紫铜折弯系数及折弯系数计算公式
2019-05-29 17:37:50
紫铜折弯系数及折弯系数计算公式?什么是紫铜折弯系数?紫铜折弯系数有单位吗?紫铜折弯系数怎样算?其实紫铜折弯系数是归于钣金制作领域。紫铜折弯系数是指在折弯今后被拉伸的长度。材料不同,板厚不同,选用的折弯模具不同,折弯系数也不同。咱们今日首要说的是紫铜这种原料的折弯系数。紫铜折弯系数是能够计算出来的,咱们会教咱们的。那么关于“紫铜折弯系数及折弯系数计算公式”咱们立刻讲解下。紫铜 紫铜折弯系数组成?紫铜折弯系数包含了紫铜折弯系数表、K因子、折弯扣除数值。 1、紫铜折弯系数表:包含折弯半径、折弯视点和钣金件的厚度值。能够在折弯系数表中指定钣金零件的折弯系数或折弯扣除值。 一般情况下,有两种格局的折弯系数表:一种是嵌入的Excel电子表格,另一种是扩展名为.btl的文本文件。 2、K因子:K因子为屮立板相对于钣金零件厚度的方位的比率。 当挑选K因子作为折弯系数时,能够指定K因子折弯系数表。SolidWorks运用程序自带MicrosoftExcel格局的K因子折弯系数表格。其文件是坐落SolidWorks运用程序的装置目录下的“\lang\Chinese-Simplified\SheetmetalBendTables”文件中的kfactorbasebendtable.xls文件。也能够经过使⑴钣金规格表来运用根据材料的默许K因子,界说K因子的界说: 带K因子的折弯系数运用以下计算公式: BA=π(R+KT)A/180 式屮BA——折弯系数: R——内侧折弯半径(mm): K——K因子,K=t/T: T——材料厚度(mm): t——内表面到中性面的间隔(mm); A——折弯视点(经过折弯材料的视点)(°)。 3、折弯扣除数值:当生成折弯时,能够经过输入数值米给任何一个钣金折弯指定一个清晰的折穹扣除数值。界说折弯扣除数值的意义如下图。折弯扣除=2*OSSB-BA。 紫铜折弯系数?见紫铜折弯系数表紫铜折弯系数表板厚系数刀槽1.01.75V81.02R5/V201.52.4V122.03. 2/3.1V12/V82.54V162.94.65V203.05.55R5(8号)/V204.06.3V204.06.65/6. 72R5/V20/V285.08V285.08.6R5(8号)/V286.09.3V286.010.2(11)R5-V28/V427.812.8R5 /V428.013.1R5 /V4210. 015. 8 (优先)R5 /V4210. 015.1 (其次)女弯刀/V4210.017.2RIO /V4212. 05.20大弯刀/V60 紫铜折弯系数计算公式?上面其实现已介绍过了。 1、紫铜折弯系数计算公式:BA=Lt-A-B; 2、带K因子的紫铜折弯系数计算公式:BA=π(R+KT)A/180。
废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
紫铜导热系数
2017-06-06 17:50:10
要了解紫铜导热系数,首先要了解什么是导热系数。导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度(W/m·K,此处的K可用℃代替)。导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁
金属
温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。 对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。紫铜是比较纯净的一种铜,一般可近似认为是纯铜,导电性、塑性都较好,但强度、硬度较差一些。因此它的导热系数和铜很接近,为380W/(M*K)想要了解更多关于紫铜导热系数的信息,请继续浏览上海
有色
网。
钨铜合金等级
2019-05-27 10:11:36
钨铜合金功用梯度是金属基复合材料的装置是由至少两种金属成分,并在XY平面上至罕见两个独立的部分一个高的热导,和高的热膨胀系数。 高的热膨胀系数功用刺进和较低的导热性和较低的热膨胀系数相混合。功用之间的浸透(或功用的中心)亲近结合周边组织的功用刺进。该组织束缚在这样的方法,功用中心发生的热膨胀是等于周围的身体的温度漂移的刺进,在X和Y方向的热膨胀。沿z轴的扩张是微乎其微的终究运用一切的实践意图。铜钨一些老用户的C坐骑附加的半导体激光二极管半导体芯片直接装入(a)。功用梯度材料的装备可所以中心式(b),边装置,从三面(c)束缚,或许能够运用敞开口袋装备的(d)束缚功用的中心。代替中心式(e)和边际式(f)规划答应归入其他高频电器元件,电气控制激光手术从WCU根本绝缘。激光二极管坐骑的功用梯度材料现已加工,运用标准的装置和功用中心的铜含量较高的配方身体周围的WCU级配方。通常情况下,已拟定50/50 WCU用于功用梯度材料的中心,与周边组织已拟定15/85 WCU。这样,在一个有用的热导率320 W / mK的中心,有用系数,热膨胀系数为7.11 PPM /°C。在会集装置的设备的情况下,半导体激光器芯片被装置在顶部的功用中心。
黄铜的热导系数
2019-05-29 18:41:49
导热系数仅针对存在导热的传热方式,当存在其他方式的热传递方式时,如辐射、对流和传质等多种传热方式时的复合传热联系,该性质一般被称为表观导热系数、显性导热系数或有用导热系数(thermal transmissivity of material)。 黄铜是由铜和锌所组成的合金。假如仅仅由铜、锌组成的黄铜就叫作普通黄铜。黄铜常被用于制作阀门、水管、空调表里机连接收和散热器等,热导系数是黄铜的重要性能指标之一,下面就让咱们一起来了解黄铜以及常见固体的热导系数吧。黄铜管 黄铜的热导系数单位和符号: 黄铜的热导系数单位:W/(m·K);黄铜的热导系数符号:λ。 黄铜的导热性:黄铜的导热性巨细比较表合金牌号热导系数/W·(m·K)-1黄铜普通黄铜H96243.9H90187.6H85151.7H80141.7H75120.9H70120.9H68116.7H65116.7H63116.7H62116.7H59125.1铅黄铜HPb89-2190HPb66-0.5115HPb63-3117HPb63-0.1HPb62-0.8HPb62-3115HPb62-2115HPb61-1120HPb60-2120HPb59-3HPb59-1105镍黄铜HNi65-558.4HNi56-3铝黄铜HAl77-2208.4HPb67-2.5HPb66-6-3-2208.4HPb61-4-3-1HPb60-1-1315.2HPb59-3-2350.1锡黄铜HSn90-1126HSn70-1110HSn62-1116HSn60-1116铁黄铜HFe59-1-120.1锰黄铜HMn57-3-167HMn58-270.6HMn62-3-3-0.7硅黄铜HSi80-3175.1 在所有固体中,金属是最好的导热体。纯金属的导热系数一般随温度升高而下降。而金属的纯度对导热系数影响很大,如含碳为1%的普通碳钢的导热系数为45W/m·K,不锈钢的导热系数仅为16W/m·K。下面附上常见固体材料的导热系数。 常用固体材料的导热系数表:固体温度,℃导热系数λ,W/m·K铝300230镉1894铜100377熟铁1861铸铁5348铅10033镍10057银100412钢(1%C)1845船只用金属30113青铜189不锈钢2016石墨0151石棉板500.17石棉0~1000.15混凝土0~1001.28耐火砖1.04保温砖0~1000.12~0.21建筑砖200.69绒毛毯0~1000.047棉毛300.050玻璃301.09云母500.43硬橡皮00.15锯屑200.052软木300.043玻璃毛--0.04185%氧化镁--0.070TDD(岩棉)保温一体板700.040TDD(XPS板)保温一体板250.028TDD(真空绝热)保温一体板250.006TDD真空绝热保温板250.006ABS--0.25 以上为黄铜的热导系数全部内容,期望对您能有所协助。
闪速炉熔剂及常用燃料
2019-03-06 09:01:40
一、熔剂
闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。
表1 闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2 As<0.1 F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8 Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3 Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4 直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。
二、燃料
闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。
因为烟气用于制酸,因而对燃料含硫无要求。
各厂闪速炉用燃料的实例见表2,表3。
表2 闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5 注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。
表3 闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm 14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90% 有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。
鼓风烧结配料所采用的熔剂
2019-01-07 17:38:01
鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。
一、硅质熔剂 一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。
二、铁质熔剂 多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。
三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。
表1为熔剂的化学成分实例。
表1 熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95 石灰石20.4155.731.340.330.59 石灰石30.353.970.620.230.89 石英石10.191.0891.80.14 石英石20.52.2197.12 石英石31.261.0894.86 河砂12.41.3575.853.04 河砂21.510.687.48 河砂33.02.074~80 0.30.10.1 烧渣147.44.158.2 烧渣243.866.29.31 烧渣347.554.3510.21 平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60 0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47 5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35 0.01 8~10140
注:Au、Ag的单位为g/t。
火法炼金常用熔剂及其作用
2019-01-07 07:52:09
火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。
铝合金熔体的熔剂精炼
2019-01-02 15:29:20
本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。
在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。
铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。
1 熔剂的作用
盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。
2 熔剂的分类和选择
2.1熔剂的分类和要求
铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。
①熔点应低于铝合金的熔化温度。
②比重应小于铝合金的比重。
⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。
④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。
⑤吸湿性要小,蒸发压要低。
⑥不应含有或产生有害杂质及气体。
⑦要有适当的粘度及流动性。
⑧制造方便:价格便宜。
2.2熔剂的成分及熔盐酌作用
铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。
2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4
,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。
2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;
b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。
3铝合金熔炼中常用熔剂
熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。
3.1常用熔剂
为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。
铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。
表1 常用熔剂的成分及应用
溶剂种类 组分含量,%
NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金
覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg
系,Al-Cu-Si系Al-Cu-Mg-Zn系
Na2CO385。CaF15 一般铝合金
50 50 一般铝合金
KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金
31 14 CaF210 CaCL244 Al-Mg系合金
8 67 CaF210,MgF215 Al-Mg系合金
精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金
8 67 MgF215,CaF210 Al-Mg系合金
KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金
42 46 Bacl26 (2号熔剂) Al-Mg系合金
22 56 22 一般铝合金
50 35 15 一般铝合金
40 50 NaF10 一般铝合金
50 35 5 CaF210 一般铝合金
60 CaF220,NaF20 一般铝合金
36-45 50-55 3-7 CaF 21。5-4 一般铝合金
Na2SiF630-50,C2Cl650-70 一般铝合金
40。5 49。5 KF10 易拉罐合金
从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。
综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。
3。2熔剂用量 .
熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。
3。2。1.主覆盖剂用量
a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合
注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。
b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。
表3: 覆盖剂用量
类 别 用量(占投料量的%)
小碎片碎 屑号外渣子 6-810-1515-20
3.2.2精炼剂用量
不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。
表4 精炼剂用量
合金及制品 熔炼炉 静置炉
高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t
特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t
LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝
其它合金 普通熔剂5-6kg/t
注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加
②对大规格的圆锭,其熔剂用量也应适当增加。
3。3熔剂使用方法
熔剂精炼法熔炼铝合金生产中常用以下几种方法
①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。
②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。
③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。
④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。
在这五种方法中,电熔剂精炼效果最好。
冶炼厂熔剂破碎设备选择
2019-01-07 17:38:04
冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。
一、破碎设备的选择
冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。
若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,
近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。
图1 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
图2 二段一次闭路破碎筛分流程实例
图3 三段半闭路破碎筛分设计流程图实例
二、破碎机生产能力计算
破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。
(一)颚式、圆锥(标准、中型和短头)破碎机
1、开路破碎的生产能力计算
Q=K1K2K3K4Q0 (1)
式中:
Q-设计条件下,破碎机的生产能力,t/h;
Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:
Q0=q0e
K1-熔剂的可碎性系数,由表1选取;
K2-熔剂密度修正系数,由下式计算:
K2=γ/1.6≈γT/2.7
K3-给料粒度或破碎比修正系数,由表2或表3选取;
K4-水分修正系数,进料水分5%以下时,可取1;
q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;
e-破碎机排料口宽度,mm;
γ-熔剂的堆积密度,t/m3;
γT-熔剂的密度,t/m3。
表1 熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易 碎8以下1.1~1.2中等可碎8~161.0难 碎16~200.9~0.95
表2 粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23
表3 中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20
注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;
2、设有预先筛分时取小值;不设预先筛分时取大值。
表4 颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30
表5 开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0
表6 开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0
表7 开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中 型2.765.4 9.620.0短头型4.256.7 14.025.0
表8 颚式破碎机生产实例厂 别设备规格
mm熔剂种类给料粒度
mm排料口宽度,mm生产能力
t/h大 冶450×750石英石、
石英石300~40010050白银一冶600×900石英石、
石英石48075~20035~120铜陵二冶400×600石英石、
石英石32040~10025~60云 冶400×600石英石30040~10012~32
2、闭路破碎时破碎机通过的熔剂量生产能力计算
Qc=KQ0 (2)
式中:
Qc-闭路时破碎机的生产能力,t/h;
Q0-开路时破碎机的生产能力,t/h;
K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。
(二)光面对辊破碎机
Q=60πDLdnγK (3)
式中:
Q-对辊破碎机的生产能力,t/h;
D-辊筒直径,m;
L-辊筒长度,m;
d-排料口宽度,m;
n-辊筒转数,r/min;
γ-破碎熔剂的堆积密度,t/m3;
K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。
(三)反击式破碎机
Q=60K1C(h+ɑ)dbnγ (4)
式中:
Q-反击式破碎机的生产能力,t/h;
K1-理论生产能力与实际生产能力的修正系数,一般取0.1;
C-转子上板锤数目;
h-板锤高度,m;
ɑ-板锤与反击板间的间隙,即排料口宽度,m;
d-排料粒度,m;
b-板锤宽度,m;
n-转子的转数,r/min;
γ-熔剂的堆积密度,t/m3。
(四)锤式破碎机
Q=60ZLCdμKnγ (5)
式中:
Q-锤式破碎机的生产能力,t/h;
Z-排料篦条的缝隙个数;
L-篦条筛格的长度,m;
C-筛格的缝隙宽度,m;
d-排料粒度,m;
μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。
K-转子圆周方向的锤子排数,一般为3~6;
n-转子转数,r/min;
γ-熔剂的堆积密度,t/m3。
由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:
Q=(30~45)DLγ (6)
式中:
Q-锤式破碎机的生产能力,t/h;
D-按转子外缘计的转子直径,m;
L-转子长度,m;
γ-破碎产物的堆积密度,t/m3。
以上经验公式都有局限性,应注意其使用条件。
三、需要破碎机台数的计算
n=Qn/Q (7) 式中:
n-需要破碎机台数;
Qn-破碎作业的设计产量,t/h;
Q-破碎机的生产能力,t/(h·台)。
表8至表10为铜冶炼厂熔剂破碎机生产实例。
表9 标准圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3给料粒度
mm排料口宽度,mm生产能力
t/h大 冶900石英石、
石英石1.490~15025~2850白银一冶1200石英石、
石英石1.6411520~3042~135铜陵二冶900石英石、
石英石1.511012~2540
表10 短头圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3排料口宽度,mm产品粒度
mm生产能力
t/h备注大 冶1200石英石、
石英石1.48~106~850闭路白银一冶1200石英石、
石英石1.5~1.66~10~1550开路
金、银锭熔铸的原理-熔剂和氧化剂
2019-02-21 13:56:29
在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。
熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。
熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。
熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。
热挤压管材用的合理挤压系数范围
2019-01-15 09:51:44
挤压机能力/MN
挤压筒直径/㎜
合适的挤压系数范围
挤压机能力/MN
挤压筒直径/㎜
合适的挤压系数范围6.3
硬合金
软合金①
16.3
硬合金
软合金①95
12~30
12~40
140
30~45
30~60115
12~25
12~30
170
20~40
20~50130
10~20
10~25
200
15~30
20~4012
115
20~40
30~50
35
230
30~50
35~60130
20~35
30~40
280
30~45
30~55150
15~30
20~35
370
20~30
20~40
铍青铜合金简介及参考系数
2019-01-03 14:43:39
铍青铜合金是一种综合性能最好的铜合金,它比其他任何铜合金具有更高的强度,硬度和弹性极限,铍青铜材料的弹性滞后小,弹性稳定性高,优异的耐磨损,耐腐蚀,耐高温和低温,耐疲劳性能,有良好的导电性和导热性;此外尚有无磁性,铍铜材料击时不产生火花等特性,铍青铜合金被广泛应用于航空,电子,通讯,机械,化工,汽车及家电工业中。
铍青铜合金是力学,,物理,化学综合性能良好的一种合金,铍青铜材料经过淬火调质后,具有高的强度,弹性,耐磨性,耐疲劳性和耐热性,同时还具有很高的导电性,导热性,耐寒性和无磁性,碰击时无火花,易于焊接和钎焊,在大气,淡水和海水中耐腐蚀性极好,铍青铜合金是一种不可多得的合金。
冶炼厂熔剂磨碎分级流程的选择与计算
2019-01-07 17:38:01
一、流程选择
当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。
图1 三段开路破碎筛分流程图实例
图2 熔剂磨碎分级流程实例
二、流程计算
以图2为例,其计算方法如下:
Q1=Q4
Q5=CQ1
Q2=Q3=Q1+Q5
式中:
Q1Q2……-各产物数量,t/h;
C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。
表1 磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限
mmC值
%磨碎机与分级机闭路Ⅰ0.5~0.3
0.3~1.0150~350
250~600磨碎机与旋流器比例Ⅰ0.4~0.2
0.2~1.0200~350
300~600
鼓风炉化矿采用的原料、熔剂和燃料
2019-01-07 07:51:21
一、铅锌氧化矿
表1为会泽铅锌矿的铅锌氧化矿化学成分实例。
表1 铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1 铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4 二、熔剂
熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。 三、燃料
表2为焦炭性质及化学成分实例。
表2 焦炭性质及化学成分实例焦种块度
mm固定碳
%挥发分
%灰分
%灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81
电工铝杆用高效排杂净化熔剂介绍
2019-01-08 13:40:18
电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。
高炉炼铁对碱性熔剂3个质量要求
2019-01-04 11:57:16
高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.
