您所在的位置: 上海有色 > 有色金属产品库 > 冶金熔剂价格 > 冶金熔剂价格百科

冶金熔剂价格百科

废铝熔剂

2017-06-06 17:50:04

废铝熔剂的研究在我国目前还是在发展研发阶段,有许多发明和创新都在废铝熔剂上面进行的,主要也是因为废铝回收利用这个工业在我国的发展比较慢,废铝熔剂必定是废铝回收利用的过程中使用的产品之一。接下来让我们简单介绍一下废铝熔剂。从废铝熔渣中回收 金属 的废铝熔剂,特别适用于从铝渣中回收 金属 铝(铝合金),属于 金属 处理或回收技术领域。通常从废铝熔渣中回收铝,工艺过程复杂,条件差,回收率低,本废铝熔剂包括由NaNO3,Na2SiF6和NaCl,KCl的予熔混合物等组成,使用它,可以在各种不同情况下回收铝,方法简单,使用量少,回收率高。从废铝熔渣中回收 金属 铝的废铝熔剂,其中含有Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6])、NaCl和KCl的予熔混合物,其特征在于:(1)主要发热剂是NaNO↓[3](或KNO↓[3])  (2)熔剂中各成份的重量百分比为:NaNO↓[3](或KNO↓[3])"30~60%  Na↓[2]SiF↓[6](或Na↓[3]AlF↓[6]"15~30%  NaCl,KCl予熔混合物"10~40%。更多关于废铝熔剂的相关信息可以登陆上海 有色 网查询,更多合作伙伴也可以在商机平台中寻找到! 

重有色冶金炉对入炉熔剂的粒度要求

2019-01-07 17:38:01

火法冶炼作业需要的熔剂可以由本企业所属矿山按具体要求提供,或向外单位定购,也可以在本厂设置熔剂破碎与磨碎工序(车间或工段)自产。重有色冶金炉对入炉熔剂的粒度要求见表1。   表1  重有色冶金炉对入炉熔剂的粒度要求冶金炉熔剂粒度,mm备注石英石石灰石铜流态化焙烧炉 铜密闭鼓风炉 铜熔炼反射炉 铜白银炉 铜电炉 铜闪速炉   铜转炉   铜火法精炼炉 铅鼓风炉 铅锌鼓风炉 锡反射炉 锡电炉 氧气底吹炼铅炉 镍闪速炉 镍电炉<3 40~50 <6 <6 3~5 <0.5   5~25   2~3 <6   <3~6 <10 <3 <0.3 5~10<3 30~80 <6 <6 3~5 (石灰)       (石灰) <6 <6 <5~6 <10 <3    湿式配料时<0.2 其它块度20~100         铜连续吹炼炉 石英石3~25

闪速炉熔剂及常用燃料

2019-03-06 09:01:40

一、熔剂     闪速炉熔剂为石英石,一般要求含二氧化硅在80%以上,含铁在3%以下。砷、氟等杂质应尽量低。若有条件,可运用含金、银、铜的石英石。各厂闪速炉用石英熔剂成分实例见表1。 表1  闪速炉用石英熔剂成分实例,%厂名SiO2其它补白贵冶>85Fe<2  As<0.1  F<0.1河砂哈里亚瓦尔塔86~89Fe2O3 2.8  Al2O32.7足尾50~55S 30~33小坂80矿东予89.1Fe 3  Al2O3 3佐贺关92全化尾砂及海砂玉野80萨姆松92Fe 3凯特里91韦尔瓦90伊达哥80温山90伊萨贝拉97.8奥林匹克坝93.4    直接取得含铜低的弃渣的玉野式闪速炉,为操控炉渣含CaO4%,增加少数石灰作熔剂。     二、燃料     闪速炉常用燃料有重油、焦粉、粉煤及天然气等。各种燃料可独自运用,也可混合运用。燃料品种的挑选主要由区域燃料直销条件及报价决议。     因为烟气用于制酸,因而对燃料含硫无要求。     各厂闪速炉用燃料的实例见表2,表3。 表2  闪速炉用重油实例工厂品种低发热值GJ/kg元素组成,%CHSONW贵冶200号渣油4185.411.20.50.50.50.5足尾厂日本C重油418612佐贺关厂船用重油4486.511.22东予厂日本C重油418612格沃古夫厂重油85.911.12.5    注:贵冶用200号渣油Q低为41.023MJ/kg;粘度为400~600mPa·s;重油密度为0.97g/cm3。 表3  闪速炉用焦粉及粉煤的实例厂名品种粒度分析低发热值MJ/kg元素组成,%CHONS灰分佐贺关厂焦粉+1.0mm 6.0%28.586.50.5810.111.0~0.5mm  14.0%0.5~0.149mm 44.7%0.149~0.044mm 21.9%-0.044mm 13.4%东予厂粉煤+88目<10%27.264.75.34.40.82.622玉野厂粉煤-100目>90%    有的冶炼厂闪速炉选用天然气为燃料,例如巴亚马雷厂用的天然气含CH498%,低发热值为35590kJ/m3,圣马纽尔厂用的天然气热值为34000 kJ/m3。

鼓风烧结配料所采用的熔剂

2019-01-07 17:38:01

鼓风烧结配料所采用的熔剂粒度小于6mm。配加的熔剂和数量须根据鼓风炉渣成分(即渣型)计算确定。       一、硅质熔剂  一般用石英石,含SiO290%以上。若用河砂或含金石英石,SiO2含量可适当降低,但不小于75%。       二、铁质熔剂  多用烧渣,含Fe45%以上。也可用铁屑或铁矿石。       三、块状石英石(尤其含金石英石)、铁矿石粒度大于30mm时,也可直接加入鼓风炉。       表1为熔剂的化学成分实例。   表1  熔剂的化学成分实例,%熔剂名称FeCaOSiO2Al2O3MgOPbZnSAuAg石灰石10.5754.330.95       石灰石20.4155.731.340.330.59     石灰石30.353.970.620.230.89     石英石10.191.0891.80.14      石英石20.52.2197.12       石英石31.261.0894.86       河砂12.41.3575.853.04      河砂21.510.687.48       河砂33.02.074~80  0.30.10.1  烧渣147.44.158.2       烧渣243.866.29.31       烧渣347.554.3510.21       平江金精矿38.120.0433.975.62 0.150.195.67133.815.4灵宝精矿14.230.640~60  0.2~1.80.2718~2430~70100~400秦岭精矿16.980.6347.47  5~131.5920.270150浸出渣银精矿8.243.214.241.41 4.8341.124.62.0560铜浸出渣30~40 30~35  0.01  8~10140     注:Au、Ag的单位为g/t。

火法炼金常用熔剂及其作用

2019-01-07 07:52:09

火法炼金熔剂共有二类,一类是氧化熔剂,另一类是造渣熔剂。常用的氧化溶剂有硝石、二氧化锰,其作用是炉料中的贱金属(铜、铅、锌、铁等)和硫氧化成氧化物以便造渣,常用的造渣熔剂有硼砂、石英、碳酸纳等。其作用是与贱金属的氧化物反应生成炉渣。

