉锑矿(4%)纤束状、纤柱状细晶、微晶,有三种嵌布形式:①纤柱状细晶集合体(照片4);②纤束状微-细晶f=0.02´value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm,沿方铅矿晶粒边缘交代(照片3);③纤柱微晶f=0.001´value=".05" unitname="mm" style="word-break: break-all; line-height: 26px;">0.05mm杂乱布于含铁碳酸盐矿物中(照片6)。 (7)铁白云石(12%)半自形细粒镶嵌集合体为角砾间隙充填矿物(照片18),f=0.05~value=".15" unitname="mm" style="word-break: break-all; line-height: 26px;">0.15mm。 (8)铁方解石(8%)半自形细粒镶嵌集合体为角砾间隙充填矿物,f=0.1~value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm。 矿石构造为角砾状、充填胶结构造;矿石结构:微细黄铁矿-毒砂为细脉浸染状、方铅-闪锌-黄铜矿-硅化石英间为交代、包含结构;辉锑矿-铁白云石为充填-填隙结构。 2、蚀变花岗细晶岩型角砾状锑-铅锌(金)矿石 绢云母化花岗细晶岩的蚀变可能与韧脆性构造变形作用有关,进一步的脆性构造碎裂使蚀变花岗细晶岩角砾岩化,多期多阶段的金、铅-锌、锑矿化作用伴随递进型构造活动,同步发生。矿石结构构造及矿物组成如下: (1)绢云母(26%)显微鳞片集合体,承袭条板状基质钠长石和板状钠长石细斑轮廓(照片7、8),f=0.05´0.1~0.1´value=".4" unitname="mm" style="word-break: break-all; line-height: 26px;">0.4mm;部分为热液蚀变产物。 (2)钠长石(14%)半自形粒晶及细板状(照片7、8)。 (3)石英(7%)他形细粒f=0.04~value=".1" unitname="mm" style="word-break: break-all; line-height: 26px;">0.1mm,岩浆矿物组分;部分热液蚀变硅化石英,与黄铁矿-闪锌矿化密切相关。 (4)钾长石(10%)他形细粒f=0.05~value=".1" unitname="mm" style="word-break: break-all; line-height: 26px;">0.1mm。 (5)黄铁矿(7%)f=0.02~value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm自形微细粒晶及细粒状,大致可划分为三个矿化阶段,微细粒、细粒和半自形细粒聚晶。其中微细粒-细粒者具增生环带构造(照片15、16),与微细金矿化密切相关。 (6)毒砂(3%)f=0.02´0.05~0.15´value=".6" unitname="mm" style="word-break: break-all; line-height: 26px;">0.6mm细柱状、矛头状细晶(照片9、13、14),与微细具增生环带黄铁矿密切共生。 (7)闪锌矿(1.5%)他形浑圆粒状f=0.2~value=".6" unitname="mm" style="word-break: break-all; line-height: 26px;">0.6mm(照片10),部分闪锌矿晶粒中包含微细柱晶状辉锑矿(照片12)。 (8)黄铜矿(0.5%)他形微细粒晶,f=value=".05" unitname="mm" style="word-break: break-all; line-height: 26px;">0.05mm以下。 (9)辉锑矿(2%)两种晶粒形态、两期阶段的辉锑矿,前者微晶纤柱f=value=".003" unitname="mm" style="word-break: break-all; line-height: 26px;">0.003mm以下(照片17),后者纤束状集合体f=0.02~value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm左右(照片11)。 (10)铁白云石(29%)半自形细粒镶嵌集合体为角砾间隙充填矿物,f=0.05~value=".15" unitname="mm" style="word-break: break-all; line-height: 26px;">0.15mm。 矿石构造为角砾状、充填胶结构造;矿石结构:微细黄铁矿-毒砂为细脉浸染状、方铅-闪锌-黄铜矿为交代、包含结构(照片12);辉锑矿为充填-填隙结构。 (四)、磨矿与选矿值得注意的几点 1、矿石由铅-锌、锑多金属矿化矿物组成,均有可被工业利用的含量,需综合利用。制定选矿设计应分别考虑对闪锌矿、方铅矿、辉锑矿及黄铁矿的分离。 2、辉锑矿属于本矿石重要回收矿物,但粒级有三种:细微纤柱状f=0.001~value=".05" unitname="mm" style="word-break: break-all; line-height: 26px;">0.05mm(照片6),微细及细粒集合体f=0.02~value=".3" unitname="mm" style="word-break: break-all; line-height: 26px;">0.3mm(照片3、4)。对于微细粒级选矿难度大,多为嵌晶包含结构,不易回收;另有部分辉锑矿与方铅矿交混生长一起,难于磨细解离。一次磨矿尾矿会有细微辉锑矿存在而未被回收,加大磨矿细度可能会造成成本增高。 (五)、关于金矿化发生可能性分析 1、从委送的矿石成矿元素组合由:Fe、As、Sb、Pb、Zn、Cu等组成,以上元素组合对金的矿化作用十分有利,也是常见的与金密切相关的元素组合,应引起重视。 2、矿石中发现微细粒黄铁矿的增生环带结构(照片13、14),这是微细粒浸染型金矿的矿物学结构标志。 3、矿石中发现毒砂、辉锑矿,其中含有As、Sb是与金更为密切的成矿矿物和成矿组分。一般来说,这种类型金矿金的赋存状态以不可见次显微金形式出现。 4、该锑-铅锌多金属及金的矿化作用可能产出于细晶花岗岩脉或岩株与含铁泥质粉砂细砂岩接触带上的韧-脆性剪切构造带中。早期阶段韧性片理化带中主要发生金矿化作用,晚期阶段角砾岩化出现锑铅锌矿化作用。 5、建议矿山地质马上组织取样分析化验金的品位。
废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
什么是灰吹法
2019-03-05 09:04:34
灰吹法是一种陈旧的火法熔炼法。在古代,就用于从金、银矿石中加铅熔炼捕集金、银,再加硫与食盐从金银合金中别离银铅而炼得纯金和灰吹出产纯银。现代灰吹法首要用于富铅材料的氧化除铅及其他贱金属,产出金银合金再提纯。
我国灰吹法的最早记载始于东汉孤刚子《出金矿图录》,称为“灰坯法”。
一、“出(废吹)金矿法”。
“用三斤炼锡(黑锡即铅)著熟铁锅中熔,使赤沸。即纳金矿,碎者一斤,合相得。掠去糖屎(浮渣)、泻出(金铅合金)别炼。……以土墼(坯)垒作方炉,其间安炼灰(细粉粒筑炉料)作坯模(炉床),以金锡(金铅合金)著灰坯中。上安铁镣(条)上,布刚炭火于炉上。于炉前开一小孔,候之顷刻,锡(铅)与金(中)杂物相利取(反响),其(所产)金状似银。即以熟雌黄和好酒,铜器中煮之,(硫化)之,还复(金)赋性(色)。若不彻好者,即打薄(成铤),……以胡同律(胡杨树脂)、黄矾石(硫酸铁矿)、盐等分和醋熟为泥,涂(裹)金锡(铅)铤上,用牛粪火四周垒之于(金)锡(铅)铤上,用牛屎火四周食(吸收)锡(氧化铅)尽,唯有金在。取著熟铜铛中,以黄矾石和盐煮之半日许,出熔作(铸)铤。(加)错鑢屑(铁屑)食(造渣)炼,用药(熔剂)分量一同上(砂金、脉金熔炼)法也。”
灰吹法在我国使用后,古希腊人普利尼(Pliny)约在公元60年(东汉永平3年)提出了一种辨别黄金真伪的“渗灰法”。该法是将黄金一份加盐二份、黄矾石(Misy)三份放入泥坩埚中,再用两份盐加一份片岩(Schiste)粉混合掩盖在上面,置于炭火上熔炼。若是金(或低成色金)埚底会堆积纯金。若是伪金则不会有金。尔后,“渗灰法”在占希腊运用了数百年。
二、“出(灰吹)银矿法”。
“有银若好白,即以白矾石、硇末火烧出之。若未好白,即恶(残次)银一斤和熟锡(铅)一斤,又灰滤(吹)之为上白银。”