冶炼厂熔剂破碎筛分流程的计算
2019-01-07 17:38:01
破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。
计算破碎筛分流程必须具备以下原始资料:
一、按原矿计的生产能力。
二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。
图1 原矿粒度特性曲线
三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。
图2 颚式破碎机产品粒度特性曲线
图3 标准圆锥破碎机产品粒度特性曲线
图4 中型圆锥破碎机闭路破碎产品粒度特性曲线
图5 短头圆锥破碎机开路破碎产品粒度特性曲线
(因本图表不清,需要者可来电免费索取)
图6 短头圆锥破碎机闭路破碎产品粒度特性曲线
(因故图表不清,需要者可来电免费索取)
图7 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。
破碎筛分流程的基本类型及计算公式列于表1。
表1 破碎筛分流程的基本类型及计算公式
Q1-原矿两,t/h;
Q2,Q3,Q4……Qn-各产物的重量;
β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;
E-筛分效率,%;
Cc-破碎机的循环负荷,%;
Cs-筛分机的循环负荷,%。
破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。
表2 d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口
e筛孔
ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85
以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。
图8 三段一次闭路破碎筛分流程图实例
图9 熔剂破碎筛分流程计算图
该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。
按破碎比: ί=ί 1 ί 2 ί 3
ί=300/6=50
参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。
(一)各段破碎产品最大粒度的计算:
d2=D最大/ ί 1=300/3=100mm
d3=d2/ ί 2=100/3=33.3mm
d7=d3/ ί 3=33.3/5.5=6mm
(二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)
e2=d2/Z=100/1.6=62.5mm(取65mm)
e3=d3/Z=33.3/1.9=17.5mm(取20mm)
短头圆锥破碎机的排矿口e7,参照表2。
e7=0.8,d7=0.8×6=4.8mm(取5mm)
(三)筛孔尺寸和筛分效率
根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。
设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。
(四)破碎作业计算
参照表1,
Q1=Q2=Q3=Q4+Q5=Q8=50t/h
Q6=Q7=C Q3
循环负荷率
式中:
β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;
β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。
参照表1,
Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下
=50×0.25×0.65+25×0.52×0.65
=16.58t/h
式中:
β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;
β30~6-产物3中小于6mm粒级含量,%,查图3得出;
β70~6-产物7中小于6mm粒级含量,%,查图6得出。
Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h
任一产物的产率
式中:
Qn-任一产物的产量,t/h;
Q1-流程的给矿两,t/h。
(计算从略)
碳原子在钴粘结中的扩散系数研究
2018-12-10 14:18:49
碳原子在钴粘结相中的扩散系数.pdf
冶炼厂熔剂破碎筛分流程的选择
2019-01-07 17:38:01
破碎作业一般分为粗、中、细碎三段,其粒度的划分见表1。
表1 粗、中、细碎粒度的划分项 目给料粒度,mm出料最大粒度,mm粗 碎>30100~150中 碎100~30030~100细 碎50~1005~30
注:冶炼厂一般要求矿山供应300mm左右的熔剂。
表1的划分是相对的,可以大致说明破碎分段的情况。有些破碎机可兼有粗、中碎或中、细碎的作用。破碎段数的确定主要依给料粒度、产品粒度及所选用的破碎设备型号、性能而定。
熔剂破碎设备的破碎比用i=D/d表示,式中i为破碎比,D与d分别为破碎前后物料的最大粒度。
总破碎比等于各段破碎比的乘积。主要破碎机的破碎比范围可参照表2选取,熔剂硬度大的取值小,硬度小的取大值。
表2 破碎机在不同情况下的破碎比范围破碎段数破碎机型式流程类型破碎比第Ⅰ段
第Ⅱ段
第Ⅱ段或第Ⅲ段
第Ⅲ段
颚式破碎机
标准圆锥破碎机
中型圆锥破碎机
同上
对辊破碎机(光面)
同上
对辊破碎机(齿面)
反击式破碎机
同上
捶式破碎机(单转子)
捶式破碎机(双转子)
细碎颚式破碎机
短头圆锥破碎机
同上开路
开路
开路
闭路
开路
闭路
开路
开路
闭路
开路
开路
开路
开路
闭路3~5
3~5
3~6
4~8
3~8
3~15
10~15
10~15
8~40
10~15
30~40
10~21
3~6
4~8
几种主要破碎机排料中大于排矿口尺寸的过粗颗粒含量β和最大颗粒与排矿口尺寸之比Z见表3。
表3 破碎机排矿中大于排矿口颗粒含量β和最大颗粒与排矿口尺寸之比Z矿石硬级颚式破碎机标准圆锥破碎机短头圆锥破碎机β,%Zβ,%Zβ,%Z硬
中硬
软38
25
131.75
1.60
1.4053
35
222.4
1.9
1.675
60
382.9~3.0
2.2~2.7
1.8~2.2
注:1、短头圆锥破碎机闭路时取小值,开路时取大值;
2、最大颗粒度为95%的熔剂通过筛孔尺寸的粒度,用d最大表示。
熔剂破碎作业的总破碎比:i=D最大/d最大。式中D最大和d最大分别为进厂熔剂和最终破碎产品的最大粒度。
在实际应用中,要求的总破碎比往往较大,物料需经几段破碎才能达到最终的粒度。破碎机常和筛子组成破碎筛分流程。
破碎筛分流程中的筛分主要有预先筛分和检查筛分之分。预先筛分的作用是把给料中小于破碎机排料粒度的粒级分出,以减轻破碎机的负荷和磨损检查筛分的目的是控制破碎产品的粒度以及充分发挥破碎机的能力,其筛孔尺寸大致为所要求粒度的大小,筛上产品为不合格产品,返回破碎机再行破碎,筛下产品为合格产品。
冶炼厂用作熔剂破碎的设备能力,一般均比较富余,同时为避免增加设备和厂房,通常不单设预先筛分而在最后一段设检查筛分,也可兼作预先筛分之用。凡是不带筛分或仅有预先筛分的为开路流程,凡是有检查筛分的为闭路流程。
在设计中通常用普氏硬度系数f作为物料的硬级分类,f=16~20为难碎性矿石或硬矿石;f=8~16为中等可碎性矿石或硬矿石;f<8为易碎性矿石或软矿石。f大致等于抗压强度(MPa)的1/10,可以用试验室测定的为标准。
图1至图9为熔剂破碎筛分流程图实例。
图1 三段一次闭路破碎筛分流程图实例
图2 三段开路破碎筛分流程图实例
图3 二段一次闭路破碎筛分流程图实例(1)
图4 二段一次闭路破碎筛分流程图实例(2)
图5 二段一次闭路破碎筛分流程图实例(3)
图6 二段开路破碎设计流程图实例
图7 二段一次闭路破碎筛分流程图实例(4)
图8 二段开路破碎筛分设计流程图实例
图9 三段半闭路破碎筛分设计流程图实例
开路流程的优点是比较简单,设备少,扬尘点也较少。缺点是当要求破碎产品粒度较细时,破碎效率较低。闭路流程的破碎效率较高,但需要设备较多,流程较复杂。
闭路流程的检查筛分是先筛去合格产品,筛上物入最后一段破碎,破碎产物返回筛分。当入筛粒度较大且有一部分产物符合某种产品要求时,宜采用双层筛。
重有色冶金炉对入炉熔剂的粒度要求
2019-01-07 17:38:01
火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。
表1 重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉
铜密闭鼓风炉
铜熔炼反射炉
铜白银炉
铜电炉
铜闪速炉
铜转炉
铜火法精炼炉
铅鼓风炉
铅锌鼓风炉
锡反射炉
锡电炉
氧气底吹炼铅炉
镍闪速炉
镍电炉<3
40~50
<6
<6
3~5
<0.5
5~25
2~3
<6
<3~6
<10
<3
<0.3
5~10<3
30~80
<6
<6
3~5
(石灰)
(石灰)
<6
<6
<5~6
<10
<3
湿式配料时<0.2
其它块度20~100
铜连续吹炼炉
石英石3~25
铅和铅锌鼓风烧结对原料、熔剂的一般要求
2019-01-07 17:38:01
原料、熔剂的一般要求:
铅和铅锌烧结对原料、熔剂的一般要求列
表1 烧结原料、熔剂、焦粉的一般要求物料名称化学成分,%粒度,mm水分,%备注铅精矿按国家(部)标准或协议按选矿定<12,北方冬天<8含砷不大于0.5%铅锌混合精矿Pb+Zn>48%同上同上同上铅块矿(杂矿)含Pb>25%<10<2含铜不大于1%石灰石CaO≥50;Mg≤3.5;SiO2+Al2O3≤3<6<2 石英石SiO2≥90;Al2O3≤2~5<6<2以河沙或含金石英砂作熔剂时,SiO2含量可适当降低。焦粉固定碳>75<10<1
注:表中粒度系指配料工序的要求。
在炉料配制理论计算中的要求
2019-01-04 09:45:31
明确了熔剂系数和氧系数后,就可以进行炉料配制。计算时必须满足下列要求:
1.理论计算是以金泥组成为依据,因此必须有金泥的化学分析资料。
2.炉渣的硅酸度不同,则需要的熔剂量也不同,因此计算前要确定炉渣的硅酸度。在确定硅酸度时,要充分考虑炉渣的溶点和流动性、炉衬的性质及其它技术经济因素。
3.实践证明当金泥中锌含量大于15%时,熔剂中硼砂与石英的比例以2:1为好,反之以1:1为好。
4.氧化剂可单用一种,也可两种混用。本网文章内容仅供参考,不构成投资建议。投
废钢渣用作冶金原料(1)
2018-12-17 09:42:53
20世纪初期国外开始研究钢渣的利用,但由于钢渣成分复杂多变,利用率一直不高。随着矿源、能源的日趋紧张以及炼钢和综合利用技术的发展, 20世纪70年代以后,各国钢渣的利用率迅速提高,美国每年产生 1700多万吨钢渣,利用率最高,在20世纪70年代已达到排、用平衡。据 1988年统计,我国个钢厂堆存钢渣达1亿吨,占地1万多亩(1亩=666.67m 2 ),已成为严重的公害。近 20年来,我国每年产生 1000多万吨钢渣,利用率已达61%左右,钢渣的处理经济效益高达 40元/吨左右。国外钢渣的主要利用用途是,在钢铁公司内部自行循环使用,代替石灰作熔剂,返回高炉或烧结炉内作为炼铁原料, 也可以用于公路路基、铁路路基以及作为水泥原料,改良土壤等。据调查,我国钢渣综合利用情况为:造地占 60%,筑路占23%,生产水泥占 6.4%,作烧结熔剂占5.8%,其他占4.8% 1、用作冶金原料 ( 1) 作烧结熔剂 转炉钢渣一般含有40%~50%的CaO,1t钢渣相当于 0.7~0.75t石灰石。把钢渣加工到小于8mm的钢渣粉便可代替部分石灰石作烧结熔剂用,配加量视矿石品位及含磷量而定,一般品位高、含磷低的精矿,可加入钢渣 4%~8%。烧结矿块率提高,风化率降低,成品率增加。再加上由于水碎渣疏松、粒度均匀,料层透气性好,有利于烧结造球及提高烧结速度。此外,由于钢渣中的 Fe和FeO的氧化放热,节省了钙、镁碳酸盐分解所需要的热量,使烧结矿燃耗降低。钢渣作烧结熔剂,不仅回收利用了渣中的钢粒、氧化铁、氧化钙、氧化镁、氧化锰和稀有元素( V、Nb……)等有用成分,而且成了烧结矿的增强剂,因而显著地提高了烧结矿的质量和产量。我国在钢渣用于烧结方面进行了大量的研究工作,不少钢厂取得了较好的效果。例如,济南钢厂在烧结矿中配入水淬转化炉钢渣后,其技术经济效果为烧结机利用系数提高 10%以上;转鼓指数提高2%~4%;焦耗降5%;FeO降低2%。虽然铁品位降低 1%~2%,但高炉利用系数仍提高0.1t(d·m 3 );焦比降低 31kg/t铁。每吨钢渣使用价值可达20多元。 .
