废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
铝助汽车减肥
2019-01-15 09:49:15
随着顾客们提出“绿色”的理念,汽车驱动器更小,更轻,更能节省能量了。 尽管政府人员提出低碳经济生活以及更少的二氧化碳排放,但这并不能意味着的小,比如说交通工具。 Evora使用了更轻的铝和复合构件,包括复合顶板以及车身,使汽车减肥!
硅橡胶电缆
2017-06-06 17:50:06
硅橡胶电缆 硅橡胶控制电缆[1]适用于交流额定电压450-750V移动或固定装置辐射。该电缆具有良好的柔软度、防水、耐腐蚀、耐压等优点。工作温度为-60℃-180℃。硅橡胶控制电缆适用于交流额定电压450-750V移动或固定装置辐射。 硅橡胶绝缘耐热控制电缆 一:产品特点及用途 本产品适用于交流额定电压450/750V及以下移动或固定敷设用电器仪表连接线或信号传输, 电缆具有较好的热稳定性,能在高温、低温、腐蚀性中保持良好的电性能和柔软性,适合 冶金、电力、石化等
行业
具有移动耐温等特殊要求场合使用。 二:产品执行标准 Q/HHTZH004.2 阻燃耐火特性试验执行GB12666-90标准 三:使用特性 硅橡胶控制电缆1. 交流额定电压:U0/U 450/750KV 最高工作温度:180℃ 2. 最低环境温度:硅橡胶护套:固定敷设-60℃,非固定敷设-20℃ 3. 电缆安装敷设温度应不低于-20℃。 4. 电缆允许弯曲半径:非铠装电缆最小为电缆外径的6倍 四:基本型号及名称 KGG 硅橡胶绝缘和护套控制电缆 KGGR 硅橡胶绝缘和护套控制软电缆 KGGP 硅橡胶绝缘和护套铜丝编织屏蔽控制电缆 KGGRP 硅橡胶绝缘和护套铜丝编织屏蔽控制软电缆 KGGRP1 硅橡胶绝缘和护套镀锡编织屏蔽控制软电缆 KFG 氟塑料绝缘和硅橡胶护套控制电缆 备注:1 如需阻燃型硅橡胶电缆,型号前加ZR; YGC 硅橡胶绝缘及护套移动用电力电缆 电线电缆
行业
是中国仅次于汽车
行业
的第二大
行业
,产品品种满足率和国内
市场
占有率均超过90%。在世界范围内,中国电线电缆总产值已超过美国,成为世界上第一大电线电缆生产国。伴随着中国电线电缆
行业
高速发展,新增企业数量不断上升,
行业
整体技术水平得到大幅提高。中国经济持续快速的增长,为线缆产品提供了巨大的
市场
空间,中国
市场
强烈的诱惑力,使得世界都把目光聚焦于中国
市场
,在改革开放短短的几十年,中国线缆制造业所形成的庞大生产能力让世界刮目相看。随着中国电力工业、数据通信业、城市轨道交通业、汽车业以及造船等
行业
规模的不断扩大,对电线电缆的需求也将迅速增长,未来电线电缆业还有巨大的发展潜力。2008年11月,我国为应对世界金融危机,政府决定投入4万亿元拉动内需,其中有大约40%以上用于城乡电网建设与改造。全国电线电缆
行业
又有了良好的
市场
机遇,各地电线电缆企业抓住机遇,迎接新一轮城乡电网建设与改造。 硅橡胶电缆具有的柔软度、防水、耐腐蚀、耐压等优点使硅橡胶电缆在许多方面具有不可替代的功能,在一些特殊的工作环境中,硅橡胶电缆的作用是非常显著的,所以也可以说硅橡胶电缆的应用前景也是非常好的。
金矿堆淋助浸剂
2019-01-17 09:43:57
金矿堆淋助浸剂
金博公司研制生产的金矿堆浸助浸剂(ZNJ-102)是一种具有增加溶液渗透性、防止粉矿结垢和加速金溶解浸出能力的无毒环保的化工助剂。
本产品具有如下优点:
(1)使用方便,无毒无腐蚀,无刺激性气味,不会污染周围环境和损害人体健康;
(2)使用生产过程顺利,喷淋供液均匀,提高了金的浸出率,充分利用矿产资源,多产黄金;
(3)提高了活性炭的载金容量,降低了生产材料消耗和生产成本;
(4)缩短了生产周期,相对提高了处理矿量,实用性强。
产品使用方法与用量:
堆淋生产中,在调碱度期间将本产品加入到喷淋液的储液池中,待溶解完毕后随喷淋液喷入矿堆,每一次喷淋循环都要连续加入一定量的本产品,直至全部用量加入完毕。
该产品的用量参照下列公式计算:
Q=kγS
式中: S—矿堆中生石灰的加入量,单位为吨。
γ—生石灰纯度百分比(%),一般为50~80%。
K—用量系数,取0.1 ~0.2 。
一般在石灰用量的0.5-1.0倍即可。
产品使用效果:
下面两个表是本产品在云南和陕西两个黄金堆淋厂使用时所获得的测试结果。根据多家堆淋厂使用黄金助浸剂后的经验,金的浸出率普遍提高3-8个百分点,浸出时间缩短5-10天。
改性膨润土在橡胶中的应用
2019-01-08 09:52:33
一般地说,改性膨润土(有机膨润土、胺化膨润土)是将钠基膨润土加入有机季胺盐的乙二醇溶液中,经高速搅拌、置换反应而成。改性膨润土是用作轮胎、胶板等橡胶制品优良的活性或功能性填料,可提高橡胶制品的性能,降低橡胶制品的成本,提高橡胶与帘子线的粘接强度和胶料的加工性能。改性膨润土用作橡胶填料,是国际上八十年代新技术,原独联体、美、英等国家广泛应用。改性膨润土最早是由吉林化学工业公司研究院开发成功,产品在桦甸、吉林、长春、黑龙江等地的轮胎厂进行试用,效果显著,不仅轮胎使用寿命延长,轮胎生产成本也大大降低。此后,浙江的丰虹、华特开发出有机膨润土及超细/纳米有机膨润土,为有机膨润土(也叫改性膨润土)的应用提供原料的保障。吉林化学工业公司研究院开展了超细改性膨润土对EPDM无卤阻燃胶料性能的影响的研究。
闪速炉熔剂及常用燃料
2019-03-06 09:01:40
一、熔剂
闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。
表1 闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2 As<0.1 F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8 Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3 Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4 直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。
二、燃料
闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。
因为烟气用于制酸,因而对燃料含硫无要求。
各厂闪速炉用燃料的实例见表2,表3。
表2 闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5 注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。
表3 闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm 14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90% 有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。
鼓风烧结配料所采用的熔剂
2019-01-07 17:38:01
鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。
一、硅质熔剂 一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。
二、铁质熔剂 多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。
三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。
表1为熔剂的化学成分实例。
表1 熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95 石灰石20.4155.731.340.330.59 石灰石30.353.970.620.230.89 石英石10.191.0891.80.14 石英石20.52.2197.12 石英石31.261.0894.86 河砂12.41.3575.853.04 河砂21.510.687.48 河砂33.02.074~80 0.30.10.1 烧渣147.44.158.2 烧渣243.866.29.31 烧渣347.554.3510.21 平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60 0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47 5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35 0.01 8~10140
注:Au、Ag的单位为g/t。
炭黑是如何补强橡胶的?
2019-01-04 13:39:38
21世纪以来,由于科技的进步,橡胶的性能不断地被开发并应用,目前橡胶制品已存在于人们生活的方方面面,支持着人们的衣食住行。橡胶的作用如此巨大,除了橡胶本身拥有其他材料无可比拟的优点以外,填料还能赋予橡胶更多宝贵的性能,使其应用更加广泛。何为橡胶的补强?
填料是橡胶工业的主要原料之一,属粉体材料。填料用量相当大,几乎与橡胶本身用量相当。在橡胶加工中又将填料分为补强剂和填充剂。
橡胶的补强是指在橡胶中加入一种物质后,能够提升硫化橡胶的耐磨性、抗撕裂强度、拉伸强度、模量、抗溶胀性等的行为。凡具有这种作用的物质称为补强剂。
常用补强剂:炭黑、白炭黑、短纤维、无机纳米材料等。
橡胶用炭黑
炭黑是橡胶工业中最重要的补强性填料,可以毫不夸张的说,没有炭黑工业就没有现在蓬勃发展的橡胶工业。
按炭黑在橡胶中的作用将炭黑分为硬质炭黑和软质炭黑。
硬质炭黑:粒径在40nm以下,补强性能高的炭黑,如超耐磨、中超耐磨、高耐磨炭黑等。
软质炭黑:粒径在40nm以上,补强性低的炭黑,如半补强炭黑、热裂法炭黑等。
橡胶用炭黑一般按照ASIM-1765-81标准来分类命名。命名系统由四部分组成。第一个英文字母代表硫化速度,N代表正常硫化速度,S代表缓慢硫化速度。后面跟着三个数字,第一个代表炭黑平均粒径范围,共分为0~9个等级。第二和第三个数字则是由美国材料试验协会负责炭黑和术语的D24.41委员会指定的,反映不同的结构程度,也就是炭黑大概的高低结构确定的,有一定的任意性。相对而言,数字越大,结构越高。
ASIM的炭黑分类命名炭黑补强机理
近半个世纪以来,人们对炭黑补强机理曾进行了广泛的讨论提出了多种补强学说。
容积效应
弱键和强键学说
Bueche的炭黑粒子与橡胶链的有限伸长学说
壳层模型理论
橡胶大分子链滑动学说
前四种机理虽然都能说明一定的问题,但有局限性。随着时间进展,专家们对机理不断的深化完善,橡胶大分子滑动学说的炭黑补强机理就是一个比较完善的理论。
橡胶大分子链滑动学说
这是比较新和比较全面的炭黑补强理论。该理论的核心是橡胶大分子能在炭黑表面上滑动,由此解释了补强现象。炭黑粒子表面的活性不均一,有少数的活性点以及一系列的能量不同的吸附点。吸附在炭黑表面上的橡胶链可以有各种不同的结合能量,有多数弱的范德华力的吸附以致少量强的化学吸附。吸附的橡胶链段在应力作用下会滑动伸长。
大分子滑动学说概念图(1)表示胶料原始状态,长短不等的橡胶分子链被吸附在炭黑离子表面上。(2)表示胶料伸长时状态。这条最短的链不是断裂而是沿炭黑表面滑动,原始状态吸附的长度用点标出,可看出滑动的长度。这时应力有多数伸直的链承担,起应力均匀的作用,缓解应力集中为补强的第一个重要因素。(3)当伸长再增大,链再滑动,使橡胶链高度取向,承担大的应力,有高的模量,为补强的第二个重要因素。由于滑动的摩擦使胶料有滞后损耗。损耗会消去一部分外力功,化为热量,使橡胶不受破坏,为补强的重要因素。
(4)是收缩后胶料的状况,表明再伸长时的应力软化效应,胶料回缩后炭黑粒子间橡胶链的长度差不多一样,再伸长就不需要再滑动一次,所需应力下降。
炭黑补强橡胶性能
补强橡胶的目的是为了提高橡胶的拉伸性能、抗撕裂能力、定伸应力和耐磨性等性能,使橡胶制品更有弹性,经久耐用。炭黑主要通过炭黑粒径的大小、结构度、和用量来调节补强橡胶的效果。
(1)拉伸性能
炭黑粒径小,表面活性大,结构度高,拉伸强度高;随炭黑用量增大,拉伸强度先增后降。
(2)撕裂强度
贪黑的粒径小,撕裂强度高;粒径相同时,对结晶性橡胶,结构度低的碳黑,撕裂强度高;对非结晶性橡胶,结构度高的炭黑,撕裂强度高;随炭黑用量增大,撕裂强度先增后降。
(3)定伸应力和硬度
炭黑粒径小,结构度高,表面活性大,用量大,胶料的定伸应力和硬度高,其中以结构度影响最大。炭黑对胶料定伸应力和硬度的影响要比胶种、硫化体系大得多。
(4)耐磨性
炭黑粒径小,表面活性大,分散性好,胶料耐磨性好。
(5)弹性
粒径小、结构度高、表面活性大,用量大,胶料的弹性差。其中炭黑用量影响最大。
由此可见,根据橡胶制品的不同选择合适的炭黑种类对橡胶进行补强至关重要。结合ASIM对炭黑的分类,你知道该选择哪种炭黑了吗?
