您所在的位置: 上海有色 > 有色金属产品库 > 烧结对熔剂的要求

烧结对熔剂的要求

抱歉!您想要的信息未找到。

烧结对熔剂的要求专区

更多
抱歉!您想要的信息未找到。

烧结对熔剂的要求百科

更多

铅和铅锌鼓风烧结对原料、熔剂的一般要求

2019-01-07 17:38:01

原料、熔剂的一般要求:       铅和铅锌烧结对原料、熔剂的一般要求列   表1 烧结原料、熔剂、焦粉的一般要求物料名称化学成分,%粒度,mm水分,%备注铅精矿按国家(部)标准或协议按选矿定<12,北方冬天<8含砷不大于0.5%铅锌混合精矿Pb+Zn>48%同上同上同上铅块矿(杂矿)含Pb>25%<10<2含铜不大于1%石灰石CaO≥50;Mg≤3.5;SiO2+Al2O3≤3<6<2 石英石SiO2≥90;Al2O3≤2~5<6<2以河沙或含金石英砂作熔剂时,SiO2含量可适当降低。焦粉固定碳>75<10<1    注:表中粒度系指配料工序的要求。

鼓风烧结配料所采用的熔剂

2019-01-07 17:38:01

鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。       一、硅质熔剂  一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。       二、铁质熔剂  多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。       三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。       表1为熔剂的化学成分实例。   表1  熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95       石灰石20.4155.731.340.330.59     石灰石30.353.970.620.230.89     石英石10.191.0891.80.14      石英石20.52.2197.12       石英石31.261.0894.86       河砂12.41.3575.853.04      河砂21.510.687.48       河砂33.02.074~80  0.30.10.1  烧渣147.44.158.2       烧渣243.866.29.31       烧渣347.554.3510.21       平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60  0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47  5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35  0.01  8~10140     注:Au、Ag的单位为g/t。

重有色冶金炉对入炉熔剂的粒度要求

2019-01-07 17:38:01

火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。   表1  重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉 铜密闭鼓风炉 铜熔炼反射炉 铜白银炉 铜电炉 铜闪速炉   铜转炉   铜火法精炼炉 铅鼓风炉 铅锌鼓风炉 锡反射炉 锡电炉 氧气底吹炼铅炉 镍闪速炉 镍电炉<3 40~50 <6 <6 3~5 <0.5   5~25   2~3 <6   <3~6 <10 <3 <0.3 5~10<3 30~80 <6 <6 3~5 (石灰)       (石灰) <6 <6 <5~6 <10 <3    湿式配料时<0.2 其它块度20~100         铜连续吹炼炉 石英石3~25

高炉炼铁对碱性熔剂3个质量要求

2019-01-04 11:57:16

高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.

废铝熔剂

2017-06-06 17:50:04

废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收 金属 的废铝熔剂,特别适用于从铝渣中回收 金属 铝(铝合金),属于 金属 处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收 金属 铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3])  (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60%  Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30%  NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海 有色 网查询,更多合作伙伴也可以在商机平台中寻找到! 

材料的烧结----烧结的基本概念

2019-01-07 07:51:19

根据烧结粉末体所出现的宏观变化提出了烧结的宏观定义,一种或多种固体(金属、氧化物、氮化物、粘土……)粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这种过程称为烧结。为了揭示烧结的本质提出了烧结的微观定义,由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程称为烧结。     烧结与烧成。烧成包括多种物理和化学变化。例如脱水、坯体内气体分解、多相反应和熔融、溶解、烧结等。而烧结仅仅指粉料成型体在烧结温度下经加热而致密化的简单物理过程,显然烧成的含义及包括的范围更宽,一般都发生在多相系统内。而烧结仅仅是烧成过程中的一个重要部分。     烧结和熔融。烧结是在远低于固态物质的熔融温度下进行的。烧结和熔融这两个过程都是由原子热振动而引起的,但熔融时全部组元都转变为液相,而烧结时至少有一个组元是处于固态的。     烧结与固相反应。这两个过程均在低于材料熔点或熔融温度之下进行的。并且在过程的自始至终都至少有一相是固态。两个过程的不同之处是固相反应必须至少有两个组元参加(如A和B),并发生化学反应,最后生成化合物AB。AB的结构与性能不同于A与B。而烧结可以只有单组元,或者两组元参加,但两组元之间并不发生化学反应。仅仅是在表面能驱动下,由粉末体变成致密体。从结晶化学观点看,烧结体除可见的收缩外,微观晶相组成并未变化,仅仅是晶相显微组织上排列致密和结晶程度更完善。