再生铝合金熔炼原理
2019-03-08 12:00:43
1.1熔炼进程中铝液与环境的彼此效果1.1.1熔炼进程中热的搬运(热力学进程)固体金属在炉内加热熔化所需求的能量,要由熔炼炉的热源供给。因为选用动力的不同,其加热办法也不一样,现在根本炉型仍是火焰炉。
铝尽管熔点低(660℃),但因为熔化潜热(393.56KJ/kg)和比热大[固态1.138 kJ/(Kg﹒K),液态1.046kJ/(kg﹒K)],熔化1kg所需的热量要比铜的大得多,而铝的黑度(=0.2)仅为铜、铁的1/4,因此铝和铝合金的火焰熔炼炉的热力学规划难度大,较难实现理想的热效率。
下面讲讲火焰炉的热交换进程。火焰给被加热物体的热量(Q)为:
Q=QGC+QSCQGC-焚烧气体传到受热面的热量,KJ/h;QSC-炉壁传给受热面的热量,KJ/h。
QGC=(αGCεC+αC)(tG-tC)QSC=(αGSФSC+αabεb)(tS-tC)αGC-焚烧气体与受热面之间辐射传热系数,kJ/(m2﹒h﹒℃);αC-焚烧气体与受热面之间的对流传热系数,kJ/(m2﹒h﹒℃);αab-被焚烧气体吸收的炉壁辐射热量的热辐射系数,kJ/(m2﹒h﹒℃)。
从以上各式可以看出,进步金属受热量,一方面是增大(tG-tC)和(tS-tC)即进步炉温,这对炉体和金属熔体都有晦气影响;另一方面,因为铝的黑度很小,进步辐射传热是有限的。因此只能着眼于增大对流传热系数,对流传热系数与气体流速有以下联系:
当焚烧气体的流速V
当焚烧气体的流速V>5m/s时,αc=647+v0.78[kJ/(m2﹒h﹒℃)]
可见进步焚烧气体的流速是有用的,曾经多选用低速烧嘴(5~30m/s),近年选用了高速烧嘴(100~300m/s),使熔炉的热效率有很大进步。
1.1.2合金元素的溶解与蒸腾1.1.2.1合金元素在铝中的溶解合金添加元素在熔融铝中的溶解是合金化的重要进程。元素的溶解与其性质有密切联系,受添加元素固态结构结合力的损坏和原子在铝液中的分散速度操控。元素在铝液中的溶解效果可用元素与铝的合金系相图来断定,一般与铝构成易熔共晶的元素简单溶解;与铝构成包晶改变的,特别是熔点相差很大的元素难于溶解。如Al-Mg、Al-Zn、Al-Cu、Al-Li等为共晶型合金系,其熔点与铝也较挨近,合金元素较简单溶解,在熔炼进程中可直接添加铝熔体中;但Al-Si、Al-Fe、Al-Be等合金系虽也存在共晶反响,因为熔点与铝相差较大,溶解很慢,需求较大的过热才干彻底溶解;Al-Ti、Sl-Zr、Al-Nb等具有包晶型相图,都属难溶金属元素,在铝中的溶解很困难,为了使其在铝中赶快溶解,有必要以中间合金方式参加。 1.1.2.2元素的蒸腾蒸腾这一物理现象在熔炼进程中一直存在。金属的蒸腾(或称蒸腾),首要取决于蒸气压的巨细。在相同的熔炼条件下,蒸气压高的元素易于蒸腾。可把铝合金的添加元素分为两组,Cu、Cr、Fe、Ni、Ti、Si等元素的蒸气压比铝小,蒸腾较慢;Mn、Li、Mg、Zn、Na、Cd等元素的蒸气压比铝的大,较易于蒸腾,熔炼进程中的丢失较大。
1.1.3金属与炉气的效果熔炼进程中,金属以熔融或半熔融状况露出于炉气并以之彼此效果的时刻长,往往简单构成金属很多吸气,氧化和构成其他非金属搀杂。
1.1.3.1铝-氧反响铝与氧的亲和力大,易氧化。在500~900℃范围内,纯铝表面将构成一层不溶于铝液的、难熔的、细密的γ-Al2O3氧化膜,这层膜能阻挠铝液的持续氧化。这一特性对熔炼作业带来了很大便利,熔炼时不需求采纳特殊的防氧化办法(铝-镁合金在外)。
参加合金元素对铝合金的氧化有必定的影响,其影响与参加的元素使氧化物出现的结构以及对氧的亲和力的巨细有关。当在铝中参加Si、Cu、Zn、Mn等合金元素时,对铝的氧化膜影响极小,因为这些元素与氧的亲和力较小,并且参加铝中后,表面膜将变为由这些元素的氧化物在γ-Al2O3中的固溶体(γ-Al2O3﹒MeO)所组成,此刻合金的氧化膜仍是细密的,可以阻挠合金的持续氧化。以此相反,当在铝中参加碱土及碱金属(如镁、钙、钠等)时,因为这类元素较为生动,与氧的亲和力比铝的大,因此将优先氧化,并且这些元素大多数是表面活性物质,易富集在铝液表面,然后改变了氧化膜的性质。如Mg含量大于1.5%时,表面氧化膜简直已全为氧化镁膜所组成,并且这些氧化膜多孔疏松,不能抑制膜下面的铝合金液的持续氧化。但若在Al-Mg合金中参加少数的铍(0.03~0.07%),可进步此刻的氧化膜的细密性,铍也是表面活性物质,富集在铝液表面,且铍的原子体积小,分散速度大,铍原子可进入氧化镁膜的松孔中,起了添补膜中孔隙的效果,然后使之构成完好的细密膜。在铝-镁合金类合金中参加少数的钙、锂等元素也具有相同的成效。
决议氧化膜性质的要素是:①合金元素或氧化膜自身的蒸气压,蒸气压越低,则越安稳,其维护功能也越好。②合金元素氧化后体积的改变。参加合金元素后,氧化膜的结构是由氧化物体积对发作此氧化物的金属体积之比来决议的。
实验证明,γ-Al2O3外表面是疏松的,存在Φ50~100×10-10mm的小孔,因此很简单吸附水气。一般在熔炼温度下其表面的膜中含有1~2%H2O,当温度升高时,能削减其吸附的水量,但即便温度高达900℃时,γ-Al2O3仍吸收0.34%H2O。只要在温度高于900℃,γ-Al2O3彻底改变成α-Al2O3时,才彻底脱水。如在熔炼与浇注时将表面损坏的γ-Al2O3膜搅入铝液中,吸附的水气与铝液反响构成吸氢。铝液中Al2O3添加,氢含量也会随之添加。因此在熔炼和铸造进程中不要简单损坏氧化膜。温度超越900℃时,γ-Al2O3开端改变为α-Al2O3,密度增大到3970Kg/m3,体积缩短约13%,此刻表面膜不再是接连的,氧化反响又将剧烈进行,此刻氧化物含量明显添加,严峻影响合金功能,所以大多数铝合金熔炼温度应操控在760℃以下。 以气体搀杂或气泡形状;以氧化物、氮化物、氢化物等固态化合物形状;以液态或固态溶液,即以原子或离子形状散布于金属原子间或晶格中;1.2.2铝合金熔体中气体的来历熔炼铝合金进程中,从大气、燃料、炉料、耐火材料、熔铸东西等带入的气体品种较多,如H2、CO2、CO、CnHm(碳氢化合物)、H2O和O2等。但只要那些简单分解成原子的气体,才干有较多的数量溶入铝液中去。详细的说,铝液中所溶解的气体中80~90%是氢。所以铝合金中的含气量,首要指含氢量。
熔炼时周围空气中的含量并不多,所以氢的来历首要是经过水分与铝液反响而发作的氢原子。
2Al + 3H2O = Al2O3 + 6[H]
这种原子态氢,一部分跑到大气中,一部分就进入铝液中。
实践证明,不同的时节和区域,因空气的湿度不同,铸锭中的含量也随之而异,其含气量随空气湿度的增大而添加。
1.2.3影响气体含量的要素(1)合金元素的影响 与气体结合力较大的合金元素,如钛、锆、镁等会使合金中的气体溶解度增大。而铜、硅、锰、锌等元素可下降铝合金中气体的溶解度。
(2)气体分压的影响 在温度相同的条件下,气体在金属中的溶解度随炉气成分中的分压增大而增大。故火焰炉熔炼的铝熔体中的氢溶解度比电炉中的大。
(3)温度的影响 当氢分压必守时,温度越高铝熔体吸收的氢也越多。
此外,金属表面氧化膜状况及熔炼时刻对气体在铝熔体中的溶解度也有影响。
1.3铝中的非金属搀杂1.3.1搀杂的品种及形状在铝熔体中存在的非金属搀杂物有:
氧化物 合金在熔化和转注进程中,铝与炉气中的氧及水气效果,生成Al2O3、MgO、SiO2、和Al2O3﹒MgO(尖晶石)。
剩余的细化剂Al-Ti-B中间合金的粗大Ti-B粒子。
在熔体净化时发作的氯化物、氮化物及碳化物。
耐火砖碎片、掉落的流槽和东西上的涂料。
最多的是Al2O3、MgO、Al2MgO4,形状以薄片状为主。
1.3.2非金属搀杂物的查看办法铝合金中的非金属搀杂物,因为其散布不均匀,巨细、形状各异,铸锭的部分查看很难有真实的代表性,所以要做到精确的定量化是比较困难的。常用的查看办法有:铸锭断面的低倍安排查看;断口查看;金相查看;氧分析;超声波探伤查看等。