火法炼金常用熔剂及其作用
2019-01-07 07:52:09
火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。
铝合金熔体的熔剂精炼
2019-01-02 15:29:20
本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。
在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。
铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。
1 熔剂的作用
盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。
2 熔剂的分类和选择
2.1熔剂的分类和要求
铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。
①熔点应低于铝合金的熔化温度。
②比重应小于铝合金的比重。
⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。
④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。
⑤吸湿性要小,蒸发压要低。
⑥不应含有或产生有害杂质及气体。
⑦要有适当的粘度及流动性。
⑧制造方便:价格便宜。
2.2熔剂的成分及熔盐酌作用
铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。
2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4
,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。
2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;
b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。
3铝合金熔炼中常用熔剂
熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。
3.1常用熔剂
为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。
铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。
表1 常用熔剂的成分及应用
溶剂种类 组分含量,%
NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金
覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg
系,Al-Cu-Si系Al-Cu-Mg-Zn系
Na2CO385。CaF15 一般铝合金
50 50 一般铝合金
KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金
31 14 CaF210 CaCL244 Al-Mg系合金
8 67 CaF210,MgF215 Al-Mg系合金
精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金
8 67 MgF215,CaF210 Al-Mg系合金
KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金
42 46 Bacl26 (2号熔剂) Al-Mg系合金
22 56 22 一般铝合金
50 35 15 一般铝合金
40 50 NaF10 一般铝合金
50 35 5 CaF210 一般铝合金
60 CaF220,NaF20 一般铝合金
36-45 50-55 3-7 CaF 21。5-4 一般铝合金
Na2SiF630-50,C2Cl650-70 一般铝合金
40。5 49。5 KF10 易拉罐合金
从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。
综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。
3。2熔剂用量 .
熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。
3。2。1.主覆盖剂用量
a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合
注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。
b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。
表3: 覆盖剂用量
类 别 用量(占投料量的%)
小碎片碎 屑号外渣子 6-810-1515-20
3.2.2精炼剂用量
不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。
表4 精炼剂用量
合金及制品 熔炼炉 静置炉
高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t
特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t
LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝
其它合金 普通熔剂5-6kg/t
注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加
②对大规格的圆锭,其熔剂用量也应适当增加。
3。3熔剂使用方法
熔剂精炼法熔炼铝合金生产中常用以下几种方法
①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。
②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。
③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。
④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。
在这五种方法中,电熔剂精炼效果最好。
冶炼厂熔剂破碎设备选择
2019-01-07 17:38:04
冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。
一、破碎设备的选择
冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。
若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,
近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。
图1 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
图2 二段一次闭路破碎筛分流程实例
图3 三段半闭路破碎筛分设计流程图实例
二、破碎机生产能力计算
破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。
(一)颚式、圆锥(标准、中型和短头)破碎机
1、开路破碎的生产能力计算
Q=K1K2K3K4Q0 (1)
式中:
Q-设计条件下,破碎机的生产能力,t/h;
Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:
Q0=q0e
K1-熔剂的可碎性系数,由表1选取;
K2-熔剂密度修正系数,由下式计算:
K2=γ/1.6≈γT/2.7
K3-给料粒度或破碎比修正系数,由表2或表3选取;
K4-水分修正系数,进料水分5%以下时,可取1;
q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;
e-破碎机排料口宽度,mm;
γ-熔剂的堆积密度,t/m3;
γT-熔剂的密度,t/m3。
表1 熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易 碎8以下1.1~1.2中等可碎8~161.0难 碎16~200.9~0.95
表2 粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23
表3 中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20
注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;
2、设有预先筛分时取小值;不设预先筛分时取大值。
表4 颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30
表5 开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0
表6 开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0
表7 开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中 型2.765.4 9.620.0短头型4.256.7 14.025.0
表8 颚式破碎机生产实例厂 别设备规格
mm熔剂种类给料粒度
mm排料口宽度,mm生产能力
t/h大 冶450×750石英石、
石英石300~40010050白银一冶600×900石英石、
石英石48075~20035~120铜陵二冶400×600石英石、
石英石32040~10025~60云 冶400×600石英石30040~10012~32
2、闭路破碎时破碎机通过的熔剂量生产能力计算
Qc=KQ0 (2)
式中:
Qc-闭路时破碎机的生产能力,t/h;
Q0-开路时破碎机的生产能力,t/h;
K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。
(二)光面对辊破碎机
Q=60πDLdnγK (3)
式中:
Q-对辊破碎机的生产能力,t/h;
D-辊筒直径,m;
L-辊筒长度,m;
d-排料口宽度,m;
n-辊筒转数,r/min;
γ-破碎熔剂的堆积密度,t/m3;
K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。
(三)反击式破碎机
Q=60K1C(h+ɑ)dbnγ (4)
式中:
Q-反击式破碎机的生产能力,t/h;
K1-理论生产能力与实际生产能力的修正系数,一般取0.1;
C-转子上板锤数目;
h-板锤高度,m;
ɑ-板锤与反击板间的间隙,即排料口宽度,m;
d-排料粒度,m;
b-板锤宽度,m;
n-转子的转数,r/min;
γ-熔剂的堆积密度,t/m3。
(四)锤式破碎机
Q=60ZLCdμKnγ (5)
式中:
Q-锤式破碎机的生产能力,t/h;
