您所在的位置: 上海有色 > 有色金属产品库 > 熔剂生产流程 > 熔剂生产流程百科

熔剂生产流程百科

铝锭生产流程

2017-06-06 17:49:56

铝锭生产流程是投资者们很关心的问题,让我们对它进行下简单的介绍。铝锭生产流程  主要包括熔铸、挤压和上色 (上色主要包括:氧化、电泳涂装、氟炭喷涂、粉末喷涂、木纹转印等)三个过程。1、熔铸是铝材生产的首道工序。主要过程为:(1)配料:根据需要生产的具体合金牌号,计算出各种合金成分的添加量,合理搭配各种原材料。(2)熔炼:将配好的原材料按工艺要求加入熔炼炉内熔化,并通过除气、除渣精炼手段将熔体内的杂渣、气体有效除去。(3)铸造:熔炼好的铝液在一定的铸造工艺条件下,通过深井铸造系统,冷却铸造成各种规格的圆铸棒。2、挤压:挤压是型材成形的手段。先根据型材产品断面设计、制造出模具,利用挤压机将加热好的圆铸棒从模具中挤出成形。常用的牌号6063合金,在挤压时还用一个风冷淬火过程及其后的人工时效过程,以完成热处理强化。不同牌号的可热处理强化合金,其热处理制度不同。 3、上色 (此处先主要讲氧化的过程)氧化:挤压好的铝合金型材,其表面耐蚀性不强,须通过阳极氧化进行表面处理以增加铝材的抗蚀性、耐磨性及外表的美观度。其主要过程为:(1)表面预处理:用化学或物理的方法对型材表面进行清洗,裸露出纯净的基体,以利于获得完整、致密的人工氧化膜。还可以通过机械手段获得镜面或无光(亚光)表面。(2)阳极氧化:经表面预处理的型材,在一定的工艺条件下,基体表面发生阳极氧化,生成一层致密、多孔、强吸附力的AL203膜层。(3)封孔:将阳极氧化后生成的多孔氧化膜的膜孔孔隙封闭,使氧化膜防污染、抗蚀和耐磨性能增强。氧化膜是无色透明的,利用封孔前氧化膜的强吸附性,在膜孔内吸附沉积一些金属盐,可使型材外表显现本色(银白色)以外的许多颜色,如:黑色、古铜色、金黄色及不锈钢色等。 铝锭生产流程等更多的信息你可以登陆上海有色网查看。 

工业铝型材生产流程

2018-12-28 09:57:31

1、熔铸是铝材生产的首道工序   主要过程为:   (1)配料:根据需要生产的具体合金牌号,计算出各种合金成分的添加量,合理搭配各种原材料。   (2)熔炼:将配好的原材料按工艺要求加入熔炼炉内熔化,并通过除气、除渣精炼手段将熔体内的杂渣、气体有效除去。   (3)铸造:熔炼好的铝液在一定的铸造工艺条件下,通过深井铸造系统,冷却铸造成各种规格的圆铸棒。   2、挤压:挤压是型材成形的手段。先根据型材产品断面设计、制造出模具,利用工业铝型材挤压机将加热好的圆铸棒从模具中挤出成形。常用的牌号6063合金,在挤压时还用一个风冷淬火过程及其后的人工时效过程,以完成热处理强化。不同牌号的可热处理强化合金,其热处理制度不同。   3、上色 (此处先主要讲氧化的过程)   氧化:挤压好的铝合金型材,其表面耐蚀性不强,须通过阳极氧化进行表面处理以增加铝材的抗蚀性、耐磨性及外表的美观度。   其主要过程为:   (1)表面预处理:用化学或物理的方法对型材表面进行清洗,裸露出纯净的基体,以利于获得完整、致密的人工氧化膜。还可以通过机械手段获得镜面或无光(亚光)表面。   (2)阳极氧化:经表面预处理的型材,在一定的工艺条件下,基体表面发生阳极氧化,生成一层致密、多孔、强吸附力的AL203膜层。   (3)封孔:将阳极氧化后生成的多孔氧化膜的膜孔孔隙封闭,使氧化膜防污染、抗蚀和耐磨性能增强。氧化膜是无色透明的,利用封孔前氧化膜的强吸附性,在膜孔内吸附沉积一些金属盐,可使型材外表显现本色(银白色)以外的许多颜色,如:黑色、古铜色、金黄色及不锈钢色等。

铝型材的生产流程和分类

2019-01-11 15:44:00

铝型材,就是铝棒通过热熔、挤压、从而得到不同截面形状的铝材料。铝型材的生产流程主要包括熔铸、挤压和上色三个过程。其中,上色主要包括:氧化、电泳涂装、氟炭喷涂、粉末喷涂、木纹转印等过程。    用途可以分为以下几类:    1.建筑铝型材(分为门窗和幕墙二种)。    2.散热器铝型材。    3.一般工业铝型材:主要用于工业生产制造用的,如自动化机械设备、封罩的骨架以及各公司根据自己的机械设备要求定制开模,比如流水线输送带、提升机、点胶机、检测设备、货架等等,电子机械行业和无尘室用得居多。    4、轨道车辆结构铝合金型材:主要用于轨道车辆车体制造。    5、装裱铝型材,制作成铝合金画框,装裱各种展览、装饰画。    按合金成分类    可分为1024、2011、6063、6061、6082、7075等合得奖号铝型材,其中6系的较为常见.不同的牌号区别在于各种金属成分的配比是不一样的,除了常用的门窗铝型材如60系列、70系列、80系列、90系列、幕墙系列等建筑铝型材之外,工业铝型材没有明确的型号区分,大多数生产厂都是按照客户的实际图纸加工的。