1.4添加剂添加剂包含掩盖剂、熔剂、蜕变剂和精粹剂以及辅助材料等。因为铝会与水反响生成氧化搀杂和氢,所以任何添加剂在运用前有必要要进行烘干处理。
1.4.1掩盖剂掩盖剂是指用来掩盖于合金液体表面、避免合金氧化和吸气的材料。
1.4.2熔剂大多数铝合金的液面有一层细密的氧化膜,它虽能阻挠大气中水的侵入,削减铝液被大气二次污染,但它严峻的阻挠了铝液中已有的氢排入大气,当铝液表面上撒上熔剂后,因为熔剂能使铝液表面细密的氧化膜破碎为细微颗粒并具有将其吸入熔剂层的效果,因此就不再存在阻挠氢分子气泡逸入大气的表面膜,氢分子很易经过熔剂层进入大气。另一方面,熔剂还能去除铝液中的氧化搀杂物,也就去除了吸附在搀杂物表面上的小气泡。此即为熔剂法的精粹原理。
对熔剂的要求:
不好铝液发作化学反响,也不彼此溶解。
熔剂的熔点低于熔炼温度,并有杰出的流动性,以便在铝液表面构成接连的掩盖层。
应具有杰出的精粹才能。
熔剂比重和铝液比重应有明显不同,使熔剂简单上浮或下沉。要求熔剂能与合金液 很好的别离,不彼此稠浊,避免构成熔剂搀杂。
来历直销足够,报价便宜。
铝合金的熔剂品种繁复,一般由碱金属及碱土金属卤素盐类的混合物构成。
红土镍矿电炉熔炼提取镍铁合金的技术
2019-02-21 12:00:34
镍是重要的战略金属,广泛用于不锈钢、高温合金、燃料电池等要害材料和高新技术领域。
现在,硫化镍矿资源日趋干涸,而占镍储量70%的氧化镍矿(红土镍矿)资源丰富,其勘探和采矿本钱低,可出产氧化镍、镍锍、镍铁等多种中间产品。红土镍矿资源的使用份额已占国际镍产值的40%以上,且呈不断上升的趋势。
以氧化镍矿为质料出产金属镍的工艺,分为火法和湿法两种。湿法工艺存在着工艺杂乱,流程长,收回率低,对设备要求高级问题,较适合于处理低镍低镁含量的红土矿。火法工艺有鼓风炉冶炼法和回转窑-电炉复原熔炼法(RKEF)。跟着炼钢厂对镍类质料要求的进步以及环境保护的需求,鼓风炉冶炼已逐渐被筛选。电炉熔炼虽存在能耗高的缺陷,但可处理含难熔物较多的质料,金属收回率高,炉气量少且含尘量较低,出产简单操控,能够一起收回镍和铁。镍铁合金能够直接替代电解镍,作为炼钢镍元素添加剂用于不锈钢出产,具有较强的本钱和报价竞争优势。因而,电炉复原熔炼出产镍铁是现在处理高硅高镁红土镍矿最有用的办法。
本研讨选用电炉直接复原熔炼工艺处理红土镍矿出产镍铁,探讨了相关影响要素及其效果机理,并对熔炼工艺参数进行了优化。
一、试验
(一)试验质料
试验用红土镍矿MgO、SiO2、Ni含量高,铁、钴较低,归于典型的硅镁镍矿,镍档次1.99%,Ni/Fe=0.14,SiO2/Mg0=2.58,该类矿一般选用火法工艺处理,产品首要是出产不锈钢的镍铁。红土镍矿的矿藏组成首要是铁顽辉石(Ca0.02 Fe0.35 Mg1.63 Si2O6),鳞石英(SiO2)和透辉石(CaMgSi2O6)(图1)。复原剂为焦粉,焦粉的固定碳成分为80.49%。熔剂为含CaO 50.65%的石灰石。图1 原矿X射线衍射图
(二)试验办法
将红土镍矿枯燥、破碎、磨细后与复原剂、熔剂、粘结剂、水混匀后造粒、枯燥,操控造粒球团直径为lcm左右,枯燥温度为200℃。再将枯燥处理后的球团装入氧化镁坩埚,在电炉内升温熔炼,升温至熔炼温度后,保温必定时刻,随炉天然冷却至室温,即可得到上下别离的渣和镍铁合金。
(三)分析测验
质料矿藏组成选用XRD(Siemens D5000)进行分析。镍铁合金中镍、铁档次及S、P含量别离选用丁二肟分量法(GB/T223.25-1994)、三氯化钦-重滴定法(GB/T8638.6-1988)、焚烧红外吸收光谱法(GB/T8647.8-2006)、磷钼蓝吸光光度法(GB/T 8647.4-2006)进行分析。
二、成果与评论
(一)焦粉配比对熔炼的影响及其效果机理
在红土镍矿熔点(1600~1700K)范围内,矿藏中氧化物的稳定性依次为CaO>SiO2>Fe2O3>CoO>NiO,稳定性越小越易复原,因而,红土镍矿中各氧化物的复原才能:NiO>CoO>Fe2O3>SiO2>CaO。为了进步镍铁产品质量,电炉冶炼镍铁选用挑选性复原原理:经过操控复原条件,尽可能使镍氧化物被复原成金属,而高价态的Fe2O3部分复原为金属,其他复原为FeO或Fe3O4进行造渣,然后到达出产高镍铁合金的意图。
铁的复原量是经过复原剂焦粉的参加量进行操控。固定熔剂配比为10%,在1550℃下熔炼50min的条件不变,改变焦粉用量,调查焦粉配比对镍铁档次和金属收回率的影响,成果别离如图2和图3所示。由图2和图3可见,当焦粉配比在5%以上,跟着焦粉配比的添加,镍的档次逐渐下降,镍、钻、铁的收回率逐渐添加。图2 焦粉配比对镍档次的影响图3 焦粉配比对金属收回率的影响
如前面分析,红土镍矿中各氧化物在复原性气氛中复原才能NiO>FenO,焦粉用量较少时,Ni比铁优先复原,因而合金中镍的档次很高。随焦粉配比的添加,更多的镍、钻、铁的氧化物被复原,金属收回率添加。当焦粉比>11时,镍的收回率简直不变,可是很多的铁、钻被复原出来,构成合金中镍档次下降,影响镍铁合金产品质量。因而,本试验选取最佳焦粉配比为11%。
进一步分析焦粉配比对S、P在渣和合金中的分配比(Ls和Lp)的影响,成果别离如图4所示。图4 焦粉配比对S、P分配比的影响
由图4可见,焦粉配比在5%至10%的范围内添加时,S的分配比添加;焦粉配比超越10%后,S的分配比不再有显着的改变。
按分子结构理论,脱硫反响可视为:反响的平衡常数: 式中:W(S)、ω[S]别离为熔渣和金属熔体内硫的质量分数,fs、γs别离为金属熔体和熔渣中硫的活度系数,a为物质的活度。
在不另加FeO造渣的情况下,渣中FeO含量首要受焦粉用量的影响,跟着焦粉配比添加,渣中FeO的含量削减。渣中的(FeO)与合金中的[FeO]存在一个平衡,跟着焦粉配比添加,(FeO)削减导致[FeO]削减,有利于脱硫反响的进行IS的分配比添加。另一方面,(FeO)能促进石灰熔化,当(FeO)削减到必定程度后脱硫反响物(CaO)活度下降,对脱硫晦气,这两方面效果彼此抵消,导致S的分配比根本坚持不变。这点也可从试验成果上得到验证,在焦粉配比为10%~17.5%的范围内,S的分配比稳定在0.025左右。
由图4可见,P的分配比随焦粉配比在5%~17.5%的范围内添加而下降。
分子理论的脱磷反响为:
同于渣中4CaO·P2O5的浓度很低,可代之以X(P2O5),得到磷的分酯比 因而,随焦粉配比添加,炉渣中FeO含量削减,下降了炉渣的脱磷才能。
(二)石灰石对熔炼的影响及机理
石灰石的参加不只调整了碱度,下降了炉渣的熔点和黏度,也影响着金属的收回率和合金中镍的档次。固定焦粉配比为11%,在1550℃下熔炼50min的条件不变,调查熔剂配比对对镍铁档次和金属收回率的影响,成果别离如图5和图6所示。图5 溶剂配比对镍档次的影响图6 熔剂配比对对金属收回率的影响
由图5和图6可见,跟着熔剂配比在6%~11%的范围内添加,镍、钻、铁的收回率添加,镍在合金中的档次下降。持续添加熔剂配比,金属收回率下降。
参加必定熔剂能改进渣的功能,使金属在渣中的传质充沛,别离系数进步,搀杂丢失削减,因而金属收回率上升。随石灰石参加量添加,渣量增大,金属收回率下降。这是由于渣量的增大构成金属在渣中因机械搀杂丢失的部分增大;别的,石灰石分化发生的CO2耗费了部分焦粉,下降了炉内的复原气氛,影响了复原进程。这与低焦粉配比时镍铁档次高而金属收回率低的规则共同。故挑选最佳熔剂配比为11%。
S、P在渣和合金中的分配比随熔剂配比的改变别离如图7所示。由图7可见,熔剂配比在6%至40%的范围内添加时,S、P的分配比添加。图7 熔剂配比对S、P分配比的影响
依据脱硫反响式(1)和脱磷反响式(4)可知,石灰作为反响物能促进在金属-渣界面上进行的脱硫、脱磷反响。别的石灰还供给Ca2+,因S2-的半径比O2-的半径大,所以Ca2+首要会集在S2-的周围,构成弱离子对,下降渣中S的活度,然后进步促进合金中的S向渣中传递。由公式(3),公式(5)可知,随石灰石配比添加,S、P分配比增大。