Z-排料篦条的缝隙个数;
L-篦条筛格的长度,m;
C-筛格的缝隙宽度,m;
d-排料粒度,m;
μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。
K-转子圆周方向的锤子排数,一般为3~6;
n-转子转数,r/min;
γ-熔剂的堆积密度,t/m3。
由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:
Q=(30~45)DLγ (6)
式中:
Q-锤式破碎机的生产能力,t/h;
D-按转子外缘计的转子直径,m;
L-转子长度,m;
γ-破碎产物的堆积密度,t/m3。
以上经验公式都有局限性,应注意其使用条件。
三、需要破碎机台数的计算
n=Qn/Q (7) 式中:
n-需要破碎机台数;
Qn-破碎作业的设计产量,t/h;
Q-破碎机的生产能力,t/(h·台)。
表8至表10为铜冶炼厂熔剂破碎机生产实例。
表9 标准圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3给料粒度
mm排料口宽度,mm生产能力
t/h大 冶900石英石、
石英石1.490~15025~2850白银一冶1200石英石、
石英石1.6411520~3042~135铜陵二冶900石英石、
石英石1.511012~2540
表10 短头圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3排料口宽度,mm产品粒度
mm生产能力
t/h备注大 冶1200石英石、
石英石1.48~106~850闭路白银一冶1200石英石、
石英石1.5~1.66~10~1550开路
金、银锭熔铸的原理-熔剂和氧化剂
2019-02-21 13:56:29
在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。
熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。
熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。
熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。
铝助“莱特飞行器一号”上天
2019-01-10 09:43:59
铝在航空器上应用已渡过111个春秋,铝对航空航天工业的发展作出了永载史册的功绩,并在继续发挥着不可替代的作用。是铝使人类实现了飞天梦想。1903年12月17日美国人莱特(Wright)兄弟发明与制造的“莱特飞行器一号”(WrightFlyer1)在美国俄亥俄州滨海小城戴顿(Daton)腾空而起,尽管只飞行了短暂的59s,还不到1min,飞行距离也仅36.58m,却有着划时代的历史意义,是由人(弟弟奥维尔·莱特)驾驶的与由动力装置驱动的人造飞行器,标志着人类飞翔的开启与探索宇宙时代的来临,戴顿市也成了现代航空工业发祥地。 “莱特飞行器一号”的发动机缸体(engineblock)是用匹兹堡冶金公司(PittsburghReductionCompany,1907年改名为美国铝业公司,Aluminum Compang of America)生产的含92%Al及8%Cu的硬铝合金(hardaluminumalloy)铸造的,这是铝在飞行器上首次应用。自此以后,铝就与飞行器及航天器结下了不解之缘,可以毫不夸张地说,没有铝就没有今天这样兴旺发达的航空航天事业,就很难实现“嫦娥”奔月。从“莱特飞行器一号”到计划于2025年投入运营的波音飞机公司研发的概念飞机,从中国自主研发的ARJ21“翔凤”支线客机到欧洲空客公司生产的当下的空中巨无霸客机A380,从燃油飞机到太阳能飞机,从中国2008年9月25日发射的“神州”七号载人宇宙飞船火箭到美国国家航空航天管理局预计于2020年运送宇航员重返月球的战神一号载人运载火箭都离不开铝,都有铝合金的丰功伟绩。 在此还得向大家讲一个有关飞机发明之急的小故事,巴西人认为飞行器是巴西杜蒙特发明的:1906年11月12日他驾驶一架他设计制造的名叫“Blis14”的飞行器在法国巴黎郊区进行了一次公开试飞,飞行高度6m,飞行距离220m。圣杜蒙特的这次试飞虽然比美国莱特兄弟的首次飞行晚了3年,但在当时的欧洲却被视为世界上靠前次成功的动力飞行。 巴西知名物理学家、里约热内卢天文馆馆长巴若斯经过长期研究调查后认为,莱特兄弟当时所发明的飞行器并不是依靠自身动力推动起飞的,他们的飞行没有达到真正意义上“飞”的飞行。他们利用了一个斜坡来使其“飞机”起飞,在起飞时,哥哥威尔伯还跟着飞行器狂奔,托举它的翅膀,直到飞起来,而且它们是在“偷偷摸摸”进行的,旁边没有专业人员监督,就像比赛场上没有裁判,因此他们的成绩不能算数,而圣杜蒙特的飞行则真正依靠飞行器的自身引擎推动,没有借助任何其他工具,而且它的飞行是在众多专业人员的监督下进行的,众目睽睽,飞行高度和距离远远超过莱特兄弟首次试飞,相比来说,他们的那次所谓“历史性飞行”不过是一次“长时间长距离跳跃”。
有色金属业助神舟九号飞天
2019-01-14 11:15:51
中铝西南铝企业承担了“神九”铝合金关键材料的研发 6月16日,承担着实施中国首次载人空间交会对接任务的“神舟九号”飞船在酒泉卫星发射中心成功发射升空。中铝西南铝企业为“神舟九号”飞船提供了多个品种、规格的高品质铝合金材料,再次用实际行动彰显了西南铝以国家急需为己任的社会责任感,彰显了西南铝作为中国铝加工业排头兵的强大研发、生产实力。 6月16日晚上,西南铝干部职工群情激奋,聚在一起,收看了“神舟九号”发射的实况直播。当“神舟九号”点火升空,飞入太空的时候,大家挥动手中的小旗,欢呼雀跃,纷纷鼓掌表示祝贺,他们为自己亲手生产的新材料装备在“神舟九号”而感到自豪,更为祖国科技、航天技术的巨大进步感到骄傲。 据了解,从“神一”到“神九”,西南铝承担着为运载火箭和航天飞船提供铝合金材料的研制重任。航天工程所需的关键铝合金材料具有高冶金质量、高性能的技术指标要求及品种规格多、构件尺寸大的特点,其所用材料的组织、性能及表面精度等要求极其严格。国外长期实行技术垄断和封锁。 在“神舟”系列飞船所需铝合金关键材料的研发过程中,西南铝充分发挥技术优势,进行新材料、新产品的自主研发,开展工艺技术研究,实施技术改造,有效地解决了一系列工艺难题,取得了熔铸、热加工、热处理等一系列科研成果,攻克了材料研发生产中的多项关键技术难关,实现了批量生产,确保了工程需要。西南铝为“神舟”系列飞船提供的铝合金材料,无论在强度、塑性、耐腐蚀性和抗疲劳度等各方面的综合性能都达到了国际先进水平,达到了航天所需的严格要求,保证了飞船的安全可靠。 此次西南铝为“神舟九号”提供了包括板材、锻环在内的多种铝合金材料,主要应用于飞船蒙皮、结构件、火箭推进器连接环件和飞船结构件。早在1989年,西南铝就为运载火箭研制出直径3.5米的巨型大锻环,并已应用于发射“神舟”系列飞船和“嫦娥”系列卫星。目前,西南铝已成功生产出直径5米以上的巨型铝合金锻环,为推进中国未来的太空计划打下了材料基础。 40多年来,西南铝已为国家“大飞机”项目、人造卫星、“长征”系列火箭、“神舟”系列宇宙飞船、“嫦娥”系列卫星、北斗导航系列卫星等国家重点工程提供了大量高品质新材料。 “神舟九号”飞船发射圆满成功,西南铝干部职工欢欣鼓舞。他们表示,每一次飞船发射,都感受到祖国越来越强大;每一次飞船升空,都感受到研发新材料的责任更大,担子更重。在今后的工作中,他们要再接再厉,研制出更多、更好的产品装备在我们的航天器上,为国家航空事业的发展做出更大贡献。 东轻为“神九”提供了大量高强、高韧、耐腐蚀以及超塑性铝合金材料 6月16日,备受瞩目的“神舟九号”飞船在长征二号F遥九运载火箭推力下搭载三名航天员在酒泉卫星发射中心发射升空,执行中国航天首次载人交会对接任务,并开展空间科学实验。 “神九”的发射成功,让东轻人再一次感受到无比的喜悦和自豪,因为飞船和运载火箭上很多铝合金材料都来自东北轻合金有限公司。
铝合金自成铆接技术助汽车轻量化
2018-12-28 14:46:50
随着能源危机加剧,汽车的节能减排技术成为我们目前国内外非常热的话题。轻量化应该是节能减排的有效手段,不管是传统汽车还是新能源汽车,它的重量、减重都是我们面临的话题。随着轿车每减轻10%燃油消耗就减少6%到8%,这个问题已经得到国内外各个汽车企业的高度重视。
目前随着轻量化材料的应用,焊接和连接工艺的发展趋势来看主要是传统的机械连接等,这些将会越来越少。对铝合金的摩擦搅拌点焊来看以后会逐渐增加。特别是有可能是一些负荷的连接技术可能会成为以后无论是学术界,还是工业界研究的热点。比如说交界点焊,包括铆接和电阻焊怎么结合,这是一个发展趋势。
在铝合金自成铆接技术方面,SPR铆接有很多优势,特别是适合于铝合金方面的连接。它的强度比单个点焊提高30%,连接变形也比点焊,或者弧焊连得少。铝和钢的连接可以采用冷技术过渡,这种技术比较大的优势是在焊接过程当中金属在过渡时候电流可以减少到几乎为零,同时焊丝的回抽运动帮助溶滴脱落,热输入可以降低30%。变形小、无飞溅。
冶炼厂熔剂磨碎分级流程的选择与计算
2019-01-07 17:38:01
一、流程选择
当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。
图1 三段开路破碎筛分流程图实例
图2 熔剂磨碎分级流程实例
二、流程计算
以图2为例,其计算方法如下:
Q1=Q4
Q5=CQ1
Q2=Q3=Q1+Q5
式中:
Q1Q2……-各产物数量,t/h;
C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。
表1 磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限
mmC值
%磨碎机与分级机闭路Ⅰ0.5~0.3
0.3~1.0150~350
250~600磨碎机与旋流器比例Ⅰ0.4~0.2
0.2~1.0200~350
300~600
鼓风炉化矿采用的原料、熔剂和燃料
2019-01-07 07:51:21
一、铅锌氧化矿
表1为会泽铅锌矿的铅锌氧化矿化学成分实例。
表1 铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1 铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4 二、熔剂
熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。 三、燃料
表2为焦炭性质及化学成分实例。
表2 焦炭性质及化学成分实例焦种块度
mm固定碳
%挥发分
%灰分
%灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81
电工铝杆用高效排杂净化熔剂介绍
2019-01-08 13:40:18
电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。
高炉炼铁对碱性熔剂3个质量要求
2019-01-04 11:57:16
高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.
冶炼厂熔剂破碎筛分流程的计算