铝合金熔体的熔剂精炼

2019-01-02 15:29:20

本文介绍了熔剂精炼在铝合金熔体净化过程中的作用,熔剂的分类和要求,常用熔剂的组成,适用范围及使用方法等。   在铝及铝合金熔炼过程中,氢及氧化夹杂是污染铝熔体的主要物质。铝极易与氧生成A1202或次氧化铝(Al2O及A10).同时也极易吸收气体(H)其含量占铝熔体中气体总量的70—90%,而铸造铝合金中的主要缺陷——气孔和夹渣,就是由于残留在合金中的气体和氧化物等固体颗粒造成的。因此,要获得高质量的熔体,不仅要选择正确合理的熔炼工艺,而且熔体的精炼净化处理也是很重要的。   铝及铝合金熔体的精炼净化方法较多,主要有浮游法、熔剂精炼法、熔体过滤法、真空法和联合法。本文介绍熔剂精炼法在铝合金熔炼中的应用。   1 熔剂的作用   盐熔剂广泛地用于原铝和再生铝的生产,以提高熔体质量和金属铝的回收率[1。2]。熔剂的作用有四个:其一,改变铝熔体对氧化物(氧化铝)的润湿性,使铝熔体易于与氧化物(氧化铝)分离,从而使氧化物(氧化铝)大部分进入熔剂中而减少了熔体中的氧化物的含量。其二,熔剂能改变熔体表面氧化膜的状态。这是因为它能使熔体表面上那层坚固致密的氧化膜破碎成为细小颗粒,因而有利于熔体中的氢从氧化膜层的颗粒空隙中透过逸出,进入大气中。其三,熔剂层的存在,能隔绝大气中水蒸气与铝熔体的接触,使氢难以进入铝熔体中,同时能防止熔体氧化烧损。其四,熔剂能吸附铝熔体中的氧化物,使熔体得以净化。总之,熔剂精炼的除去夹杂物作用主要是通过与熔体中的氧化膜及非金属夹杂物发生吸附,溶解和化学作用来实现的。   2 熔剂的分类和选择   2.1熔剂的分类和要求   铝合金熔炼中使用的熔剂种类很多,可分为覆盖剂(防止熔体氧化烧损及吸气的熔剂)和精炼剂(除气、除夹杂物的熔剂)两大类,不同的铝合金所用的覆盖剂和精炼剂不同。但是,铝合金熔炼过程中使用的任何熔剂,必须符合下列条件[3。8]。   ①熔点应低于铝合金的熔化温度。   ②比重应小于铝合金的比重。   ⑧能吸附、溶解熔体中的夹杂物,并能从熔体中将气体排除。   ④不应与金属及炉衬起化学作用,如果与金属起作用时,应只能产生不溶于金属的惰性气体,且熔剂应不溶于熔体金属中。   ⑤吸湿性要小,蒸发压要低。   ⑥不应含有或产生有害杂质及气体。   ⑦要有适当的粘度及流动性。   ⑧制造方便:价格便宜。   2.2熔剂的成分及熔盐酌作用   铝合金用熔剂一般由碱金属及碱土金属的氯化物及氟化物组成,其主要成分是KCl、NaCl、NaF.CaF,.、Na3A1F6、Na2SiF6等。熔剂的物理、化学性能(熔点、密度、粘度、挥发性、吸湿性以及与氧化物的界面作用等)对精炼效果起决定性作用。   2.2.1。氯盐:氯盐是铝合金熔剂中最常见的基本组元,而45%NaCl+55%KCl的混合盐应用最广。由于它们对固态Al2O3,夹杂物和氧化膜有很强的浸润能力(与Al2O3,的润湿角为20多度)且在熔炼温度下NaCl和KCl的比重只有1。55g/cm3和l。50g/cm3,显著小于铝熔体的比重,故能很好地铺展在铝熔体表面,破碎和吸附熔体表面的氧化膜。但仅含氯盐的熔剂,破碎和吸附过程进行得缓慢,必须进行人工搅拌以加速上述过程的进行。 氯化物的表面张力小,润湿性好,适于作覆盖剂,其中具有分子晶型的氯盐如CCl4   ,SiCl4,A1C13,等可单独作为净化剂,而具有离子晶型的氯盐如LiCl、NaCl毛KCl、MgC12:等适于作混合盐熔剂。   2。2.2.氟盐:在氯盐混合物中加入NaF.Na3A1F6、CaF2。等少量氟盐,主要起精炼作用,如吸附、溶解Al2O3,。氟盐还能有效地去除熔体表面的氧化膜,提高除气效果。这是因为:a)氟盐可与铝熔体发生化学反应生成气态的A1F,、SiF4,、BF3,等,它们以机械作用促使氧化膜与铝熔体分离,并将氧化膜挤破,推入熔剂中;   b)在发生上述反应的界面上产生的电流亦使氧化膜受“冲刷”而破碎。因此,氟盐的存在使铝熔体表面的氧化膜的破坏过程显著加速,熔体中的氢就能较方便的逸出;c)氟盐(特别是CaF2:)能增大混合熔盐的表面张力,使已吸附氧化物的熔盐球状化,便于与熔体分离,减少固熔渣夹裹铝而造成的损耗, 而且由于熔剂——熔体表面张力的提高,加速了熔剂吸附夹杂的过程。   3铝合金熔炼中常用熔剂   熔剂精炼法对排出非金属夹杂物有很好的效果,但是清除熔体中非金属夹杂物的净化程度,除与熔剂的物理、化学性能有关外,在很大程度上还取决于精炼工艺条件,如熔剂的用量,熔剂与熔体的接触时间、接触面积、搅拌情况、温度等。   3.1常用熔剂   为精炼铝合金熔体,人们已研制出上百种熔剂,以钠、钾为基的氯化物熔剂应用最广。对含镁量低的铝合金广泛采用以钠钾为基的氯化物精炼剂,含镁量高的铝合金为避免钠脆性则采用不含钠的以光卤石为基的精炼熔剂。   铝合金熔炼过程中常用熔剂的成分及作用如表1(4-7)。   表1 常用熔剂的成分及应用   溶剂种类 组分含量,%   NaCl KCl MgCl2 Na3AlF6 其它成分 适用的合金   覆盖剂 39 50 6。6 CaF2 4。4 Al-Cu系,Al-Cu-Mg   系,Al-Cu-Si系Al-Cu-Mg-Zn系   Na2CO385。CaF15 一般铝合金   50 50 一般铝合金   KCl,MgCl280 CaF220 Al-Mg系Al-Mg-Si系合金   31 14 CaF210 CaCL244 Al-Mg系合金   8 67 CaF210,MgF215 Al-Mg系合金   精炼剂 25-35 40-50 18-26 除Al-Mg系,Al-Mg-Si系以外的其它合金   8 67 MgF215,CaF210 Al-Mg系合金   KCl,MgCl260,CaF240 Al-Mg系Al-Mg--Si系合金   42 46 Bacl26 (2号熔剂) Al-Mg系合金   22 56 22 一般铝合金   50 35 15 一般铝合金   40 50 NaF10 一般铝合金   50 35 5 CaF210 一般铝合金   60 CaF220,NaF20 一般铝合金   36-45 50-55 3-7 CaF 21。5-4 一般铝合金   Na2SiF630-50,C2Cl650-70 一般铝合金   40。5 49。5 KF10 易拉罐合金   从上表中可以看出,有些熔剂组分的含量变化范围较大,可以根据实际情况来确定。首先要根据合金元素的含量来确定[8],因为大多数铝合金中主要元素含量都可在一定范围内变化,其次要根据所除杂质成分及含量来确定。因此,使用厂家除使用熔剂厂生产的熔剂外,最好根据所熔炼铝合金的成分调正熔剂组分比例,以找出最佳熔剂组成。   综合以上各种熔剂不难看出,当要熔制的铝合金成分确定后,熔剂成分的设计首先是主要成分(如氯化物)用量配比的选择,其次是添加组分(如氟化物)的选择。熔剂配好后,最好是经熔炼、冷凝成块、再粉碎后使用,因为机械混合状态的效果不好。   3。2熔剂用量 .   熔炼铝合金废料时,废料质量不同,覆盖剂及精炼剂的用量也不同。   3。2。1.主覆盖剂用量   a)熔炼质量较好的废料,如块状料、管、片时覆盖剂用量(见表2)。表2 覆盖剂种类及用量炉料及制品 覆盖剂用量(占投料量的%) 覆盖剂种类电炉熔炼:一般制品特殊制品 0。4-0。5%0。5-0。6% 普通粉状溶剂普通粉状溶剂煤气炉熔炼:原铝锭废 料 1-2%2-4% KC1:NaC1 按1:1混合KC1:NaC1 按1:1混合   注:对高镁铝合金,应一律用不含钠盐的熔剂进行覆盖,避免和含钠的熔剂接触。   b)熔炼质量较差的废料,如由锯、车、铣等工序下来的碎屑及熔炼扒渣等时,覆盖剂用量(见表3)。   表3: 覆盖剂用量   类 别 用量(占投料量的%)   小碎片碎 屑号外渣子 6-810-1515-20   3.2.2精炼剂用量   不同铝合金、不同制品,精炼剂用量也各不相同(见表4)。   表4 精炼剂用量   合金及制品 熔炼炉 静置炉   高镁合金 2号熔剂5-6kg/t 2号熔剂5-6kg/t   特殊制品除高镁合金 普通熔剂5-6kg/t 普通熔剂6-7kg/t   LT66、LT62、LG1、LG2、LG3、LG4 出炉时用普通熔剂、叠熔剂坝   其它合金 普通熔剂5-6kg/t   注:①在潮湿地区和潮湿季节, 熔剂用量应有所增加   ②对大规格的圆锭,其熔剂用量也应适当增加。   3。3熔剂使用方法   熔剂精炼法熔炼铝合金生产中常用以下几种方法   ①熔体在浇包内精炼。首先在浇包内放入一包熔剂,然后注入熔体,并充分搅拌,以增加二者的接触面积。   ②熔体在感应炉内精炼。熔剂装入感应炉内,借助于感应磁场的搅拌作用使熔剂与熔体充分混合,达到精炼的目的。   ③在浇包内或炉中用搅拌机精炼,使熔剂机械弥散于熔体中。   ④熔体在磁场搅拌装置中精炼。,该法依靠电磁力的作用,向熔剂——金属界面连续不断地输送熔体,以达到铝熔体与熔剂间的活性接触,熔体旋转速度越高,其精炼效果越好。 ⑤电熔剂精炼。此法是使熔体通过加有电场(在金属——熔剂界面上)的熔剂层,进行连续精炼。   在这五种方法中,电熔剂精炼效果最好。