灰吹在“火屋中以土墼(坯)作土槽,高三尺,长短任人,其间作模(炉床)。皆得,坯(炉)中(装)细炼灰(筑炉料)使满,其间以水和柔使熟,不湿不千用之。小抑(轻捣)灰使实。以刀镀(铲)作坯(浅池)形,灰上薄布盐末。当坯内(装)矿(银铅合金),各以黄土炼(末)覆上,装炭使讫,还以墼(坯)盖,炉受骗(顶)坯上各开一孔,使大(火)气通出,周泥之。坯(炉)前各异开一孔(察)看,不时瞻候,以铁钩钩断糖屎(干渣),使出。顷刻火彻,锡矿(氧化铅激烈氧化液面)沸动旋回,(被灰盘吸附)与银别离,锡(铅)尽,银不复动,紫绿白艳(彩虹样焰)起。艳(焰)起(去)以杖击。(枝头扎)少数布水湿沾之,其银得(迂)冷即(沾)起(如)龙头,以铁匙按(接)取,名曰龙头白银。”
现代灰吹法用的富铅材料,首要来自铅阳极泥火法熔炼产出的富含铅的合金、嵌锌壳经熔析、蒸锌后的富铅以及其他材料火法熔炼产出的富含铅中间产品,因为这些材料的组分首要是铅和银以及少数金,其他贱金属杂质中又以低电位易氧比的金属为主,选用灰吹法比其他火法熔炼法氧化速度更快。以此类推,若选用灰吹法处理含有很多锌、铅、铁等的合金材料,以富集或收回高电位难氧化的铜、铋等金属,只需温度和氧化结尾操控恰当,效果也是很好的。但在一般情况下,灰吹法只用来从富铅材料中富集和收回金银合金,用于作业的熔炼炉也称为灰吹炉。
富铅的灰吹是鉴于铅对氧的亲和力大大超越银及其他杂质金属。富铅熔化后,向铅液面上吹入很多空气,铅即敏捷氧化成氧化铅。灰吹作业在略高于氧化铅熔点(888℃)的温度下进行,生成的氧化铅呈密度小,流动性好的渣连续自流渣口排出,贵金属则富集于熔池内而得以别离。
在灰吹进程中,虽首要靠鼓入的空气来氧化铅,但铅的高价氧化物的分化也起到必定效果。如PbO2和Pb3O4在炉温900℃时会分化生成PbO并放出活性氧,来加快铅的氧化。
在灰吹时,部分砷和锑以三氧化物蒸发除掉,另一部分则以亚盐、亚锑酸盐或许碑酸盐、锑酸盐方式转入渣中,随氧化铅排出。锌约有25%生成氧化锌蒸发除掉,75%被氧化造渣。
在灰吹时,因为铜对氧的亲和力比铅小,所以氧化速度很慢,直到灰吹作业后期才被氧化进入渣中。铜在氧化进程中首要与PbO发作下列可逆反响逐步生成氧化亚铜进入渣中而被除掉。
PbO+2Cu Pb+Cu2O
进程中,Cu2O与PbO可组成含68%PhO的低熔点(689℃)共晶。故出产实践中,含铜的富铅一般在较低的温度下进行灰吹,且灰吹的速度常比不含铜的富铅快,这可能是因为熔池中生成的Cu2O的反响原因。
铋能与银构成含97.5%铋的低熔点(262℃)共晶,也可和银组成含5%铋的固熔体,故灰吹进程中铋一向与银共聚于铅液中,直到灰吹晚期,才被氧化生成三氧化铋进入渣中。因而,灰吹含铋高的富铅需求延伸作业时刻。
虽然进入银锌壳中的碲小多,但因为碲和银与金的亲和力很大,所以在灰吹进程中不易氧化。为了除掉碲,一般在除铋后往熔池中参加不含碲的铅,使碲的浓度下降后再持续灰吹。经两次加净铅灰吹后,可使约三分之一的碲氧化蒸发,三分之二的碲氧化进入渣中,剩余的微量碲则留于银中。
银在灰吹进程中首要富集于铅液中。但灰吹时常常因为含银的铅粒会混入渣中,且PbO液也能溶解少数的银(据科尔梅伊尔的研讨,PbO中可溶解3%~6%的银)和氧化亚银(氧化亚银不安稳,在150℃时即彻底离解。但它与PbO组成合金时则变得恰当安稳),而下降银的收回率。
金在灰吹进程中不氧化而逐步富集于银中。一般,灰吹渣中含金仅为痕量,是属机械混入。
灰吹炉有德国式和英国式之分。前者适于灰吹用结晶法产出的富铅,后者适于灰吹加锌除银的富铅。因为结晶法在大多数炼铅厂早已抛弃不必,故除德国的某些铅厂外,现代灰吹炉一般均用英式灰吹炉。
英式灰吹炉的结构如图1。该炉为一只烧重油的小型长方形反射炉,炉壁、炉顶、底基及烟道都是固定的,而炉床(灰吹盘)则是可移动的,损坏后的灰吹盘能够替换,这使操作更为简洁,出产成本也低。炉顶和炉壁一般用耐火砖(也有用高铝砖)砌成。灰吹盘为长方形,用加工和磨平的镁砖在可移动车架的钢板上砌成凹槽,再用镁砂掺耐火料加水玻璃捣实,或用水泥掺耐火料制成炉盘铲削呈浅盘状。熔池深度为100~200mm,面积大小视每批灰吹富铅多少而定。炉床侧壁和流渣口设有冷却水套(小型灰吹炉一般没有)。装入灰吹盘后,用泥将一切接口关闭,只在侧壁一面留重油喷嘴孔,在与之相对的侧壁上留几只插风管的小孔(小型炉子只留一孔)。风管供入的高压空气除氧化铅等外,还将氧化产出的炉渣吹往灰吹盘前端,使炉渣从水套上的流渣口连续流出。为削减渣口的损坏,大型炉开几只流渣口替换运用。烟气经烟遭和冷却系统进入收尘器。图1 灰吹炉示意图
1-炉壁;2-炉顶;3-炉床(灰吹盘);4-空气进口;5-地下烟道
替换新灰吹盘后,先用小火烘烤4~6h再升温至炉壁发红,然后自炉口连续参加富铅锭。至富铅液充溢灰吹盘,并撇出浮渣后升温至900℃或更高,刺进风管,供入1.47~1.96kPa(150~200mmH2O)的高压空气斜吹富铅液面。此刻,铅被氧化生成PbO浮起,并被风吹往灰吹盘前端。比及熔池液面被PbO掩盖一多半今后,凿开用黄泥堵住的流渣小沟,氧化铅即连续排至炉前的渣车内。跟着铅的氧化排出,熔池液面会逐步下降,应当令增加富铅于灰吹盘的斜坡上,使其缓慢熔化弥补入灰吹盘内,以坚持恰当的液面,并使熔池液面的一半为PbO渣所掩盖。在大型设有完善收尘设备的炉中,应坚持灰吹温度在1100~l200℃,小型炉则坚持900~1000℃,以加快铅的氧化。当连续加完几批富铅后中止加料,持续吹风氧化至熔池内简直全为金银合金时,可撒入少数硝石以加快铜等杂质的氧化。最终再均匀撒入一薄层骨粉(或于燥的水泥),将剩余的渣吸附洁净后扒出。除完渣后,尚有一层氧化铅薄膜掩盖在金银合金熔体的表面,因为激烈的氧化效果,使此膜呈现与虹类似的颜色。跟着氧化铅膜的蒸发,“彩虹”很快消失,合金表面呈现光辉灿烂的景像,俗称“银的亮光”。此刻,往液而加一层木炭掩盖,让其在复原气氛中,约于1000℃炉温下静置半小时,以除掉银液中所吸收的很多氧,然后浇铸于预先加热的锭模中,产出含96%~98%的金银合金锭,或许铸成金银合金阳极板送电解提纯。每炉灰吹作业的时刻,决定于炉床的容量、富铅的含银档次和灰吹速度。炉床的出产能力与富铅组分及操作有关。在一般蒹件下,1m2灰吹盘24h可氧化1t左右的铅。灰吹进程约丢失0.5%银,但灰吹低银富铅时可达1%。因为约有3%~5%的铅进入烟气中,故应进行烟气收尘,以下降银、铅的丢失和保护环境免受污染。
灰吹低银或高铋富铅作业,一般分两段进行。榜首段将其灰吹至含50%~70%银后铸锭,再参加另一小型炉子内进行第二段灰吹,直至产出金、银总量达99.5%的合金锭,或铸成金银合金阳极板送电解提纯。第二段的灰吹渣含银、铋较高,应与榜首段灰吹渣分隔,从中收回银、铋。有些工厂对一切富铅都选用两段灰吹,是因为:(1)削减银和铅的蒸发丢失;(2)不致因熔融金属液面的不断下降而需求挖深渣沟,损坏灰吹盘;(3)使某些金属集中于后期渣中,以便于收回。
图2为南非现在广为使用的英式灰吹炉。此炉的炉体也是固定的,灰吹盘也是可替换的。灰吹盘呈椭圆形,由镁砂捣制成,它的表面大部分为一凹坑熔池供氧化灰吹用,小部分略呈浅盘状中间开一沟,已生成的氧化铅及杂质借吹风管的风吹向前端,并从沟中流入沟端的暗孔中排出至模内。炉壁内侧,以油嘴进口和烟道出口两处向炉内呈喇叭形,以利于炉内遍地温度均匀。炉前留一查看操作孔,炉后开一风管刺进孔,后侧开一富铅锭加料槽。操作方法与图1的灰吹炉大体相同。此种炉子在1100℃灰吹,每炉可产含金银90%~99%的合金150~300kg。经用长柄勺舀出注入阳极板模中,送电解提银后再提纯金。图2 南非现用的灰吹炉(单位:mm)
鼓风炉化矿采用的原料、熔剂和燃料
2019-01-07 07:51:21
一、铅锌氧化矿
表1为会泽铅锌矿的铅锌氧化矿化学成分实例。
表1 铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1 铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4 二、熔剂
熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。 三、燃料
表2为焦炭性质及化学成分实例。
表2 焦炭性质及化学成分实例焦种块度
mm固定碳
%挥发分
%灰分
%灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81
某地钛磁铁矿岩矿鉴定报告
2019-02-22 12:01:55
一、矿化岩石类型及特征
经薄片调查含矿岩石原为角闪辉石岩或辉石角闪岩,现已遭受不同程度蚀变,首要是次闪石化、绿泥石化。依据次生蚀变程度和产品不同可把含矿岩石划分为以下三种类型:
1、中等蚀变角闪辉石岩
