鼓风烧结配料所采用的熔剂
2019-01-07 17:38:01
鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。
一、硅质熔剂 一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。
二、铁质熔剂 多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。
三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。
表1为熔剂的化学成分实例。
表1 熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95 石灰石20.4155.731.340.330.59 石灰石30.353.970.620.230.89 石英石10.191.0891.80.14 石英石20.52.2197.12 石英石31.261.0894.86 河砂12.41.3575.853.04 河砂21.510.687.48 河砂33.02.074~80 0.30.10.1 烧渣147.44.158.2 烧渣243.866.29.31 烧渣347.554.3510.21 平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60 0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47 5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35 0.01 8~10140
注:Au、Ag的单位为g/t。
重有色冶金炉对入炉熔剂的粒度要求
2019-01-07 17:38:01
火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。
表1 重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉
铜密闭鼓风炉
铜熔炼反射炉
铜白银炉
铜电炉
铜闪速炉
铜转炉
铜火法精炼炉
铅鼓风炉
铅锌鼓风炉
锡反射炉
锡电炉
氧气底吹炼铅炉
镍闪速炉
镍电炉<3
40~50
<6
<6
3~5
<0.5
5~25
2~3
<6
<3~6
<10
<3
<0.3
5~10<3
30~80
<6
<6
3~5
(石灰)
(石灰)
<6
<6
<5~6
<10
<3
湿式配料时<0.2
其它块度20~100
铜连续吹炼炉
石英石3~25
废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
铅和铅锌鼓风烧结对原料、熔剂的一般要求
2019-01-07 17:38:01
原料、熔剂的一般要求:
铅和铅锌烧结对原料、熔剂的一般要求列
表1 烧结原料、熔剂、焦粉的一般要求物料名称化学成分,%粒度,mm水分,%备注铅精矿按国家(部)标准或协议按选矿定<12,北方冬天<8含砷不大于0.5%铅锌混合精矿Pb+Zn>48%同上同上同上铅块矿(杂矿)含Pb>25%<10<2含铜不大于1%石灰石CaO≥50;Mg≤3.5;SiO2+Al2O3≤3<6<2 石英石SiO2≥90;Al2O3≤2~5<6<2以河沙或含金石英砂作熔剂时,SiO2含量可适当降低。焦粉固定碳>75<10<1
注:表中粒度系指配料工序的要求。
废镍料
2017-06-06 17:49:54
废镍料一定要具有有铁磁性和延展性,能导电和导热。常温下,镍在潮湿空气中表面形成致密的氧化膜,不但能阻止继续被氧化,而且能耐碱、盐溶液的腐蚀。块状镍不会燃烧,细镍丝可燃,特制的细小多孔镍粒在空气中会自燃。加热时,镍与氧、硫、氯、溴发生剧烈反应。细粉末状的金属镍在加热时可吸收相当量的氢气。镍能缓慢地溶于稀盐酸、稀硫酸、稀硝酸,但在发烟硝酸中表面钝化。镍的氧化态为-1、+1、+2、+3、+4 ,简单化合物中以+2价最稳定,+3价镍盐为氧化剂。镍的氧化物有NiO和Ni2O3。氢氧化镍〔Ni(OH)2〕为强碱,微溶于水,易溶于酸。硫酸镍(NiSO4)能与碱金属硫酸盐形成矾 Ni(SO4)2o6H2O(MI为碱金属离子)。+2价镍离子能形成配位化合物。在加压下,镍与一氧化碳能形成四羰基镍〔Ni(CO)4〕,加热后它又会分解成金属镍和一氧化碳。 废镍料银白色金属,密度8.9克/厘米3。熔点1455℃,沸点2730℃。化合价2和3。电离能为7.635电子伏特。质坚硬,具有磁性和良好的可塑性。有好的耐腐蚀性,在空气中不被氧化,又耐强碱。在稀酸中可缓慢溶解,释放出氢气而产生绿色的正二价镍离子Ni2+;对氧化剂溶液包括硝酸在内,均不发生反应。镍是一个中等强度的还原剂。废镍料大量用于再次制造合金。在钢中加入镍,可以提高机械强度。如钢中含镍量从2.94%增加到了7.04%时,抗拉强度便由52.2公斤/毫米2增加到72.8公斤/毫米3。镍钢用来制造机器承受较大压力、承受冲击和往复负荷部分的零件,如涡轮叶片、曲轴、连杆等。含镍36%、含碳0.3-0.5%的镍钢,它的膨胀系数非常小,几乎不热胀冷缩,用来制造多种精密机械,精确量规等。含镍46%、含碳0.15%的高镍钢,叫“类铂”,因为它的膨胀系数与铂、玻璃相似,这种高镍钢可熔焊到玻璃中。在灯泡生产上很重要,可作铂丝的代用品。一些精密的透镜框,也用这种类铂钢做,透镜不会因热胀冷缩而从框中掉下来。由67.5%镍、16%铁、15%铬、1.5%锰组成的合金,具有很大的电阻,用来制造各种变阻器与电热器。
闪速炉炉料水分及粒度
2019-01-07 07:51:21
由于炉料在闪速炉反应塔中停留时间仅2s左右,如果炉料水分高或粒度大,均会导致反应不完全,发生下生料现象。各厂炉料含水一般控制在0.3%以下。干燥方法可用气流干燥、圆筒干燥、沸腾干燥及蒸汽干燥等。 铜精矿粒度一般为-0.074mm占80%左右。石英熔剂可以是经破碎筛分后的石英砂,也可直接使用天然海砂或河砂,但粒度均应在1mm以下。各种返回品,如烟尘等也均应经过破碎筛分。各厂铜精矿,熔剂及返回品的粒度分析见表1至表8。
表1 贵冶精矿及熔剂粒度分析粒度,mm-5-1+0.5铜精矿-0.074mm占80%石英砂①100%>50%<10%
①投产后改用河砂。
表2 东予厂精矿及熔剂粒度分析粒度,mm+0.147+0.074+0.050-0.050铜精矿,%3.531.715.749.1石英砂,%25.323.813.737.2
表3 巴亚马雷厂炉料粒度分析粒度,mm+0.5+0.1+0.07-0.07%1.5252161
表4 贵冶返回气流干燥电收尘烟尘粒度分析粒度,1×10-3mm-11~22~55~1010~40%814303611
表5 贵冶返闪速炉锅炉粉尘粒度分析粒度 mm+0.2950.295~0.043-0.043%66133
表6 贵冶返回闪速炉电收尘烟尘粒度分析粒度,1×10-3mm-1010~2020~3030~44%456355
表7 贵冶返回转炉锅炉破碎筛分烟尘粒度分析粒度,1×10-3mm+15-15%1585
表8 贵冶返回转炉球型烟道破碎筛分烟尘粒度分析粒度,mm-2×10-3(2~10)×10-3(10~30)×10-3(30~63)×10-3(63~205)×10-3%622231931
磷铜钎料
2017-06-06 17:50:02
磷铜钎料 铜磷钎料适宜于钎焊铜及黄铜,但是不适宜钎焊黑色
金属
。这类儿钎料能很好的湿润铜及黄铜,并扩散到边缘层,接头的脆性比钎料本身小。但铜磷钎料对黑色
金属
的湿润性很差,在结合处形成脆性磷化物,使接头脆性增大。钎料中的磷可以还原氧化铜和氧化银,起着钎焊熔剂作用。因此铜磷钎料钎焊铜和银时,可以不需要钎焊熔剂,但在钎焊铜合金时,因为磷不能充分地还原铜的合金元素形成的氧化物,为了获得优质钎缝,还应与钎焊熔剂配合使用,钎焊接头的最好间隙为0.03~0.075mm. 铜-磷合中加入银会大大地提高焊料湿润能力,提高强度和韧性,降低熔点。 钎焊时若加热过程缓慢,铜磷钎料有偏析倾向,帮钎焊时加热速度尽可憎快些,焊后的颜色是亮灰色,浸在10%硫酸中将恢复铜的颜色。1.ScuP-2是接近共晶粉的铜磷钎料,熔点较低,具有良好的湿润性,可以流入间隙很小钎缝。钎料的
价格