6063铝合金棒生产流程

2019-03-08 12:00:43

(中国长城铝业公司研讨设计院  河南  郑州  450041)    一.Al-Mg-Si系合金的根本特色:    6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高定量为0. 35%,其他杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份规模很宽,它还有很大挑选地步。    6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只要两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:    在Al-Mg-Si系合金中,首要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂出产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不行或外热内冷,形成型材淬火温度太低所形成的。    在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅分量比为1.73,假如合金中有过剩的镁(即Mg:Si>1. 73),镁会下降Mg2Si在铝中的固溶度,然后下降Mg2Si在合金中的强化效果。假如合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,有必要Mg:Si<1.73。    二.合金成份的挑选    1.合金元素含量的挑选    6063合金成份有一个很宽的规模,详细成份除了要考虑机械功能、加工功能外,还要考虑表面处理功能,即型材怎么进行表面处理和要得到什么样的表面。例如,要出产磨砂料,Mg/Si应小一些为好,一般挑选在Mg/Si=1-1.3规模,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若出产亮光材、上色材和电泳涂漆材,Mg/Si在1.5-1.7规模为好,这是因为有较少过剩硅,型材抗蚀性好,简略得到亮光的表面。    别的,铝型材的揉捏温度一般选在480℃左右,因而,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只要1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能悉数溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少效果,反而会影响型材表面处理功能,给型材的氧化、上色(或涂漆)形成费事。    2.杂质元素的影响    ①铁,铁是铝合金中的首要杂质元素,在6063合金中,国家标准中规则不大于0.35,假如出产顶用一级工业铝锭,一般铁含量可操控在0.25以下,但假如为了下降出产本钱,很多运用收回废铝或等外铝,铁就根简略超支。Fe在铝中的存在形状有两种,一种是针状(或称片状)结构的β相(Al9Fe2Si2),一种为粒状结构的α相(Al12Fe3Si),不同的相结构,对铝合金有不同的影响,片状结构的β相要比粒状结构α相破坏性大的多,β相可使铝型材表面粗糙、机械功能、抗蚀功能变差,氧化后的型材表面发青,光泽下降,上色后得不到纯粹色彩,因而,铁含量有必要加以操控。    为了削减铁的有害影响可采纳如下办法。    a)熔炼、铸造用一切东西在运用前涂涮涂料,尽或许削减铁溶人铝液。    b)细化晶粒,使铁相变细,变小,削减其有害效果。    c)参加适量的,使β相转变成α相,削减其有害效果。    d)对废杂料仔细挑选,尽或许的削减铁丝、铁钉、铁屑等杂物进入熔铝炉形成铁含量升高。    ②其它杂质元素其它杂质元素在电解铝锭中都很少,远远低于国家标准,在运用收回废杂铝时就或许超越标准;在出产中,不光要操控每个元素不能超支,并且要操控杂质元素总量也不能超支,当单个元素含量不超支,但总量超支时,这些杂质元素相同对型材质量有很大影响。特别需求提出着重的是,实践证明,锌含量到0.05时(国标中不大于0.1)型材氧化后表面就呈现白色斑驳,因而锌含量要操控到0.05以下。    三.6063铝合金的熔炼    1.操控好熔炼温度    铝合金熔炼是出产优质铸棒的最重要工艺环节之一,若工艺操控不妥,会在铸捧中发作夹渣、气孔,晶粒粗大,茸毛晶等多种铸造缺点,因而有必要严加操控。    6063铝合金的熔炼温度操控在750-760℃之间为佳,过低会增大夹渣的发作,过高会增大吸氢、氧化、氮化烧损。研讨标明,铝液中的溶解度在760℃以上急剧上升,当热削减吸氢的途径还有许多,如烘干溶炼炉和熔炼东西,防止运用熔剂受潮蜕变等。但熔炼温度是最灵敏要素之一,过离的熔炼温度不光糟蹋动力,添加本钱,并且是形成气孔,晶粒粗大,茸毛晶等缺点的直接成因。    2.选用优秀的熔剂和恰当的精粹工艺    熔剂是铝合金熔炼中运用的重要辅助材料,现在市场上所售熔剂中首要成份为氯化物,氟化物,其间氯化物吸水性强,简略受潮,因而,熔剂的出产中有必要烘干所用质料,完全除掉水份,包装要密封,运送、保管中要防止破损,还要留意出产日期,如保管日期过长,相同会发作吸潮现象,在6063铝合金的熔炼中,运用的除渣剂、精粹剂、掩盖剂等熔剂假如吸潮,都会使铝液发作不同程度的吸氢。    挑选好的精粹剂,挑选适宜的精练工艺也对错常重要的,现在6063铝合金的精粹绝大多数选用喷粉精粹,这种精粹办法能使精粹剂与铝液充沛触摸,可使精粹剂发挥最大效能。尽管这个特色是清楚明了的,可是精粹工艺也有必要留意,不然得不到应有用果,喷粉精粹中所用氮气压力以小为好,能满意吹出粉剂为佳,精粹中假如运用的氮气不是高纯氯(99.99%N2),吹入铝液的氮气越多,氟气中的水份使铝液发作的氧化和吸氢越多。别的,氟气压力高,侣液发作的翻卷波涛大,增大发作氧化夹渣的或许性。假如精粹中运用的是高纯氮,精粹压力大,发作的气泡大,大气泡在铝液中的浮力大,气泡敏捷上浮,在铝液中的逗留时刻短,除氢效果并不好,糟蹋氮气,添加本钱。因而氮气应少用,精粹剂应多用,多用精粹剂只要优点,没有害处。喷粉精粹的工艺关键是竭尽或许少的气体,喷进铝液尽或许多的精粹剂。    3.晶粒细化    晶粒细化是铝合金熔铸中晕重要的工艺之一,也是处理气孔、晶粒粗大、亮光晶、茸毛晶、裂纹等铸造缺点的最有用办法之一。在合金铸造中,均对错平衡结晶,一切的杂质元素(当然也包含合金元素)绝大部分会集散布在晶界,晶粒越小,晶界面积就越大,杂质元素(或合金元素)的均匀度就越高。对杂质元素而言,均匀度高,可削减它的有害效果,乃至将少数杂质元素的有害变为有利;对合金元素面言,均匀度高,可发挥合金元素更大的合金化艘能,到达充沛利用资源的意图。    细化晶粒、增大晶界面积、增大元素均匀度的效果可经过下面的核算加以阐明。    假定金属块1与2有相同的体积V,均由立方体晶粒构成,金属块1的晶粒边长为2a,2的边长为a,那么金属块1的晶界面积为:    金属块2的晶界面积为:    金属块2的晶界面积是金属块1的2倍。    由此可见合金晶粒直径减小一倍,晶界面积就要增大—倍,晶界单位面积上的杂质元素将削减一倍。    在6063铝合金的出产中,对磨砂料来说,因为要经过腐蚀使型材发作均匀砂面,那么合金元素及杂质元素的均匀散布就显得尤为重要。晶粒越细,合金元素(杂质元素)的散布越均匀,腐蚀后得到的砂面就越均匀。    四.6063铝合金的浇铸    1.挑选合理的浇铸温度    合理的浇铸温度也是出产出优质铝棒的重要要素,温度过低,易发作夹渣、针孔等铸造缺点。温度过高,易发作晶粒粗大、茸毛晶等铸造缺点。    做了晶粒细化处理后的6063铝合金液,铸造温度可恰当进步,一般可操控在720-740℃之间,这是因为:①铝液经晶粒细化处理后变粘,简略凝结结晶。②铝棒在铸造中结晶前沿有一个液固两相过度带,较高的铸造温度有较窄的过度带,过度带窄有利于结晶前沿排出的气体逸出,当然温度不行过高,过高的铸造温度会缩短晶粒细化剂的有用时刻,使晶粒变得相对较大。    2.有条件时,充沛预热,烘干流槽、分流盘等浇铸体系,防止水分与铝液反响形成吸氢。    3.铸造中,尽或许的防止铝液的紊流和翻卷,不要简单用东西搅动流槽及分流盘中的铝液,让铝液在表面氧化膜的维护下平稳流人结晶器结晶,这是因为东西搅动铝液和液流翻卷都会使铝液表面氧化膜决裂,形成新的氧化,一起将氧化膜卷进铝液。经研讨标明,氧化膜有极强的吸附才能,它含有2%的水份,当氧化膜卷进铝液后,氧化膜中的水份与铝液反响,形成吸氢和夹渣。    4.对铝液进行过滤,过滤是除掉铝液中非金属夹渣最有用的办法,在6063铝合金的铸造中,一般用多层玻璃丝布过滤或陶瓷过滤板过滤,无论是采纳何种过滤办法,为了确保铝液能正常的过滤,铝液在过滤前应除掉表面浮渣,因为表面浮渣易阻塞过滤材料的过滤网孔,使过滤不能正常进行,除掉铝液表面浮渣的最简略办法是在流槽中设置一挡渣板,使铝液在过滤前除掉浮渣。    五.6063铝合金的均化处理    1.非平衡结晶    如图三所示,是由A、B两种元素构成的二元相图的一部分,成份为F的合金凝结结晶,当温度下降到T1时,固相平衡成份应为G,实践成份为G’,这是因为在铸造出产中,冷却凝结速度快,合金元素的分散速度小于结晶速度,即固相成份不是按CD改变,而是按CD’改变,然后发作了晶粒内化学成份的不平衡现象,形成了非平衡结晶。    2.非平衡结晶发作的问题    铸造出产出的铝合金棒其内部安排存在两方面的问题:①晶粒间存在铸造应力;②非平衡结晶引起的晶粒内化学成份的不平衡。因为这两个问题的存在,会使揉捏变得困难,一起,揉捏出的产品在机械功能、表面处理功能方面都有所下降。因而,铝棒在揉捏前有必要进行均匀化处理,消除铸造应力和晶粒内化学成份不平衡。    3.均匀化处理    均匀化处理就是铝棒在高温(低于过烧温度)下经过保温,消除铸造应力和晶粒内化学成份不平衡的热处理。Al-Mg-Si系列的合金过烧温度应该是595℃,但因为杂质元素的存在,实践的6063铝合金不是三元系,而是一个多元系,因而,实践的过烧温度要比595℃低一些,6063铝合金的均匀化温度可选在530-550℃之间,温度高,可缩短保温时刻,节约动力,进步炉子的出产率。    4.晶粒大小对均匀化处理的影响    因为固体原子之间的结合力很大,均匀化处理是在高温下合金元素从晶界(或边缘)分散到晶内的进程,这个进程是很慢的。简略了解,粗大晶粒的均化时刻要比细晶粒的均匀化时刻长得多,因而晶粒越细,均匀化时刻就越短。    5.均匀化处理的节能办法    均匀化处理需求在高温下经过较长时刻保温,对动力需求大,处理本钱高,因而,现在绝大多数型材厂对铝棒未进行均匀化处理。其最重要的原因就是均匀化处理需求较高本钱所形成的。下降均匀化处理本钱的首要办法有:    ①细化晶粒    细化晶粒可有用的缩短保温时刻,晶粒越细越好。    ②加长铝棒加热炉,按均匀化和揉捏温度分段操控,满意不同工艺要求。这一工艺首要优点是:    a)不添加均匀化处理炉。    b)充沛利用铝捧均匀化后的热能,防止揉捏时再次加热铝棒。    c)铝捧加热保温时刻长,表里温度均匀,有利于揉捏和随后的热处理。    综上所述,出产出优质6063铝合金铸棒,首先是依据出产的型材挑选合理的成分,其次是严格操控熔炼温度、浇铸温度,做好晶粒细化处理、合金液的精粹、过滤等工艺办法,仔细操作,防止氧化膜的决裂与卷进。最终,对铝棒进行均匀化处理,这样就可出产出优质铝棒,为出产优质型材供给一个牢靠的物质基础。

