废铝熔剂
2017-06-06 17:50:04
废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收
金属
的废铝熔剂,特别适用于从铝渣中回收
金属
铝(铝合金),属于
金属
处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收
金属
铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3]) (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60% Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30% NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海
有色
网查询,更多合作伙伴也可以在商机平台中寻找到!
重有色冶金炉对入炉熔剂的粒度要求
2019-01-07 17:38:01
火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。
表1 重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉
铜密闭鼓风炉
铜熔炼反射炉
铜白银炉
铜电炉
铜闪速炉
铜转炉
铜火法精炼炉
铅鼓风炉
铅锌鼓风炉
锡反射炉
锡电炉
氧气底吹炼铅炉
镍闪速炉
镍电炉<3
40~50
<6
<6
3~5
<0.5
5~25
2~3
<6
<3~6
<10
<3
<0.3
5~10<3
30~80
<6
<6
3~5
(石灰)
(石灰)
<6
<6
<5~6
<10
<3
湿式配料时<0.2
其它块度20~100
铜连续吹炼炉
石英石3~25
粉末冶金工艺
2019-03-06 09:01:40
1粉末制备
金属粉末的制备办法分为两大类:机械法和物理化学法。还有新研发的机械合金化法,齐法、蒸腾法、超声损坏法等超微粉末制作技能。制备办法决议着粉末的颗粒巨细、形状、松装密度、化学成分、限制性、烧结性等。
2粉末的预处理
粉末的预处理包含粉末退火、分级、混合、制粒、加光滑剂等。
(1).退火
粉末的预先退火能够使氧化物复原,下降碳和其它杂质的含量,进步粉末的纯度;一同,还能消除粉末的加工硬化、安稳粉末的晶体结构。退火温度依据金属粉末的品种而不同,一般为金属熔点的0.5~0.6K。一般,电解铜粉的退火温度约为300,电解铁粉或电解镍粉的约为700℃,不能超越900℃。退火一般用复原性气氛,有时也用真空或慵懒气氛。
(2).分级
将粉末按粒度巨细分红若干级的进程。分级使配料时易于操控粉末的粒度和粒度散布,以习惯成形工艺要求,常用标准筛网筛分进行分级。
(3).混合
指将两种或两种以上不同成分的粉末均匀化的进程。混合根本上有两种办法:机械法和化学法,广泛使用的是机械法,将粉末或混合料机械的掺和均匀而不发作化学反应。机械法混料又可分为干混和湿混,铁基等制品出产中广泛选用干混;制备硬质合金混合料则常运用湿混。湿混时常用的液体介质为酒精、汽油、、水等。化学法混料是将金属或化合物粉末与增加金属的盐溶液均匀混合;或者是各组元悉数以某种盐的溶液办法混合,然后经堆积、枯燥和复原等处理而得到均匀散布的混合物。
常需参加的增加剂,用于进步压坯强度或防止粉末成分偏析的增塑剂(汽油、橡胶溶液、白腊等),用于削减颗粒间及压坯与模壁间冲突的光滑剂(硬质酸锌、二硫化钼等)。
(4).制粒
将小颗粒的粉末制成大颗粒或团粒的工序,常用来改进粉末的流动性。常用的制粒设备有振动筛、滚筒制粒机、圆盘制粒机等。
3成形
成形是将粉末转变成具有所需形状的凝集体的进程。常用的成形办法有模压、轧制、揉捏、等静压、松装烧结成形、粉浆浇注和爆破成形等。
(1).模压
即粉末料在压模内限制。室温限制时一般需求约1吨/厘米2以上的压力,限制压力过大时,影响加压东西;并且有时坯体发作层状裂纹、伤痕和缺点等。限制压力的最大极限为12—15吨/厘米2。超越极限强度后,粉末颗粒发作损坏性损坏。
常用的模压办法有单向限制、双向限制、起浮模限制等。
⑴单向限制
即固定阴模中的粉末在一个运动模冲和一个固定模冲之间进行限制的办法,单向限制模具简略,操作便利,出产功率高,但限制时受冲突力的影响,制品密度不均匀,适合限制高度或厚度较小的制品。
⑵双向限制
阴模中粉末在相向运动的模冲之间进行限制的办法,双向限制比较适合高度或厚度较大的制品。双向限制压坯的密度较单向限制均匀,但双向一同加压时,压坯厚度的中间部分密度较低。
⑶起浮限制
起浮阴模中的粉末在一个运动模冲和一个固定模冲之间进行限制,阴模由绷簧支承,处于起浮情况,开端加压时,因为粉末与阴模壁间冲突力小于绷簧支承力,只要上模冲向下移动;跟着压力增大,当二者的冲突力大于绷簧支承力时,阴模与上模冲一同下行,与下模冲间发生相对移动,使单向限制转变为压坯的双向受压,并且压坯双向不一同受压,这样压坯的密度更均匀。
4烧结
(1).烧结的办法
不同的产品、不同的功用烧结办法不一样。
⑴按质料组成不同分类。能够将烧结分为单元系烧结、多元系固相烧结及多元系液相烧结。单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、MoSi2等)熔点以下的温度进行固相烧结。多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。粉末烧结合金多归于这一类。如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag-W等。多元系液相烧结以超越体系中低熔成分熔点的温度进行的烧结。如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu
⑵按进料办法不同分类。分为为接连烧结和间歇烧结。
接连烧结
烧结炉具有脱蜡、预烧、烧结、制冷各功用区段,烧结时烧结材料接连地或平稳、分段地完结各阶段的烧结。接连烧结出产功率高,适用于大批量出产。常用的进料办法有推杆式、辊道式和网带传送式等。
间歇烧结
零件置于炉内静止不动,经过控温设备,对烧结炉进行需求的预热、加热及冷却循环操作,完结烧结材料的烧结进程。间歇烧结可依据炉内烧结材料的功用断定适宜的烧结准则,但出产功率低,适用于单件、小批量出产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类办法外。按烧结温度下是否有液相分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,维护烧结(如钼丝炉、不锈钢管和炉等)和真空烧结。别的还有超高压烧结、活化热压烧结等新的烧结技能。
(2).影响粉末制品烧结质量的要素
影响烧结体功用的要素许多,主要是粉末体的性状、成形条件和烧结的条件。烧结条件的要素包含加热速度、烧结温度和时刻、冷却速度、烧结气氛及烧结加压情况等。
⑴烧结温度和时刻
烧结温度的凹凸和时刻的长短影响到烧结体的孔隙率、细密度、强度和硬度等。烧结温度过高和时刻过长,将下降产品功用,乃至呈现制品过烧缺点;烧结温度过低或时刻过短,制品会因欠烧而引起功用下降。
⑵烧结气氛
粉末冶金常用的烧结气氛有复原气氛、真空、氛等。烧结气氛也直接影响到烧结体的功用。在复原气氛下烧结防止压坯烧损并可使表面氧化物复原。如铁基、铜基制品常选用发作炉煤气或分化,硬质合金、不锈钢常选用纯氢。活性金属或难熔金属(如铍、钛、锆、钽)、含TiC的硬质合金及不锈钢等可选用真空烧结。真空烧结能防止气氛中的有害成分(H2O、O2、H2)等的晦气影响,还可下降烧结温度(一般可下降100~150℃)。
5后处理
指压坯烧结后的进一步处理,依据产品具体要求决议是否需求后处理。常用的后处理办法有复压、浸渍、热处理、表面处理和切削加工等。
(1).复压
为进步烧结体物理和力学功用而进行的施加压力处理,包含精整和整形等。精整是为到达所需尺度而进行的复压,经过精整模对烧结体施压以进步精度。整形是为到达特定的表面形状而进行的复压,经过整形模对制品施压以校对变形且下降表面粗糙度值。复压适用于要求较高且塑性较好的制品,如铁基、铜基制品。
(2).浸渍
用非金属物质(如油、白腊和树脂等)填充烧结体孔隙的办法。常用的浸渍办法有浸油、浸塑料、浸熔融金属等。浸油即在烧结体内浸入光滑油,改进其自光滑功用并防锈,常用于铁、铜基含油轴承。浸塑料是选用聚四氟乙烯涣散液,经固化后,完成无油光滑,常用于金属塑料减摩零件。浸熔融金属可进步强度及耐磨性,铁基材料常选用浸铜或铅。
(3).热处理
对烧结体加热到必定温度,再经过操控冷却办法等处理,以改进制品功用的办法。常用的热处理办法有淬火、化学热处理、热机械处理等,工艺办法一般与细密材料类似。关于不受冲击而要求耐磨的铁基制件可选用全体淬火,因为孔隙的存在能削减内应力,一般能够不回火。而要求外硬内韧的铁基制件可选用淬火或渗碳淬火。热锻是取得细密制件常用的办法,热铸造的制品晶粒细微,且强度和耐性高。
(4).表面处理
常用的表面处理办法有蒸汽处理、电镀、浸锌等。蒸汽处理是工件在500~560℃的热蒸汽中加热并坚持必定时刻,使其表面及孔隙构成一层细密氧化膜的表面工艺,用于要求防锈、耐磨或防高压浸透的铁基制件。电镀使用电化学原理在制品表面堆积出结实覆层,其工艺办法同细密材料。电镀用于要求防锈、耐磨及装修的制件。
此外,还可经过锻压、焊接、切削加工、特种加工等办法进一步改动烧结体的形状或进步精度,以满意零件的终究要求。电火花加工、电子束加工、激光加工等特种加工办法以及离子氮化、离子注入、气相堆积、热喷涂等表面工程技能已用于粉末冶金制品的后处理,进一步进步了出产功率和制品质量。
无毒冶金工艺方法
2019-02-20 11:03:19
70年代末80年代初,法被公以为是最有出路的替代化法处理难处理矿提金技能问题和环保问题的无毒办法。但该法工艺没有老练,试剂耗费大,本钱高,迫使生产供应商停产下马。针对这一难题,本项目打开浸液中金银别离提取系列研讨缩短工艺、提醒试剂耗费机理、优化浸金系统和工艺,然后提出了“法优化工艺”,使该法初具工程含义,并获国家专利。 依据贵金属与含硫基试合物安稳、且共合物介质PH规模宽,有共存性,提出了多硫基低分子共存复合强化浸金系统的“硫派”理论。基于此发现建立了硫基乙酸(与)联合提金法,不只强化了浸出,且新的工艺使金浸出率大于等于95%时试剂耗费及生产本钱降到常规法的1/3-1/5。专家判定以为“学术水平处于国际领先地位,两种新工艺属国表里创始,其经济技能指标到达国际先进水平”。美国专家点评“给法增添了新生机”。现在该法已与扩多半工业实验根底和微生物处理技能联合将更有含义,然后为非无毒试剂(提金环境材料)及无污染采选冶炼、矿山恢复等可持续发展为根底的“绿色冶金”设想奠定了根底。 石硫合剂(LSSS)提金新法创造及系统研讨 LSSS法是依据贵金属与硫有强亲合力而提出的,以廉价石灰和为质料制备的一起含有多硫根和硫代硫酸根等溶金离子的提金办法。该法试剂本钱低,浸金速率高(2倍-6倍),对难处理矿浸出率高,无毒无污染且碱性介质有利替代化法并使用化法设备。 LSSS法创造了含“石硫合剂制造办法”和“石硫合剂提金办法”两个获准专利。开始研讨处理了石硫合剂溶金的有关热力学问题。通过对东北、华夏及西北等很多类型矿藏浸出实验,构成的工艺可使金浸出率达95%以上,本钱与化法适当,但无毒污染。 湿法冶金就是使用化学办法,使矿石在水浸溶液里别离、提纯、富集,首要使用于稀有金属及金、银、铜、锌、铑、等金属的提炼上,是黄金及有色、贵金属的首要工艺之一。湿法冶金包含加压湿法冶金和生物冶金两种。较早选用湿法冶金的是加拿大、美国等国家,开始时使用于金、银、铅、锌、铜、铝及各种贵金属的选矿办法上,后来跟着研讨技能的不断打破,其使用领域不断拓宽,在国际上使用规模越来越广。
闪速炉熔剂及常用燃料
2019-03-06 09:01:40
一、熔剂
闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。
表1 闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2 As<0.1 F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8 Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3 Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4 直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。
二、燃料
闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。
因为烟气用于制酸,因而对燃料含硫无要求。
各厂闪速炉用燃料的实例见表2,表3。
表2 闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5 注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。
表3 闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm 14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90% 有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。
粉末冶金多孔材料制造工艺
2018-12-12 17:59:44
本发明公开了一种粉末冶金多孔材料制造工艺。它包括混合备料、压制成型、烧结和切割等工序。它解决已有工艺制得的多孔材料存在贯通孔少,孔道曲折,孔的排布不能根据需要而设计等不足。其特点1.工艺简单、无污染;2.按该工艺制得粉末冶金多孔材料贯通孔多,孔道平直,又可根据需要进行排布等。用该工艺制得的粉末冶金多孔材料可用于制造分离、过滤、导流、限流、阻尼等元件。
银矿石冶金工艺了解
2019-03-06 10:10:51
银矿石依据矿藏成分及挖掘状况粗分为两类
一类是以银为主,一起伴生有金,或含少数铜、铅、锌。它们多是由原生银金矿,或铜、铅、锌硫化矿氧化蚀变后次生的氧化矿,含银档次低至数十、高至数千克/吨。银矿藏首要是银金矿(AgAu),辉银矿(Ag2S),锑银矿(Ag3Sb)和角银矿(AgCl)。我国已有罗山、桐柏、贵溪等十多个大中型银矿建成投产,矿石可直接或浮选为银精矿后冶金处理。
另一类多是铅、锌、银共生硫化矿床或是铅,锌矿床中一些银档次较高(可达数千乃至数万克/吨)的富银矿体或富集地段,这类资源矿点多,散布广,规划都较大。共生矿床的特点是:①矿床的工业类型比共生金矿杂乱,共生金属多达9-12种,除铅、锌、银外,常含金、稀有及稀散金属镓、铟、、锗、镉及铁、铜、锡、砷、锑等,有较大归纳利用价值;②矿藏品种多,铅、锌矿藏各有十多种,但首要是方铅矿(PbS)及闪锌矿(ZnS),银矿藏品种也许多但首要是辉银矿(Ag2S),还有淡红银矿(3Ag2S·As2S3)、深红银矿(3Ag2S·Sb2S3);③银的首要载体矿藏是方铅矿,但当含砷高时也常与毒砂连生,含铜较高经常呈黝铜矿(Cu·Ag·Fe)12Sb4S13。
这类矿石有必要浮选别离和富集。浮选工艺有混合浮选、分步浮选、分支串流浮选等各种流程,浮选的产品一般为铅精矿及锌精矿。矿石中锌高铅低时往往还含铜(0.3%-0.6%),则需先铜铅混合浮选后再分选出铜精矿。因为浮选是一种物理选别办法,选择性不高,在所有浮选产品中各种有价金属都有涣散。有的选矿工艺还分选出一种富银精矿,含铅低时可独自冶金处理,但含铅高时又不如与铅精矿兼并处理。
铜、铅精矿一般都用火法熔炼富集,银的收回率较高,而锌精矿不管用湿法或火法提取锌,银都残留在渣中,进一步处理收回率较低。因而共生矿优先浮选工艺都力求使银富集在铅、铜精矿中,尽量削减在锌精矿及尾矿中的涣散。下表为我国几个大型选矿厂浮选主产品中银的收回状况。
当矿石中含有较粗粒度银矿藏时,在浮选流程中添加重选过程可进步银收回率。银矿山曩昔堆集的浮选尾矿中每吨仍含数克至数十克银(如桐柏的尾矿含银52g/t),用螺旋溜槽或摇床等重选办法从尾矿中进一步收回银,已引起重视。重选银精矿可进步银收回率2%-3%。
镍冶金工艺及原理说明
2019-02-26 09:00:22
1 镍冶金的一般常识
1.1 概 述
镍在国际物质文明开展中十分重要的效果。人类发现镍的时刻不长,但运用镍的时刻可一向追溯到公元前300年左右。我国至迟在春秋战国时期就现已呈现了含镍成分的武器及合金器皿。古代云南出产的一种“白铜中,也含有很高的镍。1751年,瑞典科学家克朗斯塔特初次制取到了金属镍。直到十九世纪末,因为产值有限,镍被人们视为贵金属,用以制造首饰。二十世纪以来,人们发现了镍的多种用处及其在改进钢的功用方面所具有的共同功用,现代镍工业由此诞生并得到了敏捷开展。镍是一种银白色的金属。在公元前我国就知道运用镍锌,镍铜合金。
国外于1775年制得纯镍,在1825~1826年间瑞典开端了镍的工业出产。其时,因为技能条件等要素的约束,镍的出产长时间未得到明显的开展。直到发现将镍炼制成合金钢往后,镍工业才有了较快的开展,产值也敏捷上升。1910年国际镍产值只要2.3万吨,1960年为32.55万吨,1980年为74.28万吨,至2002年国际镍的年产值已到达117.59万吨,镍的消费量也将到达104.7万吨或更多.跟着我国经济开展速度的进一步加速和国民经济结构的调整,不锈钢职业,电池,电镀,触媒职业对镍的需求量将进一步添加。
1.1.1 国际镍资源
镍的矿藏资源首要有硫化镍矿和氧化镍矿,再就是贮存于深海底部的含镍锰结核。有关统计资料标明,至1990年,全国际已发现的陆地镍储量为5800万吨,储量根底为1.23亿吨,海洋锰结核矿的镍资源若以准鸿沟档次估量,约有689万吨.在全国际镍储量中,硫化镍矿占了30—40%,氧化硫矿占了60—70%。首要散布在古巴,加拿大,俄罗斯,新喀里多尼亚,印度尼西亚,南非,澳大利亚和我国,巴西,哥伦比亚,多米尼加,希腊,菲律宾等国。国际各国所产镍金属中,百分之七十左右来源于硫化镍矿。
1.1.2 国内镍资源
我国已探明的镍矿点有70余处,储量为800万吨,储量根底为1000万吨,在国际上占第八位.其间硫化镍矿占总储量的87%,氧化镍矿占13%。首要散布在甘肃,四川,云南,青海,新疆,陕西等15个省,自治区中,其间甘肃最多.金川镍矿已探明的镍储量为548万吨,占全国总储量的68.5%。其间次为云南,新疆,吉林和四川,其镍储量别离占全国总储量的9.1%,7.5%,5.2%和4.5%(见表1-2)。金川镍矿则因为镍金属储量会集,有价稀贵元素多等特色,成为国际同类矿床中稀有的,高等第的硫化镍矿床。
1.2 镍及其首要化合物的物理化学性质
镍是元素周期表中第Ⅷ族的元素,其在元素周期表中的方位决议了镍及其化合物的一系列物理化学特性,镍的许多物理化学特性与钴,铁近似;因为与铜比邻,因而在亲氧和亲硫性方面又较挨近铜。
1.2.1 金属镍的性质
1.2.1.1 物理性质
1.2.1.2 化学性质
1.2.1.1 物理性质
镍是一种银白色的金属,其物理性质与金属钴,铁有适当共同的当地,重要表现在:
A.镍的比重:在20℃时为8.908,牢靠数值为8.9~8.908,熔点时液体镍的比重为7.9。
B.镍的比热:在0~1000℃的温度范围内改变于420~620焦耳/公斤.K,在居里点或其附连有一明显的顶峰,此温度下失掉铁磁性。
C.镍的电阻:在20℃时按其纯度99.99~99.8%改变于6.8~9.9微欧厘米(10-8Ωm)。镍基合金尽管广泛用于热电元件,但因为氧化联系纯镍实践上无此用处。
D.镍的热电性与铁,铜,银,金等金属不同,较铂为负,所以在冷端的电流由铂流向镍,因而,以镍作为热电元件时可发作高的电动势。
E.镍具有磁性,是许多磁性物料(由高导磁率的软磁合金至高矫顽力的永磁合金)的首要组成部分,其含量常为10~20%。
1.2.1.2 化学性质
金属镍是元素周期表第8副族铁磁金属之一,原子序数28,原子量58.71,熔点1453±1℃,沸点2800℃。天然生成的金属镍有五种安稳的同位素:Ni5867.7%,Ni6026.2%, Ni611.25%,Ni623.66%,Ni641.66% 。其首要化学性质有:
A.在大气中不易生锈以及能反抗苛性碱的腐蚀。大气试验成果,99%纯度的镍在20年内不生锈痕,不管在水溶液或熔盐内镍反抗苛性碱的才能都很强,在50%欢腾苛性钠溶液中每年的腐蚀性速度不超越25微米,对盐类溶液只简单遭到氧化性盐类(如氯化高铁或次氯酸铁盐)的腐蚀.镍能反抗一切的有机化合物。
B.在空气中或氧气中,镍表面上构成一层NiO薄膜,可防止进一步氧化,含硫的气体对镍有严峻腐蚀,尤其在镍与硫化镍Ni3S2共晶温度在643℃以上时更是如此.在500℃以下时镍关于无明显效果。
C.20℃时镍的电极电位为-0.227伏,25℃镍的电极电位为-0.231伏,若溶液中有少数杂质,尤其是有硫存在时,镍即明显钝化。
1.2.2 镍的化合物及性质
在自然界里镍的化合物有三种根本形状
1:镍的氧化物
2:镍的硫化物
3:镍的砷化物.