2019-01-07 17:38:01
破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。
计算破碎筛分流程必须具备以下原始资料:
一、按原矿计的生产能力。
二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。
图1 原矿粒度特性曲线
三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。
图2 颚式破碎机产品粒度特性曲线
图3 标准圆锥破碎机产品粒度特性曲线
图4 中型圆锥破碎机闭路破碎产品粒度特性曲线
图5 短头圆锥破碎机开路破碎产品粒度特性曲线
(因本图表不清,需要者可来电免费索取)
图6 短头圆锥破碎机闭路破碎产品粒度特性曲线
(因故图表不清,需要者可来电免费索取)
图7 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。
破碎筛分流程的基本类型及计算公式列于表1。
表1 破碎筛分流程的基本类型及计算公式
Q1-原矿两,t/h;
Q2,Q3,Q4……Qn-各产物的重量;
β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;
E-筛分效率,%;
Cc-破碎机的循环负荷,%;
Cs-筛分机的循环负荷,%。
破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。
表2 d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口
e筛孔
ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85
以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。
图8 三段一次闭路破碎筛分流程图实例
图9 熔剂破碎筛分流程计算图
该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。
按破碎比: ί=ί 1 ί 2 ί 3
ί=300/6=50
参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。
(一)各段破碎产品最大粒度的计算:
d2=D最大/ ί 1=300/3=100mm
d3=d2/ ί 2=100/3=33.3mm
d7=d3/ ί 3=33.3/5.5=6mm
(二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)
e2=d2/Z=100/1.6=62.5mm(取65mm)
e3=d3/Z=33.3/1.9=17.5mm(取20mm)
短头圆锥破碎机的排矿口e7,参照表2。
e7=0.8,d7=0.8×6=4.8mm(取5mm)
(三)筛孔尺寸和筛分效率
根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。
设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。
(四)破碎作业计算
参照表1,
Q1=Q2=Q3=Q4+Q5=Q8=50t/h
Q6=Q7=C Q3
循环负荷率
式中:
β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;
β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。
参照表1,
Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下
=50×0.25×0.65+25×0.52×0.65
=16.58t/h
式中:
β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;
β30~6-产物3中小于6mm粒级含量,%,查图3得出;
β70~6-产物7中小于6mm粒级含量,%,查图6得出。
Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h
任一产物的产率
式中:
Qn-任一产物的产量,t/h;
Q1-流程的给矿两,t/h。
(计算从略)
橡胶及塑料填料用高岭土表面改性研究进展
2019-03-07 10:03:00
高岭土是一种重要的粘土矿藏与工业矿藏,也是地壳上散布最广、运用最为广泛的粘土矿藏和工业矿产之一。迄今为止,高岭土因具有可塑性、粘结性、涣散性、吸附性、化学安稳性等优秀性质,已被广泛用于造纸、陶瓷、橡胶、塑料、耐火材料等范畴。跟着工业技能和各范畴的科学技能的迅速开展,高岭土制品的品种越来越多,这些制品不只与人们的日子密切相关,并且在国防技能、电器、原子能、喷气式飞机等范畴发挥着重要效果。因而,跟着高岭土改性技能的不断进步,人们所重视的改性高岭土运用功用将逐步从传统的强度、耐磨性等根本性质向耐水性、电绝缘性等特殊功用性改动。
1、我国高岭土资源
我国高岭土资源因成因类型完全、储量丰厚、质地优秀闻名于世,已探明储量达35亿t。至2013年,我国高岭土年产量已达632万t。我国也是世界上最早发现并运用高岭土的国家之一,可是在曩昔的几个世纪,我国高岭土工业技能开展与国外比较相对缓慢。直到1980年,跟着我国国民经济的飞速开展,对高岭土的功用提出了越来越高的要求,高岭土的消费结构也由传统的陶瓷工业转向造纸、塑料、石化等工业范畴。进人21世纪后,跟着我国经济与科技水平的不断进步,研讨者对高分子材料、非金属矿藏粉体、粉体表面改性等理论系统知道得以进一步加深,相关范畴也对高岭土的专用化、精细化和功用化提出了更高的要求。粉体表面改性技能已成为进步高岭土产品附加值必不可少的深加工技能手段之一。
2、高岭土常用的改性办法
高岭土表面改性办法很多,常用的办法首要有以下几种。
(1)锻烧改性
锻烧高岭土在国际上已有50多年的前史,经过锻烧加工高岭土脱出了结构水和结晶水、炭质及其他挥发性物质,变成偏高岭石。锻烧高岭土具有白度高,容重小,比表面积和孔体积大,吸油性、隐瞒性和耐磨性好,绝缘性和热安稳性高级特性。锻烧高岭土有必要严格控制锻烧温度,超越脱经所需的温度时,锻烧高岭土会发生新的物相。
(2)偶联剂改性
偶联剂适用于各种不同的有机高聚物和无机填料的复合材料系统,高岭土表面能够与偶联剂效果,经偶联剂改性后的高岭土与有机相的相容性进步。常用的偶联剂有硅烷偶联剂、钛酸酯偶联剂、铝钛偶联剂以及其他的金属偶联剂。偶联剂分子的一端能够与高岭土表面的Si-O或Al-O化学结合,另一端延伸在外赋予高岭土表面亲有机相的性质。偶联剂改性工艺相对简略,但现在只要硅烷偶联剂及钛酸酯偶联剂的效果机理比较清楚,而关于其他偶联剂的机理还有待进一步研讨。
(3)有机高分子改性
运用改性表面活性剂、聚合物涣散剂、有机小分子涣散剂等能够吸附在高岭土表面,然后改动高岭土表面带电情况。这类表面改性剂首要包含十二烷基磺酸钠、聚酸及其盐、聚酰胺等。经过表面改性后的高岭土颗粒,首要适用于悬浮状系统,最常用的运用就是制备造纸涂布液。
(4)表面包覆改性
表面包覆改性是经过物理吸附或化学吸附,将一种有机物或无机物包覆在高岭土表面,然后到达表面改性的效果。例如:运用水解沉淀法,以高岭土或锻烧高岭土为核,表面包覆纳米氧化锌,改性后的氧化锌/高岭土复合材料吸光度大幅添加,可用作抗紫外粉体材料。
(5)插层改性
插层改性是将极性小分子插层到高岭土层间,使层距离加大,且层间亲水性变为亲油性的高岭土复合材料。依据不同的需求掺杂到各种基体中,以高岭土片层剥离状况的方式均匀涣散。因高岭土层间表面经基活性比较低,有利于其他有机大分子经过置换进程进人高岭土层间,增强聚合物基质抗老化功用。
3、高岭土作为橡胶及塑料填料的改性研讨进展
高岭土是塑料和橡胶制品的重要填料,在以往作为填料运用时,一般以为产品功用首要取决于颗粒的巨细散布和颗粒的比表面积。可是现代科学研讨证明,经选矿提纯和破坏加工后的高岭土粉体表面带有很多经基和含氧官能团,具有酸性,经锻烧加工后的高岭土酸性更强。此外,因为高岭土比表面积大、表面能较高,导致其与有机高聚物系统的相容性差,因而在用于高聚物基(如环氧树脂或乙烯基树脂)材料的填料时,有必要对其进行表面改性,以取得更优功用的制品。
(1)橡胶用高岭土填料改性
高岭土作为填料在橡胶工业中运用广泛,将其参加乳胶混合物中,能改善橡胶的力学功用,进步橡胶制品的机械强度,还可增强耐磨性和化学安稳性,延伸橡胶的硬化时刻。实验发现,先对高岭土进行改性,再作为填料参加橡胶制品中,还可对制品的其他运用功用有所改善。
张印民研讨了高岭土的粒度、表面性质、填充量以及填料的结构对高岭土/橡胶复合材料的气体隔绝功用的影响规则,研讨结果表明:跟着填料粒子粒径的减小,填充橡胶材料的气密性逐步进步,当高岭土粒度到达几百个纳米时,复合材料的相对透气率为0.46,下降程度到达54%,运用特定改性剂对高岭土进行改性后,气密性可进一步进步。
廖泽栋等经过絮凝沉降法将高岭土与黑液制成复合填料,结果表明:高岭土复合填料能够进步橡胶(NBR)和丁橡胶(SBR)等材料的加工安全性,进步其交联密度以及力学功用,并且还对SBR的热安稳性有明显改善。
杜艳艳等选用化学插层-超细研磨-酸浸渍活化-枯燥-表面改性的办法制备了一种活性纳米高岭土,该材料用于丁橡胶补强填料时具有更好的涣散性,可明显进步其拉伸强度和伸长率,一起使制品具有杰出的疏水性。
(2)塑料用高岭土填料改性
高岭土作为填料不只能够进步塑料制品的力学功用,并且还能够赋予制品一些特殊的运用功用,例如:杰出的电绝缘性、胶合强度、耐水功用等。改性后的高岭土作为填料所制得的塑料制品,不只表面润滑、并且可削减热裂和缩短,具有利于抛光、进步加工尺度的精确度、耐化学腐蚀性等长处。
顾传锦等选用改性高岭土作为聚(PTFE)填料,经过熔融插层工艺,极大改善了塑料制品的耐磨性,其效果机理为高岭土的层片结构间被PTFE分子链插人,到达了增强基体并阻挠PTFE成片脱落的意图。
赵鹏等在高岭土填料对酚醛树脂杨木胶合板胶合功用影响的研讨中发现,用改性高岭土替代面粉作为填料,不只能够进步其胶合强度,其耐水性也得到较大的进步,极大地改善了胶合板各层间易呈现的开胶分层问题。
运用其优秀的电绝缘功用,还可作为PVC等聚乙烯绝缘电线的包皮,特别是改性后的锻烧高岭土填充于电线电缆护套中,不只能进步胶料)的模量和拉伸强度、改善耐磨性和抗切断延伸性,并且可取得在湿润环境下安稳的电绝缘功用。
4、定论与展望
我国高岭土资源类型完全、储量丰厚,因其具有共同的理化特性,改性后可得到具有不同表面性质的功用粉体材料,因而作为橡胶、塑料填料具有很高的研讨价值与宽广的商场开展空间。深人研讨高岭土不同改性办法的效果机理,为其制备高功用材料供给理论基础,与实践运用功用的实验研讨具有相同重要的含义。因而,在机理探究与实验研讨、资源合理运用及商场开发、工艺技能和配备等方面应不断优化改善,然后使我国从高岭土资源大国变为高岭土工业强国。
纳米膨润土(蒙脱土)在橡胶中的应用
2019-03-05 09:04:34