冶炼厂熔剂破碎设备选择

2019-01-07 17:38:04

冶炼厂的熔剂破碎与磨碎车间的设备配置关系比较复杂,扩建时不便于另外增建一个系列或改用较大型设备,故新建设计时,通常按一班制操作计算所需的设备能力,以后增产时,可以增加操作班次或时间。       一、破碎设备的选择       冶炼厂熔剂粗碎一般选用颚式破碎机,中碎一般选用标准(中型)圆锥破碎机,细碎一般选用短头圆锥破碎机。中、细碎也可以选用反击式或锤式破碎机,其优点是产量高,破碎比打,电耗小,缺点是反击板和板锤容易磨损。       若两段破碎时,第二段一般选用中型圆锥破碎机或四辊破碎机等;小型冶炼厂也有选用对辊破碎机的,因其设备构造简单,容易制造,但辊简易磨损,生产能力低,       近年来,某些新建或改扩建的中、小型有色金属选矿厂,破碎不含水和泥的矿石,在中、细碎作业中采用JC型深腔颚式破碎机、旋盘式破碎机及PEX型细碎颚式破碎机,其破碎比打。生产实际证明,该设备在节约能源、方便维修、降低碎矿成本、减少基建投资等方面,已初步显示出其优越性。从图1可以看出,PEX型细碎颚式破碎机的产品粒度特性基本上和中型圆锥破碎机的产品粒度特性相近似。该机和一般的颚式破碎机组合起来,可以得出15~20mm的产品(参见图2和图3),可以符合转炉和吹炼所需熔剂的粒度要求。若进厂熔剂粒度为120~210mm,则仅用细碎颚式破碎机一段即可。若进厂熔剂粒度为250mm以下,最终产品粒度5mm以下,则用JC型深腔颚式破碎机与旋盘式破碎机组合。    图1  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较    图2  二段一次闭路破碎筛分流程实例    图3  三段半闭路破碎筛分设计流程图实例       二、破碎机生产能力计算       破碎机的生产能力与破碎物料的性质、进料粒度组成、破碎的性能、操作条件(如供给料情况、排料口大小)等因素有关。由于目前还没有包括这些因素的理论计算方法,设计时可用下列经验公式计算,然后参照生产实践数据校正。       (一)颚式、圆锥(标准、中型和短头)破碎机       1、开路破碎的生产能力计算   Q=K1K2K3K4Q0     (1)       式中:          Q-设计条件下,破碎机的生产能力,t/h;          Q0-标准条件下(指中硬熔剂、堆积密度1.6t/m3)开路破碎时的生产能力,t/h,可按下式计算:   Q0=q0e            K1-熔剂的可碎性系数,由表1选取;          K2-熔剂密度修正系数,由下式计算:   K2=γ/1.6≈γT/2.7            K3-给料粒度或破碎比修正系数,由表2或表3选取;          K4-水分修正系数,进料水分5%以下时,可取1;          q0-破碎机排料口单位宽度的生产能力,t/(mm·h),查表4至表8;          e-破碎机排料口宽度,mm;          γ-熔剂的堆积密度,t/m3;          γT-熔剂的密度,t/m3。   表1  熔剂的可碎性系数K1熔剂种类普氏硬度系数f值K1值易     碎8以下1.1~1.2中等可碎8~161.0难     碎16~200.9~0.95   表2  粗碎设备的粒度修正系数K3给料最大粒度D最大和给料宽度B之比a0.850.70.60.50.40.3粒度修正系数K31.001.041.071.111.161.23   表3  中碎与细碎圆锥破碎机破碎比修正系数K3标准或中型圆锥破碎机短头圆锥破碎机e/BK3e/BK30.600.9~0.980.400.9~0.940.550.92~1.00.251.0~1.050.400.96~1.060.151.06~1.120.351.0~1.10.0751.14~1.20     注:1、e-指上段破碎机排料口;B-为本段中碎或细碎圆锥破碎机给料口。例如,上段采用颚式破碎机,本段为标准或中型圆锥破碎机;或上段采用圆锥破碎机,本段为短头圆锥破碎机。但当闭路破碎时,即指闭路破碎机的排料口与给料口宽度之比值;         2、设有预先筛分时取小值;不设预先筛分时取大值。   表4  颚式破碎机q0值破碎机规格250×400400×600600×900900×1200q0,t/(mm·h)0.40.650.95~1.001.25~1.30   表5  开路破碎时,标准和中型圆锥破碎机q0值破碎机规格Φ600Φ900Φ1200Φ1650q0,t/(mm·h)1.02.54.0~4.57.0~8.0   表6  开路破碎时,短头圆锥破碎机q0值破碎机规格Φ900Φ1200Φ1650q0,t/(mm·h)4.06.512.0   表7  开路破碎时,单缸液压圆锥破碎机q0值项目Φ900Φ1200Φ1650Φ1750Φ2200q0,t/(mm·h)标准型2.524.6 8.1516.0中  型2.765.4 9.620.0短头型4.256.7 14.025.0   表8  颚式破碎机生产实例厂    别设备规格 mm熔剂种类给料粒度 mm排料口宽度,mm生产能力 t/h大     冶450×750石英石、 石英石300~40010050白银一冶600×900石英石、 石英石48075~20035~120铜陵二冶400×600石英石、 石英石32040~10025~60云     冶400×600石英石30040~10012~32       2、闭路破碎时破碎机通过的熔剂量生产能力计算   Qc=KQ0           (2)       式中:          Qc-闭路时破碎机的生产能力,t/h;          Q0-开路时破碎机的生产能力,t/h;          K-闭路时平均进料粒度变细的系数,中型或短头圆锥破碎机在闭路时一般按1.15~1.40选取(熔剂硬度大时取小值,硬度小时取大值)。        (二)光面对辊破碎机   Q=60πDLdnγK     (3)       式中:          Q-对辊破碎机的生产能力,t/h;          D-辊筒直径,m;          L-辊筒长度,m;          d-排料口宽度,m;          n-辊筒转数,r/min;          γ-破碎熔剂的堆积密度,t/m3;          K-破碎机排出口的充满系数,一般按0.2~0.4选取,硬和粗粒物料取大值,反之取小值。       (三)反击式破碎机   Q=60K1C(h+ɑ)dbnγ     (4)       式中:          Q-反击式破碎机的生产能力,t/h;          K1-理论生产能力与实际生产能力的修正系数,一般取0.1;          C-转子上板锤数目;          h-板锤高度,m;          ɑ-板锤与反击板间的间隙,即排料口宽度,m;          d-排料粒度,m;          b-板锤宽度,m;          n-转子的转数,r/min;          γ-熔剂的堆积密度,t/m3。       (四)锤式破碎机   Q=60ZLCdμKnγ      (5)       式中:          Q-锤式破碎机的生产能力,t/h;          Z-排料篦条的缝隙个数;          L-篦条筛格的长度,m;          C-筛格的缝隙宽度,m;          d-排料粒度,m;          μ-充满与排料不均匀系数,一般为0.015~0.0.7,小型破碎机较小,大型破碎机较大。          K-转子圆周方向的锤子排数,一般为3~6;          n-转子转数,r/min;          γ-熔剂的堆积密度,t/m3。       由于理论公式计算较复杂,锤式破碎机的生产能力多采用经验公式计算,当破碎中硬熔剂和破碎比为15~20时,可用下式计算:   Q=(30~45)DLγ     (6)       式中:          Q-锤式破碎机的生产能力,t/h;          D-按转子外缘计的转子直径,m;          L-转子长度,m;          γ-破碎产物的堆积密度,t/m3。       以上经验公式都有局限性,应注意其使用条件。       三、需要破碎机台数的计算   n=Qn/Q     (7)    式中:          n-需要破碎机台数;          Qn-破碎作业的设计产量,t/h;          Q-破碎机的生产能力,t/(h·台)。       表8至表10为铜冶炼厂熔剂破碎机生产实例。   表9  标准圆锥破碎机生产实例厂    别直径 mm熔剂种类堆积密度 t/m3给料粒度 mm排料口宽度,mm生产能力 t/h大     冶900石英石、 石英石1.490~15025~2850白银一冶1200石英石、 石英石1.6411520~3042~135铜陵二冶900石英石、 石英石1.511012~2540   表10  短头圆锥破碎机生产实例厂    别直径 mm熔剂种类堆积密度 t/m3排料口宽度,mm产品粒度 mm生产能力 t/h备注大    冶1200石英石、 石英石1.48~106~850闭路白银一冶1200石英石、 石英石1.5~1.66~10~1550开路