便宜,所以获得谅的应用。但钎缝塑性差,处在冲击和弯曲状态的接头不宜采用。电阻率为0.28Ω。mm2/m. 用途:广泛用于电机制造和仪表工业上钎焊铜及铜合金。 1.ScuP-3是含砂磷稍低的铜磷钎料,与HL201比较,熔化温度稍高,温流性稍差而塑性略有改善,但仍脆,故处于冲击和弯曲工作状态的接头不宜采用,电阴率为0.25Ω。mm2/m. 用途:适用电机制造和仪表工业上钎焊铜及铜合金。 2.SAgP-2钎料含银量低,熔点适中塑性较好,具有良好的漫流性和填缝能力,接头机械性能好,对于铜和铜的钎焊具有自钎性。电阻率约为0.32Ω。mm2/m. 用途:适用于电机制造和仪表工业上钎焊铜及铜合金。 3.SAP-5是含银5%的铜银磷钎料,其钎焊接头强度、塑性、导电性及漫流性比SAgP-5稍差,但比ScuP-2有所改善。电阻率约为0.23Ω。mm2/m. 用途:适用于电机制造和仪表工业上钎焊铜及铜合金。 4.SAgP-15是含15%银的铜银磷钎料,由于银的加入,提高了强度减少脆性,钎钎料熔点降低,其接头强度、塑性、导电性及漫流性是铜磷钎料中最好的一种,对接头的准备及装配相对说来要求较低。电阻率约0.12Ω。mm2/m. 用途:适用于钎焊铜及铜合金、银、钼等
金属
。多数用来钎焊冲击振动负载较小的工作,以电机制造使用最广。 ScuP-6Sn是含锡的铜磷钎料,能使钎焊温度降低,钎焊接头强度较好,减少了脆性,是导电性及流动性较好的铜磷锡钎料中是理想的一种钎料。 用途:适用于钎焊铜及铜合金等
金属
材料,在电机、空调器,冷冻机制造工业上广泛应用。 注意事项: 1.钎焊前必须严格清除钎焊处及钎料表面的油脂、氧化物等污物。 2.钎焊铜时不用钎焊熔剂,但钎焊铜合金时应配合钎剂使用。
铝料价格
2017-06-06 17:50:03
铝料
价格
一直是广大铝
行业
工厂企业投资者每天都要关注的
行情
,今日铝料
价格行情
查询的更好的更权威的平台是上海
有色
网。上海
有色
网提供的铝料
价格
的报价是
金属
协会公认的以及作为海关出口标准的报价。今日铝料
价格
的报价可参考如下:2010年9月1日铝锭
价格
:铝锭
现货价格
,SMM:15190-15220,均价15205;长江:15180-15220均价15200;南储:15150-15290均价15220。铝锭各地
现货行情
:无锡地区:15190-15210均价15200;南海地区:15190-15230均价15210;重庆地区:15120-15170均价15145;沈阳地区:15170-15200均价15185;天津地区:15210-15240均价15225。以上铝料
价格
均来自上海
有色
网网站情报数据。目前整体铝料
价格行情
为下跌为主。更多铝料
价格
可参考上海
有色
网铝专区。
材料的烧结----液相烧结
2019-01-07 07:51:19
液相烧结:凡是有液相参与的烧结过程称为液相烧结。液相烧结的主要传质方式有:流动传质、溶解-沉淀传质等。
1、液相烧结的特点
液相烧结与固态烧结的共同之点是烧结的推动力都是表面能;烧结过程也是由颗粒重排、气孔填充和晶粒生长等阶段组成。不同点是:由于流动传质速率比扩散快,因而液相烧结的致密化速率高,可使坯体在比固态烧结温度低得多的情况下获得致密的烧结体。此外,液相烧结过程的速率与液相的数量、液相性质(粘度、表面张力等)、液相与固相的润湿情况、固相在液相中的溶解度等有密切的关系。
2、流动传质
粘性流动:在高温下依靠粘性液体流动而致密化是大多数硅酸盐材料烧结的主要传质过程。在液相烧结时,由于高温下粘性液体(熔融体)出现牛顿型流动而产生的传质称为粘性流动传质(或粘性蠕变传质)。
粘性流动初期的传质动力学公式:式中 r为颗粒半径;x为颈部半径;η为液体粘度;γ为液-气表面张力,t为烧结时间。
适合粘性流动传质全过程的烧结速率公式:
式中θ为相对密度。
塑性流动:当坯体中液相含量很少时,高温下流动传质不能看成是纯牛顿型流动,而是属于塑性流动类型。也即只有作用力超过其屈服值(f)时,流动速率才与作用的剪切应力成正比。此时传质动力学公式改变为:
式中 η是作用力超过f时液体的粘度;r为颗粒原始半径。
3、溶解 - 沉淀传质
在有固液两相的烧结中,当固相在液相中有可溶性,这时烧结传质过程就由部分固相溶解,而在另一部分固相上沉积,直至晶粒长大和获得致密的烧结体。发生溶解-沉淀传质的条件有:(1)显著数量的液相;(2)固相在液相内有显著的可溶性;(3)液体润湿固相。
溶解-沉淀传质过程的推动力仍是颗粒的表面能,只是由于液相润湿固相,每个颗粒之间的空间都组成了一系列的毛细管,表面张力以毛细管力的方式便颗粒拉紧。固相颗粒在毛细管力的作用下,通过粘性流动或在一些颗粒间的接触点上由于局部应力的作用而进行重新排列,结果得到了更紧密的堆积。
溶解-沉淀传质根据液相数量的不同可以有Kingery模型(颗粒在接触点处溶解,到自由表面上沉积)或LSW模型(小晶粒溶解至大晶粒处沉淀)。其原理都是由于颗粒接触点处(或小晶粒)在液相中的溶解度大于自由表面(或大晶粒)处的溶解度,通过液相传递而导致晶粒生长和坯体致密化。Kingery运用与固相烧结动力学公式类似的方法,并作了合理的分析导出了溶解-沉淀过程的收缩率为:式中 ⊿ρ为中心距收缩的距离;K为常数;γLV为液-气表面张力;D为被溶解物质在液相中的扩散系数;δ为颗粒间液膜的厚度;C0为固相在液相中的溶解度;V0为液相体积;r为颗粒起始粒度;t为烧结时间。
材料的烧结----烧结的基本概念
2019-01-07 07:51:19
根据烧结粉末体所出现的宏观变化提出了烧结的宏观定义,一种或多种固体(金属、氧化物、氮化物、粘土……)粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这种过程称为烧结。为了揭示烧结的本质提出了烧结的微观定义,由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程称为烧结。
烧结与烧成。烧成包括多种物理和化学变化。例如脱水、坯体内气体分解、多相反应和熔融、溶解、烧结等。而烧结仅仅指粉料成型体在烧结温度下经加热而致密化的简单物理过程,显然烧成的含义及包括的范围更宽,一般都发生在多相系统内。而烧结仅仅是烧成过程中的一个重要部分。
烧结和熔融。烧结是在远低于固态物质的熔融温度下进行的。烧结和熔融这两个过程都是由原子热振动而引起的,但熔融时全部组元都转变为液相,而烧结时至少有一个组元是处于固态的。
烧结与固相反应。这两个过程均在低于材料熔点或熔融温度之下进行的。并且在过程的自始至终都至少有一相是固态。两个过程的不同之处是固相反应必须至少有两个组元参加(如A和B),并发生化学反应,最后生成化合物AB。AB的结构与性能不同于A与B。而烧结可以只有单组元,或者两组元参加,但两组元之间并不发生化学反应。仅仅是在表面能驱动下,由粉末体变成致密体。从结晶化学观点看,烧结体除可见的收缩外,微观晶相组成并未变化,仅仅是晶相显微组织上排列致密和结晶程度更完善。
闪速炉熔剂及常用燃料
2019-03-06 09:01:40
一、熔剂
闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。
表1 闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2 As<0.1 F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8 Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3 Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4 直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。
二、燃料
闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。
因为烟气用于制酸,因而对燃料含硫无要求。
各厂闪速炉用燃料的实例见表2,表3。
表2 闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5 注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。