纳米复合材料是指粉体涣散相至少一维尺度介于1 nm~100 nm之复合材料。除了球状粒径小之粉体外,高长径比(Aspect ratio)之层状补强结构更遭到全世界高分子工业注目,层状材料经剥离涣散后可充份发挥分子层级之结构特性。蒙脱土(Montmorillonite)是归于蒙脱土族的矿藏,蒙脱土族矿藏共发现11个,他们是滑间皂土、贝得土、锂皂土、蒙脱土、钠脱土、皂土、锌皂土、斯皂土、锂蒙脱土、铬蒙脱土和铜蒙脱土等,但从内部结构来讲可分为蒙脱土亚族(二八面体)与皂土亚族(三八面体)。蒙脱土是典型的层状硅酸盐矿藏之一,可是与其他层状硅酸盐矿藏不同之点是层与层之间空地特别大,这样就可在层与层中含有不定数量的水分子及交流性阳离子。经过衍射仪慢速扫描的实验结果表明蒙脱土的粒度已挨近纳米级,是天然纳米材料 。纳米级蒙脱土自然界很难找到这样的原矿,需求提纯取得。制备纳米级蒙脱土的膨润土,应是蒙脱石含量>95%。纳米级有机膨润土蒙脱土,要求膨润土蒙脱石纯度在98%以上。 纳米级有机膨润土在橡胶中运用首要用于橡胶制品的纳米改性,改进其气密性,定伸引力和耐磨性、防腐性、耐侯性、耐化学性。经过参加少数(如3%-5%)的纳米蒙脱土,能够使橡胶的强度、伸长率等功能大幅度进步,有的功能可进步数倍,可代替现在的白碳黑,乃至完全替代传统的碳黑及其它填料,大大削减或铲除污染。将是二十一世纪橡胶工业的一场革新。聚酯弹性体/蒙脱土纳米复合材料、三元乙丙橡胶/蒙脱土纳米复合材料都得到很好的研讨。纳米复合物不只比传统增加剂分量轻,并且首要改进了在硬度、阻燃、阻气方面的功能。 株洲年代新材料科技股份有限公司对所承当的轨道交通减震用高功能复合弹性结构材料的研讨项目,进行了橡胶/蒙脱土纳米复合技能和炭黑、白炭黑表面接枝技能的研讨,使硫化天然橡胶的力学功能到达拉伸强度>30Mpa。 聚酯/纳米蒙脱土制备的体育运动场地铺装材料得到很好的研讨。 纳米级有机膨润土还能够制成纳米级有机膨润土浓缩母料(改质而简单涣散之产品)用于橡胶及弹性体制品中,可加快纳米热塑性弹性体之开发。现在,尼龙6/纳米蒙脱土复合材料、PP/纳米蒙脱土复合材料、PET/纳米蒙脱土复合材料已老练,尼龙6/纳米蒙脱土复合材料、PP/纳米蒙脱土复合材料、PET/纳米蒙脱土复合材料与弹性体混合涣散后,能够得到热塑性弹性体复合材料,持续衍生开展橡塑共混产品,替代部分传统热塑性弹性体材料。聚烯烃热塑性弹性体(TPO)具有优秀的弹性体特性及便利的加工功能,使它作为传统需硫化橡胶之竞赛换代品。这种TPO纳米复合材料具有高模数与轻量化(减轻约7~21%外观配件之分量),也由于填充矿藏量低于5%,所以兼具低温耐性,故适合于轿车运用上替代现在所用之较贵重的工程塑料,在加工方面由于有较广大的加工温度区间,所以能够缩短成型时刻且成型压力较低,外观缺点较少。现在现已有多种规格产品广泛运用于轿车、电线电缆、建筑、家电、医疗器件等范畴。特别用于轿车外装配件、保险杆与仪表板,其加工性如涂装性、模内涂色性、涂料接着性与涂装耐久性等,均与未填充矿藏者功能相近似。。热塑性聚烯烃弹性体(TPO)是由橡胶(rubber)和聚烯烃(Polyolefin)构成,其橡胶成分常为乙烯橡胶(EPDM)或橡胶(NBR)或丁基橡胶(IIR);聚烯烃成分首要为聚(PP)和聚乙烯(PE)塑料。现在用得最多的是EPDM与PP之复合材料。 美国AMCOL International Corporation 的全资子公司―Nanocor公司就出产纳米蒙脱土-聚合物母胶(masterbatches)等产品,与橡胶或弹性体复合后成为纳米黏土复合热塑性弹性体。现在Nanocor公司也现已与PolyOne Corporation订立战略联盟,由PolyOne Corporation直销浓缩母料产品给供应商自行研制Polyolefins 或TPO、TPU 或SEBS或EVA 等产品增加运用。事实上还有其它各种热塑性弹性体可待开发。 现在不管纳米蒙脱土、纳米蒙脱土塑料或纳米蒙脱土-聚合物母胶(masterbatches)均现已有许多成功产品化产品,因而可利用这些新式产品,结合橡胶或弹性体材料特性,来开展纳米热塑性弹性体,这关于国内橡胶工业来说,也是快速切入纳米科技运用的重要时机之一。
冶炼厂熔剂破碎筛分流程的选择
2019-01-07 17:38:01
破碎作业一般分为粗、中、细碎三段,其粒度的划分见表1。
表1 粗、中、细碎粒度的划分项 目给料粒度,mm出料最大粒度,mm粗 碎>30100~150中 碎100~30030~100细 碎50~1005~30
注:冶炼厂一般要求矿山供应300mm左右的熔剂。
表1的划分是相对的,可以大致说明破碎分段的情况。有些破碎机可兼有粗、中碎或中、细碎的作用。破碎段数的确定主要依给料粒度、产品粒度及所选用的破碎设备型号、性能而定。
熔剂破碎设备的破碎比用i=D/d表示,式中i为破碎比,D与d分别为破碎前后物料的最大粒度。
总破碎比等于各段破碎比的乘积。主要破碎机的破碎比范围可参照表2选取,熔剂硬度大的取值小,硬度小的取大值。
表2 破碎机在不同情况下的破碎比范围破碎段数破碎机型式流程类型破碎比第Ⅰ段
第Ⅱ段
第Ⅱ段或第Ⅲ段
第Ⅲ段
颚式破碎机
标准圆锥破碎机
中型圆锥破碎机
同上
对辊破碎机(光面)
同上
对辊破碎机(齿面)
反击式破碎机
同上
捶式破碎机(单转子)
捶式破碎机(双转子)
细碎颚式破碎机
短头圆锥破碎机
同上开路
开路
开路
闭路
开路
闭路
开路
开路
闭路
开路
开路
开路
开路
闭路3~5
3~5
3~6
4~8
3~8
3~15
10~15
10~15
8~40
10~15
30~40
10~21
3~6
4~8
几种主要破碎机排料中大于排矿口尺寸的过粗颗粒含量β和最大颗粒与排矿口尺寸之比Z见表3。
表3 破碎机排矿中大于排矿口颗粒含量β和最大颗粒与排矿口尺寸之比Z矿石硬级颚式破碎机标准圆锥破碎机短头圆锥破碎机β,%Zβ,%Zβ,%Z硬
中硬
软38
25
131.75
1.60
1.4053
35
222.4
1.9
1.675
60
382.9~3.0
2.2~2.7
1.8~2.2
注:1、短头圆锥破碎机闭路时取小值,开路时取大值;
2、最大颗粒度为95%的熔剂通过筛孔尺寸的粒度,用d最大表示。
熔剂破碎作业的总破碎比:i=D最大/d最大。式中D最大和d最大分别为进厂熔剂和最终破碎产品的最大粒度。
在实际应用中,要求的总破碎比往往较大,物料需经几段破碎才能达到最终的粒度。破碎机常和筛子组成破碎筛分流程。
破碎筛分流程中的筛分主要有预先筛分和检查筛分之分。预先筛分的作用是把给料中小于破碎机排料粒度的粒级分出,以减轻破碎机的负荷和磨损检查筛分的目的是控制破碎产品的粒度以及充分发挥破碎机的能力,其筛孔尺寸大致为所要求粒度的大小,筛上产品为不合格产品,返回破碎机再行破碎,筛下产品为合格产品。
冶炼厂用作熔剂破碎的设备能力,一般均比较富余,同时为避免增加设备和厂房,通常不单设预先筛分而在最后一段设检查筛分,也可兼作预先筛分之用。凡是不带筛分或仅有预先筛分的为开路流程,凡是有检查筛分的为闭路流程。
在设计中通常用普氏硬度系数f作为物料的硬级分类,f=16~20为难碎性矿石或硬矿石;f=8~16为中等可碎性矿石或硬矿石;f<8为易碎性矿石或软矿石。f大致等于抗压强度(MPa)的1/10,可以用试验室测定的为标准。
图1至图9为熔剂破碎筛分流程图实例。
图1 三段一次闭路破碎筛分流程图实例
图2 三段开路破碎筛分流程图实例
图3 二段一次闭路破碎筛分流程图实例(1)
图4 二段一次闭路破碎筛分流程图实例(2)
图5 二段一次闭路破碎筛分流程图实例(3)
图6 二段开路破碎设计流程图实例
图7 二段一次闭路破碎筛分流程图实例(4)
图8 二段开路破碎筛分设计流程图实例
图9 三段半闭路破碎筛分设计流程图实例
开路流程的优点是比较简单,设备少,扬尘点也较少。缺点是当要求破碎产品粒度较细时,破碎效率较低。闭路流程的破碎效率较高,但需要设备较多,流程较复杂。
闭路流程的检查筛分是先筛去合格产品,筛上物入最后一段破碎,破碎产物返回筛分。当入筛粒度较大且有一部分产物符合某种产品要求时,宜采用双层筛。
重有色冶金炉对入炉熔剂的粒度要求
2019-01-07 17:38:01
火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。
表1 重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉
铜密闭鼓风炉
铜熔炼反射炉
铜白银炉
铜电炉
铜闪速炉
铜转炉
铜火法精炼炉
铅鼓风炉
铅锌鼓风炉
锡反射炉
锡电炉
氧气底吹炼铅炉
镍闪速炉
镍电炉<3
40~50
<6
<6
3~5
<0.5
5~25
2~3
<6
<3~6
<10
<3
<0.3
5~10<3
30~80
<6
<6
3~5
(石灰)
(石灰)
<6
<6
<5~6
<10
<3
湿式配料时<0.2
其它块度20~100
铜连续吹炼炉
石英石3~25
无机矿物填料在橡胶产品中的作用及用量选择
2019-03-07 11:06:31
橡胶工业很多运用填料作配合剂,其用量仅次于橡胶耗用量。补强填料用于橡胶,不仅能进步橡胶制品的强度,并且能改进胶料的加工功能,并赋予制品杰出的耐磨耗、耐撕裂、耐热、耐寒、耐油等多种功能,可延长制品的运用寿命。非补强填料用于橡胶,首要起填充增容作用,某些种类也兼有阻隔、脱模或上色的作用。
橡胶产品对填料的要求
1、一般要求
(1)补强填料粒子表面要有强的化学活性,能与橡胶发生杰出的结合,能改进硫化胶的力学功能、耐老化功能和粘合功能。非补强填料粒子表面呈化学慵懒,和橡胶不发生化学结合,不影响硫化胶的力学功能及耐候性、耐酸碱性和耐水性。
(2)有较高的化学纯度,细度要均匀,对橡胶有杰出的湿润性和涣散性。
(3)不易蒸发,无臭、无味、无毒,有较好的储存稳定性。
(4)用于白色、淡色和五颜六色橡胶制品的填料,还要求不污染,不变色。
(5)价廉易得。
2、功能要求
(1)细度:一般说,补强填料颗粒越细,比表面积越大,和橡胶触摸面积也越大,补强作用越好。非补强填料颗粒越细,参加橡胶后混炼作用越好。但有必要涣散均匀,如涣散不均匀,即便颗粒很细,混炼作用亦欠好。
(2)颗粒形状与晶型:填料颗粒形状以球形较好,片形或针形填料在硫化胶拉伸时简单发生定向摆放,导致永久变形增大,抗撕裂功能下降。补强填猜中炭黑和白炭黑为无定形,其他填料也有结晶型的。比方硅微粉虽与白炭黑化学成分均为二氧化硅,但前者为结晶型,后者为无定型。结晶型填料又分为异轴结晶和等轴结晶两种。同轴结晶x、y、z三轴类似,各向同性。异轴结晶x、y、z三轴有明显差异,各向异性在常用非金属矿藏填猜中,陶土、石墨、硅藻土属异轴结晶系。碳酸钙为等轴结晶系。要求耐磨和耐撕裂功能好的橡胶制品,不宜用异轴结晶系物质作补强填料。
(3)表面性质:粉体填料混入橡胶,其粒子被橡胶分子围住,粒子表面被橡胶湿润的程度对补强效能有很大影响。不易湿润的颗粒,在橡胶中不易涣散,简单结团,下降其补强效能。这种情况能够经过添加某些有助于添加湿润的物质得以改进。例如补强效能很小的碳酸钙,参加脂肪酸后,下降了表面张力,添加了湿润程度,进步了补强作用。
炭黑是橡胶的首要补强填料,其成分90%~99%是元素碳,其他是少数蒸发分和水分。在炭黑出产过程中,其表面吸附或结合了少数羧基、醌基、酚基、内酯基等化学基团。曩昔从前以为炭黑的补强效能仅取决于其粒径(比表面积)巨细及结构性,而与其表面的化学性质无关。近年来很多研讨结果表明,炭黑粒子表面的化学基团在混炼过程中能与橡胶起化学反应,使结合胶添加,进而增进了硫化胶的力学功能和耐老化功能。