金、银锭熔铸的原理-熔剂和氧化剂

2019-02-21 13:56:29

在熔铸金或银锭时,一般均应参加适量的熔剂和氧化剂。一般参加硝石加碳酸钠或硝石加硼砂。参加碳酸钠也能放出活性氧,以氧化杂质,故它既能起稀释造渣的熔剂效果,也能起到必定的氧化效果。 熔剂与氧化剂的参加量,随金属纯度的不同而增减。如熔铸含银99.88%以上的电解银粉,一般只参加0.1%~0.3%的碳酸钠,以氧化杂质和稀释渣。而熔炼含杂质较高的银,则可参加适量的硝石和硼砂,以强化氧化一部分杂质使之造渣而除掉。这时,也应适当添加碳酸铺量。由于银在熔融时能溶解很多的氧,一般说来,氧化剂的参加量不宜过多,由于有必要维护坩埚免遭激烈氧化而损坏。且石墨坩埚归于酸性材料,因此也不宜参加过多的碳酸钠。 熔铸含金99.9%以上的电解金,一般参加和硼砂各约0.1%,并参加0.1%~0.5%的碳酸钠造渣。对纯度较低的金,可适当添加熔剂和氧化剂。 熔炼金、银的进程中,坩埚液面邻近如因激烈氧化有或许“烧穿”时,可参加适量洁净而枯燥的碎玻璃以中和渣,防止形成坩埚的损坏而丢失金、银。通过氧化和造渣的熔炼进程,铸成锭块的金、银档次较之质料均有所提高。故熔铸进程中,参加适量的熔剂和氧化剂是十分必要的。

冶金术语

2019-01-24 17:45:52

1、烧结sintering   粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。 2、填料packingmaterial   在预烧或烧结过程中为了起分隔和保护作用而将压坯埋入其中的一种材料。 3、预烧presintering   在低于最终烧结温度的温度下对压坯的加热处理。 4、加压烧结pressure   在烧结同时施加单轴向压力的烧结工艺。 5、松装烧结loose-powdersintering,gravitysintering   粉末未经压制直接进行的烧结。 6、液相烧结liquid-phasesintering   至少具有两种组分的粉末或压坯在形成一种液相的状态下烧结。 7、过烧oversintering   烧结温度过高和(或)烧结时间过长致使产品最终性能恶化的烧结。 8、欠烧undersintering   烧结温度过低和(或)烧结时间过短致使产品未达到所需性能的烧结。 9、熔渗infiltration   用熔点比制品熔点低的金属或合金在熔融状态下充填未烧结的或烧结的制品内的孔隙的工艺方法。 10、脱蜡dewaxing,burn-off   用加热排出压坯中的有机添加剂(粘结剂或润滑剂)。 11、网带炉meshbeltfurnace   一般由马弗保护的网带将零件实现炉内连续输送的烧结炉。 12、步进梁式炉walking-beamfurnace   通过步进梁系统将放置于烧结盘中的零件在炉内进行传送的烧结炉。 13、推杆式炉pusherfurnace   将零件装入烧舟中,通过推进系统将零件在炉内进行传送的烧结炉。 14、烧结颈形成neckformation   烧结时在颗粒间形成颈状的联结。 15、起泡blistering   由于气体剧烈排出,在烧结件表面形成鼓泡的现象。 16、发汗sweating   压坯加热处理时液相渗出的现象。 17、烧结壳sinterskin   烧结时,烧结件上形成的一种表面层,其性能不同于产品内部。 18、相对密度relativedensity   多孔体的密度与无孔状态下同一成分材料的密度之比,以百分率表示。 19、径向压溃密度radialcrushingstrength   通过施加径向压力测定的烧结圆筒试样的破裂强度。 20、孔隙度porosity   多孔体中所有孔隙的体积与总体积之比。 21、扩散孔隙diffusionporosity   由于柯肯达尔效应导致的一种组元物质扩散到另一组元中形成的孔隙。 22、孔径分布poresizedistribution   材料中存在的各级孔径按数量或体积计算的百分率。 23、表观硬度apparenthardness   在规定条件下测定的烧结材料的硬度,它包括了孔隙的影响。 24、实体硬度solidhardness   在规定条件下测定的烧结材料的某一相或颗粒或某一区域的硬度,它排除了孔隙的影响。 25、起泡压力bubble-pointpressure   迫使气体通过液体浸渍的制品产生第一气泡所需的最小的压力。 26、流体透过性fluidpermeability   在规定条件下测定的在单位时间内液体或气体通过多孔体的数量。