岩石大约由普通辉石15~30%,普通角闪石20~40%,不透明金属矿藏5~10%组成,余者为20~40%次闪石,还见有少数绿帘石、绿泥石和榍石。变余自形~半自形粒状结构。告知结构,粒度0.5~3mm不等(图版1、2、3、4)。
显着可见角闪石告知或熔蚀辉石,而角闪石又不同程度次闪石化。所谓次闪石化,便是阳起石化,透闪石化以及二者-与角闪石过渡状况。而次闪石又细微绿泥石化。辉石因被告知残留而多呈不规则粒状,或许仍保存边际不整齐短柱状,偶然可见自形短柱状(图版1、2)。角闪石可见半自形柱状,也可见其告知辉石构成的告知穿孔结构和告知假像结构(图版3、4)。榍石往往呈现在被告知辉石界限邻近,金红石呈现角闪石解理中。
2、次闪石(蚀变)岩
岩石具告知假象,告知残留结构(图版8、10),粒度粗大并且改变较大,粒径1~10mm。岩石大约由70~80%次闪石组成,其次是普通角闪石10~20%,金属矿藏10~15%,绿泥石5~10%,黝帘石3~5%,少数榍石和方解石。见有极少数辉石在角闪石中呈残留状况。普通角闪石多被次闪石告知呈残留状况,只要少数具有自形长柱状(图版8),次闪石以褐色为主(角闪石向透闪石过渡状况),少数阳起石,绿泥石和黝帘石部分呈现。榍石是上述矿藏告知进程产品,方解石是晚期告知矿藏。
3、黝帘——绿泥石次闪石(蚀变)岩
告知残留结构,告知假象结构,变余自形—半自形结构,粒径0.2~4mm(图版5、6、7、11、13、14)。岩石大约由25~35%不透明金属矿藏、20~30%次闪石、10~15%普通角闪石、10~20%黝帘石、10~15%绿泥石组成,还见有少数辉石、黑云母和榍石、方解石。
极少数辉石构成最早,在角闪石中呈告知残留,角闪石常被次闪石告知呈假象并在其间呈残留状况(图版5、6、7、13、14)。少数黑云母呈团粒状,被绿泥石沿解理告知呈残留,次闪石又被绿泥石沿边际告知。
值得提及的是绿帘石和绿泥石构成细粒调集体呈不规则团块状呈现(图版5、6、7、11、12、13、14),置疑或许是基性斜长石蚀变产品,但未见典型的板柱状斜长石假象,假如真的这样,此岩石应为辉长岩。
该岩石的显着特征是蚀变矿藏组合杂乱,磁铁矿化最激烈。
上述三种类型含矿岩石中,蚀变角闪辉石岩占有四块标本中两块,二种蚀变岩各占一块,显着前者在矿石中占首要位置,因而辉石和角闪石也应是首要脉石矿藏。
依据变余结构和蚀变产品揣度,原岩为偏基性辉石角闪岩或角闪辉石岩,置疑或许有含长石辉长岩存在。原岩现已发作不同程度蚀变,部分变成蚀变岩。总的矿藏生成次序是:辉石→角闪石或黑云母→次闪石或帘石→绿泥石→方解石,榍石是蚀变进程中产品,部分磁铁矿也是如此。
二、矿石的矿藏组合
首要矿石矿藏是含钛磁铁矿,少数钛铁矿和黄铁矿,脉石矿藏有普通辉石、角闪石、次闪石、绿帘石或黝帘石、绿泥石等。
(一)、矿石矿藏
1、含钛磁铁矿
最首要的矿石矿藏,含量在10~35%之间,多以自形—半自形—他形粒状呈现,粒径一般在0.05~1mm,首要会集在0.1~0.6mm。磁铁矿呈不均匀浸染状散布在矿石中,多散布在脉石矿藏粒间,部分包括在脉石矿藏中(图版3、4、5、6、7、8、11、12、13、14、16、17、18),以独立单体散布为主,也见有联晶聚合呈现。[next]
磁铁矿内部往往具有麻点结构(图版15、16、17、18),常见八面体裂开,有时沿其有页片状钛铁矿的固熔体出溶物(图版15、18),常沿边际四周被铁绿泥石告知(图版8、10、11、12、13、14),偶然可见被黄铁矿告知。
依据高温条件下磁铁矿与钛铁矿为固溶体,低温下二者发作别离或出溶。本磁铁矿应该含有必定数量钛。
2、钛铁矿
钛铁矿含量较低,约在1~3%左右。钛铁矿有两期:前期钛铁矿多呈页片状(图版17),常被熔蚀呈奇形怪状,粒度细微,0.01~0.3mm,散布在脉石矿藏的解理中或许是粒间。晚期钛铁矿粒度粗大,一般0.5~0.8mm,多呈粒状或不规则板状,内部有麻点。可见钛铁矿偶然被褐铁矿告知。
3、榍石
含量1~2%,常呈不规则粒状呈现在被告知的辉石邻近的次闪石中,粒度一般在0.1~0.4mm。它们应是辉石蚀变进程中产品。
4、金红石
少数
5、黄铁矿
含量0.1~1%,粒径0.01~0.5mm,从自形六面体到他形粒状,偶然被褐铁矿告知呈剩余体(图版16),可见黄铁矿告知磁铁矿标明其构成最晚,常沿裂隙呈调集体呈现。
(二)、脉石矿藏
1、普通辉石
是首要脉石矿藏之一,含量1~30%,粒度0.1~2mm不等,辉石呈自形短柱状到不规则他形粒状,以后者为主(图版1、2)。辉石构成最早,常被角闪石、次闪石告知呈残留,内部常告知穿孔结构和告知假象(图版2、3、4),偶然可见被绿帘石告知。
薄片中辉石带棕彩,标明其含钛量较高,考虑到辉石是首要赋存钛的脉石矿藏,蚀变产品呈现榍石等较多含钛矿藏亦证明这点,但其多色性仍没到达钛辉石程度,故仍定为普通辉石,主张进行电子探针测定其含钛量。
2、普通角闪石
角闪石是首要脉石矿藏之一,含量10~40%,粒径1~10mm不等,呈半自形柱状到不规则粒状。角闪石告知辉石而常被次闪石告知,因而常见告知穿孔,告知假象和告知残留结构(图版2、3、4、5、6、7)。
角闪石是由辉石转变来的矿藏,必定从辉石承继部分钛,因为其含量较高,也应是除辉石外的重要含钛脉石矿藏。
3、次闪石
在四个薄片中含量改变于20~80%,估测实践选矿样含量与角闪石和辉石附近。次闪石是角闪石和辉石蚀变产品,故常呈这两个矿藏假象(图版1、2、4、6、5、7)。正像前面提到次闪石实践是透闪石,阳起石以及二者与角闪石过渡物并以后者为主,因而他与角闪石也很难分隔。次闪石沿边际或部分被绿泥石告知(图版8)。
4、绿泥石
典型的次生蚀变矿藏,含量5~15%,常呈细粒(
5、黝帘石和绿帘石
二者都是次生矿藏,含量改变2~15%之间。绿帘石呈现在蚀变角闪辉石岩中,以调集体形或告知辉石,黝帘石呈现在蚀变岩中,与绿泥石一同组成调集体与磁铁矿共生(图版5、6、7、11、12、13、14)。
6、黑云母
含量0~4%,反在被置疑为辉长岩的蚀变岩中见到,呈厚板状呈现、沿解理被绿泥石告知的剩余。
7、方解石
含量0~2%,呈粒状调集体部分呈现蚀变岩中,构成最晚告知一切次生矿藏。
三、结构结构
(一)、矿石结构
1、稀少—中等浸染状结构
金属矿石矿藏含量在20~35%之间,是样品中较富的矿石类型,呈现在黝帘—绿泥次闪石蚀变岩中,金属矿藏粒度较细(0.1~0.5mm),散布相对密布(图版5、6、7、11、12、13、14)。
2、星散浸染状结构
金属矿石矿藏含量5~15%,呈现在蚀变角闪辉石岩和单一次闪石蚀变岩中。金属矿藏相对较粗(0.2~0.6mm)(图版1、2、3、4、8)。
(二)、矿石结构
1、自形—半自形—他形粒状结构
样品中最首要矿石结构类型,指磁铁矿和钛铁矿呈自形、半自形和他形粒状散布在含矿岩石中,粒度0.06~1mm,会集在0.1~0.6mm(图版4、5、6、7、8、11、12、13、14、16、17、18)。
2、嵌晶或包括结构
指自形—他形粒状磁铁矿和钛铁矿散布在角闪石或次闪石的粗粒晶体中(图版8、9、11、12)。也是样品中常见结构类型。它们或是客晶早于主晶,或是在告知进程中一起就位的。
3、固溶体别离结构
指钛铁矿在磁铁矿主页片状或粒状沿必定结晶方向(八面体裂开)散布(图版15、18),标明二者在高温下构成固溶体,在温度下降进程中发作出溶别离。
4、告知结构
有以下三种状况:一是绿泥石沿边际或裂开告知磁铁矿(图版6、8、10、11、12、13、14),这种现象最为遍及,特别是蚀变岩中。二是晚期黄铁矿告知磁铁矿。三是褐铁矿告知黄铁矿(图版16),磁铁矿和钛铁矿。后二者状况较少见。
5、熔蚀结构
指钛铁矿不呈板条状而呈奇形怪状的内凹形,显着是较晚脉石矿藏对其熔蚀形成的。
至于含矿岩石的结构结构,严格说来不是矿石结构结构,已在含矿岩石部分叙及,这儿不再重复。
四、小结
1、矿石中首要矿石矿藏是含钛磁铁矿,少数钛铁矿,矿石具有星散—稀少—中等浸染状结构,首要矿石结构是自形—半自形—他形粒状结构和嵌晶或包括结构,有用矿藏粒度会集在0.1~0.6mm。
2、钛元素首要赋存在钛磁铁矿和钛铁矿中,但有适当部分涣散在辉石和角闪石中。
3、含矿岩石为不同蚀变程度角闪辉石岩或辉石角闪岩,置疑有辉长岩原岩存在,其间复成分蚀变岩矿化最好。
4、该矿床成因或许是岩浆型—岩浆期后蚀变告知型矿床。
(图暂略)
岩金矿床漫谈
2019-01-21 09:41:32
1.我国岩金矿床成矿的层控特征
1)大多数岩金矿床产在一定的大地构造环境的某一特定含矿建造中。矿床(点)密集分布,成群成带产出,其延伸与地层产状总体是一致的。
2)矿化围岩的含金丰度往往大于地壳中同类岩石丰度值的几倍至数十倍。
3)多数金矿矿体与围岩的同位素组合特征基本相似。如河南省小秦岭地区文峪金矿,矿石硫同位素δ34S为1.35‰,杨砦峪矿区硫同位素δ34S为1.55‰,金洞岔矿石硫同位素δ34S为-3.58‰,而两矿区地层δ34S为3.39‰,表现出矿石硫与地层硫特点相似。以此说明容矿层往往是矿源层。