白炭黑粒子表面化学基团与炭黑彻底不同。气相法白炭黑表面含有硅醇基Si―OH,沉淀法白炭黑表面含有硅醇基Si―OH及Si
气相法白炭黑呈酸性,沉淀法白炭黑表面呈酸性或呈碱性。呈酸性会拖延硫化速度,呈碱性则会加速硫化速度。白炭黑表面微孔多,吸湿性强,对补强晦气。用硅烷偶联剂对其表面进行改性处理,能克服其坏处,改进其补强功能。对非金属矿藏粉体填料进行表面改性处理,也有很好的运用作用。
3、填料在橡胶产品中的用量
在橡胶产品中,填料是用量仅次于于生胶(天然橡胶和合成橡胶)的第二大原材料。在产品配方中,如以生胶用量为100计,补强填料用量约为50,非补强填料用量约为25,这是对各类橡胶产品总和而言。详细到每一种产品,有的填料用量乃至超越橡胶,有的则低于总和均匀量。以首要产品配方为例,生胶为100份。
轮胎――胎面炭黑用量40~50份。基本上不必非补强填料,或用少数陶土。内胎胶中可用20份左右的陶土或碳酸钙。
胶带――炭黑用量25~45份。碳酸钙可用于各部件,用量10~113份。碳酸镁可用于平带封口胶和边胶浆,用量分别为40份、50份。硫酸用于平带擦贴胶,用量为25份。
胶管――炭黑用量15~45份。碳酸钙用量33~128份,陶土用量20~50份,碳酸镁用量25份,输酸碱胶管中还用硫酸30份。
胶鞋――黑色鞋底炭黑用量50份,超细活性碳酸钙(白艳华)50份,陶土40份,白色鞋底白碳黑用量55份,超细碳酸钙15份,钛2份。
胶布制品――碳酸钙和陶土可用于各类胶布制品,用量30~150份,硫酸用于气密胶布,用量为11份。
模型制品――炭黑用量40~75份。白炭黑可用30份,陶土可用35份。碳酸钙可用20份。
密封制品――油封可用白炭黑70份。密封条用炭黑25份,碳酸钙10份,耐油真空密封用陶土30份,炭黑40份。隔阂用炭黑15份,碳酸钙54份。
胶乳制品――胶乳手套可用硫酸10~15份或碳酸钙5份,海绵胶乳配方中可用滑石粉20份,氯丁乳胶丝配方中可用陶土2~3份,多孔模型胶乳配方中可用陶土100份,或碳酸钙100~300份。
从上述实例能够看出,在各类橡胶产品中很多运用补强填料和非补强填料,不同产品运用填料类型和种类不同,其用量相差很大。实际运用时要依据橡胶制品的功能要求进行配方规划,挑选胶种,参加补强填料以改进力学功能,参加非补强填料改进加工功能,下降出产成本。经过硫化系统和防护系统的调整使配方优化。这是出产优质橡胶产品的根底。
除了上述罗列的碳酸钙、陶土、硫酸和滑石粉外,还有许多天然无机矿藏粉体材料也能够用作橡胶填料,如含碳酸镁的白云石,含硅酸钙的硅灰石,含硫酸盐的重晶石、石膏,含无定形炭的石黑、煤粉及其他含硅的粉石英(硅藻土)、石棉、叶蜡石、煤矸石、油页岩、粉煤灰、凹凸棒土、赤泥等。橡胶制品出产供应商能够依据产品功能要求和报价选用不同的填料,经过配方实验断定其最佳配用量。
石墨烯/橡胶纳米复合材料的制备与性能研究
2019-01-04 17:20:18
石墨烯具有极高的力学性质和导电/导热性质,在橡胶复合材料中具有广阔的应用前景,石墨烯不仅能明显提高复合材料的物理机械性能,同时赋予其功能性。本文将综述石墨烯/橡胶复合材料的制备及其性能的研究进展。
橡胶/石墨烯复合材料制备方法
由于石墨烯优异的性质以及低的成本,石墨烯作为橡胶纳米填料被广泛报道。为了获得优异性能的石墨烯/橡胶复合材料,首先要保证石墨烯在橡胶基体中均匀分散。石墨烯的分散与复合材料的制备方法、石墨烯表面化学、橡胶种类以及石墨烯例象胶界面关系有着密切关系。石墨烯/橡胶复合材料的制备方法主要有溶液共混、直接加工和胶乳共混3种方法。
溶液共混法
溶液共混法是指将石墨烯和橡胶分散在溶剂中,在搅拌或超声作用下进行共混,然后挥发溶剂或加入非溶剂进行共沉淀,再硫化制备复合材料的方法。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解橡胶的溶剂中。
由于GO表面含有很多含氧官能团,在超声作用下,GO能够稳定分散在一些极性有机溶剂如DMF和THF中,这为制备GO复合材料提供了重要前提。对于化学还原或热还原的石墨烯而言,很难将其直接分散在溶剂中,因此需要进行改性处理。直接共混法
直接共混法也称为机械混合法,是指将石墨烯、橡胶配合剂在开炼机或密炼机中与橡胶进行机械混炼,然后硫化制备石墨烯/橡胶复合材料的方法。该方法在机械剪切力作用下分散填料,工艺流程简单,成本低,是目前工业生产橡胶复合材料的主要方法。
虽然直接共混法方便,但在混炼过程时,由于橡胶豁度大,加工困难,且石墨烯片层间范德华力强,橡胶和石墨烯的极性相差大,所以石墨烯很难剥离并均匀分散在橡胶中,另外石墨烯表观密度低导致加料困难。
胶乳共混法
胶乳共混法通常是先将石墨烯及其衍生物分散在水相中,再与橡胶胶乳混合,经过絮凝、烘干、混炼配合制备复合材料。由于绝大多数橡胶都存在胶乳,而且GO和改性石墨烯能稳定分散在水中,因此胶乳共混法为制备石墨烯/橡胶复合材料的制备提供了一种有效和简单的途径。另外,胶乳共混法有利于石墨烯在橡胶中均匀分散,并避免有毒溶剂的使用。
石墨烯/橡胶复合材料性能
机械性能
石墨烯被认为是目前最硬、强度最高的材料,拥有超高的比表面积,加入非常少量石墨烯就能明显提橡胶复合材料性能,下图对比了几种纳米填料对橡胶增强效率,可以看到石墨烯具有更显著的增强效果。虽然纳米填料对聚合物有着非常高的增强效率(加入少量份数即带来强度、模量等大幅度提升),但当加入较多份数时(如大于10 wt%),纳米填料容易发生严重聚集,反而导致复合材料性能下降。为了充分发挥不同形状、形态和性质的纳米填料的各自优势,将两种不同维度的纳米填料进行杂化(杂化填料)并加入到聚合物中,对提高聚合物复合材料的机械性能和导电(热)性表现出显著的协同效应。 接枝反应示意图
导电性
石墨烯具有高的比表面积和电导率,研究报道,石墨烯填充的聚合物复合材料拥有高的电导率和更低的导电值,这为制备轻质量、高导电性的橡胶复合材料提供了机遇。石墨烯/橡胶复合材料的电导率主要依赖于石墨烯比表面积、石墨烯含量、石墨烯分散和分布以及石墨烯例象胶界面结合。TEG比表面积对SR导电性影响石墨烯片层间相互搭接形成3D互连网络结构
通过控制石墨烯在复合材料中的分布,能有效降低复合材料的导电值并提高其导电率。
导热性
导热橡胶在电力电子、热管理材料等领域具有广泛应用。石墨烯具有超高的热导率(5000 W /(mk)),明显高于碳纳米管(3000 W/(mk))因此石墨烯在制备导热橡胶复合材料中也有巨大的应用前景。在橡胶复合材料中,热能主要通过声子进行传递,强的填料镇料、填料沛象胶祸合有利于热能的传导。因此为了获得具有高热导率的石墨烯/橡胶复合材料,需要降低界面声子损耗,增强石墨烯锻胶界面作用。
气体阻隔性
橡胶作为一种重要的密封材料,在工程技术领域有着广泛应用。石墨烯为二维片层材料,具有很大的比表面积,且对气体分子具有优异的阻隔性,因此石墨烯在提高橡胶复合材料气体阻隔方面也具有潜在的应用。
其他性能
石墨烯除了能有效提高橡胶复合材料强度电导率和热导率外如改善其动态使用还能改善复合材料其他性能、增加其耐磨性。
总结与展望
石墨烯具有优异的物理和电子特性,如超高的强度、超高的导电率和导热率、大的比表面积。作为橡胶纳米填料,石墨烯具有非常高的增强效率和效果,同时还可以赋予橡胶材料其他特性如导电性、导热性,改善其动态性能和气体阻隔性等,对橡胶制品的高性能化和功能化具有特别的意义。
石墨烯/橡胶复合材料研究存在的挑战和机遇:
(1)需要明确石墨烯的结构特性,确定结构对性质的影响,为石墨烯的改性和其复合材料制备提供理论基础;
(2)虽然石墨烯价格比碳纳米管低,但是仍然缺少简单有效的方法宏量生产石墨烯。这是制备石墨烯/橡胶复合材料的重要前提;
(3)由于分散和界面对橡胶复合材料性能的决定性影响,目前石墨烯/橡胶复合材料的基础研究关键在于复合材料结构设计的方法学、形态结构的细致和定量化表征(例如3DTEM的应用)以及结构性能关系的确立等几个重要方面;
(4)虽然石墨烯在橡胶材料中具有巨大的潜在应用优势,但目前缺乏石墨烯/橡胶应用性研究,尤其是有关石墨烯在高性能轮胎工业的应用。
超细硅微粉在塑料、橡胶及涂料中的应用
2019-03-07 11:06:31
在塑料、橡胶、涂料等现代高分子材料中,非金属矿藏填料占有很重要的位置。在高聚物基猜中添加非金属矿藏填料,不只能够下降高分子材料的本钱,更重要的是能前进材料的功用、尺度安稳性,并赋予材料某些特殊的物理化学功用,如抗压、抗冲击、耐腐蚀、阻燃、绝缘性等。
天然的石英石、石英砂和粉石英是重要的工业矿藏质料,被广泛用于玻璃、铸造、建筑材料、陶瓷、化工、冶金、耐火材料、磨料、填料等范畴。由石英砂及其尾矿、粉石英等加工而成的硅微粉,作为塑料、橡胶、涂料等高分子材料的填料,在超细破坏、提纯、改性及其使用方面越来越遭到人们的注重。近年来,跟着超细破坏技能的不断前进,超细、超纯、改性非金属矿藏填料使用越来越广泛。
一、硅微粉在塑猜中的使用
硅微粉在塑猜中可用于聚氯乙烯(PVC)地板、聚乙烯和聚薄膜、电绝缘材料等产品中。填充硅微粉的聚氯乙烯地板砖可增强制品的耐磨性,在PVC地板中,细度320意图石英粉,填充量为160~180份时制得的地板完全符合GB4085-83标准的要求,地板表面润滑度好,耐刻划度好。
在PVC耐酸板管中,400目石英粉的填充量为10%~15%时,与其它填充料比,粘度低,流动性好,改进了加工功用,有利于制品的挤出和成型,制得的耐酸板管的耐酸性有明显前进。
比表面积大(600目以上)和活性高的硅微粉填充聚乙烯(PE)农用薄膜能改进制品的物理化学功用和光学功用,填充聚可改进制品的力学功用。余志伟对粉石英在PE薄膜中的使用进行了研讨,将粉石英矿经过超细、分级、提纯、表面改性后填充于PE薄膜中,使用石英具有隔绝红外线的功用,减缓塑料大棚的热流失,前进其保温功用。
经过研讨,当超细粉石英在PE薄膜中添加8%~12%时,其加工功用杰出,填料在树脂中涣散流动性好,散布均匀,制得的PE薄膜力学功用挨近纯树脂膜,超越国标要求。
在环氧模塑封猜中,高纯硅微粉是其主要质料,因为SiO2具有安稳的物理化学功用、杰出的透光性及线膨胀功用和优秀的高温功用,因而SiO2是现在最理想的环氧塑封料的填充材料,也是半导体集成电路最理想的基板材料。跟着微电子工业的迅速发展,我国电子塑封职业也得到迅速发展,国内已有7家外国独资厂商、16家中外合资厂商、36家国营厂商及上百家中小厂商建立了封装生产线,环氧塑封料年用量上万吨,填充料二氧化硅粉含量占70%~90%,因而仅塑封职业,硅微粉的用量就达7000~9000t/年。
二、硅微粉在橡胶中的使用
为了前进橡胶制品的物理机械功用,延伸橡胶制品的使用寿命,一般选用两条途径:一种是在橡胶制品中埋入骨架材料,如纤维纺织材料或金属材料;另一种是在橡胶中添加各种填料。
硅微粉作为橡胶补强材料有以下几种方式:
(1)粉石英。主要以天然硅藻土为质料,经破坏、高温煅烧、除掉有机杂质而成,用于橡胶中能使橡胶坚硬,并可下降胶料密度,添加绝热功用,适用于制作绝缘胶料、模型制品和泡沫制品,用于硬质橡胶可前进软化温度。
(2)硅灰粉。二氧化硅含量75%~79%,天然矿藏经挖掘、烘干、破坏、筛分而成,可用于胶管、胶带和其它橡胶制品,涣散性好,可高用量填充,其压延制品表面润滑,和轻钙适当;粘附强度和扯断永久变形优于陶土,耐磨性和弹性优于陶土和轻钙;老化功用好,报价低于陶土和轻钙。
(3)石英粉。石英粉有无定形、微晶状等不同类型,由天然矿藏破坏加工而成。