表3 闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm 14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90% 有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。
材料的烧结----固相烧结
2019-01-07 07:51:19
固相烧结:固态烧结的主要传质方式有:蒸发-凝聚、扩散传质等。
1、 蒸发-凝聚传质
蒸发-凝聚传质时在球形颗粒表面有正曲率半径,而在两个颗粒联接处有一个小的负曲率半径的颈部,根据开尔文公式可以得出,物质将从饱和蒸气压高的凸形颗粒表面蒸发,通过气相传递而凝聚到饱和蒸气压低的凹形颈部,从而使颈部逐渐被填充。球形颗粒接触面积颈部生长速率关系式:
蒸发-凝聚传质的特点是烧结时颈部区域扩大,球的形状改变为椭圆,气孔形状改变,但球与球之间的中心距不变,也就是在这种传质过程中坯体不发生收缩,即⊿L/L0 =0。气孔形状的变化对坯体一些宏观性质有可观的影响,但不影响坯体密度。
2、 扩散传质
在大多数固体材料中,由于高温下蒸气压低,则传质更易通过固态内质点扩散过程来进行。在颗粒的不同部位空位浓度不同,颈部表面张应力区空位浓度大于晶粒内部,受压应力的颗粒接触中心空位浓度最低。系统内不同部位空位浓度的差异对扩散时空位的漂移方向是十分重要的。扩散首先从空位浓度最大的部位(颈部表面)向空位浓度最低的部位(颗粒接触点)进行,其次是颈部向颗粒内部扩散。空位扩散即原子或离子的反向扩散。因此,扩散传质时,原子或离子由颗粒接触点向颈部迁移,达到气孔充填的结果。
扩散传质初期动力学公式:
x/r = K r-3/5t1/5
在扩散传质时除颗粒间接触面积增加外,颗粒中心距逼近的速率为 ⊿L/L0 = K1 r-6/5t2/5
烧结进入中期,颗粒开始粘结,颈部扩大,气孔由不规则形状逐渐变成由三个颗粒包围的圆柱形管道,气孔相互联通。科布尔(Coble)提出烧结体此时由众多个十四面体堆积而成的,Coble根据十四面体模型确定了烧结中期坯体气孔率(Pc)随烧结时间(t)变化的关系式:
式中 L为圆柱形空隙的长度,t为烧结时间,tf为烧结完成所需要的时间。
烧结进入后期,晶粒已明显长大,气孔己完全孤立,气孔位于四个晶粒包围的顶点。从十四面体模型来看,气孔已由圆柱形孔道收缩成位于十四面体的24个顶点处的孤立气孔。根据此模型Coble导出了烧结后期坯体气孔率(Pt)为:
多晶硅料
2017-06-06 17:50:11
多晶硅料英文名称 polycrystalline silicon 性能参数:硅99.9999 % 用途:用于开发单晶硅片与多晶硅片 市场
特征:多晶硅料是目前
市场
短缺的硅材料,由于我国技术限制等瓶颈。目前主要依赖于进口。 中国多晶硅工业起步于20世纪50年代,60年代中期实现了
产业
化,到70年代,生产厂家曾经发展到20多家。但由于工艺技术落后,消耗大,成本高等原因,绝大部分企业亏损而相继停产或转产。 进入21世纪以来,强大的需求和丰厚的利润刺激着多晶硅
产业
的迅速膨胀。多晶硅
现货
价7年内上涨了10倍,高峰时利润率超过800%。截至08年12月,已有超过10家上市公司投资多晶硅项目,已公告的投资额近60亿元,总投资额高达300多亿元。 2009年新春伊始,有两件事情令多晶硅-光伏
产业
振奋。首先是《能源法》已经提交到国务院法制办,这将直接影响“十二五”期间国家能源政策的整体规划。随后,无锡尚德、赛维LDK、常州天合、林洋新能源、CSI阿特斯、南京冠亚等在内的太阳能电池生产巨头们已将“1元/度”光伏发电成本的方案上交给科技部。这标志着光伏发电入网已经不再那么遥远,这两大利好无疑给予多晶硅-光伏企业一剂兴奋剂。 2009年1月,国家发改委已正式批复,同意在洛阳中硅建设多晶硅材料制备技术国家工程实验室,并安排1500万元国家投资补助资金,这表明海外对中国高纯多晶硅
产业
的技术壁垒正在被一一打破,对缓解中国多晶硅需求主要依赖进口现状、促进光伏产品成本降低都具有标志性意义。 “目前在
现货市场
,多晶硅料已出现持续短缺。”该知情人士透露,国内最大的多晶硅生产商江苏中能从9月份开始,生产的硅料就以满足本厂硅片生产为主;第二大多晶硅生产商、最大的硅片生产商赛维LDK也是如此,供
现货市场
的硅料基本没有;峨嵋厂的产能则主要用于已收预付款的部分,其他几家大厂也多被长单锁定;不仅如此,宁夏阳光的硅料报价甚至只限当天有效。
铁矿石粒度分类
2019-02-22 15:05:31
铁矿石按颗粒分类能够分为粗粉、精粉,块矿、原矿和粉矿,他们别离具有什么样的性质呢?请持续重视下文。
1、矿石的粒度:矿石的粒度和气孔度的巨细,对高炉冶炼的进程影响很大。粒度太小时影响高炉柱的透气性,使煤气上升阻力增大。粒度过大又将影响炉料的加热和矿石的复原。因为粒度大,减少了煤气和矿石的触摸面积,使矿石中心部分不易复原,从而使复原速度下降,焦比升高。
2、粗粉:根本在0-10毫米,但10毫米以上一般不超越10%,0.15毫米以下最大不超越35%。
3、精粉:根本是国内产,在200目以下。国内一般用外矿都是粗粉,现在也用进口精粉的,如俄罗斯精粉、乌克兰精粉和巴西SSFT粉等。精粉要求0.074mm以下的不少于70%。
4、块矿:有两种,一种是标准块,粒度6-40毫米。别的一种是混合块,混合块一般需求挑选破碎后才干够运用。
5、原矿(rawore):原矿从矿山挖掘出来未经选矿或其他技能加工的矿石,但原矿粒度最好不超越300毫米。少量原矿可直接使用,大多数原矿需经选矿或其他技能加工后才干使用。在选矿中,经过碎磨进入分选作业的矿石称作当选原矿。
6、粉矿:粉末矿,英文名称:fine ore; mine smalls; ore fines;smalls;其档次低于块矿,需求经过破碎\磨矿\选别,把块子变成粉子,以到达档次的要求,一般要求60-67%,攀钢的档次57%即可。
如何选购铝瓶盖料
2018-12-19 17:39:35
铝瓶盖料应用越来越广泛,而铝瓶盖料应该如何选购也成为很多客户的一大问题,本次结合明泰铝业与众多公司合作的经验向大家讲解一下如何选购铝瓶盖料。 铝瓶盖料主要用于酒类、食品饮料、化妆品等包装中,可以说铝瓶盖料的用途都是和人吃、用相关,对产品品质要求非常高,因此选择优质厂家购买优质瓶盖料是行业的必然。铝瓶盖料主要使用1xxx、3xxx、8xxx系铝合金板材,这些产品虽然很多厂家都可以生产但是真正安全优质的产品却十分少。那么如何选购铝瓶盖料呢,明泰根据自身情况为大家分析。 1、看厂家实力 厂家实力是所有产品质量好坏的基础,一个大规模企业由于资金实力、研发团队、品控团队都有很大优势,在产品质量和后期服务商也更有保障,并非一个小厂产品都不优质,但总体来说大企业的产品品质一定优于小企业,明泰作为国内国际铝加工行业领头羊,在产品质量的追求上几乎达到苛刻的程度,这种情况生产的铝瓶盖料当然更受市场认可。 2、铝瓶盖料的工艺水平 由于铝瓶盖料的用途比较特殊,因此对于加工工艺的要求特别高,明泰建成国际领先的"1+4"热连轧生产线,实现每年45万吨超高产能,这种行业领先的工艺质量才更有保障。另外明泰铝业还能满足客户各项加工要求,适合多彩色印,产品广泛用于各种用途,安全优质。 3、铝瓶盖料产品检测 铝瓶盖料产品检测是非常重要的一环,客户对于供应商的产品一定要详细检测,例如明泰铝业铝瓶盖料上乘品质保证产品版型平整,几何尺寸精确,同时表面光泽度高、碱洗效果好,可达到刷水实验A级。铝带端面平整,无抛物线纹、塌陷纹等缺陷。
辉钼矿粒度与可浮性-粗磨粒度与矿石处理量
2019-02-12 10:08:06
与其他选矿相同。粗磨产品的粒度对球磨机处理才能有着很大影响。克莱麦克斯出产计算规则见下图。图 粗选细度与处理才能
(矿石邦德可磨性指数10~13 65目)
明显,放粗磨矿粒度,能增加选厂处理才能。栾川钼矿1983年在将粗磨粒度由62.35%-200目放粗到55.76%-200目后,选厂矿石处理量进步了20%,出产本钱下降约5%。
放粗磨矿细度时应注意到粗磨的“质量”——合理的粒度组成。金堆城钼选厂选用火油作捕收剂时,各粒级辉钼矿的收回率列于下表。明显太粗或太细都对粗选钼收回晦气,特别+0.2mm(+80目)等级钼矿石收回率很低,仅只68.3%。所以,应使粗磨产品粒度两端少,中间多。
表 金堆城选厂粗选段粒级收回率粒级(mm)-0.034-0.066+0.034-0.10+0.066-0.15+0.10-0.20+0.15+0.20钼收回率(%)90.3592.185.4879.9175.1968.3