稀土工艺生产流程图

2019-01-30 10:26:27

详情请查看附件: 稀土工艺生产流程图.rar

铝蜂窝板加工生产流程

2018-12-20 11:10:23

在铝蜂窝板的加工复合过程中,按照已有文字资料、图纸进行钣金加工和铝蜂窝板加工复合细化设计,有以下几个步骤:  a.把不正规的手画图全部改为AUTOCAD画图,经确认后,打印三份,按批次、图号装订成册。技术(完工后转档案室)一份,车间一份,品保检验一份。  b.对没有进行铝蜂窝板板块编号的图纸,要统一编号。对已编号的图号进一步编号:后缀+A代表面板;后缀+B代表底板;后缀+C代表铝蜂窝芯;依次类推。  c.对需要钣金加工的铝板或其他材料面底板,要认真测量出折弯系数,并建档。  d.编写目录,计算单件面积和总面积等等。  e.对要钣金加工的板块,要根据折弯系数画出钣金展开图,并表明尺寸。在图上未标明内外面的,落实后再画展开图。一般情况下,展开图上的主视图朝人的一面为内表面(通常无涂层表面),其他情况要特殊注明。打印三份,按批次、图号装订成册。技术(完工后转档案室)一份,车间一份,品保检验一份。  f.编写钣金加工说明书,写明加工流程,公差要求、注意事项、加工要点等等。  g.编写钣金加工下料表,字体要大。纹理方向顺长度方向表示为“↑”;纹理方向顺宽度方向表示“→”。  h.对需进行数控下料和数控开展开料的,要进行计算机编程,并存入U盘和其他技术资料一起交车间主任签收。  i.编写铝蜂窝板加工说明书,写明加工流程,铝蜂窝芯要求、胶粘材料要求和施工工艺、异型件模具图、铝蜂窝板施工工艺、如何后续加工等。  j.提供辅件图纸、安装图纸和安装要求。  k.校对其他人员编写的技术文件。  l.对完成的图纸和技术文件存档。  m.现场指导解决铝蜂窝板安装等疑难问题。  n.解答铝蜂窝板加工问题。

纯铝圆管生产流程与生产工艺

2018-12-29 09:42:49

纯铝圆管在工业上大量使用的表现之一,便是工业化的轧翅。此类产品从普通的工业厂房取暖、大型制冷换热设备到汽车的高性能散热器都广泛使用。从其附着管道来分大体有钢管和铜管之分。其轧制性能以及相应的质量状况对其影响便是主要的了。   下面就以1060H112为例,从材质,挤压,包装,贮存运输等几个方面来阐述对纯铝圆管的质量控制。   材质   纯铝圆管的铝纯度很重要,在客户合同中虽然明确标识为1060合金,但是相对于其在GB/T3190中的合金成分中的杂质含量就容易造成铝翅片开裂缺陷。所以在实际的成分控制当中,本公司对铝合金成分进行了相应的严格控制,具体对比见表一。  标值上可以看出接近于1070合金,但个别的成分比1070合金还要严格,本来1070合金就已经有很好的起高度了,但对于翅片厚度和裂度问题就应该考虑成分的纯度了。另外铝纯度也是良好焊合和轧制延伸率的前提。   2.挤压 挤压对于纯铝圆管性能,不论是起高程度,还是轧制延伸率,亦或是轧制成品率在影响上都是决定的。挤压对于纯铝圆管的影响体现在如下几个方面:   2.1 模具   普通的非轧制铝圆管的挤压模具设计不用考虑充分焊合的问题,在正常检验条件下,外观肉眼观察无明显纹,无明显开裂即可了,这样条件下,其内部承压能力一般都能高出指标值1.5倍。但对于纯铝圆管而言,焊合的要求就显得非常之重要,这时普通模具的设计就不能满足要求了,相对于普通模具而言应在充分焊合上面下功夫,在模具设计时应作充分的沉桥处理,在此状态下,比普通模具有10—12mm的差异。这对于纯铝圆管的轧翅后翅片有无裂度有深远的影响。   2.2 加温   普通型材的铝棒加温一般在450—490℃之间,保温2.5小时左右,但对于纯铝圆管的铝棒加温就是不适用了。笔者经过长期的试验,摸索和试制最终发现,加温温度控制在500——530℃之间最为合理,而且保温在2.5小时以上。这样能保证足够的焊合、起高度和延伸率。   2.3 冷却   对要求的H112状态而言,不用进行全风冷冷却,只要保证铝管不烧伤冷床即可,同时不影响后续的矫直温度。   2.4 矫直   由于材质和温度原因,对于纯铝圆管而言,其矫直拉伸长度与管长度比率在30:8400之间即可。   2.5 锯切   纯铝圆管在锯切时对于两端头的料头长度有严格要求,经验和计算证明,料头去掉长度≥1.8m是非常适合的。   包装   包装拼叠的方式很重要,笔者经过大量试验证明,每包包装9支比较适合,以“品”字形拼叠,由于力学作用这样有利避免将圆管外力压扁。外面缠绕包装纸,要求紧凑避免铝管之间运输途中松懈摩擦。   3.贮存运输   由于纯铝圆管的特殊情况,其材质及硬度、截面的原因,同时还要考虑长度的情况,纯铝圆管不适合长距离频繁搬运,因为这样很容易造成弯曲磕碰伤,所以对于纯铝管的保管采用就近保管的原则。同时对于装卸问题配备了专用的运载工具:制作9米长的托板,该板表面用胶皮覆盖,防止铝管磨伤,同时防止弯曲。

含金矿石生产流程的选择依据

2019-01-25 15:49:26

选金流程是根据矿石可选性试验提出来的。在设计时进行必要的修改,在生产实践中再作进一步完善和改进。决定生产流程主要是矿石性质和对产品形态的要求两个方面。矿石性质主要包括:金品位、金的嵌布粒度及赋存形态、有价成分种类及品位、围岩性质及矿石泥化情况、矿物的种类及其物理和化学性质等。产品形态主要指产品中金是以合质金(或纯金),还是以金精矿的形式存在。一般说来,最好能就近或就地生产出成品金或半成品金。因为这样可以减少运输费用,减少金在转运过程中的损耗。山东省对1982年生产做过统计,每年将金精矿从烟台运往沈阳,仅运费和路耗两项,每年损失330多万元。就地就近产出成品金还可以加快企业资金周转,有利于矿山经营管理。当矿石比较复杂时,尤其是难选的多金属矿石,若想获得较选进的技术指标,工艺流程必然会比较复杂。因此选择流程时,不仅要考虑技术上的先进性,还要考虑生产上的可行性和经济上的合理性。    对于中、小型选金厂,在流程选择上要本着多、快、好、省的原则;本着因地制宜、土洋结合、简单易选择的精神,尽量作到投资少,上马快,早出金,多出金。

二丁基卡必醇萃取金的生产流程、设备及操作

2019-03-06 09:01:40

二丁基卡必醇萃取金的车间出产流程及设备如图1和图2。因为出产规模不大,萃取分配比很大,以及金是从有机相中直接复原出来等作业特色,出产选用间断性操作。图1  二丁基卡必醇萃取金流程图2  二丁基卡必醇萃取金的进程及设备 为萃取作业制备的液组分为(g∕L):金4~6,铂、钯各25,锇、铱、钌微量,铜、镍、铅、砷、锑、铋、铁、碲等总量不多于20,浓度3mol,Cl-总浓度6mol。将等体积的液和二丁基卡必醇有机相参加萃取器内混合。所用的萃取器用QVF玻璃制成,容量为200L,并配有QVF玻璃高速涡轮拌和器,以确保两相能杰出混合。经萃取后弄清,从底部排出水相,有机相留于萃取器内,再加一份新液萃取。一份有机相共萃取6份液(液的份数,视液中含金浓度断定,一般要求有机相终究含金25g∕L左右为结尾)。萃取了金的有机相,用1.5mol等体积的液洗刷3次除掉杂质后,将有机相送复原器还复原金。 复原反响器外部用电阻丝加热,并带有拌和桨和二氧化碳排气装置的回流冷凝器,以确保“三相”充沛混合和温度不低于90℃(温度低复原的金粒过细)。复原反响停止后,将溶液彻底冷却、弄清、有机相经虹吸管放出回来再用。再过滤别离金粉,产出的金粉先用稀液洗刷(洗液会集处理以收回其间的微量贵金属),再用洗刷收回吸附的有机相。最终熔融金粉并水淬成粒,产出的制品含金达99.99%。 1973年后,该厂出产规模有所扩展,萃取和复原均改在容量600L的内衬Ptaudler的容器内进行。配有90r/min的可调速的拌和器。

废铝熔剂

2017-06-06 17:50:04

废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收 金属 的废铝熔剂,特别适用于从铝渣中回收 金属 铝(铝合金),属于 金属 处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收 金属 铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3])  (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60%  Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30%  NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海 有色 网查询,更多合作伙伴也可以在商机平台中寻找到! 