1.2.2.1 镍的氧化物
镍有三种氧化物:即氧化亚镍(NiO),四氧化三镍(Ni3O4)及三氧化二镍(Ni2O3)。三氧化二镍仅在低温时安稳,加热至400~450℃,即离解为四氧化三镍,进一步进步温度终究变成氧化亚镍.镍可构成多种盐类,但与钴不同,只生成两价镍盐,因而,不安稳的三氧化二镍常作为较负电金属(如Co,Fe)的氧化剂,用于镍电解液净化除Co之用。氧化亚镍的熔点为1650∽1660℃,很简单被C或CO所复原.氧化亚镍与CoO,FeO相同,可构成MeO SiO2和2MeO SiO2两类硅酸盐化合物,但NiOSiO2不安稳.氧化亚镍具有触煤效果,可使SO2转变为SO3,而SO3与NiO又能够构成安稳的硫酸盐,并较铜,铁的硫酸盐安稳,加热到750~800℃才明显离解.氧化亚镍能溶于硫酸,,和硝酸等溶液中构成绿色的两价镍盐.当与石灰乳发作反响时,即构成绿色的氢氧化镍(Ni(OH)2)沉积。
1.2.2.2 镍的硫化物
镍的硫化物有:NiS2,NiS5,Ni3S2,NiS.硫化亚镍(NiS)在高温下不安稳,在中性和复原气氛下受热时按下式离解:3NiS = Ni3S2 +1/2S2在冶炼温度下,低硫化镍( Ni3S2 )是安稳的,其离解压比FeS小,但比Cu2S大。
1.2.2.3 镍的砷化物
镍的砷化物有砷化镍(NiAs)和二砷化三镍(Ni3As2)。前者在自然界中为红砷镍矿,在中性气氛中可按下式离解:3NiAs =Ni3As2+As在氧化气氛中红砷镍矿的砷一部分构成蒸发性的As2O3,一部分则构成无蒸发性的盐(NiOAs2O3)。因而,为了更彻底地脱砷,在氧化焙烧后还必须再进行复原焙烧,使盐转变为砷化物,进一步氧化焙烧中再使砷呈As2O3形状蒸发,即进行替换的氧化复原焙烧以完结脱砷进程。
1.3 镍的用处及其消费量
1.3.1 镍的用处
1.3.2 镍的消费量
1.3.1 镍的用处
镍与铂,钯类似,具有高度的化学安稳性,加热到700~800℃时仍不氧化.镍在化学试剂(碱液和其它试剂)中安稳.镍系磁性金属,具有杰出的耐性,有满意的机械强度,能饱尝各种类型的机械加工(压延,压磨,焊接等).纯镍特别是镍合金在国民经济中取得广泛的应有.镍具有杰出的磨光功用,故纯镍用于镀镍技能中.特别值得指出的是纯镍还用在雷达,电视,原子工业,远距离操控等现代新技能中.在火箭技能中,超级的镍或镍合金用作高温结构材料.镍粉是粉末冶金中制造各种含镍零件的质料,在化学工业中广泛用作催化剂.镍的化合物也有重要用处.硫酸镍首要用于制备镀镍的电解液,镍则用于油脂的氢化,氢氧化亚镍用于制备碱性电池.硝酸镍还能够在陶瓷工业中用作棕色颜料.可是,纯镍金属和镍盐在现代工业用处中耗费不多,而首要是制成合金运用.全国际耗镍最多的国家是美国和英国,占总产值的60~70%。其间用于合金的镍量到达80%以上。跟着我国改革开放,工业技能飞速开展,电气工业,机械工业,建筑业,化学工业等对镍的需求也愈来愈大。近十年我国的镍的工业又有了很大的开展.归纳起来镍的用处可分为六类:
a.作金属材料,包含制造不锈钢,耐热合金钢和各种合金等3000多种,占镍消费量的70%以上。
b. 用于电镀,其用量约占镍消费量的15%。首要用在钢材及其他金属材料的基体上掩盖一层经用,耐腐蚀的表面层,其防腐功用要比镀锌层高20~15%。
c. 在石油化工的氢化进程中作催化剂.在煤的气化进程中,当用CO和H2组成时发作下列反响:CO + 3H2 →CH4 +H2O(温度800℃,催化剂)常用的催化剂为高度涣散在氧化铝基体上的镍复合材料(Ni25~27%)。这种催化剂不易被H2S,SO2所毒化。
d.用于用作化学电源,是制造电池的材料.如工业上已出产的Cd-Ni,Fe-Ni,Zn-Ni电池和H2-Ni密封电池。
e.制造颜料和染料。其最首要的是组成黄橙色颜料。
f.制造陶瓷和铁素体。如陶瓷上常用NiO作着色剂添加还能添加料坯与铁素体间的粘结性,并使料坯表面光洁细密。铁素体是一种较新的陶瓷材料,首要用于高频电器设备。
1.3.2 镍的消费量
镍的消费相对比较单一,首要会集在不锈钢,合金钢,电镀,电池,触媒,军工等范畴,其间不锈钢职业耗镍量最大,约占整个镍消费的60—70%。2001年我国不锈钢产值为75万吨左右,耗镍量约4.5万吨.非钢职业近年来开展迅猛,2001年耗镍量约3万吨,其间电镀及镍网职业耗镍最大,约为2万吨,电池职业5000吨,触媒职业1500吨,军工职业2000吨,其它职业1500吨,使全国镍的消费量到达7.5万吨左右,消费量迅猛添加。
我国镍的消费按商场细分准则和区域区分呈五大商场区域:
A.以上海为中心的华东商场:包含江,浙,沪,皖三省一市.在此区域内有全国首要的金属期货交易所和长江,华通两个现货商场.现在该区域内年消费镍3万吨左右。未来几年内宝钢集团所属上钢一厂,三厂,五厂合计有150万吨的不锈钢产能将连续构成,镍的潜在消费惊人。150万吨产能估量含镍不锈钢为100-120万吨,理论计算耗镍量为8-10万吨,考虑其运用废钢要素,不锈钢添加的产能至少要耗费5万吨原镍,再加上电镀,合金,镍网,铸造等职业镍的消费,使该区域对镍的需求在未来将到达8万吨以上。
B.以太钢为要点的华北商场:包含太原,天津,北京三地.现在该区域镍的消费量约2.8万吨,有80%会集在太原钢铁公司。太钢在未来将构成100万吨不锈钢出产才能,到时原镍耗费估计到达5.2万吨左右,从而使华北商场镍的消费量到达5.6万吨水平,是一个极为重要的区域,并且该区域对钴,铂族金属的需求量也较大。
C.以电镀为要点的珠江三角洲及周边商场:该区域经济兴旺,镍的年消费量在6000—8000吨,但在往后适当一段时期内生长潜力不大。
D.以沈阳为中心的东北商场:首要是冶金,军工,电池职业,年消费镍约6000吨.跟着宝钢,太钢不锈钢方案的施行,东北地区的不锈钢出产会逐渐萎缩,优势将会集在高温合金和军工钢方面,消费量呈递减趋势。
E.以重庆为要点的西南商场:包含云,贵,川三省,首要是冶金,电镀职业,年消费镍量约4000吨。重庆市把轿车,摩托车做为支柱产业来规划和开展,电镀用镍呈添加趋势,估计未来西南商场对镍的需求将到达5000吨/年水平。
1.4 镍的出产值及其改变
我国镍工业起步于1953年。在金川镍矿被发现前,我国一向被外国视为“贫镍国”,一些国家也趁机对我国施行镍封闭,以此限制我国现代工业的开展。五十年代初,上海冶炼厂,沈阳冶炼厂,重庆冶炼厂等首要在铜电解液中和处理杂铜的进程中提取镍金属,以满意国家对镍的需求。此外,也从吉巴进口的氧化镍中制取镍金属。我国运用国内矿产质料提取镍是从四川会理镍矿开端的。1959年,四川会理镍矿投入出产。1963年和1964年,金川镍矿和吉林磐石镍矿又相继投入出产.特别是金川镍矿的发现和建成投产,不光使我国的镍资源储量跃居国际前列,并且大大进步了我国国产镍的产值,为我国现代工业的开展奠定了根底.特别是进入新世纪以来,金川公司不断加大对矿山的投入,使用新的探矿,找矿办法,在自有矿山的深部和外围进一步勘探,仅2001年就在龙首矿深部发现一出中型矿体,含镍,铜金属量别离到达6万多吨和3万多吨。
截止2003年,全国精镍的年出产才能约6.8万吨,其间:金川公司6万吨,成都电冶厂5000吨,重庆冶炼厂1500吨,新疆阜康冶炼厂2000吨。但实践产值达不到,只要6.2万吨(不包含镍盐含镍量),质料缺乏是限制达产的最首要要素。值得一提的是我国最大的镍出产厂商金川公司近几年通过技能改造和资源操控战略的施行,出产才能大为进步.依据该公司的开展方针,到2006年其产值将超越10万吨。
鼓风烧结配料所采用的熔剂
2019-01-07 17:38:01
鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。
一、硅质熔剂 一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。
二、铁质熔剂 多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。
三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。
表1为熔剂的化学成分实例。
表1 熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95 石灰石20.4155.731.340.330.59 石灰石30.353.970.620.230.89 石英石10.191.0891.80.14 石英石20.52.2197.12 石英石31.261.0894.86 河砂12.41.3575.853.04 河砂21.510.687.48 河砂33.02.074~80 0.30.10.1 烧渣147.44.158.2 烧渣243.866.29.31 烧渣347.554.3510.21 平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60 0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47 5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35 0.01 8~10140
注:Au、Ag的单位为g/t。
火法炼金常用熔剂及其作用
2019-01-07 07:52:09
火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。
我国铜湿法冶金工艺的应用
2019-03-05 12:01:05
前些年,因为铜价较低,开发技能也不行完善,一些低档次铜矿未能得到充分使用。近年来,跟着湿法冶金技能的较快展开,铜价的攀升,这些矿床的开发日益遭到重视,因此经济有用开发这些低档次矿床的湿法冶金工艺也得到了快速展开。
一、国内外铜湿法冶金技能展开现状
自1968年以来,国际上已规划、建造并运转了约50家浸出-溶剂萃取-电积厂,其间美国有16家,2000年铜产值达55.75万吨,占其精炼铜产值的28%,最大的亚利桑那州Morenci厂现在年产值已抵达25.83万吨。智利1980年选用溶剂萃取-电积工艺出产的铜仅有1.5万吨,2000年已展开成为国际最大铜出产国,有出产工厂21家,年产铜134.73万吨,占其精铜总量的51%。
赞比亚、秘鲁、澳大利亚等的湿法冶铜技能在近几年也得到了快速展开。
现在溶剂萃取-电积工艺已被业界以为是老练的、低本钱、低危险的技能,选用该工艺出产的铜产值2000年已达240万吨,占国际铜产值的20%以上[1],到2003年湿法铜的产值已占到国际矿铜产值的1/4[2]。
从上世纪60年代这一工艺得到出产使用以来,我国一些研讨单位别离展开了浸出(酸浸、浸、细菌浸出即生物冶金)、萃取工艺、萃取剂等方面的研讨。80年代今后,构成了比较完好的浸出-萃取-电积工艺并且在出产中得到开始使用。从90年代起,跟着国际铜湿法冶金技能的快速展开,加上国内铜出产和商场遭到国外越来越严峻的冲击,铜湿法冶金新工艺研讨被列入国家“九五”要点科技攻关方案,有力地推进和加快了我国铜湿法冶金技能的研讨和推行[3]。现在正进行较大规划开发性出产的有德兴铜矿废石(均匀含铜0.09%)的细菌浸出-萃取-电积实验厂,年产铜2000吨;紫金矿业公司硫化铜矿细菌浸出-萃取-电积实验厂,年产铜1000吨;中条山铜矿峪矿就地酸浸-萃取-电积实验厂,年产铜500吨。虽然湿法冶金技能近年来有了较大展开,但与国外比较尚有较大距离,首要是在浸出基础理论和工业化技能方面存在距离,并且已树立的工业出产厂规划小、产值低[3]。
二、铜湿法冶金原理、工艺及矿石的适应性
(一)我国铜资源及出产简况
我国铜矿产资源相对缺少,且档次低,质量差;大型矿少,中小型矿多;贫矿多,富矿少;杂乱金属矿多,单一矿少;地下矿多,露天矿少。采选难度较大,特别是选矿,因为原矿档次低,矿藏组成杂乱,因此选矿本钱高,精矿档次遍及偏低,给后续的冶炼构成必定难度[3]。
铜湿法冶金的长处是出资省、出产本钱低。火法出产的吨铜出资约6.5万元,而湿法工艺吨铜出资约1.5万元。从我国实际情况看,德兴实验厂吨铜出产本钱为10450元,中条山铜矿为8000元,紫金铜矿为10000元。假如规划进一步扩展,出产本钱还会下降[3]。
(二)铜湿法冶金原理
浸出-萃取-电积工艺的根本进程如图1所示[1]。氧化铜矿石的浸出原理。常见的氧化铜矿藏首要是孔雀石、硅孔雀石、赤铜矿、天然铜,浸出剂为H2SO4和Fe2(SO4)3,浸出进程发作的化学反响为:
孔雀石Cu2(OH)2CO3+2H2SO4=2CuSO4+CO2+3H2O;
硅孔雀石CuSiO3·nH2O+H2SO4=CuSO4+SiO2+(n+1)H2O;
赤铜矿Cu2O+2H+=Cu2++Cu+H2O;
蓝铜矿Cu(OH)2·CuCO3+2H2SO4=2CuSO4+CO2+3H2O。
硫化铜矿石的浸出原理。关于硫化铜矿石,生物氧化浸铜是现在研讨最多、展开最快、远景最好的技能之一。
现在用于生物浸出的微生物首要是氧化亚铁硫杆菌和氧化硫硫杆菌。它们可在35℃以下的高酸及重金属浓度较高的极点环境中生计。细菌氧化浸出的机理一般以为有两种:细菌吸附到矿藏表面直接与矿藏发作作用使矿藏溶解的直接作用机理;矿藏溶解释放出的Fe2+在溶液中被细菌氧化成Fe3+,Fe3+作为氧化剂氧化硫化矿的直接作用或化学作用机理。
辉铜矿的细菌浸出[6]。辉铜矿在酸性及Fe3+存在的条件下,能够被氧化成FeSO4和S:
Cu2S+2Fe2(SO4)3=2CuSO4+4FeSO4+S
所生成的FeSO4和S再由细菌氧化成Fe2(SO)4和H2SO4如此反响循环进行。
在细菌作用下,辉铜矿也可被氧气氧化而溶解:
2Cu2S+5O2+2H2SO4=4CuSO4+2H2O
辉铜矿的浸出被以为是以Fe3+直接氧化作用为主,细菌是浸出反响的直接氧化剂。
铜蓝的细菌浸出[6]。因为浸出环境中没有Fe3+及其他氧化剂,所以浸出作用只能是由细菌引起,在浸出期间酸耗等于零,其反响为:
CuS+2O2=CuSO4
细菌浸出在矿藏标明发作,浸出后矿藏标明的化学组成未发作变化,阐明浸出中没有转化为其他硫化物的中间进程,也没有发作元素S。
硫砷铜矿的细菌浸出[6]。在H2O,O2存在条件下,在氧化亚铁硫杆菌、氧化硫硫杆菌及复合细菌作用下,硫砷铜矿发作直接浸出反响:
4CuAsS+6H2O+13O2=4H3AsO4+4CuSO2
黄铜矿、斑铜矿的细菌浸出反响[5]。在细菌存在条件下直接与Fe2(SO)3发作如下:
CuFeS2+2Fe2(SO)3=CuSO4+2FeSO4+2S
2Cu5FeS2+2Fe2(SO4)3+17O2=10CuSO2+4FeSO4+2FeO
其间,FeSO4与FeO在酸与细菌作用下又转化为Fe2(SO4)3并持续反响。
(三)适合选用湿法冶金工艺处理的铜矿石类型
关于氧化铜矿石,只需操控矿石粒度,一般都能取得较满足的浸出作用。但硫化铜矿石按其矿藏品种不同,其浸出作用差异较大。国外现在选用生物氧化工艺处理的铜矿石根本上以次生硫化铜矿石如辉铜矿、蓝辉铜矿、铜蓝等为主,而对原生硫化铜矿石现在仍以火法处理。就矿石类型来看,现在湿法工艺首要处理斑岩型铜矿,这首要是斑岩型铜矿规划较大,含碱性脉石少,是硫酸浸出最抱负的质料。如国内的德兴铜矿、紫金山铜矿、中条山铜矿峪矿、大宝山铜矿等。我国矽卡岩型铜矿数量多,占50%以上,储量占总储量的29%,一般规划较小,零散涣散,矿体赋存条件杂乱,大都适合于地下挖掘,挖掘本钱较高。别的含碱性脉石较多,不利于用硫酸浸出。
三、湿法冶金工艺在国内铜矿中的使用
国内选用湿法工艺的出产实验厂首要有德兴铜矿、紫金山铜矿、中条山铜矿峪矿等。
(一)德兴铜矿铜收回工艺及目标
德兴铜矿堆浸实验厂以露天采矿剥离的废石(含Cu0.1%~0.25%)为质料。按0.25%的临界档次核算,其废石总量有8.9亿吨,其间含铜抵达95.15万吨。矿石大大都(85%以上)为原生硫化矿,属最难浸矿石,在我国铜工业中具有典型性,遇到的问题及工艺流程特色也有必定代表性。实验厂于1994年5月建成,年产A级铜2000吨,吨铜本钱10450元,为国家“九五”科研攻关项目[7]。该矿是国内仅有一家使用细菌浸出工艺处理原生硫化铜矿石为主的出产厂,通过堆浸-萃取-电积工艺,不只从剥离废石中收回部分铜,并且采矿进程发作的酸性矿坑水不再外排,减少了环境污染。自1997年10月投产以来,流程运转根本安稳。存在的首要问题是:整个矿堆铜的浸出率不高,仅16.59%,浸出液中Cu2+质量浓度未抵达每升1g以上,一向低于0.6g。整个工艺流程如图2所示[7]。图2 德兴铜矿从低档次矿石中收回铜的工艺流程
(二)紫金矿业公司铜收回工艺及目标
紫金山铜矿是一已探明的大型含金铜矿,特色是上金下铜,储量大,档次低。铜工业储量125.64万吨,矿石均匀档次Cu0.68%,S2.58%,As0.035%,首要意图矿藏以蓝辉铜矿和铜蓝为主,其次为辉铜矿,块硫砷铜矿和硫砷铜矿。因为原矿档次低,含砷高,选用传统的浮选-火法冶炼工艺,出资大,本钱高,污染重[8]。而选用生物浸出工艺有较好的经济效益。
工艺流程根本同图2。原矿破碎至-30mm,选用主动卸矿的后移式筑堆法筑堆,堆高8~10m。浸出初期引进人工富化的驯化菌液,然后使用采矿平硐的酸性矿坑水配适量的工业硫酸,调pH≈2后喷淋浸出。一般不需独自弥补菌液,只需保持pH在2左右。当浸出液中Cu2+质量浓度大于1.5g/L时,送萃取电解出产阴极铜。
现在已建成年产1000吨的堆浸实验出产厂,浸出周期210~240天,浸出率70%~75%,电铜质量抵达1#铜标准,吨铜出产本钱10729元[9]。该公司方案扩建1万吨电铜的生物冶金厂,成为国内最大生物提铜基地。
(三)中条山铜矿峪铜矿铜收回工艺及技能目标
铜矿峪铜矿蕴藏有许多难采难选低档次氧化铜矿石,已探明储量1800多万吨,矿石档次0.65,氧化率大于50%。1997年,中条山有色公司、北京矿冶研讨总院和长沙矿山研讨院协作,一起进行了“难采难选低档次氧化铜矿地下溶浸工业实验”,通过近4年体系全面的实验研讨,已构成了适应于地下矿山就地破碎浸出收回铜的完好出产技能。
现在有两个溶浸厂即5#矿体东部工业化实验溶浸厂和陷落区就地溶浸厂正在出产和建造。
5#矿体就地破碎实验溶浸厂实验矿块水平标高930~968m,矿体倾角均匀40°,长62m,均匀厚度14m。地质矿量3.32万吨,档次0.975%。首要含矿岩性为变石英晶屑凝灰岩和变石英斑岩。矿石中首要含铜矿藏为孔雀石、硅孔雀石、辉铜矿、铜蓝,首要脉石矿藏为石英、绢云母[5]。先用微差揉捏爆炸法把矿石破碎到200mm(>80%)以下,然后从坑外处理厂配液站将质量分数为1.5%~2%的稀硫酸用泵接力输送到实验采场958、968水平布液巷道,再通过分流阀、距离4m的下向扇形布液孔均匀布液于整个采场平面。进入采场的稀硫酸靠重力自上而下以必定的速度浸透通过矿石,与矿石中Cu2+反响,生成的硫酸铜溶液聚集于采场底部集液池中,再用泵送萃取电解出产阴极铜。萃取电解工艺同其他出产厂相同。
投产两年,共出产优质电积铜1000吨,单位产品不含税本钱每吨9000元[4],归纳收回率71%,经济效益较好。
陷落区溶浸工程陷落区喷淋溶浸厂是铜矿峪矿在地下溶浸实验厂实验成功基础上建造的。它充分考虑了铜矿峪矿地下收集原生矿后,上部氧化矿天然陷落堆积的特色,不需人工爆炸,仅在表面按4×4m2安置管网,装置喷头。选用沿等高线水平动态布液,稀酸用泵输送到970m标高喷淋场,喷淋液通过120~150m笔直高程一边与矿石反响,一边缓慢下降,通过20~30h抵达底部坑下集液巷道,用泵返送地表萃取-电积处理厂。陷落区溶浸现在地表有用喷淋面积8000m,该矿方案在3年内扩展到2.5万m,并把该区域建成年产电铜1500吨的独立出产区域。
四、生物氧化工艺对探采矿石的适应性
生物氧化浸出技能近几年在国外展开很快,在国内尚处于实验和试出产阶段。原则上讲,这项技能可使用于金、铜、镍、铅、锌、钴等矿种,但现在国内外首要使用在金、铜的浸出。国内现在已建成烟台金生物氧化浸出厂(50t/d)、陕西地矿局生物氧化浸出实验厂(10t/d)和莱州生物氧化浸出厂(100t/d),处理含砷含硫的难浸金精矿粉。选用生物氧化并构成必定规划的铜湿法冶金实验厂有德兴铜矿和紫金山铜矿。西北有色地勘局对部分矿山探采矿石也展开了这方面的讨论性实验,但作用不太抱负,首要是受矿石中含钙镁等耗酸矿藏较多的影响。1999年,陕西省地矿研讨所生物研讨中心对煎茶岭浮选金精矿进行了细菌氧化浸金实验研讨。煎茶岭浮选金精矿归于低砷低硫难浸金精矿,金以微细粒方式赋存于硫化矿藏和脉石矿藏中,硫化物包裹金占44.76%,硅酸盐包裹金占9.26%,碳酸盐包裹金占5.79%,另w(s)=6.22%,w(As)=0.82%。金精矿直接化,金浸出率仅35.3%;经120h细菌预氧化后再化浸出,金浸出率达92.72%。但因为精矿中碱性成分CaO、MgO含量较高,达26%,构成氧化进程酸耗较高,达20%,即每吨精矿耗酸200kg,吨精矿处理本钱达240元[10]。2002年,西安巨石生物浸出研讨中心对陕西穆家庄原生铜矿石进行生物氧化浸出实验,相同因为矿石中脉石矿藏酸耗较高,每吨矿石耗酸达205kg,未再进行后边的细菌氧化实验。据有关材料介绍,矿石中碱性脉石成分大于5%后,酸浸或生物氧化不只酸耗大,并且硫酸与氧化钙反响生成石膏,罩盖在矿石表面,影响浸出。云南东川矿务局汤丹矿以浮选所得高碱性脉石精矿为目标,选用回转窑焙烧-加压浸-萃取-电积工艺收回阴极铜,取得了较好的作用,可是针对原矿的研讨还没有更大打破。
五、结束语
不可否认,湿法冶金工艺是未来大规划处理低档次有色金属、贵金属矿的有用手法之一,也是国际上许多国家研讨的要点方向之一。新效果的不断出现,工艺的不断完善,使许多用现有办法不能处理的矿石,在不久的将来都或许得到充分使用。
参考文献
[1] 刘大星,蒋开喜,王成彦.湿法冶金技能的现状及展开趋势[J].有色冶炼,2000(4):1-5.
[2] 刘大星.湿法炼铜的展开与远景[J].有色金属再生与使用,2005(7):37?9.
[3] 钮因健.大力展开铜湿法冶金技能是“十五”我国铜工业技能进步的重要任务口].国际有色金属,2002(1):4-8.
[4] 张峰,常晋元.低档次氧化铜矿的地下溶浸工艺与出产[J].有色金属:矿山部分,2003(4):5-6.
[5] 刘坚.铜矿峪矿低档次铜矿石地下溶浸工业实验[J].采矿技能,2003(1):I9-21.
[6] 甘永刚.浅谈细菌浸铜原理[c].紫金矿业股份公司2001年论文集:221-225.
[7] 李雄壮,桂斌旺,段希祥.德兴铜矿堆浸厂的出产实践及技能研讨口].矿冶工程,2002(1):46-48.
[8] 吴在玖.生物堆浸技能在紫金山铜矿的使用[c].紫金矿业股份公司2001年论文集:212?16.
[9] 巫銮东.紫金山铜矿细菌浸出实验研讨[c].紫金矿业股份公司2001年论文集:199-205.
[10] 柏全金,熊英.陕西何家岩难浸金精矿细菌预氧化提金实验研讨报告[C].陕西省地质矿产实验研讨所,2001.
复杂矿石及精矿湿法冶金工艺进展
2019-01-07 08:31:34
铝合金熔体的熔剂精炼
2019-01-02 15:29:20
本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。
在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。
铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。
1 熔剂的作用
盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。
2 熔剂的分类和选择
2.1熔剂的分类和要求
铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。
①熔点应低于铝合金的熔化温度。
②比重应小于铝合金的比重。
⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。
④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。
⑤吸湿性要小,蒸发压要低。
⑥不应含有或产生有害杂质及气体。
⑦要有适当的粘度及流动性。
⑧制造方便:价格便宜。
2.2熔剂的成分及熔盐酌作用
铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。
2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4
,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。
2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;
b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。
3铝合金熔炼中常用熔剂
熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。
3.1常用熔剂
为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。
铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。
表1 常用熔剂的成分及应用
溶剂种类 组分含量,%
NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金
覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg
系,Al-Cu-Si系Al-Cu-Mg-Zn系
Na2CO385。CaF15 一般铝合金
50 50 一般铝合金
KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金
31 14 CaF210 CaCL244 Al-Mg系合金
8 67 CaF210,MgF215 Al-Mg系合金
精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金
8 67 MgF215,CaF210 Al-Mg系合金
KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金
42 46 Bacl26 (2号熔剂) Al-Mg系合金
22 56 22 一般铝合金
50 35 15 一般铝合金
40 50 NaF10 一般铝合金
50 35 5 CaF210 一般铝合金
60 CaF220,NaF20 一般铝合金
36-45 50-55 3-7 CaF 21。5-4 一般铝合金
Na2SiF630-50,C2Cl650-70 一般铝合金
40。5 49。5 KF10 易拉罐合金
从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。
综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。
3。2熔剂用量 .
熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。
3。2。1.主覆盖剂用量
a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合
注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。
b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。
表3: 覆盖剂用量
类 别 用量(占投料量的%)
小碎片碎 屑号外渣子 6-810-1515-20
3.2.2精炼剂用量
不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。
表4 精炼剂用量
合金及制品 熔炼炉 静置炉
高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t
特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t
LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝
其它合金 普通熔剂5-6kg/t
注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加
②对大规格的圆锭,其熔剂用量也应适当增加。
3。3熔剂使用方法
熔剂精炼法熔炼铝合金生产中常用以下几种方法
①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。
②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。
③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。
④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。
在这五种方法中,电熔剂精炼效果最好。
金属镍的湿法冶金工艺简介
2018-08-27 14:28:46
最近看到许多报道都在讲硫酸镍对动力电池如何重要和关键,而硫酸镍怎么来的呢,目前主流工艺还是从金属镍而来。今天就和大家介绍下金属镍的湿法冶金工艺。1979年,前苏联诺里尔斯克镍联合企业纳杰日达冶炼厂处理含镍磁黄铁矿的车间投产,采用的工艺是含镍2%的磁黄铁矿精矿,以含氧80%的富氧空气进行加压浸出,再利用硫化沉淀法使溶解的镍、钴沉淀,用浮选法分别选出镍精矿和元素硫,镍精矿送火法处理,浸出渣可作为铁精矿。采用湿法冶金工艺从氧化矿中提取镍的方法有还原焙烧—常压an浸法和加压酸浸法。古巴尼加罗镍厂于1943年将常用an浸法首次用于工业生产,70年代以来,澳大利亚的雅布罗镍厂、菲律宾的苏里高镍厂、印度苏金达厂等都先后采用了该法处理含镍红土矿。尼加罗厂的主要生产过程是将矿石处理到90%小于200目后在多膛炉中进行选择性还原焙烧,将矿石中的镍还原,而三价铁大部分还原成磁性氧化铁,少量还原成金属铁。焙烧用NH3-(NH4)2CO3溶液进行三段逆流浸出。第一段浸出浓密机的溢流为富液,经净化、蒸an后产出一种碳酸镍浆料,送往回转窑干燥和煅烧,产出含Ni 76.5%、Co 0.6%的氧化镍粉,并大量还原出金属镍,以便更适合用于工业应用。还原焙烧—常压an浸法在工业上应用已有40余年,说明该法能成功的从含镍红土矿中提取镍。现an浸法已有改进,如用H2S沉淀产出镍钴硫化物,以利于钴的回收。中冶瑞木项目是采用苛性钠沉淀得到氢氧化镍钴。古巴毛阿项目采用加压酸浸工艺处理红土镍矿,其矿石含氧化镁低,含铁高,比较适合用加压酸浸工艺处理,镍、钴回收率可分别达到96.5%和94%。主要过程为:红土矿在加压釜内用硫酸浸取,镍及钴进入溶液,铁则留在渣中。浸出矿浆经六段浓密机逆流洗涤后,浸出渣作为炼铁原料、第一段浓密机的溢流为富液,在加压釜内通入liu化氢,沉淀出镍、钴、铜等,镍钴硫化物再经精炼处理。对于高镍锍的处理,镍铜分离和精炼一直是镍冶炼工艺中的关键问题。在镍冶金发展的早期阶段,通常采用分层熔炼法、优先浸出法处理高镍锍。缓冷选矿分离高镍锍和硫化镍阳极电解是五六十年代镍冶炼技术的重大进展,我国于60年代建设的金川镍冶炼厂即采用此技术。70年代以来,国内外高镍锍镍铜分离的湿法提取工艺取得了巨大进展,即选择性浸出法。其次气化冶金的羰基法也取得成功。采用选择性浸出工艺的厂家,比较著名的有芬兰奥托昆普公司哈贾法尔塔厂采用的硫酸选择性浸出法;加拿大鹰桥公司采用的氯化浸出法和加拿大谢里特-高尔顿公司采用的加压an浸法。这些方法中,以硫酸选择性浸出法发展较快。20多年来,除了芬兰奥托昆普公司应用而外,国外已有多家新建的镍精炼厂采用该工艺进行工业生产。硫酸选择性浸出法的基本过程是高镍锍经细磨后,采用常压和加压相结合的方法分段进行浸出。镍、钴被选择性浸出进入溶液,铜、铁、贵金属则抑制于浸出渣中。第一段浸出的浸出液富含镍、钴,几乎不含铜、铁等杂质,因而浸出液的净化作业采用比较简单的NiOOH除钴法。经净化后的浸出液用电解沉积法或氢还原法产出金属镍。此工艺过程简单,建设投资省,药剂用量少,生产成本也较低。我国新疆阜康冶炼厂已成功应用。
金矿生物冶金经典工艺流程实例
2019-03-06 09:01:40
1 BIOX工艺
BIOX工艺是当时世界上最先进的生物氧化拌和槽浸工艺,该工艺运用嗜温菌在通气拌和槽内处理矿石。图5-8是BIOX工艺典型的流程图。该工艺所用菌种主要是A.t和L.f组成的混菌。矿浆在工厂一般停留时间为4天,细菌氧化由两段组成,一般有3个并联拌和柑用于一段氧化,3个串联拌和槽用于二段氧化,矿浆经石灰中和并固定砷之后进行化浸出。该工艺进程的操作温度为40℃左右,浸出液pH值控制在I.6~1.8。拌和槽一般选用机械式拌和并通人空气,以坚持浸出液中有满足的CO2和02。2 BacTech工艺
BacTech工艺的特点是使用了中等嗜热菌,最佳操作温度为45-55℃,经过槽浸处理浮选精矿。该工艺开发于1984年,是运用一种耐热混合培育菌M4。该菌株是由英国Barret博士领导的科研小组在西澳大利亚酷热的沙漠区域找到的,归于中等耐热菌,最佳成长温度为46℃。Bactech公司使用该菌株处理西澳
大利亚Youanmi难浸金精矿获得成功,该菌株本领当地的高温文高盐度水质,很适合于当地干旱缺少淡水的条件,并可削减氧化反响时的冷却费用(见图5-9)。榜首段在3个并联反响槽内进行,第二段在3个相互串联的反响槽内进行。这一工艺现在正推广应用以处理一些根底金属的硫化矿精矿,如黄铜矿、多金属镍钴硫化矿等。3 Newmont 工艺
鉴于其他工艺都是处理难浸的浮选金精矿,Newmont工艺(见图5-10)则是针对低档次浸金矿选用制粒后细菌氧化堆浸预处理的工艺,取得了美国专利。1996年,在美国内华达州的卡林金矿进行了然吨到百万吨级的一系列细菌氧化堆浸实验,获得了成功,所处理的卡林金矿含金档次为0.6~1.2g八,矿石制粒的粒度为80%小于19mm,细菌氧化周期为80~100天,金回收率为60%~70%,加工成本为吨矿石5美元左右。
冶炼厂熔剂破碎设备选择
2019-01-07 17:38:04
冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。
一、破碎设备的选择
冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。
若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,
近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。
图1 PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较
图2 二段一次闭路破碎筛分流程实例
图3 三段半闭路破碎筛分设计流程图实例
二、破碎机生产能力计算
破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。
(一)颚式、圆锥(标准、中型和短头)破碎机
1、开路破碎的生产能力计算
Q=K1K2K3K4Q0 (1)
式中:
Q-设计条件下,破碎机的生产能力,t/h;
Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:
Q0=q0e
K1-熔剂的可碎性系数,由表1选取;
K2-熔剂密度修正系数,由下式计算:
K2=γ/1.6≈γT/2.7
K3-给料粒度或破碎比修正系数,由表2或表3选取;
K4-水分修正系数,进料水分5%以下时,可取1;
q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;
e-破碎机排料口宽度,mm;
γ-熔剂的堆积密度,t/m3;
γT-熔剂的密度,t/m3。
表1 熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易 碎8以下1.1~1.2中等可碎8~161.0难 碎16~200.9~0.95
表2 粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23
表3 中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20
注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;
2、设有预先筛分时取小值;不设预先筛分时取大值。
表4 颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30
表5 开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0
表6 开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0
表7 开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中 型2.765.4 9.620.0短头型4.256.7 14.025.0
表8 颚式破碎机生产实例厂 别设备规格
mm熔剂种类给料粒度
mm排料口宽度,mm生产能力
t/h大 冶450×750石英石、
石英石300~40010050白银一冶600×900石英石、
石英石48075~20035~120铜陵二冶400×600石英石、
石英石32040~10025~60云 冶400×600石英石30040~10012~32
2、闭路破碎时破碎机通过的熔剂量生产能力计算
Qc=KQ0 (2)
式中:
Qc-闭路时破碎机的生产能力,t/h;
Q0-开路时破碎机的生产能力,t/h;
K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。
(二)光面对辊破碎机
Q=60πDLdnγK (3)
式中:
Q-对辊破碎机的生产能力,t/h;
D-辊筒直径,m;
L-辊筒长度,m;
d-排料口宽度,m;
n-辊筒转数,r/min;
γ-破碎熔剂的堆积密度,t/m3;
K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。
(三)反击式破碎机
Q=60K1C(h+ɑ)dbnγ (4)
式中:
Q-反击式破碎机的生产能力,t/h;
K1-理论生产能力与实际生产能力的修正系数,一般取0.1;
C-转子上板锤数目;
h-板锤高度,m;
ɑ-板锤与反击板间的间隙,即排料口宽度,m;
d-排料粒度,m;
b-板锤宽度,m;
n-转子的转数,r/min;
γ-熔剂的堆积密度,t/m3。
(四)锤式破碎机
Q=60ZLCdμKnγ (5)
式中:
Q-锤式破碎机的生产能力,t/h;
Z-排料篦条的缝隙个数;
L-篦条筛格的长度,m;
C-筛格的缝隙宽度,m;
d-排料粒度,m;
μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。
K-转子圆周方向的锤子排数,一般为3~6;
n-转子转数,r/min;
γ-熔剂的堆积密度,t/m3。
由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:
Q=(30~45)DLγ (6)
式中:
Q-锤式破碎机的生产能力,t/h;
D-按转子外缘计的转子直径,m;
L-转子长度,m;
γ-破碎产物的堆积密度,t/m3。
以上经验公式都有局限性,应注意其使用条件。
三、需要破碎机台数的计算
n=Qn/Q (7) 式中:
n-需要破碎机台数;
Qn-破碎作业的设计产量,t/h;
Q-破碎机的生产能力,t/(h·台)。
表8至表10为铜冶炼厂熔剂破碎机生产实例。
表9 标准圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3给料粒度
mm排料口宽度,mm生产能力
t/h大 冶900石英石、
石英石1.490~15025~2850白银一冶1200石英石、
石英石1.6411520~3042~135铜陵二冶900石英石、
石英石1.511012~2540
表10 短头圆锥破碎机生产实例厂 别直径
mm熔剂种类堆积密度
t/m3排料口宽度,mm产品粒度
mm生产能力
t/h备注大 冶1200石英石、
石英石1.48~106~850闭路白银一冶1200石英石、
石英石1.5~1.66~10~1550开路
金、银锭熔铸的原理-熔剂和氧化剂
2019-02-21 13:56:29
在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。
熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。
熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。
熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。
国内铜湿法冶金工艺现状调研
2019-01-30 10:26:34
一、国内外铜湿法冶金技能展开现状
自1968年以来,世界上已规划、建造并运转了约50家浸出—溶剂萃取—电积厂,其间美国有16家,2000年铜产值达55.75万t,占其精炼铜产值的28%,最大的亚利桑那州 MOrenci厂现在年产值已到达25.83万t。智利1980年选用溶剂萃取一电积工艺出产的铜仅有1.5万t,2000年已展开成为世界最大铜出产国,有出产工厂21家,年产铜134.73万t,占其精铜总量的51%。赞比亚、秘鲁、澳大利亚等的湿法浸铜技能在近几年也得到了快速展开。
现在溶剂萃取—电积工艺已被业界以为是老练的、低本钱、低危险的技能,选用该工艺出产的铜产值2000年已达240万吨,占世界铜产值的20%以上,到2003年湿法铜的产值已占到世界铜产值的1/4。
从上世纪60年代这一工艺得到出产使用以来,我国一些研讨单位别离展开了浸出(酸浸、浸、细菌浸出即生物冶金)、萃取工艺、萃取剂等方面的研讨。80年代今后,构成了比较完好的浸出—萃取—电积工艺并且在出产中得到开始使用。从90年代起,跟着世界铜湿法冶金技能研讨和使用的快速展开,加上国内铜出产和商场遭到国外越来越严峻的冲击,铜湿法冶金新工艺研讨被列入国家“九五”要点科技攻关方案,有力地推进和加快了我国铜湿法冶金技能的研讨和推行。现在正进行较大规划开发性出产的有德兴铜矿废石(均匀含铜0.09%)的细菌浸出—萃取—电积实验厂(年产铜2000 t)。紫金矿业公司硫化铜矿细菌浸出—萃取—电积实验厂(年产铜1000 t)。中条山铜矿峪就地酸浸—萃取—电积实验厂(年产铜500 t)。虽然湿法冶金技能近年来有了较大展开,但与国外比较尚有较大距离,首要是在浸出基础理论和工业化技能方面存在距离,并且已树立的工业出产厂规划小、产值低。
二、铜湿法冶金原理、工艺及矿石的适合性
(一)我国铜资源及出产简况