三、定论
(一)跟着焦粉参加量的添加,镍铁合金中镍的档次下降,金属收回率逐渐添加,一起,焦粉参加量的添加晦气于脱磷,对脱硫影响有限;
(二)适量石灰石的参加,可改进渣的性质,进步金属收回率,有利于脱硫、脱磷进程,但过多的石灰石,使得渣量增大,金属丢失增大;
(三)选用电炉直接复原熔炼的工艺从红土镍矿中提取镍铁合金的最佳工艺条件:1550℃,焦粉配比11%,石灰石配比11%。在最佳熔炼条件下,得到镍档次为22.82%的镍铁合金,镍的收回率为97.6%,S、P分配比Ls、Lp别离为0.024、0.145。
高炉铁合金冶炼主要技术经济指标计算方法
2019-01-25 15:50:16
一、锰铁合格率
锰铁合格率是指报告期内锰铁检验合格量与锰铁检验总量的百分比。其计算公式为: 锰铁合格率(%) = 锰铁检验合格量(吨) ×100%
锰铁送检总量(吨)
计算说明:高炉开工后,不论任何原因产生的出格锰铁,均应参加锰铁合格率的计算;式中子、母项单位为标准吨。 二、低硅锰铁率
低硅锰铁率是指低硅锰铁量占合格锰铁总量的百分比。其计算公式为: 低硅锰铁率(%)= 低硅锰铁总量(吨) ×100%
合格锰铁总量(吨)
计算说明:低硅锰铁是指符合现行国标一组硅要求的锰铁;式中子、母项单位为标准吨。
三、燃料比
燃料比是指每炼1吨合格锰铁(标准吨)所消耗的入炉燃料的数量。它反映燃料的节约或浪费以及高炉操作水平的 高低。燃料全部以扣除水分的干基计算,其计算公式为:
燃料比(千克/吨) = 入炉焦炭耗用量(千克)+入炉喷吹燃料耗用量(千克)
合格锰铁生产量(吨)
入炉焦比(千克/吨) = 入炉焦炭耗用量(千克)
合格锰铁生产量(吨)
煤粉消耗(千克/吨)= 喷入高炉内的煤粉数量(千克)
合格锰铁生产量(吨)
计算说明:式中母项单位为标准吨。
高炉铁合金工序单位能耗参照高炉炼铁工序单位能耗计算公式计算。
四、入炉锰矿消耗
入炉锰矿消耗是指每炼一吨合格锰铁(标准吨)所消耗的入炉锰矿石的数量,包括天然矿石和人造块矿。天然矿石按扣除水分的干基计算。其计算公式为:
锰矿石消耗(千克/吨)=入炉天然矿石消耗量(千克)+入炉人造块矿消耗是(千克)
合格锰铁生产量(吨)
计算说明:式中母项单位为标准吨。
五、入炉熔剂消耗
入炉熔剂消耗是指每炼一吨合格锰铁(标准吨)所消耗的入炉熔剂数量,它包括石灰石、白云石、生石灰,萤石等用于造渣的碱性化合物。这一指标综合反映炉料质量好坏及造渣操作的合理性。其计算公式为:
熔剂消耗(千克/吨)=入炉熔剂消耗总量(千克)
合格锰铁生产量(吨)
其中:
熟料消耗(千克/吨)=入炉熟料消耗量(千克)
合格锰铁生产量(吨)
计算说明;
(1)各种熔剂入炉消耗都不扣水分;
(2)熟料包括生石灰及焙烧后的白云石;
(3)式中母项单位为标准吨。
六、锰金属回收率
锰金属回收率是指冶炼锰铁的含锰金属量占人炉物料中含锰金属量的百分比。它反映冶炼过程中锰金属的收得和损失情况。其计算公式为:
锰金属回收率(%)=全部锰铁含锰量(吨)-回炉锰铁含锰量(吨) ×100%
入炉锰矿含锰量(吨)+其它附加物含锰量(吨)
计算说明:
(1)式中的子项即合格锰铁含锰量;
(2)其它附加物是指外购含锰物料的入炉数量以及锰铁销售时精整下来的碎铁或铁粉,不包括来自本高炉又循环入炉使用的回炉铁和罐底渣等。[next]
七、炼铁工人实物劳动生产率
炼铁工人实物劳动生产率反映报告期内平均每个炼铁工人的劳动效率,同时也反映该一时期内生产水平的增降趋势以及机械化程度和劳动定员的配备情况。其计算公式为:
炼铁工人实物劳动生产率(吨/人)= 合格锰铁生产量(吨) 炼铁工人及学徒平均人数(人)
计算说明:
(1)炼铁工人中包括学徒工、合同工、临时工、计划外用工。具体工种为高炉值班工长、炉前工(包括铸铁机工)、看水工、热风工、高炉瓦斯工、上料工(包括称量工、卷扬工),不包括其它工种。
(2)式中子项单位为标准吨。
八、高炉利用系数
高炉利用系数是指在规定时间内,每立方米高炉有效容积平均每日生产合格锰铁数量。它反映高炉的利用程度及炼铁生产技术水平。其计算公式为:
高炉利用系数(吨/米3·日)= 合格锰铁生产量(吨) 高炉有效容积(米3)×规定工作日数(日)
计算说明:
(1)高炉有效容积的计算,可参照炼铁生产计算方法。高炉大修后,以实测容积为有效容积;
(2)规定工作日数是报告期内的日历时间减去大、中修理的休风时间;
(3)式中子项单位为标准吨。
九、平均日产量
平均日产量是反映高炉在报告期内平均每日达到的产量,它反映高炉的实际生产水平。其计算公式为:
平均日产量(吨/日)= 合格锰铁生产量(吨)
规定工作日数(日)
计算说明:规定工作日数与利用系数母项中的规定工作日数相同;式中子项单位为标准吨。
十、高炉休风率
高炉休风率是指高炉休风时间(以“分”为单位)占规定工作时间的百分比,它反映高炉的作业率及设备的操作状况。
(一)扣除待料待电的休风率
扣除待料待电的休风率是反映高炉日常检修和其它突然故障而引起的临时休风的指标,这一般是高炉的内部原因引起的休风,通过主观努力可以克服和减少。其计算公式为:
休风率(%)= 休风时间(分)一待料待电休风时间(分) ×100%
日历时间(分)-大中修停炉时间(分)-待料待电休风时间(分)
(二)不扣待料待电的休风率
不扣待料待电的休风率既反映内部因素,也反映外部因素对高炉作业情况的影响。其计算公式为:
休风率(%)= 休风时间(分) ×100%
日历时间(分)-大中修停炉时间(分)
计算说明;
(l)正常风量(或风压)降为0%为休风;大于正常风量(或风压)的80%为全风;正常风量(或风压)是指在具体条件下适应于该高炉的适当风量(或风压)。
(2)休风时间不包括大、中修停炉休风时间。
(3)规定工作时间= 日历时间一大、中修休风时间,大、中修的划分标准参照炼铁计算方法中的有关规定。
(4)为了便于分析,在“休风率”指标的后面列“休风原因分类”一栏,内列:“待料待电”、“临时停电”、“风机故障”、“计划检修”、“送风系统设备”、“上料系统设备”、“瓦斯系统设备”、“冷却设备”、“炉前事故”、“其它”等十个项目,都以“分”为计算单位。
(5)企业上报时,只报不扣待料待电的休风率。
十一、高炉慢风率
高炉慢风率是指高炉慢风时间占规定工作时间的百分比,它反映高炉未能全风作业的情况,其计算公式为:
慢风率(%)= 慢风时间(分) ×100%
日历时间(分)一大、中修停炉时间(分) 计算说明:
(1)不大于正常风量(或风压)80%的为慢风。
(2)与休风率一样,应加列“慢风原因”。
十二、人造块矿使用率
人造块矿使用率是指烧结矿和球团矿等人造块矿的入炉消耗量占入炉锰矿消耗总量的百分比。熟料一般都带有碱度,因此熟料比的高低在一定程度上反映了炉料质量的好坏。其计算公式为:
人造块矿使用率(%)=入炉烧结矿消耗量(吨)+入炉球团矿消耗量(吨) ×100% 入炉锰矿消耗总量(吨)[next]
十三、入炉锰矿品位
入炉锰矿品位是指入炉锰矿(包括天然矿石和人造块矿)的平均含锰量。按不扣除氧化钙、氧化镁及扣除氧化钙、氧化镁两种方法计算。
(一)不扣除氧化钙、氧化镁的锰矿品位
其计算公式为:
入炉锰矿品位(%)=入炉锰矿含锰总量(吨) ×100%
入炉锰矿实物总量(吨)
(二)扣除氧化钙、氧化镁的锰矿品位
其计算公式为: 入炉锰矿品位(%)= 入炉锰矿含锰总量(吨) ×100%
入炉锰矿扣除氧化钙、氧化镁后的实物总量(吨) 计算说明:
(l)各种锰矿的含锰量及氧化钙、氧化镁的含量,可分别以各种锰矿耗用量×该矿含锰品位(%)或氧化钙、氧化镁含量(%),按加权算术平均计算求得。
(2)各种锰矿的含锰量或氧化钙、氧化镁含量均以化验数据为准。
十四、入炉焦炭灰分
入炉焦炭灰分是反映焦炭质量的一个指标。其计算公式为;