详细使用方面,在蓄电池胶壳中,参加粉石英代替陶土和轻质碳酸钙,填充量由本来的55%添加到65%,并且工艺功用优秀,无喷粉和飞扬现象,硫化功用好。制得蓄电池胶壳的耐酸、耐电压、热变形和落球冲击等物理机械功用均可到达要求,且胶壳表面平坦润滑,成品率前进。
三、在涂料职业中的使用
在涂料职业中,硅微粉的粒度、白度、硬度、悬浮性、涣散性、吸油率低、电阻率高级特性均能前进涂料的抗腐蚀性、耐磨性、绝缘性、耐高温功用。用于涂猜中硅微粉,因为具有杰出的安稳性,一直在涂料填猜中扮演重要的人物。
特别对外墙涂料来说,SiO2质料对耐候性起着无足轻重的效果。跟着建筑商场的日益昌盛,涂料工业也得到了迅速发展。硅微粉的用量也随之增加,一起对硅微粉的超细、改性提出了更高的要求。
小结
跟着塑料、橡胶、涂料工业的不断发展,硅微粉等非金属矿藏填料不只要在超细、提纯、改性技能等方面进行不断的研讨,更重要的是要进行超细粉体在这些高分子聚合物中的使用研讨,然后推进整个工业技能的前进。
橡胶用非炭黑补强填料的研究进展
2019-03-07 09:03:45
补强填料在橡胶加工中具有重要而又共同的作用。它可以进步橡胶的力学功用,对非自补强型胶种如丁橡胶(SBR)、橡胶(NBR)等更是不可或缺;可以满意胶料加工工艺要求,减小胶料的缩短率,有利于成型,并有助于胶料在后的形状和尺度坚持稳定;有些种类还具有其他作用,如阻燃、导电、耐热等;可以下降胶料本钱。
除天然橡胶(NR)和氯丁橡胶(CR)等少量自补强橡胶种类外,大部分合成橡胶在不填充补强填料的状况下功用较差,独自运用的价值不大。补强填料在橡胶加工中具有重要而又共同的作用。它可以进步橡胶的力学功用,对非自补强型胶种如丁橡胶(SBR)、橡胶(NBR)等更是不可或缺;可以满意胶料加工工艺要求,减小胶料的缩短率,有利于成型,并有助于胶料在硫化后的形状和尺度坚持稳定;有些种类还具有其他作用,如阻燃、导电、耐热等;可以下降胶料本钱。1 橡胶对补强填料的要求
(1)表面化学活性较强,能与橡胶杰出结合,改进硫化胶的物理功用、耐老化功用和粘合功用;
(2)化学纯度较高,粒子均匀,对橡胶有杰出的湿润性和涣散性;
(3)不易蒸发,无臭、无味、无毒,有较好的储存稳定性;
(4)用于白色、淡色和五颜六色橡胶制品的填料要求不污染、不变色;
(5)价廉易得。
一般来说,补强填料粒径越小,比表面积越大,和橡胶的触摸面积也越大,补强作用越好。颗粒形状以球形较好,片形或针形填料在硫化胶拉伸时简单发作定向摆放,导致硫化胶永久变形增大,抗撕裂功用下降。粉体填料混入橡胶中,粒子被橡胶分子围住,粒子表面被橡胶湿润的程度对补强作用有很大影响。不易湿润的颗粒在橡胶中不易涣散,简单结团,下降其补强效能,可以经过表面改性得以处理。
2 橡胶用非炭黑补强填料
2.1 白炭黑
白炭黑是炭黑的一种重要替代品,因制备办法不同可分为沉淀法白炭黑和气相法白炭黑。与炭黑比较,白炭黑粒径更小,比表面积更大,故其硫化胶的拉伸强度、撕裂强度和耐磨性较高。尽管因为白炭黑的表面极性及亲水性使其补强作用及加工功用不如炭黑,且易发作静电,但运用双官能团硅烷偶联剂不只可以下降胶料的门尼粘度、改进加工功用,并且可以下降生热和翻滚阻力、进步耐磨功用及抗湿滑功用,由此发作了低翻滚阻力的“绿色轮胎”概念。运用白炭黑补强胶料可以出产通明橡胶制品、五颜六色轮胎,进一步扩展了其在橡胶工业中的运用规模。
2.1.1 表面改性
白炭黑内部的聚硅氧和外表面存在的活性硅醇基及其吸附水使其呈亲水性,在有机相中难以湿润和涣散,并且因为其表面存在羟基,表面能较大,集合体总倾向于凝集,因而产品的运用功用受到影响。白炭黑的表面改性是运用必定的化学物质经过必定的工艺办法使白炭黑的表面羟基与化学物质发作反响,消除或削减其表面活性硅醇基,使其由亲水性变为疏水性,增大其在聚合物中的涣散性。白炭黑的涣散功用对橡胶的补强作用有很大的影响。
DavidJ等以新式白炭黑涣散剂PPT-HDI作为研讨目标。结果标明,它是一种作用于白炭黑表面的极性材料,可以打碎白炭黑附聚体,改进其在胶猜中的涣散性;它对胶料的动态功用有积极作用,并改进胶料的加工功用和抗静电功用。
为进步白炭黑与胶料的结合,现在最常用的办法是将白炭黑与硅烷偶联剂一同运用,经过偶联作用使白炭黑与橡胶之间发作键合。郭水兵等研讨了几种改性剂对白炭黑填充NBR功用的影响。结果标明,改性剂A(非离子氟碳表面活性剂)、PEG-600(聚乙二醇)和Si69均使白炭黑表面的羟基数量削减,白炭黑酸性削弱,然后使NBR混炼胶的碱性增强,硫化速度进步;Si69可以使NBR与填料间构成很强的化学键,然后大幅进步硫化胶的物理功用;改性剂A则可显着改进白炭黑在NBR中的涣散。
彭华龙等的研讨标明,偶联剂使白炭黑填料网络化程度大幅度减轻,弹性模量和损耗模量变小,Payne效应大大削弱,增大了胶料的流动性,改进了加工功用。
孟凡良等研讨了白炭黑在SBR/反式异戊橡胶(TPI)并用胶中的运用。结果标明,在SBR/TPI并用胶中参加白炭黑可以坚持或进步硫化胶的物理功用,下降生热;在SBR/TPI并用胶中参加硅烷偶联剂可以进步硫化胶的定伸应力、拉伸强度等功用,特别是能减小磨耗和下降生热,但过量参加硅烷偶联剂会下降硫化胶的撕裂强度和抗湿滑功用。
2.1.2 对胶料功用的影响
BomalY等从橡胶中填料的“总触摸面积”概念动身,研讨了白炭黑用量和填料的“总触摸面积”对橡胶硫化功用的影响。结果标明,在相同的“总触摸面积”下,高比表面积的沉淀法白炭黑可以下降白炭黑的用量,胶料的门尼粘度,硫化胶的硬度、固特里奇生热和翻滚阻力,一起进步胶料的耐磨功用、抗裂口和抗裂纹增长性及抗湿滑功用。增加白炭黑作为补强剂制成的轮胎不光抓着力大,耐磨功用和抗湿滑功用优异,并且轮胎翻滚阻力比一般轮胎减小30%,节约燃油7%-9%,有很好的操作安全性和经济性。
到现在为止,白炭黑对橡胶的补强机理没有彻底明晰,但白炭黑可以显着进步硅橡胶运用功用和下降轮胎翻滚阻力以进步燃油经济性却是不容置疑的。在下降翻滚阻力、进步抗湿滑功用的基础上进一步进步白炭黑胶料的其它物理功用是研讨的方向之一。
2.1.3 开展趋势
白炭黑主要向三大类开展:一是“标准”传统白炭黑(LDS);二是易涣散白炭黑(EDS);三是高涣散白炭黑(HDS)。自绿色轮胎面世以来,白炭黑/硅烷偶联剂系统开端用于胎面,对炭黑工业也提出了应战,迫使炭黑出产商加大开发力度,研发新式填充剂。炭黑/白炭黑双相填充剂是用卡博特公司开发的共同技能出产的,而这种新式填充剂由炭黑相和涣散在炭黑相中的白炭黑相构成,其主要特色是进步了烃类弹性体中橡胶与填充剂的相互作用,而下降了填充剂与填充剂的相互作用。该填充剂可改进胶料尤其是轮胎胎面胶的滞后丢失与温度之间的联系,大大下降翻滚阻力,进步牵引力,一起未下降耐磨功用。
2.2 碳酸钙
关于橡胶来说,碳酸钙是仅次于炭黑、白炭黑的第三大补强填充剂。但未经表面处理的碳酸钙颗粒表面亲水疏油,呈强极性,不能与橡胶等高分子有机物发作化学交联,在橡胶中难以均匀涣散,因而不能起到功用填料的作用,相反因界面缺陷在某种程度上会下降制品的部分物理功用。活性碳酸钙的成功运用使碳酸钙的功用发作了质的腾跃,尤其是活性超细碳酸钙具有功用填料的特色,然后大大拓宽了其运用规模,其增韧补强作用极大地改进和进步了产品的功用和质量。纲米碳酸钙是碳酸钙中的精品,也是一种最廉价的纳米材料,其具有的特殊量子尺度效应、小尺度效应、表面效应等,使其与惯例粉体材料比较在补强性、通明性、涣散性、触变性等方面都显示出显着的优势,与其它材料微观结合状况也发作改变,然后引起胶料微观功用的改变。
邹德荣比较了纳米碳酸钙和轻质碳酸钙对室温硫化硅橡胶的物理功用和工艺功用的影响。结果标明,轻质碳酸钙仅仅惯例的增量填充剂,纳米碳酸钙可以进步硅橡胶的交联密度和物理功用,但其胶料开始粘度增大,工艺功用下降。田萌等研讨纳米碳酸钙对氯化聚乙烯橡胶(CM)硫化特性和物理功用的影响,并与普通碳酸钙进行比照。
结果标明,纳米碳酸钙对CM混炼胶加工流动性的影响较小,有助于交联反响;对CM胶料的硫化有推迟作用,但仍能较好地满意工艺要求;可以有用改进CM硫化胶的物理功用,对CM的补强作用优于普通碳酸钙。
罗穗莲等选用硅烷偶联剂对超细碳酸钙进行表面改性,制备室温硫化(RTV)单组分硅橡胶密封胶。结果标明,选用硅烷偶联剂事前对碳酸钙进行表面处理的改性办法较好;其顶用巯丙基三甲氧基硅烷偶联剂(A-189)处理的碳酸钙对密封胶的增强作用较好,但密封胶脱模时刻需求5天,存在着显着的推迟硫化现象。
古菊等经过固相法在硬脂酸改性产品纳米碳酸钙CCR中参加间二酚与的络合物RH,制备了改性纳米碳酸钙M-CCR,并别离制备了NR/SBR/BR并用胶与M-CCR和CCR的复合材料。结果标明,填充M-CCR的并用胶加工功用、强力功用以及填料的涣散性和界面结合力均显着优于填充CCR的并用胶。
宋智彬等研讨了纳米碳酸钙对胶料功用的影响以及纳米碳酸钙与炭黑N330并用对NBR的功用影响。结果标明,与未改性的纳米碳酸钙胶料比较,改性后纳米碳酸钙胶料根本力学功用、耐老化功用及耐油功用均有进步,并用炭黑时,跟着纳米碳酸钙用量增大,胶料耐老化功用进步。
李玉林等运用甲基酸表面改性纳米碳酸钙,并研讨改性碳酸钙对CR物理功用及耐老化功用的影响。结果标明,甲基酸改性纳米碳酸钙能显着进步CR的撕裂强度、体积电阻率和介质损耗,并改进其耐老化功用。
冀冰等的研讨标明,与普通微米级碳酸钙相一比,纳米碳酸钙具有表面能高、表面亲水疏油、极易集合成团的特色,难以在非极性或弱极性的橡胶/树脂系统中均匀涣散,跟着纳米碳酸钙填充量的增大,这些缺陷愈加显着,过量填充乃至会使制品无法运用。为了下降纳米碳酸钙表面高势能,进步涣散性,并增强其与聚合物的湿润性和亲和力,在运用前往往要先进行表面改性。现在该范畴已经成为国内外研讨的热门。
轻钙和重钙在塑料及橡胶中应用的区别
2019-03-07 09:03:45
咱们为了制备低报价或许进步某种功用常常添加碳酸钙。碳酸钙能使用到塑料范畴的首要是重质碳酸钙和轻质碳酸钙。
重质碳酸钙和轻质碳酸钙化学分子式相同,外观类似,实质上不管其理化功用仍是加工办法均有很大的差异。
加工办法不同
重质碳酸钙的加工首要是经过机械破碎、研磨的办法完成的;
轻质碳酸钙的出产是经过化学反应沉积后制取的。
后者比前者的工艺杂乱的多,要求也相应严厉的多。
理化目标不同
(1)堆积密度巨细不同。这是二者最显着的差异,重质碳酸钙的堆积密度为0.8~1.3g/cm3,轻钙的堆积密度只要0.5~0.7g/cm3,而纳米碳酸钙产品的堆积密度可达0.3g/cm3以下。
(2)白度巨细不同。重钙产品相对杂质较多,白度一般为89~93%,而轻钙产品白度一般为92~95%,部分产品可达96~97%,这是轻钙产品常用于高级或淡色制品的首要原因。
(3)水分含量不同。重钙产品水分较低,一起也较为安稳,一般为0.2~0.3%,一些高级重钙产品乃至可达0.1%;而轻钙产品水分一般为0.3~0.8%,且水分安稳性较差,有时会有必定的动摇。
(4)粒径巨细不同。重钙产品现在还只要微米级产品,粒径一般为0.5~45μm,显着大于轻钙粒径。
(5)晶型不同。重钙产品均为不规则形状,也称无定型,而轻钙产品的晶型一般较为规整,如普通轻钙以纺锤形为主,而纳米碳酸钙以立方体晶型为主。
使用进程不同
重钙产品首要用于造纸、橡胶、塑料等职业,填充量较大,首要作为体积填料,而轻钙使用规模更为广泛,首要以体积填料为主,而其间的超微细(俗称纳米级)碳酸钙现已具有功用填料和体积填料的两层人物,填充量较少。