湿法冶金在铜冶金中的地位

2019-03-06 09:01:40

萃取技能给铜的湿法冶金带来了性的改变,创建了现代湿法铜冶金工业。自20世纪70时代开端开展以来,至今已成为一个独立的工业体系,每年产铜达百余万t,在世纪之交达250万t,占铜年总产值的15%,占由矿直接出产的铜的17%。其开展速度远高于全体铜工业的开展速度,如下图所示。曲线1表明火法熔炼-电解出产的铜量逐年改变。曲线2代表用萃取-电积法出产的铜产值,从20世纪70-80时代中阅历了一个平稳的开展时期,然后开端了快速开展的阶段,特别是近年许多大矿厂相继投产,更将添加速度面向了一个新高潮。在一起期内其他炼铜办法的产值几无添加,国际上铜产值的添加大都来自湿法炼铜的开展。近期国际各种出产办法的铜产值国际各地区湿法炼铜的开展很不平衡,美国是萃取-电积技能的发源地,不管在技能水平以及冶金界对这项技能的知道和接纳程度上都处于国际领先水平,因而开展最快。2000年美国湿法铜的产值已达55.7万t,占国际湿法铜产值的22%。南美因为铜矿产极为丰厚的智利近年大力开展铜湿法冶金,后发先至,在产值上已赶上北美。并且,出产规划大,技能上也有许多新开展。到2001年,全国际大中型浸取-萃取-电积厂共有55家,出产能力的状况见下表。其间最大的厂日处理浸出液40万m3,年产铜36.5万t。 表  1970~2001年浸取-萃取-电积铜厂出产能力年度出产能力年度出产能力1970 1975 1980 19851.1 10.9 25.5 35.61990 1995 200180.0 156.3 284.4我国的铜湿法冶金的研讨,包含实验室和扩展实验都起步不晚。可是,工业界一向未能真实知道到这项技能的价值,开展一向比较慢,第一家出产厂于1983年投产。尽管近年一些当地的小矿山接纳了湿法炼铜技能,但出产规划都很小,除德兴矿湿法提铜规划较大外,其他多为年产几百吨阴极铜的水平,尚无一家能列入前述55家的队伍。已投产和在建厂的出产能力近万吨。跟着可持续开展国策的推动,人们对充分利用各种资源的认识将逐步进步,我国铜湿法冶金的开展前景是非常宽广的。

湿法冶金(三)

2019-03-05 09:04:34

(2)离心萃取器  离心萃取器由于转速高、混合效果好,所以能大大缩短混合停留时间,又由于以离心力替代重力效果,加快两相的别离,其操作原理见图5。    这种萃取设备结构紧凑,单位容积通量大,所以特别适用于化学稳定性差(如抗菌素)、需求触摸时间短、产品保存时间短的系统,或易于乳化、别离困难等系统的萃取。缺陷是因其精细结构、造价和修理费用都比其他类型萃取器要高。    离心萃取器有波氏离心萃取器、阿尔法一拉瓦尔(Alfa-Laval)离心萃取器、奎德罗尼克(Quadronic)离心萃取器,还有韦氏、罗伯特路威斯特、SRL ANL等离心萃取器。很少在有色冶金中运用。    (3)混合弄清萃取箱  一般说,萃取塔占地面积小和体积密封好是它潜在的长处。相反,混合弄清萃取箱占地面积大,但因设备对地域无特殊要求,不管在城市或矿山都可缔造运用,所以现在大型混合弄清萃取箱大多建在矿山,并且是露天作业。    混合弄清萃取箱大多由两个相连的容器组成,即混合室和弄清室,两者构成一级。水相和有机相在混合室内,由搅拌器输人能量使它们充沛混合,待传质进程挨衡后,混合相进人大面积的弄清室进行两相别离。别离后的水相和有机相别离流人相邻级的混合室,完成逆流多级萃取进程。    混合弄清萃取箱见图6。 [next]     这种萃取箱的混合室和弄清室交织装备在同一个箱体内,用隔板离隔,毗连级间两相液流由箱内相应隔板的开孔连通,无管道衔接。搅拌器通常用桨叶,只起两相混合效果。液体的活动是靠各级两相的密度差发生的推动力完成,因而对萃取箱有必要确保必定的高度,不然难以完成液体自流,由于密度差发生的活动推力与液层深度成正比。当时为了削减设备的占地面积、添加单位容积流量等,箱式萃取器在有色冶金职业得到广泛运用。    (五)离子交流法    离子交流剂功用基中的阳离子或阴离子与溶液中的同性离子进行可逆交流的进程。    离子交流法在湿法冶金中常用于从水溶液提取有价金属或作为溶液净化的一种手法。离子交流树脂有固定阴离子的离子交流树脂,它交流的离子带正电荷,其交流进程称为阳离子交流;另一种树脂有固定阳离子的离子交流树脂,所交流的离子带有负电荷,其交流进程,称为阴离子交流。经过离子交流剂的吸附和解吸效果进行物质的别离或富集以及离子交流树脂再生。触及离子交流的主要参数有交流树脂分配系数、交流率。在工艺进程中,按处理的料液是否含有悬浮固体,分矿浆吸附法和清液吸附法。    交流的典型反响为:                              A++BReS-====B++AReS-    式中,BReS-为离子交流树脂的功用基,ReS-为固定在离子交流树脂或其他类型离子交流剂上的离子,B+为可交流的一价阳离子,A+为料液中的一价阳离子。    (1)交流  料液中的A+替代B+而为离子交流树脂所捕获的进程称为交流式吸附。在交流进程中当B+简直悉数被A+所替代后,即便再通人含A+的料液,A+也会原封不动地流出来,此刻,便以为离子交流处于平衡状况。    (2)淋洗  当往被A+所交流的离子交流树脂中通人某种含B+,而B+又能替代离子交流树脂中A+的溶液时,反响便向交流和逆方向进行,即流出含A+的溶液,而BReS-功用基团又再生,称这一操作为淋洗、再生或解吸。称所用的这种溶液为淋洗液或再生剂。    (3)反洗  是在淋洗之前洗去离子交流树脂中的杂质和松动离子交流树脂层。    (4)正洗  是在淋洗之后洗去离子交流树脂颗粒之间及表面上的再洗剂(淋洗液)。    离子交流的工艺按以下结构组成:[next]    离子交流模型见图7,以Na+和H+型阳离子树脂交流为例。

湿法冶金(二)

2019-01-08 09:52:35

3.萃取设备    高效率的萃取器对实现良好的萃取工艺具有重要意义,它不仅关系到萃取过程能否实现,而且极大地影响着萃取工厂的经济效益。目前主要萃取器有三种:箱式(又称混合一澄清器)、萃取塔和离心萃取器。    (1)萃取塔分无搅拌萃取塔和机械搅拌萃取塔两类。前者有喷雾塔、填料塔和孔板(筛板)塔三种,见示意图2。    后者又根据机械运动的形式可分为旋转搅拌塔和往复(或震动)板塔,在众多的旋转搅拌塔中,最为突出的有希贝尔(Scheibel)塔转盘塔和奥尔德舒一拉什顿(Oldshue-Rushton)多级混合塔。    萃取塔主要应用在石油化工、制药、废水处理以及铀的提取,在冶金上,特别是有色冶金上应用比较少,具体内容从略。其典型形式见图3。[next]     往复板萃取塔第一个被利用的是脉冲式接触,经改进后目则获得工业应用的是多孔型结构,具有大径孔、大孔隙度(约58%)和板型是小孔径、孔的有效面积少的待点。则者被应用在北美,后者则应用在东欧和前苏联。除此之外还有脉冲塔。    多孔型往复板塔示意图见图4。