4)我国岩金矿床产出的地层以太古宇为主,其次为元古宇、古生界、中生界均有金矿产出,但发育程度不一。矿化围岩有变质岩、沉积岩、火成岩类,其矿化情况各异。现就其主要矿化密集区的层控性概述如下:
(1)华北地台金矿成矿域 本区金矿床(点)集中分布于板块的边缘及基底构造层的隆起区,并且主要产于太古宇结晶基底的中深变质岩系中。
①燕山金矿密集区金矿集中分布于山海关及密云隆起区,容矿岩层为太古宇迁西群马兰峪组。该组混合岩化作用较强。岩层含金丰度0.7~0.83×10-6,高于同类岩石的25~200倍。本区已知金矿床(点)115处,有109个产于本岩层中。
②辽西建平-北票金矿密集区 区内金矿床(点)80%以上集中分布于建平隆起区内。容矿岩层为建平群小塔子沟组的斜长角闪岩及斜长角闪片麻岩类。
③夹皮沟金矿田金矿床主要产于太古宇鞍山群三道沟组下部的角闪斜长片麻岩、黑云斜长片麻岩、斜长角闪岩及角闪岩中。围岩含金丰度值平均41.5×10-9。根据320个硫同位素的研究,矿石硫δ34S平均为5.6‰;围岩硫δ34S为2.1‰。二者相近,硫源相同。
④小秦岭金矿田:金矿围岩为太华群下部岩组,岩石类型为斜长角闪片麻岩、黑云斜长片麻岩及斜长角闪岩等。岩层含金丰度值平均为1.24×10-9。金矿δ34S平均为2.71‰,两者近乎相等,具密切成生关系。
上述各区容矿围岩,经原岩恢复为基-中基性火山岩建造。岩石呈黑绿色,亦称绿色岩系。这套含金建造是本区金矿的原始矿源层。它不仅是变质热液型金矿的矿源层,而且也是本区其他类型金矿的重要矿源层。
(2)江南古陆金矿成矿带金矿主要分布于江南古陆的雪峰隆起与幕府山隆起两区。其金矿床(点)95%左右产于元古宇冷家溪群及板溪群的含凝灰质绢云母板岩、砂质板岩中,其原岩为含泥质、凝灰质碎屑岩建造。局部可能有火山沉积岩。岩层含金丰度值平均为0.0012~0.03g/t,矿石δ34S为2.85‰;围岩δ34S为7.9‰。
(3)南岭金矿成矿区金矿主要分布于大瑶山槽背斜与云开隆起区,据统计,桂粤两省的金矿床(点)74%左右集中产于该区的寒武系八村群岩层里。区内寒武系为一套冒地槽类型复理石碎屑岩建造,其中夹多层碳质页岩及含碳质砂岩,含碳量高达10%左右。金矿围岩主要为硅质岩,碳质页岩及碳质碎屑岩等。
岩层含金丰度值,据南京大学化学光谱分析,碳质页岩平均32.5×10-9;泥质砂岩4.4×10-9。据广西冶勘公司分析,砂岩80×10-9,碳质页岩高达130×10-9,明显高于金的克拉克值。
桃花、古袍、云岭等矿区,矿石硫δ34S变化范围为-0.9‰~+6.4‰及1.05‰~8.2‰,显示有壳层硫的性质。桃花矿区铅同位素年龄为729~785Ma,比寒武纪地层和加里东花岗岩的时代还老。因而认为本区成矿物质来自深部,也来自寒武系含金矿源层。
本区北邻江南古陆,其基底为元古宇冷家溪群、板溪群,这一古老含金地层可为该区的上部寒武系提供金的物质来源。
2.构造对金矿成矿的控制
(1)大地构造格局与金矿的空间分布我国金矿明显受区域大地构造格局控制,尽管各个区域都有金矿化分布,但极不平衡,并各具自身特点,故大致可划分成五个金矿化域。
1) 华北型金矿化域华北准地台是我国最古老的地台,是太古宙及古元古代固化的鞍山群、建平群、单塔子群、阜平群及太华群等,岩系为一套变质较深、混合岩化作用较强的变基性火山-沉积岩建造,属优地槽相。其中,变基性火山岩类含金丰度普遍较高,是原始矿源层,也是本区金矿主要物质来源。
本区是我国主要金矿分布区,据统计,金矿床(点)数占全国总数85%以上。金储量占全国岩金总储量78%。金矿床主要分布于地台边缘及台内的基底断块隆起带内。区内主要以地台基底经区域变质热液作用,花岗岩化作用及燕山岩浆活动,叠生作用成矿为显著特征。属优地槽相。分布的金矿类型主要是变质热液型、花岗岩化热液型,其次为岩浆热液型及火山-次火山热液型金矿床。赋矿围岩即是矿源层,属近源型。成矿时代主要为古元古代和中生代。找矿远景潜力很大。
2) 扬子型金矿化域新元古代未形成的地台。基底岩系多出露于地台的边缘地带。如西部边缘康滇地轴上的昆阳群;东南边缘的冷家溪群、板溪群。地台内部的基底仅在个别地点出露且面积不大。如黄陵背斜的崆岭群等。基底构造为泥质板岩、变碎屑岩类。原岩为含泥质凝灰质碎屑岩、变质程度较浅,属优-冒地槽相。区内金矿床主要分布于地台边缘的隆起带内,地台东南边缘的雪峰古隆起及幕府山隆起金矿化更为集中,全区岩金矿床(点)数占全国的16%,储量占全国总量的7.8%。区内主要以扬子褶皱基底经区域变质热液作用及古生代盖层经地下热水溶解作用为成矿特征。金矿类型以变质热液为主,其次为岩浆热液型及地下热水深滤型金矿床。赋矿围岩为泥质凝灰质碎屑岩,以及碳酸盐类,成矿时代为元古宙、中生代。成矿物质来源于围岩或下部基底构造层。
3) 华南型金矿化域属华南-东南亚板块,位于扬子地台之南的华南褶皱系区间,这是一个加里东地槽褶皱系,褶皱基底构造层由震旦系-志留系组成,为复理石建造,属冒地槽相,变质程度较浅。区内主要以早古生代褶皱基底经区域变质、热液作用及加里东、燕山期岩浆活动的叠生作用成矿为主要特征。金矿床主要分布于大瑶山及云开隆起区内,金矿床(点)占全国总数13.3%,储量占全国岩金总量4.7%。金矿类型桂西为碳酸盐石英方解石脉型;粤桂交界为变质热液型及岩浆热液型。矿化围岩为寒武系含碳质碎屑岩、石炭系碳酸盐岩以及中酸性侵入岩,成矿物质来自深部构造层,成矿时代主要是加里东期,其次为燕山期。
4)太平洋型金矿化域我国东部受太平洋板块俯冲作用的影响,形成一个规模巨大的中新生代的大陆板块边缘活动带。其突出特点是中生代的北东向构造极为发育。另一个是形成一条庞大的中生代火山岩带。北起黑龙江畔,南达南海滨,长达3000多km,宽300~800km。火山岩由中基性到酸性,以酸性岩类居多。
伴随侵入与喷发活动,常常形成各类内生矿床。我国的火山-次火山热液型金矿主要产于该带内。如团结沟、奈林沟、赤卫沟、霍山、铜井、祁两沟、八宝山金矿床等,此外,尚分布岩浆热液型金矿床。前者主要产于中生代断陷盆地的边缘,受一定的断裂构造控制。
5)天山-兴安型金矿化域本区位于西伯利亚板块与塔里木-中朝板块之间的古生代地槽,为一巨大的东西向弧形海西褶皱带。本区海西期岩浆岩广布,近东西向断裂构造发育。
该区以盛产砂金著称。岩金仅分布于东西准噶尔、天山及佳木斯隆起区。金矿成矿主要与海西期及燕山期花岗岩浆活动有关为特点。区内金矿床(点)占全国7%,储量占全国岩金总量3%。本区的西北部以岩浆热液型为主,成矿时代主要为海西期,东北部则以次火山-火山热液型为主,其次为变质热液型金矿床。成矿时代主要是燕山期,其次为海西期。
综上所述,可以清楚看到:
①不同的大地构造单元,其金矿化强弱、金矿化特征都有所差异,各具自身特色。
②我国金矿主要分布于东部地区,并且主要分布于古老的中朝板块内。
③我国东部地区金矿层控性明显。成矿物质主要来自古老基底的矿源层;西部金矿床岩控及深断裂控制较为明显,成矿物质主要来源为基性-超基性岩。
④我国火山-次火山热液型金矿床主要分布于东部中生代的大陆边缘活动带。
(2)区域构造对金矿的控制①我国金矿主要成矿带大都分布于古老板块的边缘,缝合边界的古岛形隆起地带,如阴山-燕山成矿带、秦岭-大别山成矿带分别受华北板块的北缘与南缘缝合边界隆起带控制。②板块内的台背斜、槽背斜等隆起区,控制着次级的成矿带(区)或矿化集中区的展布。如华北板块的建平隆起区,山海关隆起、胶东隆起、五凤嘉隆起等,皆为金矿集中分布区。③中朝板块的古老基底发育着东西向与北东向两组主要断裂带,其相交处附近通常是大型金矿富集部位。如比较明显的北纬40°断裂带及42°断裂带与北东向断裂相交处,控制着几个重要大型金矿床分布,并显示一定的等距性分布。④大型金矿床均产于大断裂的侧翼次级断裂中,并与大断裂距离一般为2~8km。⑤大型金矿床多数赋存在强烈挤压的背斜或倒转背斜的轴部的狭长地带内。如小秦岭矿田的文峪、杨砦峪、金洞岔等大型金矿分布于区内老雅岔倒转倾伏背斜的轴部。五龙金矿赋存于五龙背斜的轴部。
(3)花岗质岩浆岩对金矿的控制金矿空间分布与花岗岩的侵入体经常伴生,并有些矿床的金矿体直接产于岩体里或接触带中,这一现象表明,金矿成矿过程中有岩浆岩活动的积极参与。
据近代岩石学研究,花岗岩类按成因分为两类,幔源型及地壳重熔型。但很多资料表明与金关系最密切的花岗岩主要属基底变质岩重熔再生的产物。我国山东、辽宁、吉林、广东等省皆有此类金矿的分布。