冶炼厂熔剂磨碎分级流程的选择与计算

2019-01-07 17:38:01

一、流程选择       当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。    图1  三段开路破碎筛分流程图实例    图2  熔剂磨碎分级流程实例       二、流程计算       以图2为例,其计算方法如下:   Q1=Q4 Q5=CQ1 Q2=Q3=Q1+Q5       式中:          Q1Q2……-各产物数量,t/h;          C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。   表1  磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限 mmC值 %磨碎机与分级机闭路Ⅰ0.5~0.3 0.3~1.0150~350 250~600磨碎机与旋流器比例Ⅰ0.4~0.2 0.2~1.0200~350 300~600

冶炼厂熔剂破碎筛分流程的计算

2019-01-07 17:38:01

破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。       计算破碎筛分流程必须具备以下原始资料:       一、按原矿计的生产能力。       二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。    图1  原矿粒度特性曲线       三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。    图2  颚式破碎机产品粒度特性曲线    图3  标准圆锥破碎机产品粒度特性曲线    图4  中型圆锥破碎机闭路破碎产品粒度特性曲线    图5  短头圆锥破碎机开路破碎产品粒度特性曲线   (因本图表不清,需要者可来电免费索取)    图6  短头圆锥破碎机闭路破碎产品粒度特性曲线   (因故图表不清,需要者可来电免费索取)    图7  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较       计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。       破碎筛分流程的基本类型及计算公式列于表1。   表1  破碎筛分流程的基本类型及计算公式      Q1-原矿两,t/h;     Q2,Q3,Q4……Qn-各产物的重量;     β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;     E-筛分效率,%;     Cc-破碎机的循环负荷,%;     Cs-筛分机的循环负荷,%。       破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。   表2  d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口 e筛孔 ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85       以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。    图8  三段一次闭路破碎筛分流程图实例    图9  熔剂破碎筛分流程计算图       该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。       按破碎比: ί=ί 1 ί 2 ί 3   ί=300/6=50       参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。       (一)各段破碎产品最大粒度的计算:   d2=D最大/ ί 1=300/3=100mm   d3=d2/ ί 2=100/3=33.3mm   d7=d3/ ί 3=33.3/5.5=6mm       (二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)   e2=d2/Z=100/1.6=62.5mm(取65mm)   e3=d3/Z=33.3/1.9=17.5mm(取20mm)       短头圆锥破碎机的排矿口e7,参照表2。   e7=0.8,d7=0.8×6=4.8mm(取5mm)       (三)筛孔尺寸和筛分效率       根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。       设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。       (四)破碎作业计算       参照表1,   Q1=Q2=Q3=Q4+Q5=Q8=50t/h   Q6=Q7=C Q3       循环负荷率                      式中:          β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;          β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。       参照表1,   Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下                                 =50×0.25×0.65+25×0.52×0.65                                 =16.58t/h       式中:          β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;          β30~6-产物3中小于6mm粒级含量,%,查图3得出;          β70~6-产物7中小于6mm粒级含量,%,查图6得出。   Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h       任一产物的产率       式中:          Qn-任一产物的产量,t/h;          Q1-流程的给矿两,t/h。             (计算从略)

冶炼厂熔剂破碎筛分流程的选择

2019-01-07 17:38:01

破碎作业一般分为粗、中、细碎三段,其粒度的划分见表1。   表1  粗、中、细碎粒度的划分项  目给料粒度,mm出料最大粒度,mm粗  碎>30100~150中  碎100~30030~100细  碎50~1005~30     注:冶炼厂一般要求矿山供应300mm左右的熔剂。       表1的划分是相对的,可以大致说明破碎分段的情况。有些破碎机可兼有粗、中碎或中、细碎的作用。破碎段数的确定主要依给料粒度、产品粒度及所选用的破碎设备型号、性能而定。       熔剂破碎设备的破碎比用i=D/d表示,式中i为破碎比,D与d分别为破碎前后物料的最大粒度。       总破碎比等于各段破碎比的乘积。主要破碎机的破碎比范围可参照表2选取,熔剂硬度大的取值小,硬度小的取大值。   表2  破碎机在不同情况下的破碎比范围破碎段数破碎机型式流程类型破碎比第Ⅰ段 第Ⅱ段     第Ⅱ段或第Ⅲ段               第Ⅲ段  颚式破碎机 标准圆锥破碎机 中型圆锥破碎机 同上 对辊破碎机(光面) 同上 对辊破碎机(齿面) 反击式破碎机 同上 捶式破碎机(单转子) 捶式破碎机(双转子) 细碎颚式破碎机 短头圆锥破碎机 同上开路 开路 开路 闭路 开路 闭路 开路 开路 闭路 开路 开路 开路 开路 闭路3~5 3~5 3~6 4~8 3~8 3~15 10~15 10~15 8~40 10~15 30~40 10~21 3~6 4~8       几种主要破碎机排料中大于排矿口尺寸的过粗颗粒含量β和最大颗粒与排矿口尺寸之比Z见表3。   表3  破碎机排矿中大于排矿口颗粒含量β和最大颗粒与排矿口尺寸之比Z矿石硬级颚式破碎机标准圆锥破碎机短头圆锥破碎机β,%Zβ,%Zβ,%Z硬 中硬 软38 25 131.75 1.60 1.4053 35 222.4 1.9 1.675 60 382.9~3.0 2.2~2.7 1.8~2.2     注:1、短头圆锥破碎机闭路时取小值,开路时取大值;         2、最大颗粒度为95%的熔剂通过筛孔尺寸的粒度,用d最大表示。       熔剂破碎作业的总破碎比:i=D最大/d最大。式中D最大和d最大分别为进厂熔剂和最终破碎产品的最大粒度。       在实际应用中,要求的总破碎比往往较大,物料需经几段破碎才能达到最终的粒度。破碎机常和筛子组成破碎筛分流程。       破碎筛分流程中的筛分主要有预先筛分和检查筛分之分。预先筛分的作用是把给料中小于破碎机排料粒度的粒级分出,以减轻破碎机的负荷和磨损检查筛分的目的是控制破碎产品的粒度以及充分发挥破碎机的能力,其筛孔尺寸大致为所要求粒度的大小,筛上产品为不合格产品,返回破碎机再行破碎,筛下产品为合格产品。       冶炼厂用作熔剂破碎的设备能力,一般均比较富余,同时为避免增加设备和厂房,通常不单设预先筛分而在最后一段设检查筛分,也可兼作预先筛分之用。凡是不带筛分或仅有预先筛分的为开路流程,凡是有检查筛分的为闭路流程。       在设计中通常用普氏硬度系数f作为物料的硬级分类,f=16~20为难碎性矿石或硬矿石;f=8~16为中等可碎性矿石或硬矿石;f<8为易碎性矿石或软矿石。f大致等于抗压强度(MPa)的1/10,可以用试验室测定的为标准。       图1至图9为熔剂破碎筛分流程图实例。    图1  三段一次闭路破碎筛分流程图实例    图2  三段开路破碎筛分流程图实例    图3  二段一次闭路破碎筛分流程图实例(1)    图4  二段一次闭路破碎筛分流程图实例(2)    图5  二段一次闭路破碎筛分流程图实例(3)    图6  二段开路破碎设计流程图实例    图7  二段一次闭路破碎筛分流程图实例(4)    图8  二段开路破碎筛分设计流程图实例    图9  三段半闭路破碎筛分设计流程图实例       开路流程的优点是比较简单,设备少,扬尘点也较少。缺点是当要求破碎产品粒度较细时,破碎效率较低。闭路流程的破碎效率较高,但需要设备较多,流程较复杂。       闭路流程的检查筛分是先筛去合格产品,筛上物入最后一段破碎,破碎产物返回筛分。当入筛粒度较大且有一部分产物符合某种产品要求时,宜采用双层筛。

铝棒生产工艺流程

2019-01-14 11:15:47

熔铸包括熔化、提纯、除杂、除气、除渣与铸造过程。主要过程为:    (1)配料:根据需要生产的具体合得奖号,计算出各种合金成分的添加量,合理搭配各种原材料。    (2)熔炼:将配好的原材料按工艺要求加入熔炼炉内熔化,并通过除气、除渣精炼手段将熔体内的杂渣、气体有效除去。    (3)铸造:熔炼好的铝液在一定的铸造工艺条件下,通过深井铸造系统,冷却铸造成各种规格的圆铸棒。

闪速炉熔剂及常用燃料

2019-03-06 09:01:40

一、熔剂     闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。 表1  闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2  As<0.1  F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8  Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3  Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4    直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。     二、燃料     闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。     因为烟气用于制酸,因而对燃料含硫无要求。     各厂闪速炉用燃料的实例见表2,表3。 表2  闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5    注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。 表3  闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm  14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90%    有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。

中厚板生产工艺流程

2019-03-18 10:05:23

中厚板轧钢车间生产工艺流程 连铸坯→加热炉→除鳞机→轧机→控制冷却→矫直→冷床冷却→切头切倍尺→双边剪→定尺剪→表面检查和清理→垛板→入库→发货        中厚板生产工艺流程 HQ100:0.14C, 1.29Mn, 0.31Si, 1.40Ni, 0.59Cr, 0.50Mo, 0.43Cu, 0.06V, 0.02S, 0.018P 调质态:955MPa s0.2, 15%d5, -40℃冲击功30J 还有HQ130HQ100钢和 HQ130钢是国内近年来为了满足工程机械发展的需要研制开发的低合金调质高强度耐磨钢 (σb≥1000~1300MPa),主要用于高强度焊接结构耐磨和要求承受冲击的部位。HQ100钢是抗拉强度σb≥980MPa的低碳调质高强度耐磨钢,是为了制造大型工程机械而研制的钢种,该钢不仅强度高、低温缺口韧性好,而且具有优良的焊接性能,是中国工程机械、采矿机械和运输车辆等制造大型机械设备不可缺少的高强度焊接结构钢。 HQ100钢的生产工艺流程应包括:转炉冶炼→炉外精炼→模铸→开坯→缓冷→板坯清理→轧制→热处理→检验→交货等。该钢中厚板 (15~65mm)热处理工艺大多采用920℃±10℃淬火+620℃回火;HQ100钢920℃水淬后的组织是板条状位错马氏体,随着回火温度升高,碳化物的析出与长大导致了钢性能的明显变化,920℃±10℃淬火+620℃回火后的组织为回火索氏体。厚度9~12mm 的 HQ100钢薄板采用轧后控冷+610℃回火的热处理工艺,该钢轧后控冷后的组织主要为下贝氏体,控冷+610℃回火后的组织为回火索氏体。还有这些也是Q345B 70 2120 8350 Q345B 70 2050 8700 Q345B 70 2100 8650 Q345B 70 2440 9850 Q345B 70 2020 8400 Q345B 70 2020 8850