喷射冶金

2019-01-08 09:52:35

为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷射冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。

火法冶金

2019-01-04 13:39:38

火法冶金就是在高温条件下(利用燃料燃烧或电能产生的热或某种化学反应所放出的热)将矿石或精矿经受一系列的物理化学变化过程,使其中的金属与脉石或其他杂质分离,而得到金属的冶金方法。简言之,所有在高温下进行的冶金过程都属于火法冶金。它包括焙烧(或烧结焙烧)、熔炼、吹炼、蒸镏与精镏、火法精炼、熔盐电解等过程。对于不同的金属,其火法冶金由不同的几个冶金过程组成。例如,铅在火法冶金是将铅精矿依次经过烧结焙烧、熔炼、火法精炼,然后得到金属铅;铜的火法冶金是将铜精矿依次经过焙烧、熔炼(或者直接从精矿到熔炼)、吹炼、火法精炼,然后得到金属铜。火法冶金是比较古老的冶金方法。重有色金属的提取多采用火法冶金。对某些金属的冶炼,往往火法冶金和湿法冶金联合使用。

冶金电炉

2019-01-04 11:57:16

生产交流单相单、双极串联两用电渣炉结构合理,配置优化,有独特的短网单、双极大电流转换开关 , 操作方便 , 维护简单 , 运行稳定可靠。可实现化渣、单级冶炼、双级冶炼。其结构形式有:1. 双臂交替单工位 ( 结晶器固定 2. 双臂交替单工位 ( 结晶器底台车移动 等。传动方式有: 1. 液压传动 ( 升降、旋转、电极夹持、底台车移动、开关油缸 。 2 机械传动 ( 球形丝杠升降、悬臂伸缩、悬臂旋转、手动夹紧 。控制系统: 液压为电液伺伏系统,机械为变频调速。规格有: 0.5t 、 1t 、 1.5t 、 3t 、 5t 、 10t 、 15t 、 20t 等。变压器类型: 无载有级调压、带载有级调压、带载无级调压、 T 型变压器等。变压器功率和调压级数需根据工艺要求、电渣坯截面直径尺寸商定。此类型电渣炉已在实际生产过程中产生较高的生产效率和良好的经济效益。

电冶金(一)