金的成矿带与控制各类矿化和各种岩浆岩活动的深大断裂交切部位相伴随,以此表明地壳以下金物质参与了成矿作用,在超基性岩Ni、Co、Pt等矿床中金含量高,并形成独立金矿体,与此相吻合,云南墨江金矿、青海小松树南沟、新疆托里等金矿与超基性岩体相伴产生,并具明显成生关系,是令人信服的例证。含金硫化物中的同位素研究也得到了同样的结论。
根据实际资料,与金矿成矿关系显著的三个时代的岩浆岩,一是加里东期花岗岩,主要分布在华南加里东地槽区,岩性为斑状花岗闪长岩及花岗斑岩、石英斑岩等。如大宁岩体——黑云母闪长岩、斑状花岗闪长岩金的平均含量分别分9×10-9、3.7×10-9。岩体与寒武系地层的接触带及附近形成龙水、张公岭金矿床。二是海西期岩浆岩主要分布于我国西北与东北部的海西褶皱带中。岩体控矿绝大多数为海西中晚期的斜长花岗岩、花岗闪长岩、二长花岗岩等呈岩基、岩株、岩枝产出。经统计,区内已发现50余处金矿床(点),大多数产于岩体之中或接触带附近。三是燕山期的构造岩浆活动,我国许多内生金矿都与此次活动密切相关,特别是东部地区。如:辽西地区属于此类型金矿的储量占全省总量的22%,燕山地区的峪耳崖、柏杖子、金厂峪、三家子都与燕山期中酸性小侵入体有关,河南小秦岭金矿田北部带由西向东出露有:华山岩体、文峪岩体、娘娘山岩体。均属燕山期产物,经人工重砂测定,岩体含金,并在局部地段发现含金石英脉。
上述事实归纳起来,可以得出以下结论:
1)地层基底的成分对金矿的成矿作用有极大的影响,是矿床形成、演化、继承发展的物质基础。其太古宙的绿色岩系即是金矿成矿的初始矿源层,又是金矿的主要容矿层。
2)构造及岩浆活动的综合地质作用是金矿成矿的不可缺少的必要条件。
沉积型硅质磷块岩矿选矿工艺实例
2019-02-11 14:05:38
一、贺兰山磷矿实验室选矿实验
贺兰山磷矿产于下寒武纪系中部,属堆积层状磷块岩矿床。其工业类型有硅质和硅-钙质两种矿石,以前者为主。矿体北起苏峪口、南至大乾沟,全长24公里。整个矿区磷矿石均匀含P2O518%。
矿石的矿藏组成:有用的矿藏为胶磷矿和磷灰石(算计约占40%、磷灰石少数);脉石矿藏首要有石英(约占40%)、碳酸岩(总量约占9%、方解石3%)。此外,尚有黄铁矿(3%~4%)、绢云母(3%~4%)等。
胶磷矿 呈均质胶状、其次呈鲕状、假鲕状、碎屑状等。首要特色是胶磷矿颗粒中含有不同粒度的杂质,这些杂质首要为黄铁矿、褐铁矿等,粒度多在0.0065~0.048mm,且星点状散布。
磷灰石 呈细微的粒状或柱状,粒度在0.0065~0.026mm,首要散布在石英集合体间或石英砂屑的内缘。
石英 呈滚圆至半圆的碎屑状及隐晶粒状,巨细在0.08~0.16mm,多散布在砂质磷块岩和磷砾岩中。
碳酸盐 首要为白云石、粒度0.016~0.528mm,多呈菱面体或不规则粒状集合体产出;方解石呈它形粒状混在白云石间或呈脉状产出。
矿石的化学组成,列于表1。
表1 贺兰山磷矿矿石化学组成项目含量(%)P2O516.45酸不溶物45.48SiO243.02Fe2O34.26Al2O31.83CaO24.64MgO1.33CO23.64F1.36S全0.57Re2O30.077U0.0014V0.004
1980年,曾以不同的工艺流程,对该矿进行了较详细的实验,成果汇于表2。。由表9看出:选用流程Ⅱ、Ⅲ、Ⅳ,均可取得档次大于30% P2O5、回收率在80%以上的磷精矿。阐明对该矿选用阶段磨矿、阶段浮选的选别流程,是适合的。
表2 不同流程结构的浮选条件极端成果比照流
程
结
构条件成果磨矿细度-200目(%)药剂总用量(公斤/吨原矿)原矿档次(P2O5%)精矿尾
矿
品
位P2O5%碳酸钠水玻璃木质素氧 石
蜡
化 皂产率
%档次
P2O5%回收率%流程Ⅰ:
磨矿后浮选,得磷精矿;扫选精矿、二次精选尾矿别离以320目筛分;+320目粒级为中矿;-320目粒级回来流程,粗选作业76.002.71.00.30.4516.8733.4131.2261.834.51中矿21.1420.7726.02流程Ⅱ:
粗磨(-200目65%)后浮选,得部分精矿、尾矿;中矿再磨(-320目72%)后浮选,又得部分精矿、尾矿-3.01.85-0.49816.6145.9230.6484.714.70流程Ⅲ:
除中矿再磨细度为-320目92%外,其他结构同流程Ⅱ-3.51.400.50.45316.8549.1631.1090.744.18流程Ⅳ:
粗磨(-200目65%)后浮选,得精矿和尾矿;其间矿(扫选精矿和一次精选尾矿)兼并分级;+320目粒级再磨合后和-320目粒级别离回来粗选作业-2.01.350.30.38216.8548.5030.9589.083.57
表3 流程Ⅲ工艺条件表浮选作业称号选别条件榜首段(粗磨)第二段(中矿再磨)工艺条件(药剂用量kg/t原矿)磨矿细度-200目%碳
酸钠水
玻璃氧化
白腊皂浮选时刻(分)磨矿细度-320目%碳
酸钠水
玻璃木
本质浮选时刻(分)粗选Ⅰ65.002.001.000.053392.001.500.300.302粗选Ⅱ————————3扫选———0.4310————3精选——————0.100.24
现以流程Ⅲ为例,将其根据表3所列工艺条件得出的数、质量流程,示于图1。所得终究磷精矿(精矿Ⅰ+精矿Ⅱ)的化学组成,列于表4。其粒度组成,列于表5。
表4 磷精矿(Ⅰ+Ⅱ)首要化学组成项目P2O5SiO2Al2O3Fe2O3CO2MgOCaO含量(%)30.5214.550.592.333.481.0343.49
表5 终究磷精矿粒度组成(%)项目粒度
(mm)-0.100
+0.076-0.076
+0.056-0.056
+0.045-0.046
+0.037-0.037
+0.019-0.019
+0.010-0.010算计产率精矿Ⅰ5.936.786.2730.9322.0913.8514.15100.00精矿Ⅱ0.390.625.1935.3023.8711.7722.86100.00档次(P2O5%)精矿Ⅰ23.4926.8628.3530.8932.6431.6428.9630.30精矿Ⅱ21.8124.8626.1328.8729.5130.7535.4230.54分配率(P2O5%)精矿Ⅰ4.596.015.8731.7523.7914.4613.53100.00精矿Ⅱ0.490.494.4533.3723.0511.8526.49100.00图1 贺兰山磷矿阶段磨矿、阶段浮选数、质量流程图
依照图1流程所得的磷精矿产品,进行了解离度的测定。测定成果指出:榜首阶段粗磨时先行分选出已单体解离的部分磷矿藏,再对贫连生体进行第二段细磨使其别离,是契合矿石中有用矿藏嵌布粒度纷歧、选别难易度不同的特色的。因此操作便利,目标安稳。但从表6中的数据看出,欲取得较高质量的磷精矿,其磨矿细度宜在-0.045mm以下。
二、美国佛罗里达中部洛内索姆(Lonesome)选矿厂
佛罗里达是美国最大的磷矿产地,也是国际上最大的磷矿产区。可采储量大26亿吨,约占其总储量的46%。1982年的磷矿产量达2806.1万吨,别离占美国和国际总产值的75%和23%。
该区域的磷矿挖掘首要会集在中部和北部区域,仅波克(Polk)县和希尔斯巴勒(Hillsborough)县的磷矿产量就占佛罗里达总产值的90%。现有11家公司挖掘中部的磷矿、一家公司挖掘北部的磷矿。现在,该区域有选矿厂达24家之多。
佛罗里达磷矿床构成于新世到中新世时期,散布规模北起该州之鸿沟、南渝半岛之半。因长时间露出而受风化作用的影响,具有重要经济价值的矿床,首要赋存于北部霍桑(Hawthorn)组上部和中部博恩伐利(Bove Valley)的下部。在岩性学上这两层矿很类似,都是由各约占三分之一的砂、粘土和呈细粒或卵石状的磷酸盐组成。
佛罗里达磷矿矿床类型有:陆地砾状磷块岩、软质和硬质磷块岩、河底砾状磷块岩、铝磷酸盐、霍桑层含磷白云岩等六种,它们之间的差异首要因为原生矿的风化和(或)堆积所造成的。现在佛罗里达磷矿的整个产值,实际上来自砾状磷块岩的挖掘。
陆地砾状磷块岩矿石,质地松软,呈圆卵状,粒度自25.4mm到0.44mm不等,色彩为灰、黄、褐绿及黑色等。矿藏组成为:磷酸盐30%~60%、石英砂12%~25%、粘土15%~40%。
佛罗里达区域各选矿厂选用的采、选工艺大体相同,可归纳为洗矿、选别和粘土(尾矿)处理三大作业。详细进程如下:用索斗铲先剥离表土,将采出矿石卸入淘洗坑内,用水冲刷成矿浆,经泵输送到洗矿厂,洗矿厂设有固定筛、槽式洗矿机、振动筛和锤式破碎机等设备。矿石经筛分、洗矿和分级可得到约占原矿量30%~50%的+14目(或+200目)的砾状磷矿产品(该产品含P2O5 30%~35%、MgO 0.0%~1%、Fe+Al 2%~3%)。小于14目(或小于20目)的筛下产品经水力旋流器分级,分出的-150目矿泥(含P2O5~15%)排入沉淀池;而-14(或-20)~-150意图底流,即作为浮选作业的入料,着我国入料再按粗、细粒级别离进行“正-反浮选”(即先以阴离子捕收剂正浮选得粗精矿,再以阳离子捕收剂反浮选除掉粗精矿中残留的硅质物),得粗粒和细粒磷精矿。这部分浮选精矿约含P2O5 30%~33%、MgO 0.0%~0.5%、有机质 0.1%~5%、Fe+Al 2%~3%。所用浮选药剂的品种,一般为苛性钠、(液态)、硫酸、脂肪酸、胺盐和火油,用量因选矿厂不同而异。现以洛内索姆选矿厂为例,阐明佛罗里达磷矿以惯例的阴-阳离子正-反浮选法选其他概略。