金堆城用火油或柴油+辛太克斯(Syntex)捕收辉钼矿时发现,选用不同捕收剂,粗粒级产品的钼档次附近,但钼收回率却相差很大。挑选强力捕收剂有利于对钼矿石的粗磨粗选。
实践证明,关于辉钼矿和钼矿石,只需合理粗磨,挑选捕收才能强的捕收剂进行粗选,是可以既不影响钼收回率,又能较大起伏地进步选厂处理才能、下降能耗和本钱,进步厂商经济效益。
粗磨粗选虽然能抛弃很多合格的粗粒尾矿,取得高收回率的粗精矿。但此刻的精矿是含有很多连生体,乃至很贫连生体的钼产品。
大型烧结技术了解
2019-01-04 15:47:49
由于烧结机大型化适应了“资源高效使用”和“节能减排”的可持续发展需要,因此,大型烧结已经成为新世纪烧结技术发展的主流。为了充分发挥大型烧结机的诸多优势,注重大型烧结的操作技术具有重要意义。
一、控制与优化混合制粒参数。混合料制粒是烧结工艺的重要环节,其目的是通过混匀、加水润湿和制粒,得到成分均匀、粒度适宜、具有良好透气性的烧结混合料。太钢450m2烧结机采取了三段混合工序,设计之初即把强化制粒、改善烧结料层透气性这一问题纳入重点研究解决的工艺问题,同时兼顾系统的可靠性,取得了显著效果。
二、控制FeO含量。FeO含量过高,会影响铁酸钙粘结相的生成,使烧结矿强度和还原性降低;过低的FeO含量则会导致液相量不足而影响烧结矿强度。因此,需要根据原料结构和烧结操作制度把FeO含控制量在一个合理的范围。首钢京唐烧结的含铁原料由巴西赤铁矿粉和澳洲褐铁矿粉以及少量国内磁铁精粉组成,经过一段时间的生产实践,摸索到烧结矿FeO质量分数的合理水平,改善了烧结矿转鼓强度和低温还原粉化性能。
三、治理烧结系统漏风。由于烧结料层越厚,阻力越大,风箱负压越高,漏风率也相应增加,因此,有必要对烧结机滑道系统及机头、机尾密封板等部位进行优化设计,加强密封,改进台车、首尾风箱隔板、弹性滑道的结构;加强对整个抽风机系统的维护检修,及时堵漏风,将漏风率降至最低程度。同时,可通过跟踪烧结废气中O2含量的变化,随时掌握烧结系统漏风的实际情况。如宝钢2006年先后在3台烧结机投入运行了烧结烟气分析系统,及时地推断出烧结过程的漏风状况,有效治理烧结系统的漏风。
四、主抽风机节能操作。主抽风机是烧结生产中电耗最大的设备,为了保证烧结过程的完全,实践中主抽风机处于运行能力相对过剩的工况。为了最大限度地利用风量,减少能源浪费,应从生产操作控制途径出发,结合主抽风机实际工作状况,使烧结生产过程主抽风机风量的使用与实际生产状况相匹配,既使烧结气流分布趋于合理,又能节省电能,同时提高烧结矿产、质量。应制定烧结操作模式化控制制度,将机速范围、料层厚度、负压与主抽风门开度范围进行合理的、严格的匹配,保证风量与机速的最佳匹配。在优化制粒的基础上降低风门开度,实现高机速、厚料层、低风门、高负压的协同化。
五、烧结终点合理控制。烧结终点的控制直接关系到烧结矿各项物理、化学指标以及技术经济指标。烧结终点控制的主要目标是将烧结终点有效地控制在最优设定位置附近,同时保证烧结终点的稳定和整个烧结面积的合理有效利用。
火法炼金常用熔剂及其作用
2019-01-07 07:52:09
火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。
金粒度对金溶解速度的影响
2019-02-19 11:01:57
金粒的巨细是决议金溶解速度一个很首要的要素。假定金的溶解速度为3mg∕(cm2·h),寻么,直径44μm(325目)的球状金粒的彻底溶解需求14h;直径149μm(100目)的球状金粒则需48h。为此,在化前有必要首要除掉粗粒金,以进步金的收回率和尽可能缩短化作业时刻。
化工艺过程中,一般根据化作业的特色以筛目将金粒分为三种粒度:大于74μm(200目)为粗粒金,37~74μm(200~400目)为细粒金,小于37μm(400目)为微粒金。为便于作业,有时将大于495μm(32日)的金粒称为特粗粒金。
粗粒和特粗粒金,在化作业中溶解很慢,需求很长时刻才干彻底溶解。关于这类金粒,选用延伸化时刻往往是不合算的,由于绝大多数金矿石中的金首要呈细粒和微粒存在。国内外许多化法矿山所选用的收回矿石中粗粒和特粗粒金的办法,常常是在化前先进行混或许重选捕收,避免未溶完的粗粒金丢失于尾矿中。
细粒金在一般的化作业过程中都能很好地溶解。这是由于在相应的磨矿粒度下,大部分被解离呈单体金。
微细金粒在磨矿作业中被解离呈单体的常不多,其间的大多数仍处在其他矿藏或脉石的包裹中。处于硫化矿藏中的微粒金,化前常常需先进行氧化焙烧。石英脉石包裹的微粒金在化过程中是难于浸出的。用化法收回这类微粒金,一般需求将矿石磨得更细,以添加金粒的解离程度。这就会增大磨矿本钱,且给化矿浆的固液别离带来困难,增大和已溶金的丢失。关于某些微粒金矿石,常常由于矿石磨矿粒度不可能再细,而不可能选用化法处理。
故可以为,矿石中金粒巨细常常是决议能否选用化法的重要要素之一。
烧结机鼓风烧结焙烧及工艺流程实例
2019-01-07 17:38:01
鼓风烧结对原料的适应性大,可处理高铅物料,烧结过程料层阻力小、透气性较均匀、烟气二氧化硫浓度较高,基本排除了炉料熔结而堵塞风箱和粘结蓖条的现象,故大大减轻了工人劳动强度和改善环境卫生条件,因而在目前的铅和铅锌烧结中被广泛应用。
烧结机面积大小是按脱硫强度确定的。鼓风烧结机的脱硫强度为0.8-2.1t/(m2·d)。我国设计和采用过的鼓风烧结机有21.5m2、24m2、28m2,45m2, 60m2, 70m2,110m2等规格。
为尽量提高鼓风烧结烟气的二氧化硫浓度,减少漏风,鼓风烧结机渐趋于大型化。在生产中采取返烟提浓,富氧空气烧结或抽取烟罩内二氧化硫浓度较高的部分烟气等办法;以满足制酸要求。
铅精矿与铅锌混合精矿烧结烙烧的一般工艺流程见图1。
图1 烧结机鼓风烧结焙烧一般工艺流程
图2至图7为铅精矿矿和铅锌混合精矿烧结工艺流程实例。
图2 沈冶铅精矿烧结工艺流程实例
1-胶带运输机;2-精矿仓;3-石英仓;4-石灰石仓;5-焦炭仓;
6-烟尘仓;7-返粉仓;8一圆简混合机;9-圆筒制粒机;
10-梭式布料机;11-点火炉;12-70m2烧结机;13-单辊破碎机;
14-振动给料机;15-双辊分级机;16-链板运输机;17-波纹辊破碎机;
18-平面辊破碎机;19-圆筒冷却机
图3 株冶铅精矿烧结工艺流程实例
1一胶带运输机;2-焦粉仓;3-水碎渣仓;4-石英仓;5-河沙仓;
6-铅精矿仓;7-返粉仓;8-圆盘给料机;9-电子皮带秤;
10-圆筒混合机;11-圆筒制粒机;12-回转式布料机;13-点火炉;
14-60m2烧结机;15-单辊破碎帆;16-振动给料机;17-齿辊破碎机;
18-链板运输机;19-双辊分级机;20-漏斗秤;21-链板运输机;
22-波纹辊碎机;23-平面辊破碎机; 24-圆筒冷却机
图4 韶冶铅锌精矿烧结工艺流程实例
1-烟尘仓;2-精矿仓;3-石灰石仓;4-返粉仓;5-电子皮带秤;
6-胶带输送机;7-圆筒混合机;8-圆筒制粒机;9一梭式布料机;
10-点火炉;11-110m2烧结机;12-单辊破碎机;13-齿辊破碎机;
14-固定条筛;15-中间仓;16-变速振动给料机;17-波纹辊破碎机;
18-圆筒冷却机;19-平面辊破碎机;20-链板输送机
图5 科克尔-克里克冶炼厂铅锌烧结工艺流程
1-料仓;2-运输机;3-分料器;4-圆盘棍合机;5-分料器;
6-圆筒混合机;7-给料机; 8-点火炉;9-94m2烧结机;
10-风帆;11-单轴玻碎机;12-齿辊破碎机;13-筛子;
14-冷却盘;15-平辊破碎机;16-烧结矿料仓;17-返粉料仓
图6 杜依斯堡冶炼厂铅锌烧结工艺流程
1-精矿料仓;2-返粉料仓;3-锤磨机;4-给料机;5-皮带秤;
6-电磁分离器;7-原料仓;5-返粉仓;9-电子皮带秤;
10-熔剂仓;11-过滤机;12-圆筒混合机;13-滤袋收尘收尘器;
14-链斗输送机;15-点火炉;16-73m2烧结机;17-单辊破玻碎机;
l8-条筛;19-给料机;20-筛分溜槽;21-齿辊破碎机;
22-三辊破碎机;23-平面辊破碎机;24-圆筒冷却机;
25-收尘器;26-搅拌器;27-烧结矿料
图7 卡布韦冶炼厂铅锌烧结工艺流程图
1一配料仓;2一蓝粉过滤机;3一圆筒混合机;4一水分探测器;
5-圆盘给料机;6-点火炉;7-2×28.5m2烧结机;8-破碎机;
9-筛子;10-波纹辊破碎机;11-烧结矿料仓;12-圆筒冷却机;
13-平面辊破碎机;14-旋风除尘器;15-冷却塔;16-电收尘器;