材料的烧结----液相烧结

2019-01-07 07:51:19

液相烧结:凡是有液相参与的烧结过程称为液相烧结。液相烧结的主要传质方式有:流动传质、溶解-沉淀传质等。 1、液相烧结的特点 液相烧结与固态烧结的共同之点是烧结的推动力都是表面能;烧结过程也是由颗粒重排、气孔填充和晶粒生长等阶段组成。不同点是:由于流动传质速率比扩散快,因而液相烧结的致密化速率高,可使坯体在比固态烧结温度低得多的情况下获得致密的烧结体。此外,液相烧结过程的速率与液相的数量、液相性质(粘度、表面张力等)、液相与固相的润湿情况、固相在液相中的溶解度等有密切的关系。 2、流动传质 粘性流动:在高温下依靠粘性液体流动而致密化是大多数硅酸盐材料烧结的主要传质过程。在液相烧结时,由于高温下粘性液体(熔融体)出现牛顿型流动而产生的传质称为粘性流动传质(或粘性蠕变传质)。 粘性流动初期的传质动力学公式:式中 r为颗粒半径;x为颈部半径;η为液体粘度;γ为液-气表面张力,t为烧结时间。 适合粘性流动传质全过程的烧结速率公式:       式中θ为相对密度。     塑性流动:当坯体中液相含量很少时,高温下流动传质不能看成是纯牛顿型流动,而是属于塑性流动类型。也即只有作用力超过其屈服值(f)时,流动速率才与作用的剪切应力成正比。此时传质动力学公式改变为:                  式中 η是作用力超过f时液体的粘度;r为颗粒原始半径。 3、溶解 - 沉淀传质 在有固液两相的烧结中,当固相在液相中有可溶性,这时烧结传质过程就由部分固相溶解,而在另一部分固相上沉积,直至晶粒长大和获得致密的烧结体。发生溶解-沉淀传质的条件有:(1)显著数量的液相;(2)固相在液相内有显著的可溶性;(3)液体润湿固相。 溶解-沉淀传质过程的推动力仍是颗粒的表面能,只是由于液相润湿固相,每个颗粒之间的空间都组成了一系列的毛细管,表面张力以毛细管力的方式便颗粒拉紧。固相颗粒在毛细管力的作用下,通过粘性流动或在一些颗粒间的接触点上由于局部应力的作用而进行重新排列,结果得到了更紧密的堆积。 溶解-沉淀传质根据液相数量的不同可以有Kingery模型(颗粒在接触点处溶解,到自由表面上沉积)或LSW模型(小晶粒溶解至大晶粒处沉淀)。其原理都是由于颗粒接触点处(或小晶粒)在液相中的溶解度大于自由表面(或大晶粒)处的溶解度,通过液相传递而导致晶粒生长和坯体致密化。Kingery运用与固相烧结动力学公式类似的方法,并作了合理的分析导出了溶解-沉淀过程的收缩率为:式中 ⊿ρ为中心距收缩的距离;K为常数;γLV为液-气表面张力;D为被溶解物质在液相中的扩散系数;δ为颗粒间液膜的厚度;C0为固相在液相中的溶解度;V0为液相体积;r为颗粒起始粒度;t为烧结时间。