我国铜矿产资源相对缺少,并且档次低,质量差;大型矿少,中小型矿多;贫矿多,富矿少;杂乱多金属矿多,单一矿少;地下矿多,露天矿少。这些特色使采选难度较大,特别是选矿,因为原矿档次低,矿藏组成杂乱,因此选矿本钱高,精矿档次遍及偏低,给后续的冶炼构成必定难度。就火法冶炼来说,虽然在工艺和设备上都有了很大改善,但出产本钱遍及高于国外,并且还存在较严峻的环境污染。
铜湿法冶金的长处是出资省、出产本钱低。据报道,火法出产的吨铜出资约为6.5万元,而浸出—萃取—电积工艺的吨铜出资约为1.5万元。实际上从我国实际状况看,德兴实验厂吨铜出产本钱为10450.23元,中条山为8000元,紫金铜矿为10000元。假如出产规划进一步扩展,出产本钱还会下降。
(二)铜湿法冶金原理
1、氧化铜矿石的浸出原理
常见的氧化铜矿藏首要是孔雀石、硅孔雀石、赤铜矿、自然铜。在浸出剂H2SO4和 Fe2(SO4)3的作用下,只需矿石中高碱性脉石含量不高,一般都能取得较好的浸出作用。浸出进程发作的化学反响为:
孔雀石Cu2(OH)2CO3+2H2SO4=2CuSO4+CO2+3H2O
硅孔雀石CuSiO·2H2O+FL2SO4=CuSO4+SiO2+(n+1)H2O
赤铜矿Cu2O+2H+=Cu2++Cu+H2O
蓝铜矿Cu(OH)2·CuCO3+2H2SO4=2CuSO4+CO2+3H2O
2、硫化铜矿石的浸出原理
关于硫化铜矿石,生物氧化浸铜是现在研讨最多、展开最快、远景最好的技能之一。
现在用于生物浸出的微生物首要是氧化亚铁硫杆菌和氧化硫硫杆菌。它们可在35℃以下的高酸及重金属浓度较高的极点环境中生计。细菌氧化浸出的机理一般为2种:细菌吸附到矿藏表面直接与矿藏发作作用使矿藏溶解的直接作用机理:矿藏溶解释放出的Fe2+在溶液中被细菌氧化成为Fe3+,Fe3+作为氧化荆氧化硫化矿的直接作用或化学作用机理。
(1)辉铜矿的细菌浸出
辉铜矿在酸性及Fe3+存在的条件下,能够被氧化成FeSO4和S,反响如下:
Cu2S+2FeSO4=2CuSO4+4FeSO4+S
所生成的FeSO4和S再由细菌氧化为Fe2(SO4)3和H2SO4如此反响循环进行。
另一方面,在细菌作用下,辉铜矿被氧气氧化溶解
2Cu2S+5O2+2H2SO4=4CuSO4+2 H2O
辉铜矿浸出以为以Fe3+直接氧化作用为主,细菌是浸出反响的直接氧化剂。
(2)铜蓝的细菌浸出
因为浸出环境中没有Fe3+及其他氧化剂,所以浸出作用只能是由细菌引起的,在浸出期间酸耗等于零,其反响为:
CuS+2O2——CuSO4
细菌浸出在整个矿藏标明发作,浸出后矿藏标明的化学组成未发作变化,阐明浸出中没有转化为其它硫化物的中间进程,也没有发作元素S。
(3)硫砷铜矿的细菌浸出反响
在H2O、O2存在条件下,在氧化铁硫杆菌、氧化硫硫杆菌及复合细菌作用下,硫砷铜矿发作直接浸出反响:
4CuAsS+6H2O+13O2——4H3AsO4+4CuSO2
(4)黄铜矿、斑铜矿的细菌浸出反响
在细菌存在的条件下直接与Fe2(SO)3。发作如下反响
CuFeS2+2 Fe2(SO)3——CuSO4+2FeSO4+2S
2Cu5FeS2+2 Fe2(SO4)2+17O2—10 CuSO2+4 FeSO4+2 FeO
其间FeSO4与FeO在酸与细菌的作用下转化为Fe2(SO4)3进行循环反响。
(三)适合选用湿法冶金工艺处理的铜矿石类型
关于氧化铜矿石,只需操控好矿石粒度,一般都能取得较为满足的浸出作用。但硫化铜矿石按其矿藏品种不同,其浸出作用差异较大。国外现在选用生物氧化工艺处理的铜矿石根本上以次生硫化铜矿石(辉铜矿、蓝辉铜矿、铜蓝等)为主,而对原生硫化铜矿石现在仍以火法技能处理。
别的,就矿石类型来看,现在浸出—萃取—电积技能首要使用于斑岩型铜矿。这首要是斑岩型铜矿规划较大,含碱性脉石少,是硫酸浸出最抱负的质料。如国内的德兴铜矿、紫金山铜矿、中条山铜矿峪矿、大宝山铜矿等。我国的铜资源特色是矽卡岩型铜矿数量多,占50%以上,储量占总储量的29%,而西方国家只占3%,这类矿床一般规划较小,零散涣散,矿体赋存条件比较杂乱,大都适合于地下挖掘,并且挖掘本钱较高。别的含碱性脉石较多,不利于用硫酸浸出。
三、湿法冶金工艺在国内铜矿山中的使用
国内选用湿法冶金工艺的出产实验厂首要有德兴铜矿、紫金山铜矿、中条山铜矿峪矿等,现就其实验出产状况、工艺、技能目标等做一扼要介绍。
(一)德兴铜矿铜(废石)收回工艺及目标
德兴铜矿堆浸实验厂是以露天采矿剥离的废石(含Cu0.1%~25%)为质料。按0.25%的临界档次核算,其废石总量有8.9亿t,其间含铜到达95.15万t,用传统的选冶工艺难以经济收回铜。经国家计委、科技部同意,于1994年5月建造了一个年产铜2000 t的实验厂,并列为国家“九五”科研攻关项目。因为矿石档次低且大大都(85%以上)为原生硫化矿,属最难浸矿石,在我国铜工业中具有典型性,其遇到的问题及工艺流程的特色也有必定代表性。
实验厂每年出产铜1000~2000t,原矿铜档次0.121%,浸出率16.59%,产品质量为 A级。吨铜本钱10450元。该矿是国内仅有一家使用细菌浸出工艺处理原生硫化铜矿石为主的供应商,经过堆浸—萃取—电积工艺,不只从剥离废石中收回部分铜,发明了必定效益,减少了资源糟蹋,并且采矿进程发作的酸性矿坑水不再外排,减少了环境污染。自1997年10月投产以来,流程运转根本安稳。存在的首要问题是:整个矿堆铜的浸出率不高,浸出液中Cu2+质量浓度需达1 g/L以上,但直到现在,整个出产进程中浸出液中Cu2+针浓度一向低于0.6 g/L。
(二)紫金矿业公司铜收回工艺及目标
紫金山矿是一已探明的大型含金铜矿,其特色是上金下铜,储量大、档次低。铜金属工业储量125.64万t,矿石均匀档次Cu 0.68%,S 2.58%,As 0.035%,首要意图矿藏以蓝辉铜矿和铜蓝为主,其次为辉铜矿,块硫砷铜矿和硫砷铜矿。因为原矿档次低,含砷高,选用传统的浮选一火法冶炼工艺,出资大,本钱高,污染重。紫金山铜矿石以次生硫化铜为主,对此类矿藏已有比较老练的生物浸出工艺。选用该工艺处理紫金铜矿石有较好的经济效益。
原矿破碎至-30mm,选用主动卸矿的后移式筑堆法,堆高8~10m,浸出初期引进人工富化的驯化菌液,然后使用采矿平硐的酸性矿坑水配适量的工业硫酸、调成pH为2左右的浸出剂进行喷淋浸出。现在一般不需独自弥补菌液,只需调整坚持pH在2左右。当浸出液中Cu2+质量浓度大于1.5 g/L时,送萃取电解工段,出产阴极铜。
现在已建成1000 t/a的堆浸实验出产厂,浸出周期210~240d,浸出率70%~75%,电铜质量到达l#铜标准,吨铜出产本钱10729元 。该公司方案扩建1万t电铜的生物冶金厂,建成国内最大生物提铜基地。
(三)中条山铜矿峪铜矿铜收回工艺及技能目标
铜矿峪铜矿蕴藏有许多难采难选低档次氧化铜矿石,已探明储量1800多万t,矿石档次0.65%,氧化率大于50%。1997年,中条山有色公司、北京矿冶研讨总院和长沙矿山研讨院协作,一起进行了“难采难选低档次氧化铜矿地下溶浸工业实验”,经过近4年体系、全面的实验研讨作业,已构成了适应于地下矿山就地破碎浸出收回铜的完好出产技能。
现在共有2个溶浸厂正在出产和建造,即5#矿体东部工业化实验溶浸厂和陷落区就地溶浸厂。
5#矿体就地破碎实验溶浸厂
实验矿块水平标高930-968m,矿体倾角均匀400,长62m,均匀厚度14m。地质矿量3.32万t,档次0.975%。首要含矿岩性为变石英晶屑凝灰岩和变石英斑岩。矿石中首要含铜矿藏为孔雀石、硅孔雀石、辉铜矿、铜蓝,首要脉石矿藏为石英、绢云母旧。先用微差揉捏爆炸法把矿石破碎到200mm(>80%)以下,然后从坑外处理厂配液站将浓度为1.5%~2%的稀硫酸用泵接力输送到实验采场958、968水平布液巷道,再经过分流阀、距离4m的下向扇形布液孔均匀布液于整个采场平面,进入采场的稀硫酸靠重力自上而下以必定的速度浸透经过矿石,与矿石中Cu2+反响生成硫酸铜溶液,聚集于采场底部集液池中,再用泵送到萃取电解车间、出产阴极铜,萃取电解工艺同其他出产厂相同。
投产2年,共出产优质电积铜1000 t,供应收入1600余万元,创利税700余万元,单位产品本钱(不含税)9000元/t,归纳收回率71%,经济效益较好。
四、生物氧化工艺对探采矿石的实验
生物氧化浸出工艺近几年在国外展开很快,在国内这项技能尚处于实验研讨和试出产阶段。原则上讲,这项技能可使用在金、铜、镍、铅、锌、钴等矿种,但现在国内外首要会集使用在金、铜这2个矿种的浸出。国内现在已建成烟台金生物氧化浸出厂(50t/d)、陕西地矿局生物氧化浸出实验厂(10t/d)和莱州生物氧化浸出厂(100 t/d),处理含砷含硫的难浸金精矿粉。选用生物氧化并构成必定出产规划的铜湿法冶金实验厂有德兴铜矿和紫金山铜矿。西北有色地勘局对部分矿山探采矿石也展开了这方面的讨论性实验作业,但作用都不太抱负,原因首要是受矿石性质的影响。矿石中含钙镁等耗酸矿藏较高,而湿法浸出都是在pH
五、结束语
不可否认,湿法冶金工艺是未来大规划处理低档次有色金属、贵金属矿的有用手法之一,也是世界上许多国家研讨展开的要点方向之一。新效果的不断出现,工艺的不断完善,使许多用现有办法不能处理的矿石,在不久的将来都或许得到充分使用。
冶金术语
2019-01-24 17:45:52
1、烧结sintering
粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
2、填料packingmaterial
在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。
3、预烧presintering
在低于最终烧结温度的温度下对压坯的加热处理。
4、加压烧结pressure
在烧结同时施加单轴向压力的烧结工艺。
5、松装烧结loose-powdersintering,gravitysintering
粉末未经压制直接进行的烧结。
6、液相烧结liquid-phasesintering
至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。
7、过烧oversintering
烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。
8、欠烧undersintering
烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。
9、熔渗infiltration
用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品内的孔隙的工艺方法。
10、脱蜡dewaxing,burn-off
用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。
11、网带炉meshbeltfurnace
一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。
12、步进梁式炉walking-beamfurnace
通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。
13、推杆式炉pusherfurnace
将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。
14、烧结颈形成neckformation
烧结时在颗粒间形成颈状的联结。
15、起泡blistering
由于气体剧烈排出,在烧结件表面形成鼓泡的现象。
16、发汗sweating
压坯加热处理时液相渗出的现象。
17、烧结壳sinterskin
烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。
18、相对密度relativedensity
多孔体的密度与无孔状态下同一成分材料的密度之比,以百分率表示。
19、径向压溃密度radialcrushingstrength
通过施加径向压力测定的烧结圆筒试样的破裂强度。
20、孔隙度porosity
多孔体中所有孔隙的体积与总体积之比。
21、扩散孔隙diffusionporosity
由于柯肯达尔效应导致的一种组元物质扩散到另一组元中形成的孔隙。
22、孔径分布poresizedistribution
材料中存在的各级孔径按数量或体积计算的百分率。
23、表观硬度apparenthardness
在规定条件下测定的烧结材料的硬度,它包括了孔隙的影响。
24、实体硬度solidhardness
在规定条件下测定的烧结材料的某一相或颗粒或某一区域的硬度,它排除了孔隙的影响。
25、起泡压力bubble-pointpressure
迫使气体通过液体浸渍的制品产生第一气泡所需的最小的压力。
26、流体透过性fluidpermeability
在规定条件下测定的在单位时间内液体或气体通过多孔体的数量。
湿法冶金在铜冶金中的地位
2019-03-06 09:01:40
萃取技能给铜的湿法冶金带来了性的改变,创建了现代湿法铜冶金工业。自20世纪70时代开端开展以来,至今已成为一个独立的工业体系,每年产铜达百余万t,在世纪之交达250万t,占铜年总产值的15%,占由矿直接出产的铜的17%。其开展速度远高于全体铜工业的开展速度,如下图所示。曲线1表明火法熔炼-电解出产的铜量逐年改变。曲线2代表用萃取-电积法出产的铜产值,从20世纪70-80时代中阅历了一个平稳的开展时期,然后开端了快速开展的阶段,特别是近年许多大矿厂相继投产,更将添加速度面向了一个新高潮。在一起期内其他炼铜办法的产值几无添加,国际上铜产值的添加大都来自湿法炼铜的开展。近期国际各种出产办法的铜产值国际各地区湿法炼铜的开展很不平衡,美国是萃取-电积技能的发源地,不管在技能水平以及冶金界对这项技能的知道和接纳程度上都处于国际领先水平,因而开展最快。2000年美国湿法铜的产值已达55.7万t,占国际湿法铜产值的22%。南美因为铜矿产极为丰厚的智利近年大力开展铜湿法冶金,后发先至,在产值上已赶上北美。并且,出产规划大,技能上也有许多新开展。到2001年,全国际大中型浸取-萃取-电积厂共有55家,出产能力的状况见下表。其间最大的厂日处理浸出液40万m3,年产铜36.5万t。
表 1970~2001年浸取-萃取-电积铜厂出产能力年度出产能力年度出产能力1970
1975
1980
19851.1
10.9
25.5
35.61990
1995
200180.0
156.3
284.4我国的铜湿法冶金的研讨,包含实验室和扩展实验都起步不晚。可是,工业界一向未能真实知道到这项技能的价值,开展一向比较慢,第一家出产厂于1983年投产。尽管近年一些当地的小矿山接纳了湿法炼铜技能,但出产规划都很小,除德兴矿湿法提铜规划较大外,其他多为年产几百吨阴极铜的水平,尚无一家能列入前述55家的队伍。已投产和在建厂的出产能力近万吨。跟着可持续开展国策的推动,人们对充分利用各种资源的认识将逐步进步,我国铜湿法冶金的开展前景是非常宽广的。
湿法冶金(三)
2019-03-05 09:04:34
(2)离心萃取器 离心萃取器由于转速高、混合效果好,所以能大大缩短混合停留时间,又由于以离心力替代重力效果,加快两相的别离,其操作原理见图5。 这种萃取设备结构紧凑,单位容积通量大,所以特别适用于化学稳定性差(如抗菌素)、需求触摸时间短、产品保存时间短的系统,或易于乳化、别离困难等系统的萃取。缺陷是因其精细结构、造价和修理费用都比其他类型萃取器要高。 离心萃取器有波氏离心萃取器、阿尔法一拉瓦尔(Alfa-Laval)离心萃取器、奎德罗尼克(Quadronic)离心萃取器,还有韦氏、罗伯特路威斯特、SRL ANL等离心萃取器。很少在有色冶金中运用。 (3)混合弄清萃取箱 一般说,萃取塔占地面积小和体积密封好是它潜在的长处。相反,混合弄清萃取箱占地面积大,但因设备对地域无特殊要求,不管在城市或矿山都可缔造运用,所以现在大型混合弄清萃取箱大多建在矿山,并且是露天作业。 混合弄清萃取箱大多由两个相连的容器组成,即混合室和弄清室,两者构成一级。水相和有机相在混合室内,由搅拌器输人能量使它们充沛混合,待传质进程挨衡后,混合相进人大面积的弄清室进行两相别离。别离后的水相和有机相别离流人相邻级的混合室,完成逆流多级萃取进程。 混合弄清萃取箱见图6。