2019-03-05 09:04:34

电冶金是以电能为动力进行提取和处理金属的工艺进程。依据电能转化方法的不同分为电化冶金和电热冶金两类。电化冶金又称电解,是使直流电能经过电解池转化为化学能,将金属离子复原成金属的进程。依据电解液不同,电化冶金分为水溶液电解和熔盐电解;依据阳极不同又分为不溶阳极电解和可溶阳极电解。前者又称电解提取,后者又称电解精粹;电热冶金是运用电能转变为热能在电炉内进行提取或处理金属的进程,按电能转变为热能的办法即加热的办法不同,分为电弧熔炼、电阻熔炼、感应熔炼、电子束熔炼和等离子冶金等。    一、电化冶金    电化冶金是运用电极反响而进行的冶炼办法,如图1,对电解质水溶液或熔盐等离子导体通以直流电,电解便发作化学改变,在阳极(电流从电极向电解液活动的电极)上发作氧化反响(称为阳极反响)。                            M→M2++2e(金属溶解)    而在阴极(电流从电解液流向的电极)上则发作复原反响(即阴极反响):                    M2++2e→M(金属离子复原,分出该金属)     以粗金属做阳极,而阳极反响又是意图金属自身的溶解反响,这一进程称为电解精粹或可溶性阳极电解[如图1(a)];运用不溶性电极作阳极,对溶解于电解液中的金属离子进行复原、分化的进程,称为电解提取。依据电解液性质不同,对水溶液进行电解,称为水溶液电解;对熔盐电解液进行电解,称为熔盐电解。    电解时,金属分出量依据法拉第规律严厉断定,即在电极上每经过1F的电量(1F=96485C=26.8 A?h),则发作1克当量的物质改变。因此,电解分出的金属理论量为:[next]    式中,M为金属的摩尔质量;z为金属荷电数;F为法拉第电量(见上);I为电流,A;t为时刻,h。(M/zF)代表物质的电化当量,是物质的固有常数,如Al为0.0932mg/C,Cu为0.328mg/C,Zn为0.339mg/C。    以下分电解精粹、水溶液电解、熔盐电解三部分进行叙说。    (一)电解精粹    有两种电解精粹办法,一种是水溶液中电解精粹,一种是熔盐电解精粹。原则上两种办法均适用于一切金属,但实践上前者首要用于电极电位较正的金属,如铜、镍、钴、金、银等,电解液多为酸液;后者首要用于电极电位较负的金属,如铝、镁、钛、铍、锂、钽、铌等。电解质一般用氯化物、氟化物或氯氟化物系统。水溶液电解精粹时阴极上分出的纯金属一般为固态。熔盐电解精粹时阴极分出的纯金属依电解温度和铍提纯金属的熔点,可所以液态(如铝)或固态(如钛、钽、铌等)。    电解精粹首要是运用阳极中各组分在阳极氧化和阴极复原分出时的难易或分出速度的差异,以及使杂质在电解液中构成难溶盐等而到达提纯金属的,而阳极各组分的氧化和分出的难易程度和金属的标准电极电位(电化序)、电解极化和电极反响速度等有关。    1.标准电极电位Eo    金属的标准电极电位是一个相对值,它是以标准氢电极电位它EoH=±0.000(H+活度为1mol/L,氢分压为101325.0Pa,任何温度)为基准的相对值,如下表。标准电极电位(电位序)金属离子标准电极电位/V金属离子标准电极电位/VNaNa+-2.17PbPb2+-0.13MgMg2+-2.36HH+±0.000AlAl3+-1.66SbSbO++0.21①MnMn2+-1.18AsHAsO2+0.25①ZnZn2+-0.76BiBiO++0.32①CrCr3+-0.74CuCu2+0.34FeFe2+-0.44HgHg22+0.79CdCd2+-0.4AgAg+0.8CoCo2+-0.28PtPt2+1.2NiNi2+-0.25AuAu3+1.5SnSn2+-0.14   ①Ph=0时的值。     能够看出,元素的标准电极电位值Eo向正方向偏移越大越安稳(电位较正的元素),而向负的方向偏移越大越不安稳(电位较负的元素)。在阳极溶解时,将较正的元素别离出去,这样运用两段别离来进步阴极金属的纯度,则是电解精粹的根底。[next]    2.电解极化与电极反响速度    在电解精粹进程中,因为仅仅被提纯金属从阳极溶解而在阴极分出,故电化学进程自身不用耗电能。但存在需求耗费电能的超电位。超电位是电极极化程度的一种测量。按发作的原因,超电位首要分为浓差电位(浓差极化)和活化超电位(活化极化)。此外还有电阻超电位(电阻极化)和钝化超电位(阴极钝化)。浓差极化是由参与电极反响的物质浓度改变而引起的极化,一般选用溶液拌和,削减涣散层厚度消除极化;活化极化是由电极反响自身的反响阻力而发作的极化。影响活化极化最重要的要素是电流密度和电极材料,其对电解的影响有利有弊,需具体分析;电阻极化是电极表面上生成电阻大的薄膜或液层引起的极化现象,阳极钝化是在电极表面邻近的离子浓度到达饱满,呈现固体盐分出而发作的机械钝化,可选用调整阳极成分、叠加反向电流、下降电流密度等办法战胜。    3.杂质的别离    阳极粗金属所含杂质是运用各元素所特有的化学性质进行别离。首要比欲提纯金属电位更正的杂质,电解时不致溶出,残留在阳极表面上,或互不结合,成为细粉而沉入电解槽底部,成为阳极泥;比提纯金属电位更负的杂质虽发作电化学溶解以离子方法进入电解质,但因为挑选了不使之在阴极上分出的电解条件,一切这些杂质便在电解液中积存,这是运用两段别离的办法来进步意图物金属的纯度。    (二)电解精粹工艺    1.阳极    精粹所用阳极为火法冶炼出产的粗金属,其间金属和非金属杂质愈少愈好。    2.阴极    电解精粹的阴极是产品,其纯度受以下要素影响:①阳极极化增加,正电位成分的杂质也会增加,并在阴极上分出;②阴极极化增加到负电位的杂质成分析出的电位时,该杂质也会在阴极上分出;③负电位成分的杂质和意图金属生成金属间化合物时,会一起在阴极上分出;④阴极板不滑润或阳极泥处于悬浮状况。    3.电解液    要求:①意图金属离子的溶解度大;②导电率高;③阴离子化学安稳性好;④价廉;⑤对杂质溶解度小。    4.增加剂    增加剂参与在于改进电解液的电化功能和进步阴极堆积质量,使电解进程处于更佳状况,首要增加剂为动植物胶、表面活性物质、起泡剂、盐类等。增加剂不参与电解进程的电极反响。    5.电解槽    电解槽有无隔阂槽和有隔阂槽两种。槽内同极选用并联(并联电解)或串联(串联电解),依据精粹目标,要求选用相应的质料和形状、装备规划。    6.电源设备    电解精粹需用低电压、大电流的直流电源,既要容量大,又易进行大范围的电压调整。[next]    7.电流密度    即单位电极面积上经过的电流强度。一般指阴极电流密度。电流密度越高,出产才干(单位时刻的出产量)也越高。    8.槽电压    即电解时施加在电解槽上的电压,或槽内相邻阴、阳南北极间的电压。槽电压与电极反响类型、电流密度、电解液成分和温度、极距离、触摸点数目和清洁度等有关。进步电流密度、下降电解液温度、增加电极距离,都会使槽压升高,导致电解电耗增大。    9.电流功率    指电解进程中实践分出的金属量与理论分出量之比的百分数。电流功率总是小于1(100%)。其巨细与电解进程的技能条件下对电解作业的办理、操作等有关。电流功率直接影响单位电解产品的电能耗费。首要影响要素有:①阳极和阴极间短路发作的漏电(一般由阴极表面上面发作的树枝状和瘤状结晶、阴极曲折等引起);②经过电解液向大地漏电;③电解时副反响所发作的电流耗费(如氢离子放电等)。因此,确保电解槽对地杰出绝缘和及时消除阴、阳极短路现象,是进步电流功率的重要办法。    10.电能耗费量    指电解时阴极分出的单位质量金属所耗费掉的电量,一般指产出It金属所耗费的直流电量。电解耗费与槽电压成正比,与电流功率成反比,因此凡有利于下降槽电压和进步电流功率的要素,均能起到下降电能耗费的效果。    近些年来,电解精粹已开展成为制取超高纯金属的重要办法之一。    (三)水溶液电解    水溶液电解是以金属的浸出液作为电解液进行电解复原,使意图金属在阴极表面上分出的冶金进程。简称电解提取或电解堆积,又称不溶阳极电解。本办法的长处是:不经过粗金属的中间阶段,一次得到高纯度的金属;随同电解的进行,电解液能够再生,并循环用于浸出。其缺陷是:因为运用不溶阳极,槽电压有必要高于电解液的分化电压;一般电流功率较低,耗电量较大等。    水溶液电解是一种氧化一复原进程。系统接通直流电后,在阴极邻近的离子或分子因为承受电子而被复原,而在阳极处离子或分子发作电子而氧化。总的电解池反响是两个电极半反响的总和。当电解进行时,离子不断向南北极搬迁,正离子(阳离子)向阴极搬迁,负离子(阴离子)向阳极搬迁。在这一进程中,重要的是分化电压(金属离子的复原电位)等。[next]    1.水溶液电解根底    (1)分化电压  电解得以进行所有必要的最小电压称为分化电压,电解质的分化电压是由其电解产品组成的原电池电动势(理论分化电压)、阴阳二电极的极化过电位和电路压降三部分组成。电解质发作电解时,两电极上的电解产品构成原电池,其电动势的方向与电解的方向相反,外加电压首要得战胜这种电动势。由此反向电动势的巨细,等于两电极的平衡电位差,此即为电解质的理论分化电压。