17-搅拌槽;18-烟囱
多晶硅刃料
2017-06-06 17:50:11
随着太阳能电池所消耗的多晶硅的增加,切割刃料的需求也在增长。预计到2015年中国的多晶硅
产量
有望超过十万吨,对刃料需求量将超过30万吨,价值将超过50亿元,是2009年的4倍以上,复合增长率接近80%。更重要的是,随着太阳能装机的持续增长,刃料需求将持续增长,这是新大新材料股份有限公司的最大看点。 太阳能
行业
已经步入了逐步恢复的景气上行周期。预计2009~2011年全球太阳能电池
产量
将保持30%左右的增长,未来三年新增装机量分别达到8.2GW、10.6GW和 15.4GW。太阳能电池制造业的飞速发展将带动晶硅片制造企业的发展,为满足
市场
需求,晶硅片制造企业新建和扩产计划不断推出,这也大大增加了晶硅片切割刃料的
市场
需求。2008年我国晶硅片切割刃料总
产量
为7.7万吨,其中6.7万吨用于满足国内
市场
,而2008年国内
市场
需求量为7.6万吨,供不应求,国内晶硅片切割刃料
市场
仍将存在较大的增长空间。 现阶段,用于制造太阳能电池的晶硅片成本约占太阳能电池生产成本的70%,因此晶体硅原料的利用率以及加工成本在很大程度上决定了整个光伏发电系统的成本,降低晶硅片厚度及破片率是降低晶硅片成本的关键,因此,晶硅片切割刃料产品的质量尤为重要。由于新大新材生产的晶硅片切割刃料质量优良、稳定,切割效果良好,目前国内知名的晶硅片生产企业均为公司客户,这些客户晶硅片的产能都有大幅扩张的计划,公司将从中受益。 近年来,传统燃料能源日渐匮乏,同时对环境造成的危害日益突出,寻求新能源,减少污染,改变人类的能源结构成为世界各国共同的目标,光伏
产业
作为一项新的无污染能源受到各国政府共同关注。因此,为维持长远的可持续发展,各国政府不断推出促进光伏
产业
发展的有利政策,大大促进了光伏
产业
的发展,并带动了晶硅片切割刃料制造
行业
的迅速发展。
烧结技术大揭秘
2019-01-03 09:36:39
特种陶瓷的主要制备工艺过程包括坯料制备、成型和烧结三步。在成型工艺完成后,烧结可以控制晶粒的生长,对材料的使用性能影响至关重大。到目前为止,陶瓷烧结技术一直是人们不断突破的领域。
特种陶瓷烧结原理烧结是指成型后的坯体在高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固烧结体的致密化过程。在宏观和微观上对烧结现象进行观察,可以看到宏观上,烧结后的产物体积收缩,致密度提高,强度增加。微观上,气孔形状改变,晶体长大,成份变化(掺杂元素)。按照烧结过程中的变化,主要将烧结分为以下阶段:
1.烧结前期阶段
①粘结剂等的脱除:如石蜡在250~400℃全部汽化挥发。
②随着烧结温度升高。原子扩散加剧,空隙缩小,颗粒间由点接触转变为面接触,空隙缩小,连通孔隙变得封闭,并孤立分布。
③小颗粒率先出现晶界,晶界移动,晶粒变大。
2.烧结后期阶段
①孔隙的消除:晶界上的物质不断扩散到孔隙处,使孔隙逐渐消除。
②晶粒长大:晶界移动,晶粒长大。
陶瓷烧结主要可分为固相烧结和液相烧结,并分别对应着不同的反应机理。液相烧结的反应机理可简单归纳为熔化、重排、溶解-沉淀、气孔排除;按照烧结体的结构特征,将固相烧结机理划分为3个阶段:烧结初期、烧结中期和烧结后期。
固相烧结示意图烧结前期:在烧结初期,颗粒相互靠近,不同颗粒间接触点通过物质扩散和坯体收缩形成颈部。在这个阶段,颗粒内的晶粒不发生变化,颗粒的外形基本保持不变。
烧结中期:烧结颈部开始长大,原子向颗粒结合面迁移,颗粒间距离缩小,形成连续的孔隙网络。该阶段烧结体的密度和强度都增加。
烧结后期:一般当烧结体密度达到90%,烧结就进入烧结后期。此时,大多数孔隙被分隔,晶界上的物质继续向气孔扩散、填充,随着致密化继续进行,晶粒也继续长大。这个阶段烧结体主要通过小孔隙的消失和孔隙数量的减少来实现收缩,收缩缓慢。
特种陶瓷烧结方法
人们根据不同的依据分别对陶瓷的烧结方法进行分类,其特点及适用范围如下:
陶瓷烧结方法简介影响烧结的因素
1.粉末颗粒度
细颗粒增加烧结推动力,缩短原子扩散距离,提高颗粒在液相中的溶解度,导致烧结过程加速,但是过细的颗粒容易吸附大量气体,妨碍颗粒间的接触,阻碍烧结,因此必须根据烧结条件合理的选择粒度。
2.外加剂的作用
固相烧结中,外加剂可通过增加缺陷促进烧结;液相烧结中,外加剂可通过改变液相的性质来促进烧结。
3.烧结温度和时间
提高烧结温度对固相扩散等传质有利,但过高的温度会促使二次结晶,使材料性能恶化。烧结的低温阶段以表面扩散为主,高温阶段以体积扩散为主,低温烧结时间过长对致密化不利,是材料的性能变坏,因此通常采用高温短时烧结提高材料的致密度。
4.烧结气氛
在空气中烧结,会使晶体生成空位、造成缺陷,所以烧结不同的基体材料要对气氛进行选择。而气氛对烧结的影响又十分复杂。一般材料如TiO2、BeO、Al2O3等,在还原气氛中烧结,氧可以直接从晶体表面逸出,形成缺陷结构,从而利于烧结;非氧化物陶瓷,由于在高温下易被氧化,因而在氮气及惰性气体中进行烧结;PZT陶瓷,为防止Pb的挥发,要求加气氛片或气氛粉体进行密闭烧结。
5.成型压力
坯体的成型压力也对材料的性能影响至关重要。成型压力越大,坯体中颗粒接触的越紧密,烧结时扩散阻力越小;过高的成型压力又会是粉料发生脆性断裂,不利于烧结。
铝合金熔体的熔剂精炼
2019-01-02 15:29:20
本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。
在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。
铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。
1 熔剂的作用
盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。
2 熔剂的分类和选择
2.1熔剂的分类和要求
铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。
①熔点应低于铝合金的熔化温度。
②比重应小于铝合金的比重。
⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。
④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。
⑤吸湿性要小,蒸发压要低。
⑥不应含有或产生有害杂质及气体。
⑦要有适当的粘度及流动性。
⑧制造方便:价格便宜。
2.2熔剂的成分及熔盐酌作用
铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。
2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4
,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。
2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;
b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。
3铝合金熔炼中常用熔剂
熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。
3.1常用熔剂
为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。
铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。
表1 常用熔剂的成分及应用
溶剂种类 组分含量,%
NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金
覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg
系,Al-Cu-Si系Al-Cu-Mg-Zn系
Na2CO385。CaF15 一般铝合金
50 50 一般铝合金
KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金
31 14 CaF210 CaCL244 Al-Mg系合金