鼓风烧结配料所采用的熔剂

2019-01-07 17:38:01

鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。       一、硅质熔剂  一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。       二、铁质熔剂  多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。       三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。       表1为熔剂的化学成分实例。   表1  熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95       石灰石20.4155.731.340.330.59     石灰石30.353.970.620.230.89     石英石10.191.0891.80.14      石英石20.52.2197.12       石英石31.261.0894.86       河砂12.41.3575.853.04      河砂21.510.687.48       河砂33.02.074~80  0.30.10.1  烧渣147.44.158.2       烧渣243.866.29.31       烧渣347.554.3510.21       平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60  0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47  5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35  0.01  8~10140     注:Au、Ag的单位为g/t。

锆和铪生产工艺流程

2019-03-05 10:21:23

自从20世纪40年代卢森堡人克劳尔在美国发明晰镁复原制取海绵钛的办法,并将其用于复原和四氯化铪,制得多孔状、铪-海绵锆、铪后,现已曩昔半个多世纪,虽然在20世纪50~60年代有许多工艺和设备上的创新和改善,但至今克劳尔法仍是出产锆、铪的传统办法。后来采用了Na-Mg混合复原的办法,但镁热法仍是从ZrCl4和HfCl4出产海绵锆、铪的首要工艺道路。一般工业用锆,无须除掉锆中铪,称为工业级锆或有铪锆,锆中含铪一般为1%~2%。作为原子能工业用锆,则有必要别离铪,使锆中铪含量不大于万分之一,所得锆为无铪锆或称原子能级锆,锆铪别离则是出产锆铪进程中最要害的技能。原子能级锆的出产包含四个首要工艺流程。    (1)湿法或火法分化锆英石(ZrSiO4)制取锆盐和ZrCl4、HfCl4;     (2)锆铪别离制取ZrO2和HfO2;    (3)再次氯化ZrO2、HfO2制取ZrCl2、HfCl4经提纯后,用镁(或镁钠)复原-蒸馏制取海绵锆、铪;    (4)因为海绵锆和铪不能直接加工,需要进行熔铸或精粹纯化。    海绵锆、铪出产工艺准则流程见图1。 图1  锆、铪出产工艺准则流程 (因故图表不清,需要者可来电免费讨取)    在图1所示的工艺流程中,锆、铪别离后的中间产品为ZrO2、HfO2,经制团氯化后制得粗ZrCl4和粗HfCl4,进入下一工序。出产工艺中最要害的环节为锆铪别离,已完成工业化出产。

超薄铝箔的生产工艺流程

2019-01-14 13:50:20

一种超薄铝箔的短流程生产工艺,其特征在于:它是按照下述工艺步骤进行的:    靠前步、熔炼:用大容量蓄热式熔炼炉将原铝化成铝液,通过流槽进入铸轧机,在铝液流动过程中,细化剂Al-Ti-B在线添加,形成连续均匀的细化效果;石墨转子在730-735℃下在线除气、除渣,形成连续均匀的清除效果;    第二步、粗轧:将靠前步熔炼后的铝液引入铸轧机铸轧成坯料;在此过程中,将辊体内腔的冷却水进水温度控制在20-23℃、出水温度控制在28-32℃,辊缝间铝熔体静压力控制在0.004-0.005Mpa,保证材料的结晶方向{100}面率>95%、晶粒尺寸≤5μm,轧制出6.5-7.5mm的板坯;    第三步、中间轧制:将上述板坯用冷轧机组进行再次轧制,至厚度4.5mm时,将其送入退火炉内,加热至360℃、保温2小时后,继续加热至580℃、保温18小时,进行均匀化退火,使晶粒尺寸均匀,方向性一致;然后继续在冷轧机内冷轧至0.60mm,再次将其送入退火炉内,加热至460℃、保温5小时后,降温至400℃、保温7小时,进行中间退火;然后继续轧制成厚度为0.3mm作为铝箔毛料;    第四步、箔轧:用四辊不可逆箔轧机组将上述0.3mm的铝箔毛料轧制成铝箔成品。所述超薄铝箔的生产工艺流程短、运行成本低,生产投资规模小,而生产出的超薄铝箔质量可达到国际较先进水平,热轧法生产工艺相比,在生产坯料上降低投资成本三分之二,运行成本降低一半以上。

火法炼金常用熔剂及其作用

2019-01-07 07:52:09

火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。

热轧钢管生产工艺流程

2019-03-15 09:13:19

热轧是在再结晶温度以上进行的轧制。可以破坏钢锭的铸造组织,细化钢材的晶粒,并消除显微组织的缺陷,从而使钢材组织密实,力学性能得到改善。这种改善主要体现在沿轧制方向上,从而使钢材在一定程度上不再是各向同性体;浇注时形成的气泡、裂纹和疏松,也可在高温和压力作用下被焊合。热轧钢管生产工艺流程 热轧无缝钢管的生产工艺流程包括坯料轧前准备、管坯加热、穿孔、轧制、定减径和钢 管冷却、精整等几个基本工序。 当今热轧无缝钢管生产的一般主要变形工序有三个:穿孔、轧管和定减径;其各自的工 艺目的和要求为: 热轧钢管生产穿孔 将实心的管坯变为空心的毛管;我们可以理解为定型,既将轧件断面定为圆环状;其设 备被称为穿孔机。对穿孔工艺的要求是:首先要保证穿出的毛管壁厚均匀,椭圆度小,几何 尺寸精度高;其次是毛管的内外表面要较光滑,不得有结疤、折叠、裂纹等缺陷;第三是要 有相应的穿孔速度和轧制周期, 以适应整个机组的生产节奏, 使毛管的终轧温度能满足轧管 机的要求。 2.1.2 热轧钢管生产轧管 将厚壁的毛管变为薄壁(接近成品壁厚)的荒管;我们可以视其为定壁,即根据后续的 工序减径量和经验公式确定本工序荒管的壁厚值; 该设备被称为轧管机。 对轧管工艺的要求 是: 第一是将厚壁毛管变成薄壁荒管 (减壁延伸) 时首先要保证荒管具有较高的壁厚均匀度; 其次荒管具有良好的内外表面质量。 2.1.3 热轧钢管生产定减径(包括张减) 大圆变小圆,简称定径;相应的设备为定(减)径机。对定减径工艺的要求是:首先在 一定的总减径率和较小的单机架减径率条件下来达到定径目的, 第二可实现使用一种规格管 坯生产多种规格成品管的任务,第三还可进一步改善钢管的外表面质量。 20 世纪 80 年代末,曾出现过试图取消轧管工序,仅使用穿孔加定减的方法生产无缝钢管, 简称 CPS,即斜轧穿孔和张减的英文缩写),并在南非的 Tosa 厂进行了工业试验,用来生产外径: 33.4~179.8mm,壁厚 3.4~25mm 的钢管,其中定径最小外径为 101.6mm;张减最 大外径我 101.6mm。经过实践检验,该工艺在产生壁厚大于 10mm 的钢管时质量尚可,但 在生产壁厚小于 8mm 的钢管时通过定径、张减不能完全消除穿孔毛管的螺旋线,影响了钢 管的外观质量。在随后的改造中不得不在穿孔机于定减径机之间增设了一台 MINI-MPM(4 机架)来确保产品质量。 2.2 各热轧机组生产工艺过程特点 我们通常将毛管的壁厚加工称之为轧管。轧管是钢管成型过程中最重要的一个工序环 节。 这个环节的主要任务是按照成品钢管的要求将厚壁的毛管减薄至与成品钢管相适应的程 度,即它必须考虑到后继定、减径工序时壁厚的变化,这个环节还要提高毛管的内外表面质 量和壁厚的均匀度。 通过轧管减壁延伸工序后的管子一般称为荒管。 轧管减壁方法的基本特 点是在毛管内按上刚性芯棒,由外部工具(轧辊或模孔)对毛管壁厚进行压缩减壁。依据变 形原理和设备特点的不同,它有许多种生产方法,如表 1 所示。一般习惯根据轧管机的形式 来 命 名 热 轧 机 组 。 轧 管 机 分 单 机 架和 多 机 架 ,单 机 架 有 自动 轧 管 机 、阿 塞 尔 轧 机 、