洛内索姆选矿厂见于1977年,设计能力为年处理原矿石249.5~272.2万吨,年产浮选精矿136~154万吨。
该矿于1913年即开端挖掘,矿区坐落佛罗里达希尔斯巴勒县东南角,距坦伯(Tampa)约25公里。磷矿石储量5000万吨,均匀含P2O5挨近32%。
该矿矿藏组成为磷酸盐、石英砂和磷酸盐化粘土,份额各约占三分之一。首要化学组分为:P2O5 9.1%、MgO 0.1%,其他为硅质物等。
洛内索姆选矿厂的首要工艺工程,描绘如下:
经由34m3的索斗铲采出的矿石,先制备成矿浆,继而通过长2286m的管道输送到筛分站。+75mm物料废气;-75mm+19mm的物料则经破碎,并与粒度为-10mm的矿浆混合。混合后的-19mm的料浆再经另一长为610m的管道送往ф600mm的水力旋流器,在这里除掉磷酸盐化粘土、并将其送到尾矿堆存区。去除粘土后的、浓度为70%的水力旋流器底流,直接卸在运送皮带上而送往选矿厂。
在选矿厂中,对脱泥的物料于洗刷器里进行洗刷、擦拭和筛分,即出产出部分+16意图终究卵状产品(或称筛分精矿)。-16意图物料即为浮选作业入料。(这部分入料或先行分级后进行粗、细粒级别离浮选,或混合浮选)。送到浮选后的入料先以ф610mm的水力旋流器浓缩到75%的浓度,然后以阴离子捕收剂选别,得泡沫产品(即粗精矿);对此粗精矿再经水力旋流器脱水、硫酸擦拭和新鲜水洗刷后,以阳离子捕收剂进行精选,得槽内产品,即为终究磷精矿。终究磷精矿经枯燥到2%水分,即为制品。在选别进程中得到的尾矿,与粘土废弃物混合后,经天然滤水,然后以采出的废石掩盖,终究构成一安稳的再生地表。
选矿厂浮选体系:正浮选4列,每列2槽。每槽溶剂14m3。浮选机型号为维姆科(Wemco)型。浮选药剂用量为(kg/t给料):脂肪酸1.0、胺盐0.2、硫酸0.6、燃料油0.6。
依照图2所示的洗刷准则工艺流程,得筛分精矿(即砾状产品)含P2O531%~31.9%、浮选精矿(即粗粒和细粒磷精矿)含P2O531.9%~33.74%,归纳精矿中含量MgO 0.3%。尾矿含P2O50.9%~1.4%。精矿总回收率75%~85%。图2 佛罗里达磷矿洗矿准则工艺流程
洛内索姆选矿厂每出产一吨产品磷精矿,约需37.85m3的水,其间回水占95%,仅占5%的新鲜水取自深井。运用回水,可下降浮选药剂耗量。
硅矿价格
2017-06-06 17:49:59
2010年4于25日讯,随着国内硅矿到港价格的上扬,硅矿价格出口报价本周再次上调,硅矿价格在2150-2180美元/吨(FOB)。但市场报价略显混乱,一些硅库存较高的贸易商,担心丰水期到来价格下滑,报价相对低20-30美元/吨。 黄埔港口出货量有所增多,陆续向海外消费商供货,但整体出口市场仍不活跃,海外采购商仍希望中国出口硅矿价格能下调一些。不过国内的生产条件短期内并没能好转,仅湖南、福建地区有较稳定的生产条件。SMM认为逐渐走高的出口硅矿价格价格仍将被海外市场接受。 韩国硅矿市场目前仍显冷清,但硅矿价格预期未来几周将持续上涨。”韩国另一硅矿贸易量在1,000-1,500吨贸易商也认为韩国市场硅矿价格将逐步提高,但比中国市场的上涨速度滞后两周的时间。本周,韩国市场5-5-3和4-4-1的到厂价在2,100美元/吨和2,200美元/吨,比目前中国的出口离岸价格低100美元/吨左右。本周,韩国市场5-5-3和4-4-1的到厂价在2,100美元吨和2,200美元吨,比目前中国的出口离岸价格低100美元吨左右。在中国,因为冶炼厂不断提高硅矿价格,贸易商5-5-3和4-4-1的出口离岸价格已经分别提高到2,100美元/吨和2,200美元/吨,比上周的价格上涨了20美元/吨。一贸易商说声称,最近韩国市场5-5-3和4-4-1的价格大概上涨了20美元吨到2,000美元吨和2,100美元吨,但比中国供货商目前的报价要低得多。 当前一些东欧国家金属供应仍很不稳定,尽管市场需求低迷,但是供应紧张或将推动东欧金属硅价格上涨。他表示,当前欧洲市场上5-5-3和4-4-1价格分别在2,200-2,250欧元吨和2,250-2,300欧元吨左右。 在经济危机的影响下,他们很多的欧洲购买商都减少了采购量,不过随着一些消费商入市为生产采购原材料,现货市场上询盘增多。。鉴于之前供应商库存量就较低,所以市场供应开始吃紧,价格呈上扬趋势。国际经济形势稳步恢复,金属硅下游高纯硅、铝合金市场也得到一些提振,当前欧洲市场上5-5-3价格稳定在2,250欧元吨左右,4-4-1价格稳定在2,300欧元吨左右,然而受供应紧张影响,价格有望分别上涨30-50欧元吨。 更多关于硅矿价格的资讯,请登录上海有色网查询。
岩金矿冶金
2019-03-04 16:12:50
岩金矿是20世纪国内外最首要的提金资源。大都岩金矿除金及少量银外,很少有其他有价金属或有害矿藏共生,用化技能能有用地提取金和银。另一些则很难用化法提取金银。化提金进程包含矿石碎磨、浸出溶解金、含金溶液(“贵液”)富集、精粹金等进程。矿石碎磨是溶金的重要预处理进程,要使金矿藏充沛解离露出。 (一)从矿石中溶金 从矿石中溶金有氯化、化、含硫化合物溶解等多种办法。“溶金”技能是国内外提金的首要技能。我国60%以上的金用化法出产。 1.化法 (1)原理及特色金很难溶于单一的硝酸、硫酸、等强酸,但却易溶于一个很弱的氢酸的钾钠盐中,曾有许多观念解说其机理,现在比较共同的观点是:“溶金”并非直接溶解黄金,而是一个电子搬运的氧化复原进程,CN-的效果是使金离子生成可溶性合作物,而不是生成不溶的AuCN。溶解需在氧化剂和碱性溶液中进行,防止AuCN生成。空气中的氧不能直接氧化金,但在含有CN-及OH-的水溶液中,O2却能发作“动力”使Au失掉电子转化为Au+。发作如下化学反响: 2Au+4NaCN+O2+2H2O→2NaAu(CN)2+2NaOH+H2O2 2Au+H202+4NaCN→2NaAu(CN)2+2NaOH 总溶解反响: 4Au+8NaCN+O2+2H2O→4NaAu(CN)2+4NaOH 反响的平衡常数很大。反响可进行到一切的耗尽或一切的金溶完停止。 依据矿石特性断定的浓度,一般运用的NaCN浓度为0.05%-0.2%(用量约0.5-2kg/t矿石),浸出时向矿浆中鼓入空气即可。 溶金进程首要受氧的分散速度(即溶液中氧的浓度)操控,进程中应尽量防止一同发作亚铁离子、硫离子氧化耗氧的副反响。工业上运用加压化法前进化速度和溶金功率,如高压釜化、管道加压化。2205kPa压力管道化含金20g/t的矿石,15min的化率即可达95%以上。[next] 浸出进程有必要在碱性溶液中进行,一般用石灰作调节剂以促进矿浆沉降,pH 10.5-11.50若pH
12溶金速度将下降。 矿石中的磁黄铁矿、贱金属的硫、砷、锑化合物及一切贱金属阳离子都耗费,砷、锑化合物还会吸附在金粒表面阻挠金的化。特别硫化物极端有害,乃至5×10-6%以下的硫离子也将大大减缓金的溶解速度。当矿石中有害杂质含量较低时,矿浆可在化前充沛鼓气氧化预处理,使硫离子和亚铁离子氧化和使硫化物尽量转化为可溶硫酸盐,经过滤、洗刷后再化。实践还标明,少量铅、、铋等金属离子对化进程有利,可部分战胜砷、锑、硫的损害及加速金的溶解。必要时可在磨矿中参加少量氧化铅。 在激烈充气及拌和条件下,实测的溶金速率为3.25mg/(cm2•h),即一粒0.37μm厚的金片约需11h溶解彻底。因而大粒金应在化前用重选或混法预先收回。化前矿石细磨,化时激烈拌和,是前进溶金速度和功率的基本条件。用微波辐照矿石(内焙烧)或在矿浆中导入超声波或微波,可促进矿石解离决裂或部分前进浸出温度,有利于露出及活化纤细金粒的表面,加速金的溶解速度。 (2)办法及设备化法处理不同档次的金矿石或浮选金精矿,首要选用渗滤、槽浸或堆浸。“全泥化法”直接处理矿石,即在磨矿时参加化剂、pH调整剂,然后在浸出槽中拌和鼓气浸出。一般选用多槽串联阶梯装备,矿浆顺流经过每个浸出槽确保预订的浸出时刻。为了前进浸出功率,现遍及运用重复多段浸出,浸出后矿浆用浓缩、倾析、过滤等办法固液别离,并细心洗刷收回贵液。过滤设备首要是大型圆筒真空过滤机及水平带式真空过滤机。