入炉焦炭灰分(%)= 入炉焦炭灰分总量(吨) ×100%
入炉焦炭总量(吨)
十五、冶炼强度
冶炼强度是指每立方米高炉有效容积、平均每日燃烧的燃料数量。它反映炉料下降的快慢和冶炼的速度,在不提高焦比的情况下,冶炼强度越高,高炉的生产水平就越高。
其计算公式为:
冶炼强度(吨/米3·日)= 入炉焦炭耗用量(吨) 高炉有效容积(米3)×实际工作日数(日)
计算说明:
(1)实际工作日数是指日历时间减去全部休风时间(包括大、中修和日常检修以及待料待电等一切休风时间)。
(2)各种燃料消耗量都是扣除水分的干基,与焦比的子项同。
十六、热风温度
热风温度是指高炉实际使用的热风温度。它反映热风炉的能力及高炉对风温的利用程度。在保持炉况顺行的条件下,使用热风温度越高,焦比就越低,但热风温度的高低与风量大小也有关系。其计算公式为:
热风温度(℃)= 逐日热风温度算术平均之和(℃) 参加计算的日数
十七、焦炭负荷
焦炭负荷是指每吨入炉焦炭所熔化入炉锰矿的数量。它主要反映焦炭熔化矿石的效果、高炉操作水平和原燃料的质量。其计算公式为:
焦炭负荷(吨/吨)= 入炉锰矿消耗总量(吨)
入炉焦炭耗用量(吨)
计算说明:焦炭负荷的母项数据应和入炉焦比指标中的子项数据一致。
十八、富氧率
富氧率是指富氧在鼓风中氧气含量增加的百分数。其计算公式为:
富氧率(%)=0.21×风量(米3/分)+氧量(米3/分)×氧气纯度(%)
风量(米3/分)十氧量(米3/分)×100%一21%
十九、风 量
风量是指平均每分钟鼓入高炉的冷风数量(以标准立方米表示)。在正常情况下,风量大,下料多,冶炼速度快。它反映鼓风机出力的利用程度,同时与高炉是否顺行,电压是否正常也有关系,其计算公式为:
风量(米3/分)= 逐日风量算术平均之和
参加计算的日数
二十、热风压力
热风压力是指在平均每平方厘米的面积上,鼓入高炉热风的压力(以帕表示),其计算公式为:
热风压力(帕)=逐日热风压力算术平均之和(帕)
参加计算的日数[next]
二十一、炉顶压力
炉顶压力是指在平均每平方厘米的面积上,炉顶煤气的压力。其计算公式为:
炉顶压力(兆帕)=逐日炉顶压力算术平均之和(兆帕)
参加计算的日数
二十二、炉顶温度
炉顶温度是指炉顶煤气的平均温度。其计算公式为:
炉顶温度(℃)= 逐日炉顶温度算术平均之和(C)
参加计算的日数
二十三、锰铁平均化学成分
锰铁平均化学成分是反映锰铁质量与牌号的指标。按国家标准的项目,可分以下3个指标。
(一)锰铁平均含锰
其计算公式为:
锰铁平均含锰(%)= 合格锰铁含锰量(吨) ×100%
合格锰铁实物生产量(吨)
(二)锰铁平均含硅
其计算公式为:
锰铁平均含硅(%)= 合格锰铁含硅量(吨) ×100%
合格锰铁实物量(吨)
(三)锰铁平均含磷
其计算公式为:
锰铁平均含磷(%)=合格锰铁含磷量(吨) ×100%
合格锰铁实物量(吨)
二十四、入炉锰矿平均化学成分
入炉锰矿平均化学成分是反映锰矿质量的指标,除锰矿平均含锰已在“入炉锰矿品位”中有所规定外,再列以下7个指标。
(一)入炉锰矿平均含铁
其计算公式为:
入炉锰矿平均含铁(%)=入炉锰矿含铁总量(吨) ×100%
入炉锰矿消耗总量(吨)
计算说明:
入炉锰矿含铁总量= 甲种入炉锰矿消耗量(吨)×甲种入炉锰矿平均含铁(%)十乙种入炉锰矿消耗量(吨)×乙种入炉锰矿平均含铁(%)+…×…
(二)入炉锰矿平均含二氧化硅
计算公式同入炉锰矿平均含铁。
(三)入炉锰矿平均含氧化钙
计算公式同入炉锰矿平均含铁。
(四)入炉锰矿平均含氧化镁
计算公式同入炉锰矿平均含铁。
(五)入炉锰矿平均含磷
计算公式同人炉锰矿平均含铁。
(六)入炉锰矿平均碱度
分为以下两个指标:
1.二元碱度
其计算公式为:
二元碱度(倍)(R2)= 入炉锰矿含氧化钙总量(吨)
入炉锰矿含二氧化硅总量(吨)
2. 三元碱度
其计算公式为:
三元碱度(倍)(R3)= 入炉锰矿含氧化钙总量(吨)十含氧化镁总量(吨)
入炉锰矿含二氧化硅总量(吨)
(七)入炉锰矿锰铁比
其计算公式为:
入炉锰矿锰铁比(倍)=入炉锰矿含锰总量(吨)
入炉锰矿含铁总量(吨)
(八)入炉锰矿磷锰比
其计算公式为:
入炉锰矿磷锰比(%)= 入炉矿含磷总量(吨) 入炉锰矿含锰总量(吨)
二十五、入炉熔剂平均化学成分
入炉熔剂平均化学成分是反映熔剂质量的指标。为了全面反映熔剂质量,分为以下4个指标:
(一)入炉熔剂平均含氧化钙
其计算公式为:
入炉熔剂平均含氧化钙(%)= 入炉熔剂含氧化钙总量(吨) ×100%
入炉熔剂消耗总量(吨)
(二)入炉熔剂平均含氧化镁
计算公式同入炉熔剂平均含氧化钙。
(三)入炉熔剂平均含二氧化硅
计算公式同入炉熔剂平均含氧化钙。
(四)入炉熔剂平均有效碱性氧化物含量
其计算公式为:入炉熔剂平均有效碱性氧化物含量 = 入炉熔剂平均含氧化钙(%)十入炉熔剂平均含氧化镁(%)一入炉熔剂平均含二氧化硅(%)×渣碱度(CaO+MgO)/SiO2 [next]
二十六、炉渣平均化学成分
炉渣平均化学成分是反映造渣制度是否合理及操作效果的数据。分为以下6个指标。
(一)炉渣平均含氧化钙
其计算公式为:
炉渣平均含氧化钙(%)=炉渣含氧化钙总量(吨) ×100%
炉渣总量(吨)
(二)炉渣平均含氧化镁
计算公式同炉渣平均含氧化钙。
(三)炉渣平均含二氧化硅
计算公式同炉渣平均含氧化钙。
(四)炉渣平均含氧化锰
计算公式同炉渣平均含氧化钙。
(五)炉渣平均含三氧化二铝
计算公式同炉渣平均含氧化钙。
(六)炉渣平均碱度
分为以下两个指标:
1.二元碱度
其计算公式为:
二元碱度(倍)(R2)=炉渣平均含氧化钙(%)
炉渣平均含二氧化硅(%)
2.三元碱度
其计算公式为:
三元碱度(倍)(R3)=炉渣平均含氧化钙(%)+平均含氧化镁(%) 炉渣平均含二氧化硅(%)
二十七、炉渣数量及渣铁比 炉渣数量及渣铁比是指冶炼中所产生的炉渣总量及每炼1吨合格锰铁所产生的炉渣数量。它反映炉料质量,同时与炉渣碱度高低也有关系。 (一)炉渣数量 炉渣一般是不过磅的,在计量上大体采用两种方法:一是估计;二是理论计算。为了各厂统一,有可比性,高炉锰铁的炉渣量计算采用以氧化钙作平衡的理论计算法,为了简便易行,又采用假设入炉焦炭中含氧化钙与炉顶及其它吹损氧化钙相抵消,都不参加计算的简易理论计算法。
其计算公式为:
入炉锰矿中含氧化钙总量(吨)+入炉熔剂中含氧化钙
炉渣数量(吨)= 总量(吨)+其它外购入炉附加物含氧化钙总量(吨)
炉渣平均含氧化钙(%)
(二)渣铁比
其计算公式为:
渣铁比(吨/吨)= 炉渣数量(吨) 合格锰铁实物量(吨)
二十八、瓦斯灰数量及灰铁比
瓦斯灰数量及灰铁比是指除尘器收集的瓦斯灰数量及每炼一吨合格锰铁所产生的瓦斯灰数量。灰量越少越好。
(一)瓦斯灰数量
瓦斯灰数量一般是不过磅的,大多采用估计计量的方法。
(二)灰铁比
其计算公式为:
灰铁比(千克/吨)= 除尘器收集的瓦斯灰的估计数量(千克)
合格锰铁实物量(吨)
二十九、净煤气含尘量
净煤气含尘量是指经过洗涤除尘的平均每立方米高炉净煤气中含灰尘的数量(以毫克为单位)。它是反映净煤气质量的一个指标。含尘量越低越好,有助于延长热风炉寿命。其计算公式为:
净煤气含尘量(毫克/米3)= 各次测定之累计量(毫克/米3)
测定次数
三十、高炉悬料、坐料及塌料次数
高炉悬料是指在冶炼过程中,炉料停止下降运动,入炉风量变小,风压升高,是冶炼中不正常的征兆;坐料是指使用减风(直至休风)的调节手段,强迫悬料降落;塌料是指悬料突然自行坠落。由于坐料与塌料都是悬料所引起的,不悬料就不会出现坐料及塌料,因此,只按实际发生的次数分别统计“坐料”、“塌料”两项。
三十一、损坏风口、渣口水套的个数
损坏风口、渣口水套的个数是指高炉在生产过程中烧坏(包括喷吹物磨坏)以及使用时间久、发生裂纹面漏水的风口、渣口水套个数,应分别按其型号(如大套、中套、小套)进行统计。非冶炼过程而损坏及配管漏水但风渣口不漏水的,不在其内。
石英沙真正的作用是什么?