铝氧化的生产工艺流程

2019-01-16 17:41:55

一、工艺流程:   ①银白料及银白电泳料氧化:   上架——水洗——低温抛光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——封孔——水洗——水洗——下架——风干——检验进入电泳工序——包装   ②磨砂料及磨砂电泳料氧化:   上架——除油——水洗——酸蚀——水洗——水洗——碱蚀——水洗——水洗——中和出光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——封孔——水洗——水洗——下架——风干——检验——包装进入电泳工序   ③着色料及着色电泳料氧化   上架——水洗——低温抛光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——着色——水洗——水洗——封孔——水洗——水洗检验进入电泳工序   ——下架——风干——检验——包装   二、上料:   ①型材上料前应将吊杆接触面打磨干净,并按标准支数上料,其计算公式:上料支数=标准电流标准电流密度×单支型材面积   ②上架支数的考虑原则:   a、硅机容量利用率不大于95%;   b、电流密度取1.0—1.2A/dm;   c、型材形状和两支型材之间留必要的间隙;   ③氧化时间的计算:氧化时间(t)=膜厚K·电流密度K为电解常数,取0.26—0.32,t单位为分钟;   ④上排时必须按照《型材面积及上排支数表》规定的支数上架;   ⑤为了便于排液和排气,上排捆扎时应倾斜,倾斜度5°为宜;   ⑥两端可超出导电杆10—20mm,最多不得大于50mm。   三、低温抛光工艺   ①低温抛光槽中低温抛光剂浓度控制为总酸25—30g/l,最低≥15 g/l;   ②抛光槽温20-30℃不得低于20℃,抛光时间90—200s;   ③提架倾斜,滴净残液后,迅速放入清水槽中漂洗,经两道水洗后迅速放入氧化槽氧化,在水槽中停留时间不应大于3分钟;   ④低温抛光材料在抛光前不得进行其它方式的处理,也不能将其它槽液带入抛光槽中。   四、除油工艺;   ①在室温酸液中进行,时间2—4分钟,H2SO4浓度140-160 g/l;   ②提架倾斜滴净残液后,放入清水槽中清洗1-2分钟。   五、磨砂(酸蚀)工艺   ①除油后在清水槽清洗再进入酸蚀槽;   ②工艺参数:NH4HF4浓度30-35 g/l,温度35-40℃,PH值2.8-3.2,酸蚀时间3-5分钟;   ③酸蚀结束后经两道水洗再进入碱蚀槽。   六、碱洗工艺   ①工艺参数:游离NaOH 30-45 g/l,总碱50-60 g/l,碱蚀剂5-10 g/l,AL3+ 0-15 g/l,温度35-45℃,砂料碱蚀时间30-60秒;   ②提架倾斜,滴净溶液后迅速放入清水槽中清洗干净;   ③检查清洗后的表面质量,当无腐蚀斑纹,无杂物、凝附表面现象,即可进入出光工序。   七、出光工艺   ①工艺参数:H2SO4浓度160-220 g/l,HNO3适量或50 g/l -100 g/l,温度室温,出光时间2-4分钟;   ②提架倾斜滴净残液后迅速放入清水槽中1-2分钟,再放入第二清水槽1-2分钟;   ③两次清洗完毕后,应钳紧扎架上的铝线,以保证氧化过程的良好接触。普通料钳紧扎架一端铝线,着色料、电泳料应钳紧扎架的两端铝线。   八、氧化工艺   ①工艺参数:H2SO4浓度160-175 g/l,AL3+≤20 g/l,电流密度1-1.5A/dm,电压12-16V,氧化槽温度18-22℃,按计算公式求得通电时间。氧化膜规定:银白料3-4μm,白砂4-5μm,电泳7-9μm;   ②阳极架应平稳放入导电座中,检查并确认型材与阴极板无接触时,可通电氧化;   ③氧化结束将阳极杆吊离液面倾斜并滴净残液,转入清水池清洗2分钟;   ④对不着色的型材可进入二级水槽待封孔处理。   九、着色工艺   ①工艺参数:SnSO4 5-6g/l;NiSO4 16-18 g/l;着色剂9-12 g/l;游离酸17-20 g/l;PH值=0.8-1.2,槽温19-21℃,着色电压应低于氧化电压即14-16V;平时添加按如下比例进行: SnSO4:NiSO4=1:1;着色添加剂:SnSO4=1:1   ②着色产品只能采用单排双线扎排的方式,产品之间间距≥相邻两产品的对应面宽度,一般用手指测时≥两支手指宽度,扎排必须扎紧,扎牢固,只能采用新线扎排;   ③着色产品氧化时氧化槽温必须控制在18-22℃,保证膜厚均匀结构细密;   ④着色产品每排氧化着色面积应基本一致;   ⑤着色后提架倾斜,用色板对比,符合条件后,再入清水槽清洗,否则试下列情况而处理;a、色彩浅,重新入着色槽,按补色开关着色,时间不得超过2分钟;   色泽深,应放入氧化槽相应的水槽中退色,或空中悬挂退色至理想为止;   b、氧化后产品必须经三道或以上水洗后方可进入着色槽,保证最后一道水洗槽PH≥5。   ⑦着色产品在氧化后禁止在水槽中长久浸泡,一般浸泡时间应不大于3分钟;   ⑧产品进入着色槽后,应先不通电,浸泡1分钟左右,再开始通电着色,着色过程开始后,约在30s内平稳地将着色电压升至14-18V,然后保持电压稳定不变直至着色完毕;   ⑨尽可能避免不同品种产品、不同批次产品在同一架上进行着色;   ⑩着色完毕后进行二次水洗后才能进行后处理,控制水洗PH,值第一道PH≥2,第二道PH≥5。   十、封孔工艺   ①将氧化型材入封孔池中,使其让多孔膜层封闭,达到提高氧化膜腐蚀能力;   ②工艺参数:普通封孔温度:10-30℃时间3-10分钟,PH5.5-6.5,封孔剂5-8 g/l,镍离子0.8-1.3g/l,氟离子0.35-0.8g/l;   ③封孔结束后,将排架吊起倾斜,滴净封孔液后,转入清水池清洗二次,每次一分钟,然后吹干型材,卸下再风干检查、包装。

铝合金熔体的熔剂精炼

2019-01-02 15:29:20

本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。   在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。   铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。   1 熔剂的作用   盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。   2 熔剂的分类和选择   2.1熔剂的分类和要求   铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。   ①熔点应低于铝合金的熔化温度。   ②比重应小于铝合金的比重。   ⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。   ④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。   ⑤吸湿性要小,蒸发压要低。   ⑥不应含有或产生有害杂质及气体。   ⑦要有适当的粘度及流动性。   ⑧制造方便:价格便宜。   2.2熔剂的成分及熔盐酌作用   铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。   2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4   ,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。   2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;   b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。   3铝合金熔炼中常用熔剂   熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。   3.1常用熔剂   为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。   铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。   表1 常用熔剂的成分及应用   溶剂种类 组分含量,%   NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金   覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg   系,Al-Cu-Si系Al-Cu-Mg-Zn系   Na2CO385。CaF15 一般铝合金   50 50 一般铝合金   KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金   31 14 CaF210 CaCL244 Al-Mg系合金   8 67 CaF210,MgF215 Al-Mg系合金   精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金   8 67 MgF215,CaF210 Al-Mg系合金   KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金   42 46 Bacl26 (2号熔剂) Al-Mg系合金   22 56 22 一般铝合金   50 35 15 一般铝合金   40 50 NaF10 一般铝合金   50 35 5 CaF210 一般铝合金   60 CaF220,NaF20 一般铝合金   36-45 50-55 3-7 CaF 21。5-4 一般铝合金   Na2SiF630-50,C2Cl650-70 一般铝合金   40。5 49。5 KF10 易拉罐合金   从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。   综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。   3。2熔剂用量 .   熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。   3。2。1.主覆盖剂用量   a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合   注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。   b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。   表3: 覆盖剂用量   类 别 用量(占投料量的%)   小碎片碎 屑号外渣子 6-810-1515-20   3.2.2精炼剂用量   不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。   表4 精炼剂用量   合金及制品 熔炼炉 静置炉   高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t   特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t   LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝   其它合金 普通熔剂5-6kg/t   注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加   ②对大规格的圆锭,其熔剂用量也应适当增加。   3。3熔剂使用方法   熔剂精炼法熔炼铝合金生产中常用以下几种方法   ①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。   ②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。   ③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。   ④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。   在这五种方法中,电熔剂精炼效果最好。