重钙和轻钙在塑猜中的使用差异
前面现已讲到,因为两种产品的理化功用相差较大,从产品的细度来说,轻质碳酸钙比重质碳酸钙细的多,轻质碳酸钙在塑胶猜中能均匀分布,分散性要好,使得胶料的色彩均布性,胶料的强度、耐性、抗疲劳性等归纳机械功用均得到进步,胶料出产造粒进程中的摩擦系数也小,使得塑胶的造粒才能强,一起塑胶产品表面润滑,成型才能也会加强。但因为分子之间的吸附力的效果,高细度的填充料之间容易发生聚会效果,反面会下降填充料的均布性以及归纳机械能。而且轻质碳酸钙的沉降体积比重质碳酸钙大,在塑胶中能够添加体积,减小分量。但轻质碳酸钙比重质碳酸钙细吸油值大,胶料吸光性就会增大,产品表面就会出现亚面或雾面效果。
所以在塑胶职业中往往选用轻、重质碳酸钙混合参加的办法。再比方在橡胶职业中参加重质碳酸钙首要意图是为了添加容积,下降成本对橡胶自身的功用进步不大,而轻质碳酸钙除了具有重质碳酸钙的效果外,对橡胶的功用还能有必定的进步。
别的从出产上来说,中国是一个石灰岩矿藏大国,但决非取之不尽,用之不决,优其是高纯度、高白度的重钙矿石是非常稀疏的,每挖掘一吨的重钙矿石,就会造成数吨的矿渣,对环境的损坏远大于轻钙,比方南边某县的碳酸体是其支柱产业,在大力挖掘数年后重钙资源也开端挨近干涸,这种状况已非稀有。而轻质碳酸钙出产对矿石的要求不太高,对环境的损坏较小,必然会占有更大的商场。
非金属矿粉体在橡胶制品中的应用状况
2019-03-06 10:10:51
非金属矿粉体如轻质碳酸钙、高岭土、消石粉、重晶石、云母粉等在橡胶制品中有广泛运用。本文在扼要介绍橡胶和橡胶制品的特色和分类基础上,侧重介绍了橡胶中常常运用的非金属矿粉体的品种、特色、运用情况以及消费量和报价。
1、橡胶的含义
橡胶是一种高弹性的高分子化合物。它具有其它材料没有的高弹性,因此也被称为弹性体,其特征就是分子量巨大,并且散布之泛从数十万到上百万。这也是决议了橡胶成为工程材料的特定原因。
2、橡胶材料的特色
橡胶材料具有如下特色:
(1)具有高弹性:
橡胶的弹性模量小,一般在1~9.8MPa,伸长率最高可达1000%,习惯温度从-50°C~200°C。
(2)具有粘弹性:
因为大分子间效果力的存在使得橡胶受外力效果发作形变时会遭到时刻、温度以及各种介质的影响表现出显着的应力松懈和蠕变现象。在振荡或交变应力的效果下发作滞后丢失。
(3)具有缓冲减震效果:
橡胶对声响及振荡的传达有平缓效果,可用于防震降噪。
(4)电绝缘性:
橡胶和塑料相同是一种很好的绝缘材料。
(5)对温度具有依赖性:
橡胶在低温时处于玻璃态变硬变脆;在高温时发作软化,熔融、氧化、分化以至于焚烧。
(6)具有老化性:
橡胶和金属、木材相同,会随时刻的延伸功用逐步下降,寿数缩短。
(7)有必要硫化:
橡胶有必要在参加或其它交联剂的条件下使本身硫化,即经过此反响使橡胶线型大分子变成网状结构然后变成具有运用价值的橡胶制品。
(8)有必要参加配合剂
为了获取各式各样的功用要求,有必要在橡胶中参加各式各样的配合剂,如硫化剂、活性剂、促进剂、补强剂、填充剂、防老剂、软化剂等等。
3、非金属矿粉体在橡胶制品中的运用
非金属矿粉体在配合剂中归于补强填充剂,用量占到惯例制品配合剂总量的60~90%,占惯例制品总质量的30~70%,用量巨大,附加价值高,是橡胶中不行或缺的原材料,在橡胶制品中具有重要的含义,所以加速非矿粉体的技术立异和工业晋级将对促进我国橡胶制品的开展,前进国际竞争力,具有严重含义。
3.1 填充剂在橡胶中的运用
在大多数情况下,橡胶都不是独自运用的,而是要混合各种配合剂,填充剂就是重要的配合剂之一。填充剂——望文生义是一种填充物,所以也称填料。它关于改进橡胶制品的功用,下降制品,有着十分重要的含义。
3.2 运用填充剂的意图
(1)增大容积,下降成本
(2)改进混炼胶功用,如调理可塑度、粘性、避免缩短、前进表面功用。
(3)改进硫化制品功用,添加抗张强度、抗撕强度、耐磨耗性,调理硬度、弹性率,改进耐热性、耐油性、耐候性、电功用等
(4)发挥其它效果
3.3 填充剂的功用对橡胶的影响
(1)对粒子巨细的影响
填充剂粒子很细,对橡胶抗张强度、抗撕强度、耐磨耗功用等机械强度的效果大,报价很高。
(2)对粒子形状的影响
粒子形状有许多种,如球状、立方体状、针状、板状等等。它们对混炼胶的流变功用、硬化胶的硬度、弹性、抗张强度、永久变形生热等功用有影响。
(3)对粒子表面性质的影响
表面性质首要取决于晶体结构、对物质的吸附才能以及表面毛细管等。它会影响对橡胶的浸润性、涣散性、硫化性、补强性、耐老化性等。关于粒子表面活性不大的填充剂,可运用恰当的有机或无机物质进行表面处理,使表面活化,以前进补强效果。
3.4 轻质碳酸钙的运用
(1)在橡胶制品中的运用
轻质碳酸钙是橡胶工业中运用最早、量最大的填充剂之一,轻质碳酸钙许多填充在橡胶之中,能够添加制品的容积,然后节省贵重的天然胶到达下降成本的意图。一起,因为碳酸钙的参加能够改进或加强橡胶硫化体的抗张强度和耐磨性,前进抗撕裂强度,并且在天然胶和组成胶中有明显的补强效果,一起能够调整混炼胶的门尼粘度,添加可塑性,有利于成型,使产品尺度愈加安稳。
(2)碳酸钙在胶鞋中的运用
碳酸钙在全胶鞋中有不行代替的效果,并且在胶鞋工业中运用最广、用量最大。在胶鞋中大略占到质量的20~60%,面皮占到质量的30~50%,在一些橡胶制品中可占到80%。
碳酸钙,尤其是轻质碳酸钙,粒径约为0.5~6μm,呈碱性,粒子成片状、粒状和纺锤状。尤其是纺锤状碳酸钙在压延制品中如全胶鞋、胶布、胶带、胶片等制品中,能够使制品表面润滑、尺度安稳,前进挤出功用、添加塑性、便利成型、下降出产成本,是胶鞋制品不行代替的填充剂。
若碳酸钙经过深加工制成活性碳酸钙,能够用于淡色制品的补强,前进在橡胶中的涣散性,代替或部分代替白炭黑,前进硫化胶制品的拉伸强度、抗撕裂强度和耐磨性,一起也前进了制品的耐曲挠性和耐疲惫性。
胶鞋职业离不开碳酸钙,能够说没有碳酸钙就做不出来美丽的全胶鞋。我国全胶鞋职业承担着全国际60~70%的产值,每年出产上亿双。按每双400g核算,一年耗费碳酸钙40万吨。从整个职业看,我国是国际耗胶大国,现在年耗胶量370万吨。按100份橡胶均匀参加40份碳酸钙,则需求150万吨左右。还有油漆、涂料、造纸、食物添加等多个范畴的运用。
所以国内轻质碳酸钙商场需求旺盛,但为了习惯国民经济的开展需求,碳酸钙有必要走循环经济、可持续开展之路,综合利用清洁化出产、使厂商向着大型化,产品功用化、专业化、精细化方向开展,选用新工艺、新设备,依据商场要求研制新产品,然后满意不断改变的商场需求。
北京华腾橡塑乳胶制品有限公司消费轻质碳酸钙 1600吨/年,报价700~800元/吨;消费重质碳酸钙600吨/年,报价350-450元/吨。
3.5 高岭土在全胶鞋中的运用
在橡胶制品中,高岭土是仅次于碳酸钙的重要填料之一,一起对橡胶具有弱的补强效果,首要由岩石中火成岩、水成岩等母岩在天然风化效果下分化而成,首要成分为二氧化硅、氧化铝、水等,此外还含有铁、碱金属、碱土金属等等。
因为高岭土的PH值一般在4~5左右,呈弱酸性,配入橡胶中有推迟硫化效果。还因为它有弱的补强效果,可用作天然橡胶、组成橡胶、胶乳和树脂的补强填充剂。含高岭土的胶料加工简单,挤出物表面润滑、增大挺性和削减缩短率。一起也是炭黑和石墨的涣散剂,故易与炭黑并用。
也因为高岭土的层状结构,层间由氢键联合,表面呈电中性,具有低的粘度、杰出的流动性和涣散性,所以挤出功用很好,而关于表面要求润滑平坦的全胶鞋鞋面则不合适。但因为高岭土能够明显前进硫化制品的机械物理功用,特别是其在弹性抗屈挠和伸长率等方面的特色,十分合适在大底、围条、包头、衬皮、中底、鞋跟等部件中许多运用。一般用量可加到10~30份质量比。还因为高岭土的组成成分为二氧化硅和氧化铝,其化学性质安稳,所以关于特种全胶鞋如消防、耐油、耐酸碱、电绝缘等多种鞋是有必要要填充的材料。关于有的产品鞋来说乃至要加到60份。
因为特种鞋报价较高,大部分在出口。而我国幅员辽阔,区域、气候、生活习惯、工作性质的差异较大,跟着我国经济的增加,生活水平的前进和劳动保护的加强,国内商场潜力巨大。
就现在看,胶鞋职业2000多家工厂按中等规划、每双鞋按200g核算,全国就需求总重为20万吨的高岭土,还不包含旅游鞋、皮鞋等鞋用大底胶料。
近年来,跟着出产技术手段的前进和科技的前进,对高岭土进行深加工,对其表面性活性进行改性,使之与橡胶分子进行很好的结合,构成物理吸附、化学吸附、氢键、乃至化学键,代替部分炭黑做为橡胶的补强剂。所以高岭土的开展在我国大有可为。
北京华腾橡塑乳胶制品有限公司消费高岭土400吨/年,报价1000~1200元/吨。
3.6 滑石粉在全胶鞋中的运用
滑石粉首要成分为含水硅酸镁,优质纯品为白色结晶,含有杂质者呈淡黄、嫩绿、淡蓝等色彩。化学性质安稳。消石粉在橡胶中首要用作隔绝剂和表面处理剂,许多运用于外观表面要求不高的胶布制品中,如雨衣布、防水布、工程衬布等等。而关于全胶鞋来讲,因为它的化学性质安稳,多被用于耐酸、耐碱、耐热和绝缘鞋中。
对组成胶而言,它是具有必定补强效果的。一起它能够下降混炼胶的门尼粘度,所以十分合适橡胶的打针成型加工。
近年来,许多的改性滑石粉开端呈现。因为滑石粉与有机高聚物间的界面性质不同,相容性差,因此在橡胶中难以均匀涣散。参加量多会导致橡胶制品的根本力学功用下降,极易脆化。而经过改性,前进其与橡胶的相容性,使橡胶制品的拉伸强度、伸长率目标得以前进,填充量也能够加大,到达下降成本的意图。
3.7 重晶石在全胶鞋中的运用
重晶石学名硫酸。因为硫酸盐的化学性质安稳,在全胶鞋中首要运用于特种鞋,如耐化学试剂、防滑鞋、防化服等产品。因为比严重,一般硫酸很少用于惯例鞋和民用鞋,有些许多用于特殊胶板、胶带。
北京华腾橡塑乳胶制品有限公司消费重晶石150吨/年,报价900~1000元/吨。
3.8 云母粉在胶鞋中的运用
云母粉的首要成分为二氧化硅和氧化铝。因为云母粉具有杰出的弹性、耐性、绝缘性、耐高温性、耐酸碱性、耐腐蚀性、附着力强等特色,广泛运用于阻燃靴、绝缘鞋、耐酸碱鞋等特种鞋之中。
一起云母粉也广泛运用于高阻尼减震橡胶配件中,因为云母粉为片状,直径与厚度的比值很高,参加橡胶中能在材料内构成层层隔绝。这种隔绝效果也被称之为屏蔽效应和迷宫效应,使有害物质难以进入材料,而胶料在压延、拉伸效果下,在橡胶内构成层层摆放,其取向与橡胶表面平行,与气体穿透方向笔直。因为这些特性,云母粉广泛运用于阻尼帘布、胶布、胶片隔绝层以及各种减震垫中。
3.9 白炭黑在橡胶中的运用
通用型白色填猜中,白炭黑是仅有的一种能够与炭黑适当的白色补强性填充剂。
白炭黑的制作研讨始于本世纪三十年代,特别是第二次国际大战期间,德国根据炭黑的缺乏,极力寻求代替品,加强了对白炭黑的研讨,并终究完成了白炭黑的工业化出产。这以后,美、英、日、苏等国也先后开展了白炭黑的出产。白炭黑的制作办法许多,现在运用最多的是气相法和沉淀法两种。
在各种胶鞋中,因为对色泽的要求,显而易见白炭黑用于白色或淡色橡胶的填充补强。在各种鞋用大底如旅游鞋、登山鞋、皮鞋中是不行代替的材料。因为白炭黑含有氢,也多用于各种粘合剂、增粘剂。
总归,运用于橡胶制品中的填料许多,如碳酸镁、碳酸、氧化铝、氧化钛、各种金属粉、硅藻土、云母粉、硅酸钙、各种短纤维等,材料十分多。跟着科技的开展,特种橡胶制品越来越多、运用范畴也越来越广,咱们巴望能有更多的立异矿粉能够加到橡胶中,然后充分我国国家实力。