8 67 CaF210,MgF215 Al-Mg系合金
精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金
8 67 MgF215,CaF210 Al-Mg系合金
KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金
42 46 Bacl26 (2号熔剂) Al-Mg系合金
22 56 22 一般铝合金
50 35 15 一般铝合金
40 50 NaF10 一般铝合金
50 35 5 CaF210 一般铝合金
60 CaF220,NaF20 一般铝合金
36-45 50-55 3-7 CaF 21。5-4 一般铝合金
Na2SiF630-50,C2Cl650-70 一般铝合金
40。5 49。5 KF10 易拉罐合金
从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。
综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。
3。2熔剂用量 .
熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。
3。2。1.主覆盖剂用量
a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合
注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。
b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。
表3: 覆盖剂用量
类 别 用量(占投料量的%)
小碎片碎 屑号外渣子 6-810-1515-20
3.2.2精炼剂用量
不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。
表4 精炼剂用量
合金及制品 熔炼炉 静置炉
高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t
特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t
LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝
其它合金 普通熔剂5-6kg/t
注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加
②对大规格的圆锭,其熔剂用量也应适当增加。
3。3熔剂使用方法
熔剂精炼法熔炼铝合金生产中常用以下几种方法
①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。
②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。
③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。
④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。
在这五种方法中,电熔剂精炼效果最好。
冶炼厂熔剂破碎设备选择
2019-01-07 17:38:04
冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。
一、破碎设备的选择
冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。
若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,
近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。
图1 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
图2 二段一次闭路破碎筛分流程实例
图3 三段半闭路破碎筛分设计流程图实例
二、破碎机生产能力计算
破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。
(一)颚式、圆锥(标准、中型和短头)破碎机
1、开路破碎的生产能力计算
Q=K1K2K3K4Q0 (1)
式中:
Q-设计条件下,破碎机的生产能力,t/h;
Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:
Q0=q0e
K1-熔剂的可碎性系数,由表1选取;
K2-熔剂密度修正系数,由下式计算:
K2=γ/1.6≈γT/2.7
K3-给料粒度或破碎比修正系数,由表2或表3选取;
K4-水分修正系数,进料水分5%以下时,可取1;
q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;
e-破碎机排料口宽度,mm;
γ-熔剂的堆积密度,t/m3;
γT-熔剂的密度,t/m3。
表1 熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易 碎8以下1.1~1.2中等可碎8~161.0难 碎16~200.9~0.95
表2 粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23
表3 中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20
注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;
2、设有预先筛分时取小值;不设预先筛分时取大值。
表4 颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30
表5 开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0
表6 开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0
表7 开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中 型2.765.4 9.620.0短头型4.256.7 14.025.0
表8 颚式破碎机生产实例厂 别设备规格
mm熔剂种类给料粒度
mm排料口宽度,mm生产能力
t/h大 冶450×750石英石、
石英石300~40010050白银一冶600×900石英石、
石英石48075~20035~120铜陵二冶400×600石英石、
石英石32040~10025~60云 冶400×600石英石30040~10012~32
2、闭路破碎时破碎机通过的熔剂量生产能力计算
Qc=KQ0 (2)
式中:
Qc-闭路时破碎机的生产能力,t/h;
Q0-开路时破碎机的生产能力,t/h;
K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。
(二)光面对辊破碎机
Q=60πDLdnγK (3)
式中:
Q-对辊破碎机的生产能力,t/h;
D-辊筒直径,m;
L-辊筒长度,m;
d-排料口宽度,m;
n-辊筒转数,r/min;
γ-破碎熔剂的堆积密度,t/m3;
K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。
(三)反击式破碎机
Q=60K1C(h+ɑ)dbnγ (4)
式中:
Q-反击式破碎机的生产能力,t/h;
K1-理论生产能力与实际生产能力的修正系数,一般取0.1;
C-转子上板锤数目;
h-板锤高度,m;
ɑ-板锤与反击板间的间隙,即排料口宽度,m;
d-排料粒度,m;
b-板锤宽度,m;
n-转子的转数,r/min;
γ-熔剂的堆积密度,t/m3。
(四)锤式破碎机
Q=60ZLCdμKnγ (5)
式中:
Q-锤式破碎机的生产能力,t/h;
Z-排料篦条的缝隙个数;
L-篦条筛格的长度,m;
C-筛格的缝隙宽度,m;
d-排料粒度,m;
μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。
K-转子圆周方向的锤子排数,一般为3~6;
n-转子转数,r/min;
γ-熔剂的堆积密度,t/m3。