氧化铝的生产工艺流程

2019-01-31 11:05:59

从矿石提取氧化铝有多种办法,例如:拜耳法、烧结法、拜耳-烧结联合法等。拜耳法一直是出产氧化铝的首要办法,其产值约占全世界氧化铝总产值的95%左右。70年代以来,对酸法的研讨已有较大发展,但尚未在工业上运用。拜耳法 系奥地利拜耳(K.J.Bayer)于 1888年创造。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)别离后,下降温度,参加氢氧化铝作晶种,经长期拌和,铝酸钠分化分出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝制品。分出氢氧化铝后的溶液称为母液,蒸腾浓缩后循环运用。 拜耳法的扼要化学反响如下:由于三水铝石、一水软铝石和一水硬铝石的结晶结构不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要供给不同的溶出条件,首要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并增加石灰(3~7%)的条件下溶出。 现代拜耳法的首要发展在于:①设备的大型化和接连操作;②出产进程的自动化;③节约能量,例如高压强化溶出和流态化焙烧;④出产砂状氧化铝以满意铝电解和烟气干式净化的需求。拜耳法的工艺流程见图1。拜耳法的长处首要是流程简略、出资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。 拜耳法出产的经济效果决定于铝土矿的质量,首要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的分量比来表明。由于在拜耳法的溶出进程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),伴随赤泥排出。矿石中每公斤SiO2大约要构成1公斤Al2O3和0.8公斤NaOH的丢失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高档次三水铝石型铝土矿资源逐步削减,怎么使用其他类型的低档次铝矿资源和节能新工艺等问题,已是研讨、开发的重要方向。 烧结法 适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按必定份额混合配料,在反转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2)成的熟料。然后用稀碱溶液溶出熟猜中的铝酸钠。此刻铁酸钠水解得到的NaOH也进入溶液。假如溶出条件操控恰当,原硅酸钙就不会大量地与铝酸钠溶液发作反响,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液通过专门的脱硅进程,SiO2O构成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O沉积(其间x≈0.1),使溶液提纯。把CO2气体通入精制铝酸钠溶液,和参加晶种拌和,得到氢氧化铝沉积物和首要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝制品。水化石榴石中的Al2O3可以再用含Na2CO3母液提取收回。   烧结法的首要化学反响如下:   烧结:   Al2O3+Na2CO3─→Na2O·Al2O3+CO2   Fe2O3+Na2CO3─→Na2O·Fe2O3+CO2   SiO2+2CaCO3─→2CaO·SiO2+2CO2   TiO2+CaCO3─→CaO·TiO2+CO2   熟料溶出:   Na2O·Al2O3+4H2O─→2NaAl(OH)4(溶解)   Na2O·Fe2O3+2H2O─→Fe2O3·H2O↓+2NaOH(水解)   脱硅:   1.7 Na2SiO3+2NaAl(OH)4─→Na2O·Al2O3·1.7SiO2·nH2O↓+3.4NaOH   3 Ca(OH)2+2NaAl(OH)4+x Na2SiO3─→ 3CaO·Al2O3·x SiO2·(6-x)H2O↓+2(1+x)NaOH   分化:   2NaOH+CO2─→Na2CO3+H2O   NaAl(OH)4─→Al(OH)3↓+NaOH 我国烧结法出产氧化铝的首要技能成就是:在熟料烧成中选用低碱比配方,在熟料溶出工艺中选用二段磨料和低分子比溶液,以按捺溶出时的副反响丢失,使熟猜中Na2O和Al2O3的溶出率别离到达94~96%和92~94%。Al2O3的总收回率约90%,每吨氧化铝的Na2CO3的耗费量约95公斤。烧结法可以处理拜耳法不能经济地使用的低档次矿石,其铝硅比可低至3.5,质料的归纳使用较好,有其特征。 拜耳-烧结联合法 可充分发挥两法长处,扬长避短,使用铝硅比较低的铝土矿,求得更好的经济效果。联合法有多种形式,均以拜耳法为主,而辅以烧结法。按联合法的意图和流程衔接办法不同,又可分为串联法、并联法和混联法三种工艺流程。 ① 串联法是用烧结法收回拜耳法赤泥中的Na2O和Al2O3,于处理拜耳法不能经济使用的三水铝石型铝土矿。扩展了质料资源,削减碱耗,用较廉价的纯碱替代烧碱,并且Al2O3的收回率也较高。 ② 并联法是拜耳法与烧结法平行作业,别离处理铝土矿,但烧结法只占总出产能力的10~15%,用烧结法流程转化发生的NaOH弥补拜耳法流程中NaOH的耗费。 ③ 混联法是前两种联合法的归纳。此法中的烧结法除了处理拜耳法赤泥外,还处理一部分低档次矿石。 我国依据本国的铝矿资源特征,发展出多种氧化铝出产办法。50年代初就已用烧结法处理铝硅比只要3.5的纯一水硬铝石型铝土矿,创始了具有特征的氧化铝出产系统。用我国的烧结法,可使Al2O3的总收回率到达90%;每吨氧化铝的碱耗(Na2CO3)约90公斤;氧化铝的SiO2含量下降到0.02~0.04%;并且在50年代现已从流程中归纳收回金属镓和使用赤泥出产水泥。60年代初建成了拜耳烧结混联法氧化铝厂,使Al2O3总收回率到达91%,每吨氧化铝的碱耗下降到60公斤,为高效率地处理较高档次的一水硬铝石型铝土矿创始了一条新路。我国在用单纯拜耳法处理高档次一水硬铝石型铝土矿方面也积累了不少经历。 依据物理特性的不同,电解用氧化铝可分为三类:砂状、粉状和中间状(表1)。 表1  不同类型工业氧化铝的物理性质现在铝工业正研发和选用砂状氧化铝,由于这种氧化铝具有较高的活性,简单在冰晶石溶液中溶解,且可以较好地吸收电解槽烟气中的氟化氢,有利于烟气净化。 炼铝用氧化铝的化学组成一般如下:   Al2O3    >98.35%    Fe2O3    0.01~0.04%   SiO2    0.01~0.04%   TiO2      <0.005%   ZnO    0.003~0.02%  CaO      0.007~0.07%   Na2O    0.3~0.65%   V2O5      <0.003%   P2O5    <0.003%       Cr2O3      <0.002%   灼减     0.2~1.5%

隔热铝型材生产工艺流程简介

2019-03-11 09:56:47

一、工艺流程简图:  扼要阐明:   熔炼:首要原材料AL99.70以上铝锭(GB/T1196)参加铝硅合金锭、镁锭加热熔炼、熔炼温度为730℃~750℃、进行拌和、精粹、打渣等工序。   铸造:选用同水平密排顶铸造工艺,运用不同的结晶器,出产出不同直径规格的铝棒。   铸锭均匀化:选用575℃保温6小时快速冷却。   揉捏:铝棒加热到450℃左右,选用规则的模具,用揉捏机揉捏出各种规格的型材,并急速风冷或水冷,调直、锯切、装框。   时效:选用190℃~195℃保温3.5小时左右,然后选用强制风冷的工艺。   阳极氧化(上色):以铝基材为阳极,置于电解液中通电,阳极发生氧原子、氧原子有很强的氧化性,在铝基材表面生成一层功能优秀的Al2O3保护层,上色选用电解上色工艺,将金属离子(镍离子、亚锡离子)填充到Al2O3保护层中,使氧化膜显现出不同的色彩。   封孔:选用Ni2+、F-冷封孔工艺。   电泳涂漆:将经过阳极氧化(上色)的型材放入电泳槽中,通电使酸树脂附着在型材表面。   固化:将电泳涂漆的型材在180+20℃温度下,用30分钟左右烘干固化。   粉未喷涂:铝型材基材经过铬化前处理,经过静电喷涂上粉未涂料。   固化:将粉未涂料的型材在200℃温度下烘烤10分钟。   滚齿、穿条、压合:选用穿条式工艺出产隔热铝型材、首要出产出带槽位的铝型材,用专用的滚齿设备在槽位上开出0.5~1.0mm深的齿来。穿入尼龙隔热条PA66—GF,用压合设备将两支铝型材复合在一起,出产出具节能功能的隔热铝型材。

富锰渣生产方法和工艺流程

2019-01-25 15:49:32

目前产冶炼富锰渣的方法有高炉法、电炉法和转炉法三种,其中高炉法和电炉法是选择性还原,而转炉法是选择性氧化。其工艺分如下:    (1)高炉法生产富锰渣的工艺与一般生铁高炉相似,其秤工艺流程如图1。    高炉冶炼富锰渣是火法富集处理高铁高磷难选贫锰矿的主要方法,也是国内外应用得较多的方法。其基本原理是选择性还原(铁、磷被还原进入生铁,锰的高价氧化物还原为低价氧化物)和高温作用下的碳酸盐分解与结晶水的挥发,从而达到锰富集的目的。其中最关键的是选择性还原。    它的基本流程是,将合格的炉料(锰矿和焦炭)从炉顶装入炉内,热风从下部风口鼓入炉内,燃烧焦炭,生成煤气(CO,CO2,H2,N2)上升,并放出大量热。在高炉内,煤气上升和炉料下降这一相对运动中,发生一系列物理化学变化。矿石中的铁和磷还原生成生铁,而锰的高价氧化物还原为低价氧化物,则以MnO再与脉石中SiO2生成Mn2SiO4而进入炉渣。煤气从炉顶逸出经除尘净化后,再作热风炉的或别的燃料。冶炼好的渣铁经铁口排出,在炉前经分离后分别在铁模和渣盘铸块,或直接送给用户。    (2)电炉冶炼富锰渣大都采用还原电炉(矿热炉),其工艺流程见图2。    电炉冶炼富锰渣基本原理与高炉冶炼富锰渣是一致的。所不同的是热源不同,高炉冶炼是焦炭燃料燃烧发热,而电炉冶炼是电能发热,加入少量的焦炭仅做还原剂用,加入少量萤石或硅石作熔剂,电炉不是鼓风冶炼,故煤气发生量少。[next]    电炉冶炼富锰渣是将配合好的炉料(锰矿石、焦炭、萤石或硅石)从炉顶装入炉内,接着把三根电极插入炉料中,电流从电极导入炉内,电炉依靠产生的电弧热和电流通过炉料、炉渣和金属时所产生的电阻热进行加热,使矿石熔化进行冶炼。炉内冶炼过程中一系列物理化学反应与高炉相同。冶炼产生的金属和炉渣集于炉底,通过出铁口定期排放。锰渣和铁水流出后,经分离后分别铸块,随着炉料的熔化,新的炉料不断从炉顶加入,冶炼过程连续进行。    (3)转炉冶炼富锰渣采用选择性氧化、低温吹炼,炉温控制在1350~1400℃。转炉工艺生产富锰渣,我国没有采用,实际应用也不多。    转炉冶炼富锰渣的基本原理是选择性氧化,根据锰、铁、磷、硅等元素不同的氧化性能,在保证硅和锰充分氧化的同时,抑制磷和铁的氧化。转炉富锰渣的冶炼过程,就是用镜铁(低品位的锰铁)在转炉中吹氧,并添加造渣熔剂,使铁水中的锰优先并以MnO形态富集于渣中而成富锰渣,而铁水中的铁和磷尽量使其不氧化或少氧化,不进入或少进入炉渣中而成为半钢。    本结只对应用较多的高炉法和电炉法进行讨论。表1列出了电炉富锰渣和高炉冶炼富锰渣基本特征的比较。相关指标对比见表2。表1            高炉法和电炉法治炼富锰渣技术指标比较项目高炉法电炉法备注治炼原理选择性还原选择性还原 生产方式连续连续 锰回收率/%85~9085~90 影响锰回收率的主要因素焦比高,碱度高、回收率低电耗高,碱度高、回收率低 还原剂焦碳及CO焦碳及CO 热原焦碳燃烧电能 煤气量大小 煤气中N2多少 煤气中CO及发热值CO低,发热值低CO高,发热值高 富集效果Mn较低,P较高Mn较高,P较低相同原料成分时表2                       高炉法与电炉法技术指标对比项目 单位 方法电炉法高炉法吉林遵义鞍山玛瑙山苏联湘潭广西玛瑙山上海鞍山营口炉量/KVA(或m3)9000180018001800 558313215513日产量/(t·d-1)47  14 125 335012058电耗/(KW·h·t-1)12311100123520192082100120147105100125焦耗/(kg·t-1)181110127327 460410880510500490锰回收率/% 8686.78284.790 87889596富锰渣含Mn量/%40.664534.842.525337.9 39.537.336.536     采用什么方法冶炼富锰渣,一要看能源供应情况,二要看对富锰渣的质量要求,在电能丰富、对产品质量要求高时可采用电炉法,否则用高炉法。