[next]
这种萃取箱的混合室和弄清室交织装备在同一个箱体内,用隔板离隔,毗连级间两相液流由箱内相应隔板的开孔连通,无管道衔接。搅拌器通常用桨叶,只起两相混合效果。液体的活动是靠各级两相的密度差发生的推动力完成,因而对萃取箱有必要确保必定的高度,不然难以完成液体自流,由于密度差发生的活动推力与液层深度成正比。当时为了削减设备的占地面积、添加单位容积流量等,箱式萃取器在有色冶金职业得到广泛运用。 (五)离子交流法 离子交流剂功用基中的阳离子或阴离子与溶液中的同性离子进行可逆交流的进程。 离子交流法在湿法冶金中常用于从水溶液提取有价金属或作为溶液净化的一种手法。离子交流树脂有固定阴离子的离子交流树脂,它交流的离子带正电荷,其交流进程称为阳离子交流;另一种树脂有固定阳离子的离子交流树脂,所交流的离子带有负电荷,其交流进程,称为阴离子交流。经过离子交流剂的吸附和解吸效果进行物质的别离或富集以及离子交流树脂再生。触及离子交流的主要参数有交流树脂分配系数、交流率。在工艺进程中,按处理的料液是否含有悬浮固体,分矿浆吸附法和清液吸附法。 交流的典型反响为: A++BReS-====B++AReS- 式中,BReS-为离子交流树脂的功用基,ReS-为固定在离子交流树脂或其他类型离子交流剂上的离子,B+为可交流的一价阳离子,A+为料液中的一价阳离子。 (1)交流 料液中的A+替代B+而为离子交流树脂所捕获的进程称为交流式吸附。在交流进程中当B+简直悉数被A+所替代后,即便再通人含A+的料液,A+也会原封不动地流出来,此刻,便以为离子交流处于平衡状况。 (2)淋洗 当往被A+所交流的离子交流树脂中通人某种含B+,而B+又能替代离子交流树脂中A+的溶液时,反响便向交流和逆方向进行,即流出含A+的溶液,而BReS-功用基团又再生,称这一操作为淋洗、再生或解吸。称所用的这种溶液为淋洗液或再生剂。 (3)反洗 是在淋洗之前洗去离子交流树脂中的杂质和松动离子交流树脂层。 (4)正洗 是在淋洗之后洗去离子交流树脂颗粒之间及表面上的再洗剂(淋洗液)。 离子交流的工艺按以下结构组成:[next] 离子交流模型见图7,以Na+和H+型阳离子树脂交流为例。
湿法冶金(二)
2019-01-08 09:52:35
3.萃取设备 高效率的萃取器对实现良好的萃取工艺具有重要意义,它不仅关系到萃取过程能否实现,而且极大地影响着萃取工厂的经济效益。目前主要萃取器有三种:箱式(又称混合一澄清器)、萃取塔和离心萃取器。 (1)萃取塔分无搅拌萃取塔和机械搅拌萃取塔两类。前者有喷雾塔、填料塔和孔板(筛板)塔三种,见示意图2。 后者又根据机械运动的形式可分为旋转搅拌塔和往复(或震动)板塔,在众多的旋转搅拌塔中,最为突出的有希贝尔(Scheibel)塔转盘塔和奥尔德舒一拉什顿(Oldshue-Rushton)多级混合塔。 萃取塔主要应用在石油化工、制药、废水处理以及铀的提取,在冶金上,特别是有色冶金上应用比较少,具体内容从略。其典型形式见图3。[next]
往复板萃取塔第一个被利用的是脉冲式接触,经改进后目则获得工业应用的是多孔型结构,具有大径孔、大孔隙度(约58%)和板型是小孔径、孔的有效面积少的待点。则者被应用在北美,后者则应用在东欧和前苏联。除此之外还有脉冲塔。 多孔型往复板塔示意图见图4。
喷射冶金
2019-01-08 09:52:35
为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷射冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。
低品位钽铌原料的冶金富集工艺
2019-03-05 10:21:23
难选的低档次钽铌矿,特别是含钽铌的冶炼渣(如锡渣、铁渣、钨渣等),因为档次低,难处理,一般需选用冶金办法进行富集,取得的钽铌富集物可用惯例办法别离和提取钽铌。
一、酸浸出-酸分化法处理锡渣
含钽铌的锡渣组成如下(%):
Ta2O5 Nb2O5 TiO2 ZrO2 WO3 Sn SiO2 CaO 3~9 3~10 15~40 3~13 3~12 2~6 5~15 2~7 将上述锡渣用0.5%~10%的硫酸于50℃以上浸出,浸出得到的钽铌富集物用硫酸分化,1㎏物料用98%的浓硫酸,一同参加1.5㎏硫酸铵,在180℃下拌和1h,能够得到含Ta2O5 16.2%,Nb2O5 7.2%和TiO2 13.1%的矿石产品。
二、复原-氧化法处理锡渣
复原-氧化法处理工艺流程见图1。图1 锡渣处理工艺流程
锡渣组成如下(%)Ta2O5Nb2O5CaOSiO2TiO2FeOAl2O3WO3MnOMgOZrO2V2O53.853.8523.121.310.72108.183.281.281.20.850.21
进程首要分为四步
(一)将锡渣和焦碳在敞开式电弧炉内进行复原熔炼,得到含(TaNb)2O5 20%~25%的碳化钽铌富集物;
(二)将碳化物和一同进行氧化熔炼,得到氧化熔炼产品;
(三)氧化熔炼产品经破碎后,用热水于95℃拌和浸出2h,以除掉过量的碱和其他水溶性钠盐(硅酸钠,钨酸钠等),得的首要含钽酸钠、铌酸钠、氢氧化铁、碳酸钙等的滤饼。
(四)将滤饼再用20%,在75~100℃拌和浸出2~4h,这时铁被溶解除掉,而钽酸钠、铌酸钠转变为含水的氢氧化物。
三、复原-电解法处理锡渣
质料是用反射炉冶炼马来西亚锡沙矿所得的锡渣,其成分如下(%):Ta2O5Nb2O5WO3Y2O3SnTiO2ZrO21.7~2.12.3~3.51.0~3.00.20.7~2.57~103~6FeSiO2CaOMgOAl2O3MnOP2O54~726~2924~263~59~130.5~1.00.5~1.0
将锡渣1000㎏、硫酸渣(焙烧硫化铁产品含Fe 60%,Cu 0.2%,S 2%)700㎏、焦炭粉150㎏、石灰石100㎏,参加到电炉内,在1400℃下进行熔融复原,可得到含Nb3.6%、Ta3%、W2.9%的铁合金,以FeCl2、HCL、(NH4)2SO4的混合液作为电解液,铁合金作为阳极进行电解,钽、铌、钨呈细微颗粒得到浓缩而收回。
电解的反应为:3FeCl→Fe+2FeCl3
当FeCl3添加时,可参加铁屑,使FeCl3被复原成FeCl2,在电解进程中,FeCl3是循环运用的,铁合金的溶解残渣先用石油再用苏打水洗刷脱硫,得到Ta 25%、Nb 30%、W 24%的钽铌浓缩物。
难选冶金矿预处理工艺研究
2019-02-18 15:19:33
难选冶金矿预处理工艺研讨 寇建军 吴萍 (中国地质科学院成都矿产归纳使用研讨所,四川成都610041)摘要:使用某地难选冶金矿,选用工业废弃物作为固化剂,进行固硫固砷预处理。不只使硫化物中包裹金基本上能解离并被浸出,并且还克服了传统氧化焙烧工艺中S、As被氧化后随烟气进入空气中污染环境的坏处。关键词:难选冶金矿;预处理中图分类号:TF831 文献标识码:A 文章编号:1007-7545(2002)05-0032-03 Pretreating Technology Study on Refractory Gold Ore KOU Jian-jun,WU Ping(Chengdu Institute of Multipurpose Utilization of Mineral Resources,CAGS,Sichuan,Chengdu 610041,China) Abstract:A fixing agent originated from indurstral waste was selected for fixing sulfur and arsenic in pretreating technology of a refractory gold ore.After using the pretreating technology,the gold covered by sulfide minerals could be dissociated from sulfide and then leached by cyanide,and the malpractice of environmental pollution by smoke contained S and As oxides in traditional oxidizing roasting process of the gold ore could be overcome. Key words:Refractory gold ore; Pretreating process 某金矿的矿石成分杂乱,含有S、As、Sb、C等有害杂质,且98.61%的金被各种矿藏所包裹。金精矿不经预处理而直接浸出提金,金的浸出作用极差,浸出率均小于10%。常用的热压氧化、微生物氧化预处理办法因有较严厉的技术规范和工艺条件,设备制作和操作要求高,在出产实践应用上也受到了必定的约束。而传统的氧化焙烧工艺,因S、As被氧化后随烟气进入空气中而污染环境,特别是对含S在20%左右,达不到制酸要求的矿来说,若要收回使用硫,工艺难度将添加,出产本钱增高,投入将大于产出。因而,咱们挑选的固硫固砷焙烧预处理工艺,既保留了常见的氧化焙烧法的长处,又将硫、砷固定在焙砂中,避免了环境污染,减轻了吸尘担负。一起,选用了工业废弃物作为固化剂,使之质料来历广,报价低廉。 1 实验质料 实验质料为某地硫化矿经浮选产出的金精矿,其化学成分为(%):Au 55.59%g/t,Ag 9.20g/t,S 21.32,Fe 27.48,As 1.62,C 2.02,Sb 0.47,Cu 0.061,Zn 0.033,Pb 0.015,SiO2 31.91,Al2O3 7.78,CaO 4.18,MgO 1.85。物相分析标明:单体露出金占1.39%,硫化物包裹金占86.34%,碳酸盐包裹金占0.94%,硅酸盐包裹金占11.33%。粒级及档次散布见表1。 表1 金精矿粒级及档次散布 Table 1 Particle size and grade contribution of gold concentrate 粒级/μm 分量百分比/% Au档次/(g•t-1) Au散布率/% +152 15.32 24.30 6.80 -152~+104 11.52 34.19 7.30 -104~+76 27.76 58.40 28.26 -76~+53 15.14 70.43 18.75 -53 30.26 71.45 38.82 由此可知,该金矿除含硫和砷外,还含碳和锑,属含砷高硫难选冶金矿,首要包裹体为占86.34%的硫化物。且金的嵌布粒度纤细,矿石中-100μm粒级所含金量占总金量的86%。 2 实验原理 固硫固砷焙烧是经过添加钙、钠盐使砷、硫在焙烧过程中生成不蒸发的盐和硫酸盐而固留于焙砂中。加钠盐固化焙烧时,固化剂本钱高,焙砂中生成的盐需二次处理(中和沉积)。所以常用的固化剂为钙盐。 咱们选用工业废弃物组成的复合固化剂中,不只含有固化金精矿中S、As的Ca2+ ,并且还含有具有氧化性的Cl-和Fe3+ ,它们的存在有利于硫化物包裹体的翻开。钙盐的固硫固砷的基本原理是类似的。其首要化学反响式为: 4Ca2++2FeS2+9.5O2=Fe2O3+4CaSO4 5Ca2++2FeAsS+9.5O2=Fe2O3+Ca3(AsO4)2+2CaSO4 3 实验成果与评论 本实验选用固硫固砷焙烧预处理办法,首先就首要影响要素焙烧温度、焙烧时刻、固化剂参加量进行了条件实验和归纳条件实验。 3.1 预处理工艺实验 3.1.1焙烧温度条件实验 不同的含硫金精矿有各自适合的焙烧温度,温度过低,氧化速度慢,达不到使黄铁矿与毒砂氧化的意图,温度过高,易使精矿熔结,下降孔隙度,构成对金的新的包裹体,然后导致金的化浸出率下降。因而,焙烧温度是焙烧工序中最首要的技术参数。 焙烧温度实验成果见图1。实验固定条件如下:焙烧条件:固化剂用量120%(占理论量)、焙烧恒温时刻2h;浸出条件:L:S=5:1,浸出温度:室温,NaCN浓度0.2%,浸出时刻24h,pH=11~12。 焙烧温度条件实验成果标明,在所选的焙烧温度范围内,Au的浸出率随温度升高而进步,这是由于跟着焙烧温度升高,精矿中黄铁矿与毒砂的氧化程度加大,焙砂的孔隙度增大,化液对金颗粒的触摸程度就添加。所以选焙烧温度为630℃,此刻金的浸出率达91.92%。 3.1.2 焙烧时刻条件实验 焙烧温度选630℃,其他实验固定条件同焙烧温度条件,实验成果见图2。 焙烧时刻条件实验成果标明,焙烧时刻的改变,对Au浸出率影响不大,这是由于在所选的焙烧温度条件下,焙烧时刻达1h以上,精矿中黄铁矿与毒砂的氧化程度就适当高,即能翻开金的硫化物包裹体,使Au的浸出率达90%以上。因而,选焙烧时刻为1h即可。3.1.3 固化剂用量实验 依据对金的浸出和固硫固砷及尽量削减金贫化的准则,在选定焙烧温度630℃,焙烧时刻1h和其他固定条件同焙烧温度条件的前提下,进行焙烧固化剂用量实验。实验成果见图3。 固化剂用量实验成果标明,随固化剂用量的增大,S、As的固化率均进步,当固化剂用量占理论用量的65%时,S、As固化率均达65%以上。阐明只需添加固化剂用量,S、As的固化率就能进步。 3.1.4 固化焙烧中气氛的操控 焙砂的孔隙度在很大程度上决定于焙烧时黄铁矿与毒砂的氧化程度,以及随后的硫及砷的分散速度。在氧化气氛激烈及快速升温的条件下,硫和砷没有满足时刻分散到矿藏表面,因而会阻止孔隙的开展。因而,焙烧过程中,操控较慢的焙烧氧化速度将有利于构成孔隙度较高的焙砂。气氛与所处理的金精矿的化学成分,物相组成及工艺对脱砷、硫的要求有关。氧化气氛过弱,铁的硫化物氧化不完全,包裹体不能充沛翻开;氧化气氛过强,反响生成的将被持续氧化生成,并进而与赤铁矿反响生成铁。铁是无孔隙的固体,它将挟制金而下降后续工序的金化浸出率。在实验中一般经过操控焙烧炉炉门的开合程度来调理气氛。这不具代表性,需待扩试或出产过程中来调试和检测。 3.1.5 固化焙烧预处理归纳条件实验 依据固化焙烧预处理条件实验,咱们挑选断定了归纳条件为:焙烧温度630℃、焙烧时刻1h、固化剂参加量120%(占理论量)。归纳条件实验见果表2。 归纳条件实验成果标明,两次实验的固硫固砷的固化率均到达近95%,金的残存率近93%。实验成果的注重性好。 4 结语 选用工业废弃物组合的复合固化剂不只固硫固砷作用好,并且能变废为宝,减轻环保压力。一起翻开了金的硫化物包裹体,使金得到了解离。其硫、砷的固化率别离达94.97%和94.39%。这对坐落国家级保护区内地的该矿,完成就地产金的方针,供给了有力的保证。
火法冶金
2019-01-04 13:39:38
火法冶金就是在高温条件下(利用燃料燃烧或电能产生的热或某种化学反应所放出的热)将矿石或精矿经受一系列的物理化学变化过程,使其中的金属与脉石或其他杂质分离,而得到金属的冶金方法。简言之,所有在高温下进行的冶金过程都属于火法冶金。它包括焙烧(或烧结焙烧)、熔炼、吹炼、蒸镏与精镏、火法精炼、熔盐电解等过程。对于不同的金属,其火法冶金由不同的几个冶金过程组成。例如,铅在火法冶金是将铅精矿依次经过烧结焙烧、熔炼、火法精炼,然后得到金属铅;铜的火法冶金是将铜精矿依次经过焙烧、熔炼(或者直接从精矿到熔炼)、吹炼、火法精炼,然后得到金属铜。火法冶金是比较古老的冶金方法。重有色金属的提取多采用火法冶金。对某些金属的冶炼,往往火法冶金和湿法冶金联合使用。
冶金电炉
2019-01-04 11:57:16
生产交流单相单、双极串联两用电渣炉结构合理,配置优化,有独特的短网单、双极大电流转换开关 , 操作方便 , 维护简单 , 运行稳定可靠。可实现化渣、单级冶炼、双级冶炼。其结构形式有:1. 双臂交替单工位 ( 结晶器固定 2. 双臂交替单工位 ( 结晶器底台车移动 等。传动方式有: 1. 液压传动 ( 升降、旋转、电极夹持、底台车移动、开关油缸 。 2 机械传动 ( 球形丝杠升降、悬臂伸缩、悬臂旋转、手动夹紧 。控制系统: 液压为电液伺伏系统,机械为变频调速。规格有: 0.5t 、 1t 、 1.5t 、 3t 、 5t 、 10t 、 15t 、 20t 等。变压器类型: 无载有级调压、带载有级调压、带载无级调压、 T 型变压器等。变压器功率和调压级数需根据工艺要求、电渣坯截面直径尺寸商定。此类型电渣炉已在实际生产过程中产生较高的生产效率和良好的经济效益。