由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:
Q=(30~45)DLγ (6)
式中:
Q-锤式破碎机的生产能力,t/h;
D-按转子外缘计的转子直径,m;
L-转子长度,m;
γ-破碎产物的堆积密度,t/m3。
以上经验公式都有局限性,应注意其使用条件。
三、需要破碎机台数的计算
n=Qn/Q (7) 式中:
n-需要破碎机台数;
Qn-破碎作业的设计产量,t/h;
Q-破碎机的生产能力,t/(h·台)。
表8至表10为铜冶炼厂熔剂破碎机生产实例。
表9 标准圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3给料粒度
mm排料口宽度,mm生产能力
t/h大 冶900石英石、
石英石1.490~15025~2850白银一冶1200石英石、
石英石1.6411520~3042~135铜陵二冶900石英石、
石英石1.511012~2540
表10 短头圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3排料口宽度,mm产品粒度
mm生产能力
t/h备注大 冶1200石英石、
石英石1.48~106~850闭路白银一冶1200石英石、
石英石1.5~1.66~10~1550开路
金、银锭熔铸的原理-熔剂和氧化剂
2019-02-21 13:56:29
在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。
熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。
熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。
熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。
铅和铅锌烧结技术操作条件-富氧鼓风烧结
2019-01-07 17:38:01
采用富氧鼓风烧结对提高单位生产能力和烟气二氧化硫浓度是一项有效措施、效果是肯定的。但须详细研究炉料的物理化学性质与采用富氧的关系,才能发挥富氧鼓风的效果。根据国外生产情况,铅富氧烧结时,控制氧浓度最好为22.5%~24%;氧浓度超过24%时,烧结块含硫量高,脱硫率、烟气SO2浓度和单位烧结能力也都下阵。铅锌富氧烧结的浓度一般为21.5%~24%,鼓入第2~5号风箱。富氧鼓风烧结后,烧结机脱硫强度可提高15%~20%,烧结成品烟气中SO2浓度约提高0.5%。
烧结机尾部烟罩的通风烟气含SO20.1%~0.5%,含氧为19%~20%。出于对环境保护的考虑,应将这部分烟气返回烧结取代新鲜空气。但由于含氧低,故最好配入工业氧使氧含量达到21%以上,以利于烧结过程的进行。
表1为鼓风中富氧浓度变化与烧结主要工艺指标的关系。鼓风含氧
%含硫,%台车速度m/min富氧单耗m3/t混合料烧结块生产能率%混合料烧结块烧结块硫酸盐硫217.22.1851.181.3071810021~22.57.391.821.371.3579511522.5~237.081.891.201.3576611523~23.56.971.841.291.3778111723.5~246.851.981.161.3778511724~257.452.131.371.27815108.5鼓风含氧%脱硫强度t/(m2·d)烟气SO2浓度%烧结块强度(+10mm)烧结块软化温度,℃脱硫率%开始最终211.2665.2985.89845103580.021~22.51.946.2090.8855102889.922.5~231.776.7591.5842101088.723~23.51.786.8090.2865100288.923.5~241.656.6092.184098287.524~251.686.3093.784294487.5
电解铜边角料
2017-06-06 17:49:56
电解铜边角料是整块电解铜在使用加工过程中剩余的小块电解铜,也称为废铜。 废铜按其来源有两类。一类是新废铜,它是铜工业生产过程中产生的废料。冶金厂的叫"本厂废铜"("home scrap")或"周转铜"("runaround")。铜加工厂产生的废铜屑及直接返回供应厂的叫做"工业废杂铜"、"现货废杂铜"("prompt")或新废杂铜。另一类是旧废铜,它是使用后被废弃的物品,如从旧建筑物及运输系统抛弃或拆卸的叫旧废杂铜。铜和铜基材料,不论处于裸露状态,还是被包在最终产品里,在产品寿命周期的各个阶段都可回收再生。 我国目前还没有废铜电解铜边角料方面的标准, 但随着我国工业化速度的加快,电解铜边角料的回收、贸易以及再生利用产业所面临的社会经济环境已发生了重大变化,不仅废电解铜边角料的品种构成变化较大,而且大量的国外电解铜边角料以及各类可利用的废料涌入国门,给我国电解铜的生产提供了丰富的原料来源,同时也对电解铜边角料的生产加工提出了新的要求。 我国进口电解铜边角料主要来自美、日、德、俄,其中美国高居榜首,而美国对电解铜边角料的管理又有严格的规定。以美国的分类标准作为典型加以介绍。美国的电解铜边角料依据纯度进行分类。美国电解铜边角料再生研究所甚至把铜及其合金细分为53类。 铜是一种玫瑰红色金属,柔软、有金属光泽,密度为8.92克/厘米3,溶点为1083.5℃,沸点为2595℃,富于延展性,易弯曲,强度较好,在导电性和导热性方面,铜仅次于银,居第二位,它可以进行冷热压力加工,由于其具有面心立方晶格,铜及其化合物无磁性。熔点时铜的蒸气压很小,因而在冶金过程温度下,不易挥发。 更多关于电解铜边角料的资讯,请登录上海有色网查询。
钨钢-钨钢烧结成型
2019-05-30 18:44:06
钨钢,含钨的钢材 。钨钢制品中约含钨18%,钨钢归于硬质合金,又称之为钨钛合金。硬度为维氏10K,仅次于钻石。正因如此,钨钢的产品(常见的有钨钢手表),具有不易被磨损的特性。 常用于车床刀具、冲击钻钻头、钨钢玻璃刀刀头、瓷砖割刀之上,坚固不怕退火,但质脆。归于稀有金属之列。钨钢烧结成型 钨钢烧结成型便是将粉末压制成坯料,再进烧结炉加热到必定温度(烧结温度),并坚持必定的时刻(保温时刻),然后冷却下来,然后得到所需功能的钨钢材料。 钨钢烧结进程能够分为四个根本阶段: 1:脱除成形剂及预烧阶段,在这个阶段烧结体发作如下改动: 成型剂的脱除,烧结初期跟着温度的升高,成型剂逐步分化或汽化,扫除出烧结体,与此同时,成型剂或多或少给烧结体增碳,增碳量将随成型剂的品种、数量以及烧结技术的不同而改动。 粉末表面氧化物被复原,在烧结温度下,氢能够复原钴和钨的氧化物,若在真空脱除成型剂和烧结时,碳氧反响还不激烈。粉末颗粒间的接触应力逐步消除,粘结金属粉末开端发作回复和再结晶,表面分散开端发作,压块强度有所进步。 2:固相烧结阶段(800℃--共晶温度) 在呈现液相曾经的温度下,除了继续进行上一阶段所发作的进程外,固相反响和分散加重,塑性活动增强,烧结体呈现显着的缩短。 3:液相烧结阶段(共晶温度--烧结温度) 当烧结体呈现液相今后,缩短很快完结,接着发作结晶改变,构成合金的根本安排和结构。 4:冷却阶段(烧结温度--室温) 在这一阶段,钨钢的安排和相成分随冷却条件的不同而发作某些改动,能够使用这一特色,对钨钢进行热处理以进步其物理机械功能。
粉末涂料粒度控制因素探讨
2019-01-08 17:02:10
粉末涂料粒度对粉末性能的影响
粉末涂料粒子在工件表面的吸附,和流动速度以及带电量有关。根据库伦定律,粒子的带电量与外加电场、粒子直径、粒子介电常数等有关。在一定时间里,粉末涂料粒子的带电量表示如下:由图1可以看出粉末的带电量与粉末粒径的大小成正比,增大粉末的粒径,粉末的带电量增加,上粉率提高;相反的减小粉末粒径,降低粉末带电量,上粉率下降。但是在大粒径颗粒多的情况,涂膜流平性不好,涂层表面或内部容易有空隙,加热固化后中间的空气释放出来,会产生“针眼”,因此控制粉末粒径是控制粉末质量的关键问题之一来斯技术部根据大量图表数据分析得出适合静电喷涂的粉末涂料,要控制粉末粒径D50在25-35μm