2019-01-04 13:39:38
石英砂是重要的工业矿物原料,非化学危险品,广泛用于玻璃、铸造、陶瓷及耐火材料、冶炼硅铁、冶金熔剂、冶金、建筑、化工、塑料、橡胶、磨料等工业。可汽运,火车运输,水运。工业生产一般为50KG或25KG包装及出口吨袋包装。
常用规格:0.5-1.0mm 0.6-1.2mm 1-2mm 2-4mm 4-8mm 8-16mm 16-32mm.(mm为毫米单位)。
一、石英砂应用于玻璃方面:平板玻璃、浮法玻璃、玻璃制品(玻璃罐、玻璃瓶、玻璃管等)、光学玻璃、玻璃纤维、玻璃仪器、导电玻璃、玻璃布及防射线特种玻璃等的主要原料。
二、陶瓷及耐火材料离不开石英砂、石英粉系列产品:瓷器的胚料和釉料,窑炉用高硅砖、普通硅砖以及碳化硅等的原料。
三、冶金:石英砂做硅金属、硅铁合金和硅铝合金等的原料或添加剂、熔剂
四、建筑:最常用的混凝土、胶凝材料、筑路材料、人造大理石、水泥物理性能检验材料(即水泥标准砂)等
五、化工:硅化合物和水玻璃等的原料,硫酸塔的填充物,无定形二氧化硅微粉
六、机械:铸造型砂的主要原料,研磨材料(喷砂、硬研磨纸、砂纸、砂布等)
七、电子:高纯度金属硅、通讯用光纤等八、橡胶、塑料:填料(可提高耐磨性)
九、涂料:填料(可提高涂料的耐酸性)
十、航空、航天:其内在分子链结构、晶体形状和晶格变化规律,使其具有的耐高温、热膨胀系数小、高度绝缘、耐腐蚀、压电效应、谐振效应以及其独特的光学特性。
冶炼厂磨碎设备选择
2019-01-07 17:38:04
一、磨碎设备的选择
磨矿设备主要有格子型球磨机、溢流型球磨机、棒磨机和自磨机。在选择磨碎机时,要考虑人磨物料的性质、产品粒度、产量、电价以及操作和维护等因素。
格子型球磨机的排料端设有格子板 。优点是料浆液面比较低,能及时排出合格产品,减少了物料的过粉碎;磨碎效率较高,单位处理量比同规格的溢流型球磨机高15%左右,装球量较多。缺点是构造复杂,格子板易坏,维修困难,重量大,设备价格较高。格子型球磨机适用于将矿石磨碎到0.2~0.3mm,常与螺旋分级机构成闭路。一般短筒型用于粗磨,长筒型用于细磨。
溢流型球磨机的主要优点的构造简单,好管理,易维修,磨碎产品粒度细(一般小于0.2mm)。缺点是排矿粒度不均匀,易于产生过粉现象,单位生产能力较低。适用于磨碎粒度要求较细的第二段磨碎。
棒磨机的特点是磨矿介质在磨矿过程中与矿石呈线接触,具有选择性的破坏作用,不易产生过粉碎,产品粒度均匀,泥化作用少。给料粒度一般为15~25mm,产品粒度一般为3~0.5mm。
熔剂破碎一般采用湿式球磨机或棒磨机。由于干式球磨机劳动条件较差,冶炼厂现很少采用。
二、磨碎机生产能力计算
磨碎机生产能力的计算有容积法(q值计算法)及功耗法,一般采用容积法。容积法即采用类似企业磨碎机单位容积按新生级别(-0.074mm)计和单位处理量(t/(m3·h)),再结合磨碎机型式规格,熔剂可磨性、给矿及产品粒度等因素加以修正,选择计算磨碎机。
湿式磨碎机容积法计算生产能力公式如下:
q=q0K1K2K3K (1)
式中:
q-设计中拟选用的磨碎机按新生级别(-0.074mm粒级)计算的单位处理量,t(m3·h);
q0-类似企业磨碎机按新生级别(-0.074mm粒级)计算的单位处理量,t(m3·h),q0可按下式计算:
β1-类似企业磨碎机给矿中小于0.074mm级别的含率,%;
β2-类似企业磨碎机产品中小于0.074mm级别的含率,%;
V0-类似企业使用的磨碎机的有效容积,m3;
Q0-类似企业使用的磨碎机处理量,t/(台·h);
K1-被磨矿石的磨矿难易度系数,据实验资料或参照表1确定;
K2-磨碎机的直径校正系数,可按K2=(D1/D2)0.5计算;
D1-设计中拟选用的磨碎机直径,m;
D2-类似企业使用的磨碎机直径,m;
K3-设计中拟选用的磨碎机的型式校正系数,见表2;
K4-磨碎机的不同给矿粒度和不同产品粒度差别系数;
K4=m1/m2
m1-设计中拟选用的磨碎机按新生级别(-0.074mm粒级)计算的、在不同给排料粒度条件下的相对处理量,见表3;
m2-类似企业磨碎机按新生级别(-0.074mm粒级)计算的、在不同给排料粒度条件下的相对处理量,见表3。
表1 矿石的磨碎难易度系数K1值矿石性质普氏硬度K1值易碎性矿石5以下1.25~1.4中等可碎性矿石5~101.0难碎性矿石10以上0.85~0.7
表2 磨碎机的型式校正系数K3值磨碎机型式格子型球磨机溢流型球磨机棒磨机K31.00.9~0.851.0~0.85
注:当磨碎机产品粒度大于0.3mm时,取大值;反之,取小值。
表3 不同给矿和排矿粒度条件下的相对处理量m1、m2值给矿粒度
d95
mm产品粒度,mm0.50.40.30.20.150.100.074产品粒度中小于0.074mm粒级的含率。%3040486072859540~00.680.770.810.830.810.800.7830~00.740.830.860.870.850.830.8020~00.810.890.920.920.880.860.8210~00.951.021.031.000.930.900.855~01.111.151.131.050.950.910.853~01.171.191.161.060.950.910.85
设计中拟选用的磨碎机的处理量(不包括闭路磨矿的返回矿量)按下式计算:
式中:
Qd-设计中拟选用的磨碎机的处理量,t/(台·h);
q-同上式;
Vd-设计中拟选用的磨碎机有效容积,m3;
βd1-设计中拟选用的磨碎机给矿中小于0.074mm级别的含率,%;
βd2-设计中拟选用的磨碎机产品中小于0.074mm级别的含率,%。
若无实际资料,βd1和βd2可参照表4和表5取值。
表4 破碎产品中小于0.074mm级别的含率破碎产品粒度,mm40~020~010~05~03~0-0.074mm级别的含率,%难碎性矿石2581015中等可碎性矿石36101523易碎性矿石58152025
表5 斑岩铜矿磨碎产品中小于0.074mm级别的含率产品粒度,mm1~00.4~00.3~00.2~00.15~00.10~00.074~0-0.074mm含率,%30404860728595
设计中,冶炼厂熔剂磨碎机生产能力可按下式近似计算:
式中符合意义同前。
铝及铝合金在焊接过程中出现的问题
2019-01-14 11:15:34
铝及铝合金由于具有独特的物理化学性能,因此在焊接过程中会产生一系列的困难,具体来说,主要有以下几点: 一、强的氧化能力 铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。这些缺陷,都会降低焊接接头的性能。为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。具体的保护措施是:1、焊前用机械或化学方法清除工件坡口及周围部分和焊丝表面的氧化物; 2、焊接过程中要采用合格的保护气体进行保护; 3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。 二、铝的热导率和比热大,导热快 尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。 三、线膨胀系数大 铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%-6.6%,因此易产生焊接变形。防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹。这是铝合金,尤其是高强铝合金焊接时较常见的严重缺陷之一。在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。 四、容易形成气孔 焊接接头中的气孔是铝及铝合金焊接时极易产生的缺陷,尤其是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时产生气孔的主要原因,这已为实践所证明。氢的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其中焊丝及母材表面氧化膜的吸附水分,以焊缝气孔的产生,常常占有突出的地位。 铝及铝合金的液体熔池很容易吸收气体,在高温下溶入的大量气体,在由液态凝固时,溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。为了防止气孔的产生,以获得良好的焊接接头,对氢的来源要加以严格控制,焊前必须严格限制所使用焊接材料(包括焊丝、焊条、熔剂、保护气体)的含水量,使用前要进行干燥处理。清理后的母材及焊丝较好在2-3小时内焊接完毕,较多不超过24小时。TIG焊时,选用大的焊接电流配合较高的焊接速度。MIG焊时,选用大的焊接电流慢的焊接速度,以提高熔池的存在时间。Al-Li合金焊接时,加强正、背面保护,配合坡口刮削,清除概况氧化膜,可有效地防止气孔。 五、焊接接头容易软化 焊接可热处理强化的铝合金时,由于焊接热的影响,焊接接头中热影响区会出现软化,即强度降低,使基体金属近缝区部位的一些力学性能变坏。对于冷作硬化的合金也是如此,使接头性能弱化,并且焊接线能量越大,性能降低的程序也愈严重。针对此类问题,采取的措施主要是制定符合特定材料焊接的工艺,如限制焊接条件,采取适当的焊接顺序,控制预热温度和层间温度,焊后热处理等。对于焊后软化不能恢复的铝合金,较好采用退火或在固溶状态下焊接,焊后再进行热处理,若不允许进行焊后热处理,则应采用能量集中的焊接方法和小线能量焊接,以减小接头强度降低。