电冶金(一)
2019-03-05 09:04:34
电冶金是以电能为动力进行提取和处理金属的工艺进程。依据电能转化方法的不同分为电化冶金和电热冶金两类。电化冶金又称电解,是使直流电能经过电解池转化为化学能,将金属离子复原成金属的进程。依据电解液不同,电化冶金分为水溶液电解和熔盐电解;依据阳极不同又分为不溶阳极电解和可溶阳极电解。前者又称电解提取,后者又称电解精粹;电热冶金是运用电能转变为热能在电炉内进行提取或处理金属的进程,按电能转变为热能的办法即加热的办法不同,分为电弧熔炼、电阻熔炼、感应熔炼、电子束熔炼和等离子冶金等。 一、电化冶金 电化冶金是运用电极反响而进行的冶炼办法,如图1,对电解质水溶液或熔盐等离子导体通以直流电,电解便发作化学改变,在阳极(电流从电极向电解液活动的电极)上发作氧化反响(称为阳极反响)。 M→M2++2e(金属溶解) 而在阴极(电流从电解液流向的电极)上则发作复原反响(即阴极反响): M2++2e→M(金属离子复原,分出该金属)
以粗金属做阳极,而阳极反响又是意图金属自身的溶解反响,这一进程称为电解精粹或可溶性阳极电解[如图1(a)];运用不溶性电极作阳极,对溶解于电解液中的金属离子进行复原、分化的进程,称为电解提取。依据电解液性质不同,对水溶液进行电解,称为水溶液电解;对熔盐电解液进行电解,称为熔盐电解。 电解时,金属分出量依据法拉第规律严厉断定,即在电极上每经过1F的电量(1F=96485C=26.8 A?h),则发作1克当量的物质改变。因此,电解分出的金属理论量为:[next] 式中,M为金属的摩尔质量;z为金属荷电数;F为法拉第电量(见上);I为电流,A;t为时刻,h。(M/zF)代表物质的电化当量,是物质的固有常数,如Al为0.0932mg/C,Cu为0.328mg/C,Zn为0.339mg/C。 以下分电解精粹、水溶液电解、熔盐电解三部分进行叙说。 (一)电解精粹 有两种电解精粹办法,一种是水溶液中电解精粹,一种是熔盐电解精粹。原则上两种办法均适用于一切金属,但实践上前者首要用于电极电位较正的金属,如铜、镍、钴、金、银等,电解液多为酸液;后者首要用于电极电位较负的金属,如铝、镁、钛、铍、锂、钽、铌等。电解质一般用氯化物、氟化物或氯氟化物系统。水溶液电解精粹时阴极上分出的纯金属一般为固态。熔盐电解精粹时阴极分出的纯金属依电解温度和铍提纯金属的熔点,可所以液态(如铝)或固态(如钛、钽、铌等)。 电解精粹首要是运用阳极中各组分在阳极氧化和阴极复原分出时的难易或分出速度的差异,以及使杂质在电解液中构成难溶盐等而到达提纯金属的,而阳极各组分的氧化和分出的难易程度和金属的标准电极电位(电化序)、电解极化和电极反响速度等有关。 1.标准电极电位Eo 金属的标准电极电位是一个相对值,它是以标准氢电极电位它EoH=±0.000(H+活度为1mol/L,氢分压为101325.0Pa,任何温度)为基准的相对值,如下表。标准电极电位(电位序)金属离子标准电极电位/V金属离子标准电极电位/VNaNa+-2.17PbPb2+-0.13MgMg2+-2.36HH+±0.000AlAl3+-1.66SbSbO++0.21①MnMn2+-1.18AsHAsO2+0.25①ZnZn2+-0.76BiBiO++0.32①CrCr3+-0.74CuCu2+0.34FeFe2+-0.44HgHg22+0.79CdCd2+-0.4AgAg+0.8CoCo2+-0.28PtPt2+1.2NiNi2+-0.25AuAu3+1.5SnSn2+-0.14 ①Ph=0时的值。
能够看出,元素的标准电极电位值Eo向正方向偏移越大越安稳(电位较正的元素),而向负的方向偏移越大越不安稳(电位较负的元素)。在阳极溶解时,将较正的元素别离出去,这样运用两段别离来进步阴极金属的纯度,则是电解精粹的根底。[next] 2.电解极化与电极反响速度 在电解精粹进程中,因为仅仅被提纯金属从阳极溶解而在阴极分出,故电化学进程自身不用耗电能。但存在需求耗费电能的超电位。超电位是电极极化程度的一种测量。按发作的原因,超电位首要分为浓差电位(浓差极化)和活化超电位(活化极化)。此外还有电阻超电位(电阻极化)和钝化超电位(阴极钝化)。浓差极化是由参与电极反响的物质浓度改变而引起的极化,一般选用溶液拌和,削减涣散层厚度消除极化;活化极化是由电极反响自身的反响阻力而发作的极化。影响活化极化最重要的要素是电流密度和电极材料,其对电解的影响有利有弊,需具体分析;电阻极化是电极表面上生成电阻大的薄膜或液层引起的极化现象,阳极钝化是在电极表面邻近的离子浓度到达饱满,呈现固体盐分出而发作的机械钝化,可选用调整阳极成分、叠加反向电流、下降电流密度等办法战胜。 3.杂质的别离 阳极粗金属所含杂质是运用各元素所特有的化学性质进行别离。首要比欲提纯金属电位更正的杂质,电解时不致溶出,残留在阳极表面上,或互不结合,成为细粉而沉入电解槽底部,成为阳极泥;比提纯金属电位更负的杂质虽发作电化学溶解以离子方法进入电解质,但因为挑选了不使之在阴极上分出的电解条件,一切这些杂质便在电解液中积存,这是运用两段别离的办法来进步意图物金属的纯度。 (二)电解精粹工艺 1.阳极 精粹所用阳极为火法冶炼出产的粗金属,其间金属和非金属杂质愈少愈好。 2.阴极 电解精粹的阴极是产品,其纯度受以下要素影响:①阳极极化增加,正电位成分的杂质也会增加,并在阴极上分出;②阴极极化增加到负电位的杂质成分析出的电位时,该杂质也会在阴极上分出;③负电位成分的杂质和意图金属生成金属间化合物时,会一起在阴极上分出;④阴极板不滑润或阳极泥处于悬浮状况。 3.电解液 要求:①意图金属离子的溶解度大;②导电率高;③阴离子化学安稳性好;④价廉;⑤对杂质溶解度小。 4.增加剂 增加剂参与在于改进电解液的电化功能和进步阴极堆积质量,使电解进程处于更佳状况,首要增加剂为动植物胶、表面活性物质、起泡剂、盐类等。增加剂不参与电解进程的电极反响。 5.电解槽 电解槽有无隔阂槽和有隔阂槽两种。槽内同极选用并联(并联电解)或串联(串联电解),依据精粹目标,要求选用相应的质料和形状、装备规划。 6.电源设备 电解精粹需用低电压、大电流的直流电源,既要容量大,又易进行大范围的电压调整。[next] 7.电流密度 即单位电极面积上经过的电流强度。一般指阴极电流密度。电流密度越高,出产才干(单位时刻的出产量)也越高。 8.槽电压 即电解时施加在电解槽上的电压,或槽内相邻阴、阳南北极间的电压。槽电压与电极反响类型、电流密度、电解液成分和温度、极距离、触摸点数目和清洁度等有关。进步电流密度、下降电解液温度、增加电极距离,都会使槽压升高,导致电解电耗增大。 9.电流功率 指电解进程中实践分出的金属量与理论分出量之比的百分数。电流功率总是小于1(100%)。其巨细与电解进程的技能条件下对电解作业的办理、操作等有关。电流功率直接影响单位电解产品的电能耗费。首要影响要素有:①阳极和阴极间短路发作的漏电(一般由阴极表面上面发作的树枝状和瘤状结晶、阴极曲折等引起);②经过电解液向大地漏电;③电解时副反响所发作的电流耗费(如氢离子放电等)。因此,确保电解槽对地杰出绝缘和及时消除阴、阳极短路现象,是进步电流功率的重要办法。 10.电能耗费量 指电解时阴极分出的单位质量金属所耗费掉的电量,一般指产出It金属所耗费的直流电量。电解耗费与槽电压成正比,与电流功率成反比,因此凡有利于下降槽电压和进步电流功率的要素,均能起到下降电能耗费的效果。 近些年来,电解精粹已开展成为制取超高纯金属的重要办法之一。 (三)水溶液电解 水溶液电解是以金属的浸出液作为电解液进行电解复原,使意图金属在阴极表面上分出的冶金进程。简称电解提取或电解堆积,又称不溶阳极电解。本办法的长处是:不经过粗金属的中间阶段,一次得到高纯度的金属;随同电解的进行,电解液能够再生,并循环用于浸出。其缺陷是:因为运用不溶阳极,槽电压有必要高于电解液的分化电压;一般电流功率较低,耗电量较大等。 水溶液电解是一种氧化一复原进程。系统接通直流电后,在阴极邻近的离子或分子因为承受电子而被复原,而在阳极处离子或分子发作电子而氧化。总的电解池反响是两个电极半反响的总和。当电解进行时,离子不断向南北极搬迁,正离子(阳离子)向阴极搬迁,负离子(阴离子)向阳极搬迁。在这一进程中,重要的是分化电压(金属离子的复原电位)等。[next] 1.水溶液电解根底 (1)分化电压 电解得以进行所有必要的最小电压称为分化电压,电解质的分化电压是由其电解产品组成的原电池电动势(理论分化电压)、阴阳二电极的极化过电位和电路压降三部分组成。电解质发作电解时,两电极上的电解产品构成原电池,其电动势的方向与电解的方向相反,外加电压首要得战胜这种电动势。由此反向电动势的巨细,等于两电极的平衡电位差,此即为电解质的理论分化电压。但在理论分化电压下,电极上电解进程和原电池进程处于动平衡状况,此刻还不会呈现微观的电解产品。当电压进步到超越理论分化电压必定值时,即电极到达必定极化时,才可观察到电解产品不断构成,电解进程才宣告开端,此刻的极化电极的电位与其平衡电位之差,就是极化超电位。极化超电位是外加电压用来推进电极反响向电解方向单向进行的部分。电阻回路中遍地电阻会构成电压的丢失,由此引起的电路压降等于电流与各电阻乘积之总和,需由外加电压补偿。电解的实践分化电压一般由试验测定。 (2)电解提取与电解精粹的差异 电解精粹是用的可溶性阳极(一般为火法所得的粗金属),其理论分化电压由阳极粗金属和阴极纯金属的活度比决议。但二者活度实践上相差无几,因此理论分化电压挨近零值,故以很小的电压,便可使电流经过而进行电解。但在电解提取时,不只槽电压显着进步,并且副反响也较多,因此电流功率下降,电能耗约为电解精粹的10倍。此外,电解精粹时因为阳极溶解,金属离子不断得到弥补,故电解液组成改变很小,而在电解提取时,组成则不断改变,因此电解提取所得金属要比电解精粹所得金属纯度低。阳极表面因生成化合物层而使其反响才干下降,呈现了电解钝化现象。关于电解精粹,有必要采纳参与活性阴离子等办法消除钝化,促进阳极活化。电解提取时不溶阳极首要发作阴离子放电,视电解质不同,阳极上首要分出氧气或,此刻需运用阳极钝化现象来延伸不溶阳极的寿数和确保阴极金属堆积的质量,或阻挠被维护金属被腐蚀。 2.电解提取工艺 (1)电极 电解提取时阳极只起导电效果,大都状况下成为氧的发作极,因此作为阳极材料,最好是不受电解液腐蚀,氧的超电压小、坚固耐用。出产实践顶用得不溶阳极多为Pb-Ag、Pb-Sb合金等。阴极多用意图金属相同的纯金作种板(如铜),有的运用不同金属,如锌电解用铅板,钻电解用不锈钢。 (2)电解液 和电解精粹相同,电解液选用意图金属的可溶性盐的水溶液,酸根要尽或许安稳,报价低廉。大都金属运用硫酸电解液,电解液中还参与各种增加剂,以增强金属堆积物的均匀性,避免在电解液表面构成泡沫以致发作烟雾。 (3)电流密度 对一些负电位的金属(如锌、锰等)的电解,需求高电流密度,一般电流密度增加时,杂质影响也变得显着。故有必要细心净化电解液。[next] (4)电流功率、耗电量、电能功率 电解提取的电流功率首要影响要素为:①电解液中意图金属的浓度和H+的浓度;②电流密度(一般电流密度越高,电流功率越高);③电解液的温度;④电解液中存在的杂质种类及其数量;⑤阴极表面状况等。与电解精粹比较,槽电压较高,简单引起漏电,导致电流功率下降,耗电量也增大。电能功率是为分出必定量的金属理论上所有必要的电能量与实践耗费的电能量之比。为进步电能功率,除进步电流功率外,不要求下降槽电压。 有关水溶液电解提取的实践状况,见第四章铜、锌等的电冶金提取。 (四)熔盐电解 熔盐电解是以熔融盐类为电解质进行金属提取或金属提纯的电化学冶金进程。关于那些电位比氢负得多、氢的超电压也小、而不能从水溶液中电解分出的金属和用氢或碳难以复原的金属,常用熔盐电解法制取。当今已有30多种金属是用该法出产,其间包含悉数碱金属和铝,大部分镁以及各种稀有金属。按所用电解质,一般分为氟化物熔盐电解、氯化物熔盐电解和氟氯化物熔盐电解。 1.熔盐电解根底 水溶液电解和熔盐电解两种电解办法原理相同,但又有底子差异:在水溶液中,有作为溶剂的水分子存在而涣散在极性水分子中的离子,在电场效果下移动并导电;熔盐电解则是由因熔化而增大了移动性的离子经过空穴,依托热轰动而移动并导电。关于碱金属和碱土金属这类负电位金属盐的水溶液,其分化电压比水分化电压大,电解时只使更简单电解的水分出和氧,金属并不会分出,而熔盐电解因不存在水那样的溶剂,所以任何一种负电位金属都能分出。熔盐比水溶液具有更好的导电性,熔盐电解的电流密度能够比水溶液电解大100倍。熔盐电解对电解质有特殊要求:较好的导电性,较低的挥发性,对电解质料有较高的溶解度,对电解产出的金属有较低的溶解才干,恰当的熔点、粘度、密度和表面性质,分化电压应比意图金属熔盐的分化电压高,电解时自身并不分化。为了到达这些要求,常常运用由几种盐类组成的混合物,它们一般有比纯组分更低的熔点,一般需经过试验挑选适宜的混合盐组成,如电解铝用Na2A1O6-A12O3混合熔盐,电解镁用NaCl-KCI-MgCl2混合熔盐。 2.熔盐电解中的特异现象 (1)金属雾 在熔盐电解中,阴极上分出的金属大都以熔融状况存在,当高于某一温度时,能看到熔融金属呈现一种特有的色彩进入熔盐中。这种状况恰如在熔融金属表面上有雾笼罩,称为金属雾。金属雾的生成会使分出金属丢失,电流功率下降,一般以增加恰当增加剂予以战胜。[next] (2)阳极效应 当选用不溶阳极进行熔盐电解时,阳极会成为气体发作极。正常状况发作的气体能够排出,但当电流密度进步到必定值时,阳极便为发作的气体膜所掩盖,呈现出电极与电解质之间的触摸被堵截的状况,这时电流难以经过,槽电压急剧上升,阳极和电解质之间发作火花放电,并有小电流经过,这种现象称为阳极效应。其发作的难易程度与熔盐组成、电解温度、阳极质料及其几许形状等要素有关,阳极效应的机理至今没有说明。 (3)分化电压 和水溶液电解质相同,当熔盐电解质与金属触摸时,两者之间将发作必定的电势差,即电极电势。当同一熔盐中刺进两个电极,并运用外加电压经过直流电,当电压到达必定数值时,熔盐中的某些组分将分化,平衡状况下化合物开端分化的电压称为分化电压,例如AlCl3在277℃时的分化电压为1.90 V, AIF3在1000℃时的分化电压为2.25 V。 3.工艺 将熔盐加热熔化,便变成黏度小、导电率高、离子简单活动的液体。当选用恰当的电极,并施加电压时,因为离子的活动而发作电流,在南北极上引起电化学反响,在阴极上分出金属。熔盐电解运用的电解槽方法多样,按电解相对方位区别有电极水平装备电解槽(如铅电解槽)和电极笔直装备电解槽(如镁电解槽);按电极的极性效果分为单极性和双极性电解槽,按阴阳极之间有无隔板分为有隔板和无隔板电解槽。电解槽材料要有好的绝缘和保温功能,在高温下有满足的强度和耐蚀性。依据出产金属不同,工业电解所用电解槽的阴极用钢、钼、镍或被出产的同种金属或合金制作,有的直接运用电解槽坩埚自身作为阴极。熔盐电解槽的阳极一般为碳素材料,大都状况下为石墨。熔盐电解出产中操控的首要技能条件有电解温度、电流密度、间极距、电解质组成、被电解物质的浓度等。熔盐电解因为在高温下进行,金属溶解丢失严峻,热丢失也较大,故电流功率及电能功率比水溶液电解低。有关状况,请见第五章铝电解和镁电解。 二、电热冶金 和一般火法冶金比较,电热冶金具有加热速度快、调温精确、温度高(可到2000℃),能够在各种气氛、各种压力或真空中作业,以及金属烧损少等长处,成为冶炼普通钢,铁合金,镍、铜、锌、锡等重有色金属,钨、钼、钽、铌、钛、锆等稀有高熔点金属以及某些其他稀有金属、半导体材料等的一种首要办法。但电热冶金耗费电能较多,只要在电源足够的条件下才干发挥优势。 (一)电弧熔炼[next] 电弧熔炼是运用电能在电极与电极或电极与被熔炼物之间发作电弧来熔炼金属的冶金进程。电弧能够用交流电或直流电发作,当运用交流电时,南北极之间会呈现瞬间的零电压。在真空熔炼的状况下,因为南北极之间气体密度很小,简单导致电弧平息,所以真空电弧熔炼一般都选用直流电源。工业用电弧炉有直接加热式三相电弧炉、直接加热式真空自耗电弧炉和直接加热式电弧炉三种(见图2)。直接加热式电弧熔炼的电弧发作在电极棒和被熔炼的炉料之间,炉料受电弧直接加热,首要用于炼合金钢;直接加热式真空电弧熔炼炉首要用于熔炼钛、锆、钨、钼、钽、铌等生动和高熔点金属以及它们的合金。这种电炉的坩埚呈半球形,是用被熔炼的材料制成,外面通水冷却,选用直流电源,设一根或几根电极。按熔炼需求,能够用自耗的或非耗的电极。自耗电极用被熔材料制成,非自耗电极一般用钨等高熔点材料制成;直接加热式电弧熔炼的电弧发作在两根石墨电极之间,炉料被电弧直接加热,首要用于熔炼铜和铜合金。因为噪声大、熔炼金属质量差等原因,已越来越少选用。电弧熔炼的首要技能经济指标有熔炼时刻、单位时刻熔炼固体炉料的数量(出产才干)、单位固体炉料电耗、耐火材料和电极耗费等。 (二)电阻炉熔炼[next] 电阻熔炼是在电阻炉内运用电流经过导体电阻所发作的热量来熔炼金属的冶金进程。按电热发作的方法,电阻炉分为直接加热和直接加热两种。在直接加热电阻炉中,电炉直接经过物料,因电热物料自身,所以物料加热很快,且能够加热到很高温度,例如碳素化材料石墨化电炉,能将物料加热到2500℃,直接加热电阻炉可做成真空或通维护气体的熔炼炉。为使物料加热均匀,要求物料各部位的导电截面和导电率共同。但大部分电阻炉是直接加热的,其间装有专门的电热体(见图3),最常用的电热体是铁铬铝材料、碳化硅棒和二硅化钼棒。依据熔炼需求,炉内气氛可所以真空或维护性气氛。关于种类单一、批量大的物料,宜选用接连式加热炉加热,炉温低于700℃时,大都还装有鼓风机,以强化炉内传热,确保均匀加热。