粉末涂料粒度在生产中的控制从粉碎到包装这个过程中,具体到某一粉碎机结构,比如齿圈、磨盘、销钉等都是固定了,包括管路的长短粗细,电机的匹配,过滤袋的面积,主磨的转速等等,都是设备厂家需要设计、验证、改进的。我们重点探讨的是,挤出片料粉碎成成品的粉末粒度的控制,以及通过检测和记录,来调整控制参数的过程。实际控制过程中,可以调节的就四个变量:进料量、副磨转速、风机风量和脉冲间隔时间。值得一提的是筛网的目数,并不能决定粉末粒子的细度,仅仅是将此目数以上的颗粒去除而已。这就是我们常说的,筛网用得细,我们的粉末却不细。
铅和铅锌鼓风烧结技术操作条件-烧结培烧
2019-01-07 17:38:04
一、料层厚度
鼓风烧结分成二次铺料,第一次铺料为点火料层一般为25~40mm,第二次铺料为主料层一般为150~360mm,因此总料层为180~400mm。生产中一次料层变化不大,而主要是调节二次料层的厚度来适应原料的变化。当混合料含铅与硫较低、熔结温度较高时取较大值,反之则取较小值。
二、台车速度
烧结机台车的速度一般不宜过大,以减轻台车与密封装置的磨损。为此,大型烧结机应尽量加大宽度,这样可减少烧结机周边漏风率。通常台车速度为600~1800mm/min。
台车速度与加料量,料层总厚度、烧结机宽度等因素有关,其计算公式如下:
V=Q/60Bhγ
式中V-台车速度,m/min;
Q-加入物料量,t/h;
B-台车宽度,m;
h-料层总厚度,m;
γ-物料堆积密度,t/ m3;一般为1.8~2.2。
生产中台车速度还必须与主料层厚度、垂直烧结速度相适应。当台车行进到鼓风烧结段最后一个风箱上时,应完成整个烧结过程,料层烧穿。常说的烧穿点,应位于鼓风烧结段与返烟段交接处附近。
料层垂直烧结所需时间与台车走完烧结所需段所播时间应相等,其关系式如下:
L=V(h/V0)
式中L-鼓风烧结段长度(即烧穿点),m;
V-台车速度,m/min;
H-主料层厚度,mm;
V0-垂直烧结速度,mm/min,通过试验测定或取类似工厂数据,一般为10~20。
为便于调节台车速度,控制烧结过程的技术条件,烧结机应采用无级调速传动机构。
三、风压及温度
(一) 风量
当其他条件一定时,通过鼓风烧结料层的风量与烧结机的产量成正比。鼓风烧结所需空气量可根据冶金计算确定,也可根据生产实践选取,通常鼓风烧结的鼓风强度为15~30m3(m2·min),为了提高烟气SO2浓度,在稳定各项生产技术指标的前提下尽可能取下限。因为,当烟罩内压力相同时。SO2浓度与单位炉料鼓风量有关,例如每吨炉料消耗470m3新鲜空气时,SO2浓度4.6%;430m3时为5.2%;350m3时为5.5%~6.0%。当然SO2浓度也与烟罩内的压力有关,亦即与烟罩漏风率有关。为减少漏风,烧结机的长宽比一般为9~15。
(二)风压
鼓风机风压一般为3000~6000Pa。为便于调节和控制烧结过程,通常设1~2台新鲜空气风机。当选用2台风机时,常在烧结段前段设1台新鲜空气风机,烧结段后段设另1台新鲜空气风机。返烟段采用耐高温的返烟风机,由于管道系统阻力和料层阻力大,故风机压力应取上限。
(三)温度鼓风箱温度一般不高,返烟段最高只达300℃左右。但烧结料面上烟罩内温度却变化较大。从前到后温度逐渐增高,返烟段可高达500~600℃。国外有的工厂(例如澳大利亚科克尔-克里克厂)将返烟高温段烟罩(大约为烟罩总长的1/3)做成夹套,通入空气冷却,产生的热风温度达270℃左右,并返回点火炉使用,这样既延长了烟罩寿命,又充分利用了废热。
表1为株冶铅鼓风烧结供风系统操作数据实例。
表1 株冶60m2铅鼓风烧结机供风系统操作数据实例风机鼓风强度m3/(m2·min)风箱压力
Pa风箱温度℃对应烟罩内温度℃烟气SO2浓度%点火吸风机吸风强度50~55600~100080~150点火炉800~950≤11#新鲜空气机18~202500~4000常温100~250 2#新鲜空风机19.5~20.53000~400035~50250~350 返烟风机19~292500~3500200~250350~5001~2主风机14~16.30~50 200~2503~3.5
表2为韶冶110m2铅锌鼓风烧结机供风系统操作数据实例。
表2 韶冶110m2铅锌鼓风烧结机供风系统操作数据实例风机风箱号风箱温度
℃风箱压力Pa鼓风强度
m3/(m2·min)料面上部烟气温度,℃SO2浓度,%点火吸风机060~80900~150017~201000~11000.3~0.71#新鲜
空气风机1常温2500~400020~2560~100 2常温2600~410017~2070~1101.932#新鲜
空气风机3常温2500~400016~2075~1104.104常温2600~420016~20110~1404.835常温2600~420020~25150~2527.306常温2200~350016~20200~3007.831#返烟风机780~1202900~450016~20250~4507.3880~1202400~420016~20300~5006.35980~1202400~420016~20400~6006.02#返烟风机10150~2502500~420015~20350~5506.011150~2502500~420015~20350~500 12150~2502500~420015~20350~500 13150~2502500~420015~20350~5002.5214150~2502500~420015~20350~450
注:1#返烟风机烟气成分:SO20.3%~0.5%,O219%~20%。2#返烟风机烟气成分:SO21.9%~2.2%。 O211%~14%。出口总管烟气成分:5O24.5%~6.5%, SO20.01%~0.02%,O212%~15%。H2O12%~15%。含尘15~25g/m3。
表3为科克尔-克里克铅锌烧结机供风系统操作数据实例。
表3 科克尔-克里克铅锌烧结机供风系统操作数据实例风机风箱号温度℃风箱压力Pa供风强度m3·/(m2·min)SO2浓度%点火吸风机吸风箱8087315.222.01#新鲜空气风机1252000~250014.23 22300~300014.2332800~330016.592#新鲜空气机4 2500~280017.55 5 2500~280016.592#新鲜空气机6252500~280016.59 72000~230019.0581000~150016.919750~125011.8810500~75010.27返烟风机11300500~75013.592~312500~75013.2713500~7505.99 总烟道270 12.096~7
注:点火吸风箱3.35m2,每个鼓风箱面积为5.95m2。
四、鼓风制度
鼓风烧结烟气中的SO2浓度,主要取决于合理的鼓风制度,适当的供风量和正常的烧结过程。烧结不好不但不能产出合格的烧结块,而且难以获得符合制酸要求的烟气。鼓风制度有两种:单纯鼓风烧结和鼓风返烟烧结。
(一)单纯鼓风烧结
在单纯鼓风烧结中,要获得符合制酸要求的烟气有两种方法:其一是仅抽取中部鼓风箱上方SO2浓度较高的部分烟气用于制酸,而头、尾部低浓度烟气则放空,这种方法已不符合环保要求。其二是严格地控制鼓风量和烧结过程的终点,使烧结成品烟气中的SO2浓度能达到制酸要求。这种做法要求炉料透气性必须保持均匀而稳定,尾部烧穿点不能剧烈地前后移动。如努瓦耶勒-高道特工厂控制鼓风强度为16~20m3/(m2·min),实现了单纯鼓风烧结烟气制酸,烟气SO2浓度仅比一般返烟提浓法低0.5%。
(二)鼓风返烟烧结
在正常的烧结过程中,点火烟气、烧结机尾部烟气中SO2浓度较低,仅0.3%~2%,含O217%~19%。
返烟烧结就是将这部分低浓度SO2烟气返回通过烧结机后段烧结层,以充分利用这部分烟气中的O2和提高其中SO2浓度,从而最终达到提高烧结成品烟气SO2浓度的目的。
返烟鼓风烧结风量,根据经验分配如下:以成品烟气量为Q,新鲜空气量为0.8Q,点火吸风烟气量为0.2Q,返烟量根据浓度变化,通常波动于0.3~0.7Q之间。但生产上有逐渐降低返烟量的趋向,返烟管道内的烟气温度约150~350℃,SO2浓度在2.0%左右。成品烟气温度180~350℃,SO2浓度3.5%~6.5%。
鼓风返烟烧结鼓风制度实例见图l至图6。
图1 60m2铅烧结机返烟提浓系统图
图2 70m2铅烧结机返烟提浓系统图
图3 110m2铅锌烧结机返烟提浓系统图
图4 埃文茅斯冶炼厂4#炉铅锌烧结机返烟提浓系统图
图5 科克尔-克里克冶炼厂铅锌烧结机返烟提浓系统图
图6 杜依斯堡冶炼厂铅锌烧结机返烟提浓系统图
单纯鼓风烧结鼓风制度实例见图7。
图7 努瓦耶勒-高道特冶炼厂铅锌烧结机单纯鼓风系统图