如我国某矿全泥化含金5.26g/t的原矿,用贫液补加回来磨矿,磨至-200目占85%-90%(磨矿时即有50%金被浸出),后在5个串联槽中接连浸出10h以上(浓度0.037%~0.042%,pH 10-11),金浸出率87%-93%,四段浓缩逆流洗刷率98.07%。 堆浸一无过滤化工艺是20世纪60年代开展的技能,工艺简略、本钱低、见效快,对矿石档次、性质及矿床规划习惯性强。将含金<2g/t的低档次矿石和石灰混合,均匀堆置于预先处理后不渗漏的底垫上,矿石量可达数百吨至数十万吨规划。化液组成与槽浸相似,但需均匀地喷淋在矿堆顶部,喷淋中一同增氧。浸出液均匀顺畅地浸透经过矿层溶解金银,防止“短路”。贵液最终流入沉积池,上清液送去提金,贫液弥补化剂后回来喷淋。[next] 2.其他溶金办法 剧毒,且很难溶解某些“难处理金矿石”,长期以来入们一向在研讨和探寻更安全有用的溶金新试剂。先后发现、硫代硫酸盐、硫酸盐、腐植酸盐、氯硫化物(如S2Cl2、SCl2)、、多硫化物、石硫合剂、含卤素(氯、)溶液等许多无机和有机试剂(大都为含硫试剂),都能以不同的反响机理在不同的条件下溶解黄金,但至今只要法远景看好,其他办法的经济本钱、运用条件及对矿石的习惯性、贵液的后处理等方面仍难与化法竞赛。 (1)法 是无毒的有机化合物CS(H2N)2 ,简写代号TU,水中溶解度达142g/L。TU在水溶液中也并非直接溶解黄金,而是在酸性介质中金被“适合的”氧化剂氧化为Au+后构成可溶性的配位的配阳离子。当用Fe3+作氧化剂时反响表明为: Au+Fe3++2TU→Au(TU)2++Fe2+ 也被氧化生成一个中间产品二硫甲眯RSSR[R为C(NH)NH2],并参加溶金进程。但它也易被持续氧化为无用的基、、元素硫等,不只增大耗费,还阻止溶金进程。因而适合的氧化剂一般用Fe3+或H2O2,溶液的氧化电位不超越140mV。与化法比较,不同如表1。表1 法与化法的比较项目化法法试剂NaCN,CaOTU,H2SO4,SO2,NaHSO4氧化剂空气中的O2Fe3+,H2O2,O2介质Ph10.5~1.5,碱性1~2,酸性运用规划大都矿石或精矿,可用于堆浸特殊矿石或精矿,不用于堆浸反响速度慢,数十小时块,数小时产品金的阴离子合作物Au(CN)2-金的合作物阳离子Au(TU)2+[next]
现在以为法污染小,速度快,铜、锌、砷、锑等元素搅扰不严峻,对化法难处理的高档次精矿,法有运用优势。但安稳性差,耗量大且报价贵,又约束了该法的广泛推广运用。 我国研讨的“铁浆法”,在浸金时置入铁板一同置换出金泥。浸金时导入5-7V直流电压(又称“电浆法”),以强化铁板或铅板阴极的复原效果,下降硫酸耗费。浸出时无铁板耗费,由铁板上刮下的金泥档次1%-2%,工艺进程进一步简化。 (2)硫代硫酸盐溶金 长处是试剂毒性小,耗费少,反响速度快,适于处理含铜的物料。缺陷是浸出时需加温,能耗大。溶金反响为: 2Au+4S2O32-+H2O+0.5O2→2Au(S2O3)23-+2OH- (3)多硫化铵法 多硫化铵是一种赤色溶液,含NH3 8%, S 22%, (NH4)2S 30%,处理含砷、锑高的金矿方面有必定的长处。常温常压下浸出矿石后生成NH4AuS及(NH4)3SbS4可溶化合物,砷留在渣中。但试剂耗费大,金浸出率低,直接处理矿石不经济。 (4)石硫合剂提金 我国研讨的无毒石硫合剂LSSS,系石灰和硫黄经简略化学合成,含S2~52-及S2O32-的枣赤色通明试剂,溶金、银速度快,对含砷、锑、铅的金矿石习惯性强。首要缺陷是试剂安稳性差,进程较难操控。 (5)卤素浸出近代离子交流及萃取技能的开展,从头引起了卤素浸出的爱好,如用电解食盐溶液发作新生态氯浸出,浸出的余氯吸收回来运用,氯化剂直接在地下浸出贫矿;溶金,即在弱酸至中性溶液中加氧化剂及或化物,可使金生成易溶的金酸盐MAuBr4(M为NH4+或碱金属阳离子),反响快且挑选性好。但转化为从矿石中提金的有用技能不多。 除氯化介质外,其他大都溶剂都能一同溶解矿石中的金、银。固液别离后的溶液——“贵液”一同含有金、银。 (二)从贵液中提金 浸出矿石取得的含金银溶液中金的浓度都很低,一般小于10g/m3。需再用置换、活性炭吸附、离子交流、溶剂萃取等办法从贵液中二次富集。[next] 1.置换法 用电负性金属从碱性溶液或酸性溶液中置换出金银的进程,常用置换剂是锌和铝,置换速度快而彻底。置换时要求细心过滤贵液,将固体悬浮物降至小于5mg/L,前进金沉积物的金档次,还需严厉操控贵液中溶解的氧及游离量,以下降锌的耗费。一般,贵液在9kPa真空塔中经两段真空脱氧可将氧浓度降至0.1g/m3以下。为减轻硫离子对置换进程的阻止效果,常参加少量(0.5-2g/gAu)溶液。锌粉耗量约5-10g/g Au,置换率99%-99.9%。贫液合金0.01-0.02g/m3。贵液中的银与金一同被置换,一般金泥含金银20%-40%、锌20%-40%、少量铜、铅硫化物及二氧化硅。 锌置换出金泥首要用10%-15%浓度的硫酸溶解夹藏的锌,铅也一同转化为不溶的PbHSO4。过滤后滤渣用15% NaOH溶液在90℃下溶摆脱铅。过滤后的金泥再用稀硫酸和氧化剂(如二氧化锰)溶摆脱铜。脱铜后的金泥烘干后在1200-1300℃下熔炼,熔炼时用硼砂、石英、苏打作熔剂造渣,加少量硝石氧化硫、铅、锌使之蒸发脱除,最终取得金银含量80%-90%及少量铜的合金。 我国研讨运用操控电位挑选氯化技能湿法处理金泥,即在4mol/L HCl溶液中定量供入,并操控溶液氧化电位0.4-0.45V(Pt-甘电极),90℃下使99%以上的铜、铅、锌挑选性氯化溶解。过滤后溶液冷却至室温即结晶别离PbCl2,再用铁置换铜。控电氯化渣从头在溶液中通入溶解金,过滤后溶液中和至pH l.5-2用草酸复原为粗金。不溶渣中的银用浸出后,用水合膦复原为海绵银。 2.活性炭吸附 用活性炭从贵液中富集收回金是一种与化溶金技能配套的办法。进程包含3个首要环节:活性炭制备及从化的贵液中吸附金、银;从载金炭上洗提重溶金、银及别离精粹为产品;活性炭再生复用。现在该技能已开展为直接从化矿浆中富集收回金的先进工艺-“炭浆法”和“炭浸法”。 活性炭是一种具有很大比表面积、多孔结构的吸附剂,用密实的含碳物质,如煤、椰壳、果核等在适合的氧化气氛及800-1000℃下缎烧活化制得。从氯化或化溶液中吸附金、银的机理至今没有结论。但存在钙、钠阳离子对吸附至关重要。过滤后的贵液流过充填活性炭的炭柱,金、银被吸附。活性炭对金的吸附容量可达数十毫克/克炭,但一般用到10mg/g以内。 从载金炭中提取(洗脱)金有Zadro法,Duval法,Murdoch法,AARL法等。 (1) Zadro法 是最简略通用的办法,首要用水洗,接着用约90℃的稀溶去钙及其他贱金属,然后用0.1%-0.2%NaCN和1%NaOH溶液于85-95℃下流过炭柱溶金、银,取得含金150mg/L的溶液。[next] (2) Duval法 是现在最好的办法,用含乙醇10%、NaOH 1%、NaCN 0.2%的溶液在80℃及100kPa下加速洗提重溶速度,时刻可从Zadro法的24-60h缩短至6-10h。溶液金浓度同上,但乙醇有易燃和易蒸发丢失的缺陷。 (3) Murdoch法 用含40%, NaOH 1% , NaCN 0.2的溶液在70℃及100kPa压力下洗脱金、银的法,时刻缩短为4-6h,溶液金浓度可高达4g/L。 (4) AARL法 用5% NaCN及2% NaOH溶液在95-100℃及100kPa下洗脱8h,可取得含金0.8g/L的溶液。在高温(160℃)高压(350kPa)下洗提,则更快,但添加了设备出资。 洗提金银后的活性炭含金约150g/t,首要用稀洗去碱性氧化物,然后在回转窑中于600-800℃下锻烧康复活性,挑选后复用。洗提液多用锌置换法收回金。也可用电积法处理,金沉积在钢纤维或碳纤维阴极上,取出后熔炼为金锭。 3.离子交流、萃取法 用阴离子交流树脂从贵液或矿浆中交流吸附金,具有简略调整和操控树脂的物理性能及交流容量、交流速度快、能一同收回溶液中其他有价金属、不吸附钙离子、淋洗再生温度低、耐磨等长处。但也有挑选性较差、价贵(重复运用后需燃烧收回金)、树脂颗粒密度低及质软等缺陷。除最早在俄罗斯,后来南非及我国少量厂直接处理金矿外,未能遍及推广运用。 许多种有机萃取剂可从酸性氯化物溶液中萃取收回金的氯配阴离子,并已在贵金属别离精粹工艺中成功运用。入们一向在研讨从碱性溶液中萃取收回金的办法。 4.含废水的处理 贵液提金后的废液含0.5-1g几,有必要处理到达我国政府规则的答应排放浓度0.5mg几的水平,或收回循环复用,或损坏转化为无毒。首要办法是:在密闭体系顶用硫酸酸化废液,逸出的HCN气体从头用NaOH溶液吸收转化为NaCN复用;或废水中参加硫酸锌固,沉积出白色化锌,再用硫酸溶解逸出化体经碱液吸收为复用。