铝型材生产加工工艺流程图

2018-12-27 09:37:01

铝型材生产加工工艺流程图删除

再生铅的生产工艺及流程

2018-09-04 11:04:50

随着国民经济的发展,铅的使用量也越来越多,因此,铅废件和废料势必日益增加。再生铅铅锌矿加工生产便是以这些铅废件和废料为原料,生产精铅、铅基合金或铅化合物铅锌矿生产工艺流过程。根据世界金属统计局公布的资料,世界产铅总量的51%用于生产蓄电池,而总铅产量的40%是由再生铅生产获得的,废蓄电池则占再生铅生产原料的90%。除铅蓄电池以外,再生铅原料还有各种废旧铅板,铅皮、铅管、蛇形管、电缆包皮、印刷铅合金、轴承铅合金、弹丸合金、焊料以及各种铅屑、下脚料和铅灰,铅渣等。这些原料来源不一,组成也极为复杂。表2-8-12所列为再生铅原料的典型成分。由于再生铅原料是作为各种各样的废品回收的,物理形态和化学组成相差都很大。而盛在各种铅废件和废料中经常混杂有不同的杂物,因此在熔炼前必须根据原料的不同特点进行预先处理。再生铅原料的炼前处理可包括分类、解体、分癣防爆检验,取样以及细小物料的烧结等。分类就是根据含铅废料的性质及其混杂程度和状态,分门别类储存。解体就是将含铅废料与其他材料和金属解离,并将其整理为合乎规定大小的铅块。如大块的铅皮、铅板、铅管、蛇形管等,应切成规定大小的废料块;废蓄电池的解体有的只将箱体和隔扳与铅料分开,有的则将铅料再分成栅板和填料,然后分别处理。铅废料的分选包括手眩电磁分选,重介质分选和浮选等方法,在原料分类、解体和分选过程中,将炮弹头、信管等爆炸危险物挑选出来,并妥为处理。如果采用鼓风炉熔炼,粉状或细粒含铅废料则需烧结或制团。由于废蓄电池是再生铅较主要的原料,所以其炼前处理也很受关注、从废蓄电池回收铅的整体熔炼,因其熔炼温度高,金属回收率低,渣含铅高,而且产生大量的含铅、二氧化硫和酸雾的烟气,很难处理使其达到排放标准的要求。因此,将废蓄电池解体后冶炼得到了广泛的应用。废铅酸蓄电池主要由金属(铅锑合金和活性铅粉),化合物(硫酸铅、 PbO2 、氧化铅和硫酸)和有机物(橡胶和塑料)三部分组成。解体便是蒋这三部分分开。再生铅熔炼可用坩埚炉、鼓风炉、反射炉、短窑、电炉等火法冶金设备,也可用湿法冶金处理。

冶炼厂熔剂破碎设备选择

2019-01-07 17:38:04

冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。       一、破碎设备的选择       冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。       若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,       近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。    图1  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较    图2  二段一次闭路破碎筛分流程实例    图3  三段半闭路破碎筛分设计流程图实例       二、破碎机生产能力计算       破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。       (一)颚式、圆锥(标准、中型和短头)破碎机       1、开路破碎的生产能力计算   Q=K1K2K3K4Q0     (1)       式中:          Q-设计条件下,破碎机的生产能力,t/h;          Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:   Q0=q0e            K1-熔剂的可碎性系数,由表1选取;          K2-熔剂密度修正系数,由下式计算:   K2=γ/1.6≈γT/2.7            K3-给料粒度或破碎比修正系数,由表2或表3选取;          K4-水分修正系数,进料水分5%以下时,可取1;          q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;          e-破碎机排料口宽度,mm;          γ-熔剂的堆积密度,t/m3;          γT-熔剂的密度,t/m3。   表1  熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易     碎8以下1.1~1.2中等可碎8~161.0难     碎16~200.9~0.95   表2  粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23   表3  中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20     注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;         2、设有预先筛分时取小值;不设预先筛分时取大值。   表4  颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30   表5  开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0   表6  开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0   表7  开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中  型2.765.4 9.620.0短头型4.256.7 14.025.0   表8  颚式破碎机生产实例厂    别设备规格 mm熔剂种类给料粒度 mm排料口宽度,mm生产能力 t/h大     冶450×750石英石、 石英石300~40010050白银一冶600×900石英石、 石英石48075~20035~120铜陵二冶400×600石英石、 石英石32040~10025~60云     冶400×600石英石30040~10012~32       2、闭路破碎时破碎机通过的熔剂量生产能力计算   Qc=KQ0           (2)       式中:          Qc-闭路时破碎机的生产能力,t/h;          Q0-开路时破碎机的生产能力,t/h;          K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。        (二)光面对辊破碎机   Q=60πDLdnγK     (3)       式中:          Q-对辊破碎机的生产能力,t/h;          D-辊筒直径,m;          L-辊筒长度,m;          d-排料口宽度,m;          n-辊筒转数,r/min;          γ-破碎熔剂的堆积密度,t/m3;          K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。       (三)反击式破碎机   Q=60K1C(h+ɑ)dbnγ     (4)       式中:          Q-反击式破碎机的生产能力,t/h;          K1-理论生产能力与实际生产能力的修正系数,一般取0.1;          C-转子上板锤数目;          h-板锤高度,m;          ɑ-板锤与反击板间的间隙,即排料口宽度,m;          d-排料粒度,m;          b-板锤宽度,m;          n-转子的转数,r/min;          γ-熔剂的堆积密度,t/m3。       (四)锤式破碎机   Q=60ZLCdμKnγ      (5)       式中:          Q-锤式破碎机的生产能力,t/h;          Z-排料篦条的缝隙个数;          L-篦条筛格的长度,m;          C-筛格的缝隙宽度,m;          d-排料粒度,m;          μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。          K-转子圆周方向的锤子排数,一般为3~6;          n-转子转数,r/min;          γ-熔剂的堆积密度,t/m3。       由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:   Q=(30~45)DLγ     (6)       式中:          Q-锤式破碎机的生产能力,t/h;          D-按转子外缘计的转子直径,m;          L-转子长度,m;          γ-破碎产物的堆积密度,t/m3。       以上经验公式都有局限性,应注意其使用条件。       三、需要破碎机台数的计算   n=Qn/Q     (7)    式中:          n-需要破碎机台数;          Qn-破碎作业的设计产量,t/h;          Q-破碎机的生产能力,t/(h·台)。       表8至表10为铜冶炼厂熔剂破碎机生产实例。   表9  标准圆锥破碎机生产实例厂    别直径 mm熔剂种类堆积密度 t/m3给料粒度 mm排料口宽度,mm生产能力 t/h大     冶900石英石、 石英石1.490~15025~2850白银一冶1200石英石、 石英石1.6411520~3042~135铜陵二冶900石英石、 石英石1.511012~2540   表10  短头圆锥破碎机生产实例厂    别直径 mm熔剂种类堆积密度 t/m3排料口宽度,mm产品粒度 mm生产能力 t/h备注大    冶1200石英石、 石英石1.48~106~850闭路白银一冶1200石英石、 石英石1.5~1.66~10~1550开路

金、银锭熔铸的原理-熔剂和氧化剂

2019-02-21 13:56:29

在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。 熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。 熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。 熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。