火法冶金(二)
2019-03-05 09:04:34
三、熔炼 熔炼是指炉料在高温(1300-1600K)炉内发作必定的物理、化学改动,产出粗金属或金属富集物和炉渣的冶金进程。炉料除精矿、焙砂、烧结矿等外,有时还需增加为使炉料易于熔融的熔剂,以及为进行某种反响而加人复原剂。此外,为供给必要的温度,往往需加人燃料焚烧,并送人空气或富氧空气。粗金属或金属富集物因为与熔融炉渣互溶度很小和密度的差异而分层得以别离。富集物有锍、黄渣等,它们需求进一步吹炼或用其他办法处理才干得到金属。 本质上能够分为氧化熔炼和复原熔炼。此外还有其他的熔炼办法,如复原硫化熔炼、蒸腾熔炼、沉积和反响熔炼,因为种种原因已不多用。 (一)氧化熔炼 是以氧化反响为主的熔炼进程,如硫化铜、镍矿藏质料的造锍熔炼、锍的吹炼、硫化锑精矿鼓风炉熔炼等。熔炼进程中发作的首要反响是: MeS(s,l)+O2(g)====Me(l)+SO2(g) MeS(s,l)+1.5O2(g)====MeO(s,l,g)+SO2(g) [Me′S](l)+(MeO)(l)====[MeS](l)+[Me′O](l) 式中的Me, Me'代表金属,[]代表主金属熔体,()代表熔渣。 氧化熔炼是一个富集和别离进程,如铜、镍硫化精矿,在熔炼时将Cu、Ni富集到锍中,一同被氧化后与杂质金属(如Fe)与脉石一道造渣除掉而别离。熔炼按所用设备分为鼓风炉熔炼、反射炉熔炼、电炉熔炼;按工艺特征则分为闪速熔炼、熔池熔炼、旋涡熔炼、富氧熔炼、热风熔炼和自热熔炼等。 1.闪速熔炼 这是一种将硫化精矿(铜、镍精矿)、熔剂与氧气或富氧空气或预热空气一同喷人赤热的反响塔内,使炉料在飘悬状况下敏捷氧化和熔化的熔炼办法。该熔炼进程的氧化反响和传统工艺没有本质上差异,仅仅经过熔炼设备和工艺的改进来改进硫化精矿氧化的动力学条件,抵达强化熔炼的意图。闪速熔炼的长处是:①细颗粒物料悬浮于紊流中,气一固一液三相的传质传热条件好,化学反响速度快;②喷人的细颗粒干精矿具有大的表面积,硫化物的氧化反响速度随触摸面积增大而明显进步;③反响速度快,单位时间内放出热量多,使燃料耗费下降,然后削减因燃料焚烧带人的废气量,成果进步了烟气中的SO2含量,为烟气综合运用了发明条件。 属闪速熔炼领域的有:奥托昆普(Outokumpu )型、世界镍公司因科(Inco)型、基夫赛特(Kivcet)法和氧气喷撒熔炼(OSS)法等。 2.熔池熔炼 这是一种将炉料直接加人鼓风翻腾的熔池中敏捷完结气、液、固相间首要反响的强化熔炼办法。办法适用于有色金属质料熔化、硫化、氧化、复原、造锍和烟化等冶金进程。[next] 为追根问源,该办法能够追溯至19世纪末和20世纪初转炉吹炼铜锍和鼓风炉渣的烟化炉。但它们只局根于处理反射炉、电炉或鼓风炉料所得的液态中间产品(铜锍和炉渣)。用该办法直接处理硫化精矿仍是20世纪70年代往后的事。属该办法领域的现代熔池熔炼新办法有:诺兰达法(1973)、三菱法(1974)、特尼思特法(1977)、白银炼铜法(1980)、氧气底吹炼铅法( 1981)、互纽科夫熔炼法(1984)、顶吹旋转转炉法(TBRC)、艾萨熔炼法炼铅和转炉直接炼铜法等。这些办法首要用于铜(镍)精矿造锍熔炼、铜(镍)锍吹炼、硫化精矿直接熔炼(包含接连炼铜和直接炼铅)以及含铅锌氧化物料和炉渣的复原和烟化。 按反响气体鼓人熔体的办法,可分为侧吹、顶吹和底吹三种类型的熔池熔炼办法。 (1)侧吹 从设于侧墙和埋入熔池的风口直接将富氧空气鼓人铜锍一炉渣熔体内,未经枯燥的精矿与熔剂加到受鼓风激烈拌和的熔池表面,然后浸没于熔体之中,完结氧化和熔化反响。归于此类的有诺兰达法、瓦纽科夫熔炼法、特尼恩特法和白银炼铜法等炼铜办法。 (2)顶吹 从炉顶往炉内插人喷,喷出口距熔池液面必定高度或浸没于熔体之中。依据冶金反响的需求,喷人氧化性或复原性气体,在湍动的熔池内完结氧化或复原反响。归于此类的有三菱法、顶吹旋转转炉法和艾萨熔炼法等炼铜、炼镍和炼铅办法。 (3)底吹 氧气底吹炼铅法选用卧式长形圆筒反响器,在用隔墙分隔的氧化段和复原段都设有数个底吹喷嘴。在氧化段喷吹氧气,使硫化铅精矿氧化成金属铅或高铅(锌)炉渣;生复原段喷吹氧气和复原剂(煤粉或天然气),贫化炉渣,收回铅锌。 3.旋涡熔炼 这是一种细粒炉料和粉状燃料随高速气流沿旋涡室的切线方向进人,并在旋涡室内的旋流中敏捷完结首要冶金反响的熔炼办法。炉料成分和气相间的反响速度大,因而是一种能强化冶金进程的熔炼办法。它的生产能力比惯例的鼓风炉熔炼大得多。 工艺进程为:处理物料随一次风(20-40 m3/s)喷人旋涡室,二次风(100m3/s)沿旋涡室的切线方向喷人而发作高速旋转流,细颗粒物料敏捷完结焙烧和熔炼反响;粗颗粒由离心力效果加快抵达炉壁,并构成熔融状黏膜,缓慢向下流人沉积池,黏膜的缓慢活动不只延伸炉料停留时间,有利于反响完结,并且也起到维护炉壁的效果。 4.热风熔炼 这是一种将预热空气或预热富氧空气鼓人冶金炉以强化冶金进程的熔炼办法。在有色金属冶炼进程中,大多都依赖于燃料焚烧和硫化物氧化反响供给热量,以保持必定的高温,使炉料抵达熔融状况,完结预订的氧化或复原反响,完成金属或金属富集物与脉石的别离。因为,首要是热风显热可代替部分燃料焚烧所发作的热量,使燃料耗费下降,并使助燃的风量削减,也下降了单位金属的烟气量和烟气带走的热丢失,进步热运用率和下降燃料的耗费。其次是热风使燃料和反响物的活性进步,有利于进步燃料焚烧温度和彻底程度,也有利于进步硫化物氧化和氧化物复原的反响速度和复原程度,起强化冶炼进程和进步金属收回率的效果。再次是热风能使熔炼炉的高温会集,加快了炉料熔化速度,进步炉渣的过热程度。[next] 预热鼓风用于高炉炼铁已有一个多世纪的前史。但对有色金属冶炼运用热风还仅仅是20世纪中叶的事,现在已广泛地运用于铜、镍闪速熔炼,鼓风炉炼锌和铅。 5.富氧熔炼 这是一种运用工业氧气部分或悉数代替空气以强化冶金进程的熔炼办法。在20世纪中因为高效价廉的制氧办法的开发,氧气炼钢和富氧炼铁得到广泛运用。与此一同,在有色金属熔炼中也开端用富氧开发新的熔炼办法和改造传统的熔炼办法。 有色金属冶炼进程发作硫化矿的氧化反响是: 2MeS+3O2→2MeO+2SO2 (氧化熔炼) [FeS]+(MeO)→[MeS]+(FeO) (造锍熔炼) [MeS]+O2→[Me]+SO2 (直接熔炼) [MeS]+2(MeO)→3[Me]+SO2 (锍的吹炼) 但是,从硫化矿熔炼取得金属的进程从头到尾是氧化进程,当熔炼鼓风中氧浓度愈大,炉内氧的分压愈高,氧的分散速度也愈快,硫化矿的氧化速度也随之增加。 氧化矿或氧化物料的复原熔炼大多运用固体碳质燃料作发热剂和复原剂,其首要反响是: C+O2→CO2 (碳的彻底焚烧) C+CO2→2CO (碳的氧化反响) MeO+CO→Me十CO2 (氧化物复原反响) 依据燃料焚烧理论,最高温度随鼓风中氧含量的增加而升高,焚烧速度加快,气相中的分压和炉内温度升高,然后加快了复原反响和炉料的熔化。 1952年加拿大世界镍公司(Inco)首要选用工业氧气(含氧95%)闪速熔炼铜精矿,熔炼进程不需再增加任何燃料,烟气SO2浓度可达80%,这是富氧熔炼的最早一例。随后奥托昆普(Outakumpu )型闪速炉以及随后开发的熔池熔炼办法,为诺兰达法、三菱法、白银炼铜法、氧气底吹炼铅法相继都运用富氧进行熔炼。 依据经济分析,只需(单位质量)油的报价/(单位质量)氧气报价≥4时,运用氧气代替油在经济上就是可行的。 6.硫化精矿自热熔炼 这是一种首要由精矿中硫化物的氧化及氧化亚铁造渣等反响热来保持高温熔炼进程的熔炼办法。因不用补加或补加很少的燃料故称自热熔炼。这儿所说的自热熔炼并非早年处理含硫不低于36%的黄铁矿型含铜块矿,熔炼自需补加2%--4%焦炭即可,而是含有新的含义。因为制氧技能和喷发冶金的开展及动力紧缺,充分运用精矿本身氧化反响热、造渣反响热的热量和富氧进行喷发熔炼,经强化熔炼而削减热丢失,完成自热熔炼。[next] 实践证明,闪速熔炼炼铜,选用40%的富氧和473K的热风进行熔炼,产出65%的铜锍,便可实施自热熔炼。自热熔炼不只能够下降熔炼进程的能耗,且削减烟气量,进步烟气SO2浓度,利于削减对环境的污染。自热熔炼应是往后的首要开展方向。 (二)复原熔炼 这是一种金属氧化物料在高温熔炼炉复原气氛下被复原成熔体金属的熔炼办法。 复原熔炼选用碳质复原剂,如煤、焦炭。在高温条件碳质复原剂与金属氧化物发作的首要反响有: MeO+C====Me十CO MeO+CO====Me+CO2 CO2+C====2CO 因为MeO和C的反响为固相触摸,受触摸面的约束,反响不可能很好进行,CO气体复原剂对金属氧化物的复原起首要效果。为此有必要加过量复原剂,以确保MeO和CO反响发作的CO2在高温下被过剩碳复原为CO。这样循环着不断地为氧化物复原供给满足的气体复原剂。 冶炼物猜中除主金属氧化物外往往还含有多种非有必要的金属氧化物,在复原熔炼进程中也复原成金属,并且熔于主金属中,所以复原熔炼得到的金属是含有多种杂质的粗金属。如鼓风炉熔炼铅、反射炉熔炼锡、铋和锑等。为得到纯金属还需进一步精粹。 除了金属氧化物外,复原熔炼正常与否与高铁氧化物的复原和造渣密切相关。物猜中的高价铁氧化物被复原成贱价铁氧化物(FeO),然后与物猜中的SiO2、CaO等组分反响造渣。复原条件有必要操控妥当,不然生成Fe3O4或Fe都将影响复原熔炼进程的进行。因而操控好高价铁的复原反响是断定技能条件的首要因素。 以上技能条件除依据其氧化标准生成自由能改动来判别其复原次第及程度外,也常用反响MeO+CO====CO2+Me的平衡常数logKp=PCO2:PCO来进行比较断定。 四、精粹 精粹是粗金属去除杂质的提纯进程。关于高熔点金属,精粹还具有细密化效果。有化学精粹和物理精粹两大类。 (一)化学精粹 为抵达高度提纯意图,往往需求化学精粹和物理精粹,运用杂质和主金属某些化学性质的不同完成其别离。 1.氧化精粹 运用氧化剂将粗金属中的杂质氧化造渣或氧化蒸腾除掉的精粹办法,精粹效果及除杂极限不只与主金属和杂质元素的氧化物标准生成自由能改动(△Go)有关,并且还取决于杂质和氧化物的活度。[next] 2.硫化精粹 加人硫或硫化物以除掉粗金属中杂质的火法精粹办法。能否适用此法取决于主金属和杂质金属对硫的亲和力。当金属熔体加硫之后,因为主金属的浓度(活度)比杂质金属大得多,所以首要被硫化生成主金属硫化物MeS,然后才发作以下除杂反响: MeS+Me′====Me′S+Me 该反响能否进行决定于硫化物标准生成自由能改动△Go。 反响必要条件是Ps2(Me′S) > Ps2(MeS),即主金属硫化物在给定的条件下的离解压大于杂质硫化物的离解压,才干构成杂质硫化物。假如所构成的各种杂质硫化物在熔体中的溶解度小,密度也比主金属的小,它们便会浮到熔体表面而被除掉。粗铅、粗锡和粗锑加硫除铜、铁是硫化精粹的典型比如。 3.氯化精粹 通人或加人氯化物使杂质构成氯化物而与主金属别离的火法精粹办法。该办法是根据氯对杂质的亲和力大于主金属,并生成的氯化物不溶或少溶于主金属为前提条件的。 氯化精粹在粗铅除锌,粗铝除钠、钙、氢,粗铋除锌,粗锡除铅等方面都有广泛运用。 现举例说明。粗铅氯化精粹时是往铅液中通人,使锌构成ZnCl2进人浮渣而与铅别离。此刻铅也部分被氯化,但又被锌按下式置换: PbCl2+Zn====ZnCl2+Pb 因而氯化精粹铅时,铅的丢失很少。铅液中其他杂质,如砷、锑、锡也构成氯化物蒸腾而与铅别离。 4.碱性精粹 向粗金属熔体加人碱,使杂质氧化与碱结组成渣而被除掉的火法精粹办法。办法的本质是在精粹进程顶用氧或其他氧化剂(如NaNO3)使杂质氧化,然后与加人的碱金属或碱土金属化合物溶剂反响,生成更为安稳的盐(渣)加快反响的进行,并使反响进行愈加彻底。碱性精粹用于粗铜除镍,粗铅除砷、锑、锡,粗锑除砷等。 (二)物理精粹 是以物理改动为主,运用它们的物理性质不同脱除杂质的办法。如精馏精粹、真空精粹、熔析精粹等。 1.精馏精粹 运用物质沸点的不同,替换进行屡次蒸腾和冷凝除掉杂质的火法精粹办法。精馏精粹包含蒸馏和分凝回流两个进程。[next] 精馏通常在精馏塔中进行,气液两相经过逆流触摸,进行相际传热传质。液相中的易蒸腾组分进人气相,所以在塔顶冷凝得到简直纯的易蒸腾组分,塔底得到简直纯的难蒸腾组分。塔顶一部分分凝液作为回流液从塔顶回来精馏塔,塔顶回流入塔的液体量和塔顶产品量之比称之为回流比,其巨细影响精馏操作的别离效果和能耗。 精馏精粹适用于彼此溶解或部分溶解的金属液体,不适用于两种具恒沸点的金属熔体。在有色金属冶金中,精馏成功地用于粗锌的精粹之一。 2.真空精粹 在低于或远低于常压下脱除粗金属中杂质的火法精粹办法。真空精粹除能防止金属与空气中氧氮反响和防止气体杂质的污染外,更重要的是对许多精粹进程(特别是脱气)还能发明有利于金属和杂质别离的热力学和动力学条件。真空精粹首要包含真空蒸馏(提高)和真空脱气。 真空蒸馏(提高)是在真空条件下运用各种物质在同一温度下蒸气压和蒸腾速度不同,操控恰当的温度使某种物质选择性蒸腾和冷凝来取得纯物质的办法。这种办法首要用来提纯某些沸点较低的金属,如、锌、硒、碲、钙等。 真空脱气即在真空条件下脱除气体杂质,包含经过化学反响而使某些杂质以气体形状的脱除。真空脱气进程的效果首要是下降气体杂质在金属中的溶解度。 3.熔析精粹 运用杂质或其化合物在主金属中的溶解度改动的性质,经过改动精粹温度将其脱除的火法精粹办法,熔析精粹运用了熔化一结晶相变规则,即运用均匀二元系或多元系液体,在相变温度下开端凝结时,会变成两个或几个组成不同的平衡共存相,杂质将富集在其间的某些固相或液相中,然后抵达金属提纯的意图。如粗铅除铜,从Cu-Pb二元系状况图得知,共晶温度599℃,分出含铜的理论值为铜0.06%;一般操控温度为613℃,铅含铜要大于0.06%,但尚有砷、锑存在时,则它们与铜生成不溶于铅的化合物—固溶体,可使铅中铜降至理论值以下0.02%-0.03%。
湿法冶金法
2019-01-04 17:20:18
湿法冶金就是在低温下(一般低于100℃)用适当的溶剂来处理矿石、精矿或半成品,使其中要提取的金属溶解进入溶液,从而与不溶解的脉石或其他杂质分离,并随后从溶液中提取我们所需的金属的方法。它一般包括浸出、过滤、净化(包括液固分离)及提取金属4个过程。湿法冶金多用于处理低品位矿石。它在稀有金属冶金中占有很重要的地位,大多数稀有金属的提取都需要经过湿法冶金的处理。
在重有色金属冶金中,目前铜的生产约15%~20%,用湿法生产,锌的生产约40%用湿法生产。其金属金和银大部分也用湿法冶金提取。湿法冶金与火法冶金比较有很多优点,例如金属回收率高,原料综合利用可能性大,可以直接处理难选或难熔的贫矿,燃耗低,生产过程易于控制,劳动条件比较好,与火法冶金相比较减轻了废气对环境的污染。但其设备与工艺均比火法冶金复杂。