最终含约0.1g几的废水,在碱性条件下参加强氧化剂-漂、次、等使CN-转化为无毒的CO2和N2。最新办法是在调整溶液pH 7-10的条件下,向废水中鼓入含SO2 1%-3%的空气或参加碳酸氢钠,使CN-转化为无毒的CNO-。0.5h即可使废水含CN-从500mg/L降至0.5mg/L以下。[next] (三)无过滤氛化法 湿法冶金中的固液别离是一个高耗低效的进程。化矿浆过滤时要防止固体微粒穿滤,又要细心洗刷残渣收回贵液,功率很低。因而无过滤提金技能开展很快,并成为衡量提金技能先进性的重要标准。除堆浸法外,还有碳浆法、碳浸法、树脂矿浆法等,将化溶金及活性炭或树脂直接从矿浆中吸附金结合为一个进程,免去了过滤工序,还因及时吸附并下降溶液中金配离子活度而加速化溶金速度。前两个办法已获工业运用。 (1)碳浆法将含金、银的矿浆送入多级串联的吸附槽,与逆向活动的活性炭进行多级直接交流吸附。每个吸附槽用双桨叶机械拌和,矿浆用管道提升至槽上部,经过筛子别离矿浆和炭,载金炭从第一个吸附槽排出。炭在每槽的吸附时刻约1h。 (2)炭浸法将炭直接参加到化槽一同进行化和吸附,比炭浆法更简略。 两个办法对活性炭都有较严厉的要求,有必要有均匀适宜的粒度(一般为6-10目)及满足的强度,以削减载金炭被固体磨损后构成金的飘浮丢失。送入化槽的矿浆也应严厉别离砂砾、木屑、塑料等杂物。一般入矿浆浓度50%,活性炭用量10g/L。当原矿金档次约5g/t时,载金炭含金可达12-15kg/t,活性炭耗费量约0.015 kg/t矿。载金炭随后经洗提重溶一电积一熔炼为金锭。吸附率、洗提解吸率、电积率等目标皆大于99%,金的总收回率可达90%以上。还可将炭预先处理使之带磁性,加磁场收回以削减载金炭丢失。 树脂矿浆法的本质是用阴离子交流树脂替代活性炭直接从化矿浆中交流吸附金,载金树脂用溶液淋洗解吸金,最早运用于俄罗斯。 (四)难处理金矿的选冶 世界上1/3的金矿资源,用惯例化工艺处理时浸出率很低,被称为“难处理金矿”。难处理的原因是:①天然金以微细粒为主,多被黄铁矿、砷黄铁矿、氧化铁等矿藏严峻包裹,或浸染在微晶石英、燧石中,还有恰当份额的金呈难溶的AuSb2、Au2Bi、AuTe2等类矿藏存在;②矿石含沥青、腐殖酸等有机碳化物或许多黏土可从化液中从头吸附已溶解的金;③矿石含辉锑矿、雄黄、雌黄、辉铋矿、黄铜矿、磁黄铁矿等矿藏较高,化时耗及氧,或它们在化时的反响产品掩盖包裹金粒,阻止化的进行。这类资源的有用运用已成为黄金冶金范畴重视的热门。研讨的办法许多,一类是经预氧化处理后再用化或其他老练的办法提金,另一类是先浮选选出金精矿再处理。[next] 1.预氧化处理 意图是损坏“劫金”的有机碳及阻止化的硫、砷化物,尽量将金粒露出便于化。有焙烧、化学浸出、加压氧浸、催化氧化、细菌氧化、矿浆中电化学氧化等办法。 (1)焙烧法是国内外运用较早的办法。在空气中550-750℃下将矿石中有机碳氧化为二氧化碳,将黄铁矿(FeS2)和砷黄铁矿(FeAsS)等矿藏氧化为Fe2O3,硫、砷氧化为蒸发性氧化物。缺陷是硫、砷烟气严峻污染环境,能耗高,物料或许烧结反而包裹金粒等。近年来该法在技能及设备两方面都取得了严重前进,如将空气焙烧改为富氧焙烧,前进蒸发物浓度便于吸收;操控温度及氧量,添加烧碱或石灰使硫、砷转化为不蒸发且可溶解的硫酸盐和盐(“固硫”和“固砷”),便于从溶液中收回硫、砷;又如严厉操控空气量及温度(620-650℃)下焙烧,生成无毒的硫化砷: 16FeAsS+12FeS2+45O2====14Fe2O3+4As4S4+24SO2 焙烧设备已由最早运用的回转窑、多膛炉开展为欢腾炉和闪速焙烧炉。 (2)化学氧化法向矿浆中直接参加强氧化剂(如硝酸、、氯酸盐、锰酸盐、铬酸盐等)进行常压化学氧化,或再加直流电场的电化学氧化,如直接用浓度约200g/L的硝酸溶液在75-85℃下浸出浮选金精矿中的硫、砷化物,过滤后的滤渣再化提金。硝酸单耗约200kg/t矿,该法有用性的关键是从浸出液中经济高效的脱硝并再生硝酸复用。 (3)加压氧化法是20世纪50年代开展的新技能,长处是:对矿石中硫、砷、锑、铅等有害元素含量的习惯规划宽,可综合运用,功率高,污染小。将矿石磨细后配成固体浓度40%-45%的矿浆,依据矿石性质调整矿浆为酸性或中性至弱碱性,接连或接连地注入密闭耐压反响釜中,在高温(170-225℃)下通入空气(1500-3000kPa)或纯氧(350-700kPa),使硫、砷化物别离氧化为硫酸盐和盐,并部分氧化有机碳化物,使包裹金充沛游离露出而利于化。若在矿浆中预先配入石灰或氯化钙,可使砷转化为不溶的钙。至今已有几十家运用该技能。 (4)催化氧化法在浸出进程中参加硝酸起传递氧的“催化”效果,即HNO3氧化硫化矿藏后被复原为NO,并敏捷被气相中的氧氧化为N2O3或NO2,溶于水后再生出硝酸持续氧化硫化物。如在约90℃及常压下的“NITROX’法,约100℃及高压(0.4-0.8MPa)下的“ARSENO”法,约200℃及0.4-0.8MPa下的“Redox”法及我国开展的“COAL”法等。Redox法系用硫酸和硝酸(各70-110g/L)混合介质高温、高压浸出,速度很快,进程可自热保持,8min即可达90%-99%的硫、砷氧化率,并生成安稳的铁和硫酸钙,可用不锈钢管道浸出,后续金化率大于90%。我国创造的“催化氧化酸浸-化(COAL)法”,在100℃及0.2-0.4 MPa总压的氧气气氛下进行,矿浆浓度20%-25%,用硫酸调整矿浆pH≈l,硝酸浓度小于10g/L,参加占矿重0.05%-0.2%的木质磺酸钠作硫的表面活性剂,预处理后金的化率也达90%以上。当金矿石含许多砷黄铁矿及雄黄(As2S2)、雌黄(As2S3)时,可先用浸脱砷再用硝酸催化氧化。[next] (5)细菌氧化法依托铁硫杆菌、硫化裂片菌、钩端螺旋铁氧菌等菌种,在酸性(pH≈1-2)环境中使黄铁矿、砷黄铁矿缓慢分化并氧化为硫酸盐和盐。有两种机理:经过菌内特有的铁氧化酶及硫氧化酶直接氧化金属硫化物;或细菌将Fe2+氧化为Fe3+后再由Fe3+氧化金属硫化物,构成氧化一复原循环浸出。硫化矿区中这些细菌天然存在,收集菌种后在含氮、磷酸盐、微量钙、镁、钾的培育液中恒温繁衍,针对待处理矿石经中间实验后运用。一般矿石需磨细至约35μm,浸出时参加细菌繁衍必需的营养液并恰当充气,细菌分化硫、砷化物更有利于包裹金的露出。缺陷是速度太慢(20-40天),细菌的活性对温度太灵敏。温度低于15℃细菌繁衍很慢。温度超越40℃大都细菌就失掉活性。热天处理含硫较高的矿石,因为氧化进程放热会导致部分温度过高,有必要采纳降温办法。挑选和培育对温度习惯规划更宽的菌种,缩短氧化时刻(如我国的7-10天氧化技能已进入半工业实验规划),堆浸预氧化后直接转为化等方面开展很快。 以上几种预氧化处理办法各有好坏,各种不同的办法都有不同的运用条件和有用规划,工艺的挑选和拟定有必要针对详细矿石经过实验断定。国外针对同种矿石,用不同工艺处理,首要目标比较如表2。表2 各种工艺办法的比较首要目标工艺办法直接化焙烧-化细菌氧化-化加压氧化-化金收回率/%32778797设备出资(相对)130100200出产费用(相对)130100100
显着,细菌氧化和加压氧化一化两种工艺在金收回率和出产费用方面有优势。但近几年因为焙烧法在操控硫、砷污染及高效设备方面的发展,使其康复了显着的竞赛条件。1996年还有大型焙烧厂(7200t/d)投产。[next] 2.浮选富集 当金矿石中金的赋存粒度细并被铁及有色金属硫化物包裹,或呈固溶体存在于硫化物晶格中时,常用浮选法富集产出金精矿。要到达较高的富集率和收回率,有必要对矿石进行工艺矿藏学研讨,查清矿藏组成及连生联系、嵌布特色和粒度组成规划,断定适宜的磨矿细度和矿浆浓度,挑选恰当的介质调整剂、活化剂、起泡剂、捕收剂,拟定合理的磨-浮工艺流程。现在首要是移植和运用重有色金属硫化矿的浮选技能和设备,侧重处理含砷矿藏(毒砂)的有用按捺,下降金精矿的含砷量。 金精矿的产率、成分及金档次首要取决于原矿中铁硫化物的含量。如北美一含黄铁矿1.5%的金矿石浮选,精矿中含FeS 25 %,金收回率可达90%-95%。但我国的浮选收回率多低于90%。我国对浮选金精矿的质量规则如表3。表3 我国对浮选金精矿的质量规则等级特123456789金档次>/(g/t)36032028024020016014012010080含砷≤/%0.10.10.20.20.30.30.40.40.4
金精矿中硫、砷含量较高,有必要预氧化处理,然后可用针对金矿石的一切溶金办法提取金、银。但现在首要用于铜冶炼厂,在铜锍转炉吹炼除铁时作为熔剂,运用其间的二氧化硅参加铁造渣,金则捕集在锍中,并从铜电解阳极泥中收回。但因含砷,会添加冶炼厂砷害,配矿量受到约束,就地处理办法研讨一向十分活泼。