材料的烧结----固相烧结

2019-01-07 07:51:19

固相烧结:固态烧结的主要传质方式有:蒸发-凝聚、扩散传质等。 1、 蒸发-凝聚传质 蒸发-凝聚传质时在球形颗粒表面有正曲率半径,而在两个颗粒联接处有一个小的负曲率半径的颈部,根据开尔文公式可以得出,物质将从饱和蒸气压高的凸形颗粒表面蒸发,通过气相传递而凝聚到饱和蒸气压低的凹形颈部,从而使颈部逐渐被填充。球形颗粒接触面积颈部生长速率关系式:                         蒸发-凝聚传质的特点是烧结时颈部区域扩大,球的形状改变为椭圆,气孔形状改变,但球与球之间的中心距不变,也就是在这种传质过程中坯体不发生收缩,即⊿L/L0 =0。气孔形状的变化对坯体一些宏观性质有可观的影响,但不影响坯体密度。 2、 扩散传质 在大多数固体材料中,由于高温下蒸气压低,则传质更易通过固态内质点扩散过程来进行。在颗粒的不同部位空位浓度不同,颈部表面张应力区空位浓度大于晶粒内部,受压应力的颗粒接触中心空位浓度最低。系统内不同部位空位浓度的差异对扩散时空位的漂移方向是十分重要的。扩散首先从空位浓度最大的部位(颈部表面)向空位浓度最低的部位(颗粒接触点)进行,其次是颈部向颗粒内部扩散。空位扩散即原子或离子的反向扩散。因此,扩散传质时,原子或离子由颗粒接触点向颈部迁移,达到气孔充填的结果。 扩散传质初期动力学公式:    x/r = K r-3/5t1/5                在扩散传质时除颗粒间接触面积增加外,颗粒中心距逼近的速率为  ⊿L/L0 = K1 r-6/5t2/5            烧结进入中期,颗粒开始粘结,颈部扩大,气孔由不规则形状逐渐变成由三个颗粒包围的圆柱形管道,气孔相互联通。科布尔(Coble)提出烧结体此时由众多个十四面体堆积而成的,Coble根据十四面体模型确定了烧结中期坯体气孔率(Pc)随烧结时间(t)变化的关系式:        式中 L为圆柱形空隙的长度,t为烧结时间,tf为烧结完成所需要的时间。 烧结进入后期,晶粒已明显长大,气孔己完全孤立,气孔位于四个晶粒包围的顶点。从十四面体模型来看,气孔已由圆柱形孔道收缩成位于十四面体的24个顶点处的孤立气孔。根据此模型Coble导出了烧结后期坯体气孔率(Pt)为:

铝合金熔体的熔剂精炼

2019-01-02 15:29:20

本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。   在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。   铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。   1 熔剂的作用   盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。   2 熔剂的分类和选择   2.1熔剂的分类和要求   铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。   ①熔点应低于铝合金的熔化温度。   ②比重应小于铝合金的比重。   ⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。   ④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。   ⑤吸湿性要小,蒸发压要低。   ⑥不应含有或产生有害杂质及气体。   ⑦要有适当的粘度及流动性。   ⑧制造方便:价格便宜。   2.2熔剂的成分及熔盐酌作用   铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。   2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4   ,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。   2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;   b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。   3铝合金熔炼中常用熔剂   熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。   3.1常用熔剂   为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。   铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。   表1 常用熔剂的成分及应用   溶剂种类 组分含量,%   NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金   覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg   系,Al-Cu-Si系Al-Cu-Mg-Zn系   Na2CO385。CaF15 一般铝合金   50 50 一般铝合金   KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金   31 14 CaF210 CaCL244 Al-Mg系合金   8 67 CaF210,MgF215 Al-Mg系合金   精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金   8 67 MgF215,CaF210 Al-Mg系合金   KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金   42 46 Bacl26 (2号熔剂) Al-Mg系合金   22 56 22 一般铝合金   50 35 15 一般铝合金   40 50 NaF10 一般铝合金   50 35 5 CaF210 一般铝合金   60 CaF220,NaF20 一般铝合金   36-45 50-55 3-7 CaF 21。5-4 一般铝合金   Na2SiF630-50,C2Cl650-70 一般铝合金   40。5 49。5 KF10 易拉罐合金   从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。   综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。   3。2熔剂用量 .   熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。   3。2。1.主覆盖剂用量   a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合   注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。   b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。   表3: 覆盖剂用量   类 别 用量(占投料量的%)   小碎片碎 屑号外渣子 6-810-1515-20   3.2.2精炼剂用量   不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。   表4 精炼剂用量   合金及制品 熔炼炉 静置炉   高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t   特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t   LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝   其它合金 普通熔剂5-6kg/t   注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加   ②对大规格的圆锭,其熔剂用量也应适当增加。   3。3熔剂使用方法   熔剂精炼法熔炼铝合金生产中常用以下几种方法   ①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。   ②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。   ③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。   ④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。   在这五种方法中,电熔剂精炼效果最好。

闪速炉熔剂及常用燃料

2019-03-06 09:01:40

一、熔剂     闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。 表1  闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2  As<0.1  F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8  Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3  Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4    直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。     二、燃料     闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。     因为烟气用于制酸,因而对燃料含硫无要求。     各厂闪速炉用燃料的实例见表2,表3。 表2  闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5    注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。 表3  闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm  14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90%    有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。