但在理论分化电压下,电极上电解进程和原电池进程处于动平衡状况,此刻还不会呈现微观的电解产品。当电压进步到超越理论分化电压必定值时,即电极到达必定极化时,才可观察到电解产品不断构成,电解进程才宣告开端,此刻的极化电极的电位与其平衡电位之差,就是极化超电位。极化超电位是外加电压用来推进电极反响向电解方向单向进行的部分。电阻回路中遍地电阻会构成电压的丢失,由此引起的电路压降等于电流与各电阻乘积之总和,需由外加电压补偿。电解的实践分化电压一般由试验测定。    (2)电解提取与电解精粹的差异  电解精粹是用的可溶性阳极(一般为火法所得的粗金属),其理论分化电压由阳极粗金属和阴极纯金属的活度比决议。但二者活度实践上相差无几,因此理论分化电压挨近零值,故以很小的电压,便可使电流经过而进行电解。但在电解提取时,不只槽电压显着进步,并且副反响也较多,因此电流功率下降,电能耗约为电解精粹的10倍。此外,电解精粹时因为阳极溶解,金属离子不断得到弥补,故电解液组成改变很小,而在电解提取时,组成则不断改变,因此电解提取所得金属要比电解精粹所得金属纯度低。阳极表面因生成化合物层而使其反响才干下降,呈现了电解钝化现象。关于电解精粹,有必要采纳参与活性阴离子等办法消除钝化,促进阳极活化。电解提取时不溶阳极首要发作阴离子放电,视电解质不同,阳极上首要分出氧气或,此刻需运用阳极钝化现象来延伸不溶阳极的寿数和确保阴极金属堆积的质量,或阻挠被维护金属被腐蚀。    2.电解提取工艺    (1)电极  电解提取时阳极只起导电效果,大都状况下成为氧的发作极,因此作为阳极材料,最好是不受电解液腐蚀,氧的超电压小、坚固耐用。出产实践顶用得不溶阳极多为Pb-Ag、Pb-Sb合金等。阴极多用意图金属相同的纯金作种板(如铜),有的运用不同金属,如锌电解用铅板,钻电解用不锈钢。    (2)电解液  和电解精粹相同,电解液选用意图金属的可溶性盐的水溶液,酸根要尽或许安稳,报价低廉。大都金属运用硫酸电解液,电解液中还参与各种增加剂,以增强金属堆积物的均匀性,避免在电解液表面构成泡沫以致发作烟雾。    (3)电流密度  对一些负电位的金属(如锌、锰等)的电解,需求高电流密度,一般电流密度增加时,杂质影响也变得显着。故有必要细心净化电解液。[next]    (4)电流功率、耗电量、电能功率  电解提取的电流功率首要影响要素为:①电解液中意图金属的浓度和H+的浓度;②电流密度(一般电流密度越高,电流功率越高);③电解液的温度;④电解液中存在的杂质种类及其数量;⑤阴极表面状况等。与电解精粹比较,槽电压较高,简单引起漏电,导致电流功率下降,耗电量也增大。电能功率是为分出必定量的金属理论上所有必要的电能量与实践耗费的电能量之比。为进步电能功率,除进步电流功率外,不要求下降槽电压。    有关水溶液电解提取的实践状况,见第四章铜、锌等的电冶金提取。    (四)熔盐电解    熔盐电解是以熔融盐类为电解质进行金属提取或金属提纯的电化学冶金进程。关于那些电位比氢负得多、氢的超电压也小、而不能从水溶液中电解分出的金属和用氢或碳难以复原的金属,常用熔盐电解法制取。当今已有30多种金属是用该法出产,其间包含悉数碱金属和铝,大部分镁以及各种稀有金属。按所用电解质,一般分为氟化物熔盐电解、氯化物熔盐电解和氟氯化物熔盐电解。    1.熔盐电解根底    水溶液电解和熔盐电解两种电解办法原理相同,但又有底子差异:在水溶液中,有作为溶剂的水分子存在而涣散在极性水分子中的离子,在电场效果下移动并导电;熔盐电解则是由因熔化而增大了移动性的离子经过空穴,依托热轰动而移动并导电。关于碱金属和碱土金属这类负电位金属盐的水溶液,其分化电压比水分化电压大,电解时只使更简单电解的水分出和氧,金属并不会分出,而熔盐电解因不存在水那样的溶剂,所以任何一种负电位金属都能分出。熔盐比水溶液具有更好的导电性,熔盐电解的电流密度能够比水溶液电解大100倍。熔盐电解对电解质有特殊要求:较好的导电性,较低的挥发性,对电解质料有较高的溶解度,对电解产出的金属有较低的溶解才干,恰当的熔点、粘度、密度和表面性质,分化电压应比意图金属熔盐的分化电压高,电解时自身并不分化。为了到达这些要求,常常运用由几种盐类组成的混合物,它们一般有比纯组分更低的熔点,一般需经过试验挑选适宜的混合盐组成,如电解铝用Na2A1O6-A12O3混合熔盐,电解镁用NaCl-KCI-MgCl2混合熔盐。    2.熔盐电解中的特异现象    (1)金属雾  在熔盐电解中,阴极上分出的金属大都以熔融状况存在,当高于某一温度时,能看到熔融金属呈现一种特有的色彩进入熔盐中。这种状况恰如在熔融金属表面上有雾笼罩,称为金属雾。金属雾的生成会使分出金属丢失,电流功率下降,一般以增加恰当增加剂予以战胜。[next]    (2)阳极效应  当选用不溶阳极进行熔盐电解时,阳极会成为气体发作极。正常状况发作的气体能够排出,但当电流密度进步到必定值时,阳极便为发作的气体膜所掩盖,呈现出电极与电解质之间的触摸被堵截的状况,这时电流难以经过,槽电压急剧上升,阳极和电解质之间发作火花放电,并有小电流经过,这种现象称为阳极效应。其发作的难易程度与熔盐组成、电解温度、阳极质料及其几许形状等要素有关,阳极效应的机理至今没有说明。    (3)分化电压  和水溶液电解质相同,当熔盐电解质与金属触摸时,两者之间将发作必定的电势差,即电极电势。当同一熔盐中刺进两个电极,并运用外加电压经过直流电,当电压到达必定数值时,熔盐中的某些组分将分化,平衡状况下化合物开端分化的电压称为分化电压,例如AlCl3在277℃时的分化电压为1.90 V, AIF3在1000℃时的分化电压为2.25 V。    3.工艺    将熔盐加热熔化,便变成黏度小、导电率高、离子简单活动的液体。当选用恰当的电极,并施加电压时,因为离子的活动而发作电流,在南北极上引起电化学反响,在阴极上分出金属。熔盐电解运用的电解槽方法多样,按电解相对方位区别有电极水平装备电解槽(如铅电解槽)和电极笔直装备电解槽(如镁电解槽);按电极的极性效果分为单极性和双极性电解槽,按阴阳极之间有无隔板分为有隔板和无隔板电解槽。电解槽材料要有好的绝缘和保温功能,在高温下有满足的强度和耐蚀性。依据出产金属不同,工业电解所用电解槽的阴极用钢、钼、镍或被出产的同种金属或合金制作,有的直接运用电解槽坩埚自身作为阴极。熔盐电解槽的阳极一般为碳素材料,大都状况下为石墨。熔盐电解出产中操控的首要技能条件有电解温度、电流密度、间极距、电解质组成、被电解物质的浓度等。熔盐电解因为在高温下进行,金属溶解丢失严峻,热丢失也较大,故电流功率及电能功率比水溶液电解低。有关状况,请见第五章铝电解和镁电解。    二、电热冶金    和一般火法冶金比较,电热冶金具有加热速度快、调温精确、温度高(可到2000℃),能够在各种气氛、各种压力或真空中作业,以及金属烧损少等长处,成为冶炼普通钢,铁合金,镍、铜、锌、锡等重有色金属,钨、钼、钽、铌、钛、锆等稀有高熔点金属以及某些其他稀有金属、半导体材料等的一种首要办法。但电热冶金耗费电能较多,只要在电源足够的条件下才干发挥优势。    (一)电弧熔炼[next]    电弧熔炼是运用电能在电极与电极或电极与被熔炼物之间发作电弧来熔炼金属的冶金进程。电弧能够用交流电或直流电发作,当运用交流电时,南北极之间会呈现瞬间的零电压。在真空熔炼的状况下,因为南北极之间气体密度很小,简单导致电弧平息,所以真空电弧熔炼一般都选用直流电源。工业用电弧炉有直接加热式三相电弧炉、直接加热式真空自耗电弧炉和直接加热式电弧炉三种(见图2)。直接加热式电弧熔炼的电弧发作在电极棒和被熔炼的炉料之间,炉料受电弧直接加热,首要用于炼合金钢;直接加热式真空电弧熔炼炉首要用于熔炼钛、锆、钨、钼、钽、铌等生动和高熔点金属以及它们的合金。这种电炉的坩埚呈半球形,是用被熔炼的材料制成,外面通水冷却,选用直流电源,设一根或几根电极。按熔炼需求,能够用自耗的或非耗的电极。自耗电极用被熔材料制成,非自耗电极一般用钨等高熔点材料制成;直接加热式电弧熔炼的电弧发作在两根石墨电极之间,炉料被电弧直接加热,首要用于熔炼铜和铜合金。因为噪声大、熔炼金属质量差等原因,已越来越少选用。电弧熔炼的首要技能经济指标有熔炼时刻、单位时刻熔炼固体炉料的数量(出产才干)、单位固体炉料电耗、耐火材料和电极耗费等。    (二)电阻炉熔炼[next]    电阻熔炼是在电阻炉内运用电流经过导体电阻所发作的热量来熔炼金属的冶金进程。按电热发作的方法,电阻炉分为直接加热和直接加热两种。在直接加热电阻炉中,电炉直接经过物料,因电热物料自身,所以物料加热很快,且能够加热到很高温度,例如碳素化材料石墨化电炉,能将物料加热到2500℃,直接加热电阻炉可做成真空或通维护气体的熔炼炉。为使物料加热均匀,要求物料各部位的导电截面和导电率共同。但大部分电阻炉是直接加热的,其间装有专门的电热体(见图3),最常用的电热体是铁铬铝材料、碳化硅棒和二硅化钼棒。依据熔炼需求,炉内气氛可所以真空或维护性气氛。关于种类单一、批量大的物料,宜选用接连式加热炉加热,炉温低于700℃时,大都还装有鼓风机,以强化炉内传热,确保均匀加热。

火法冶金(二)

2019-03-05 09:04:34

三、熔炼    熔炼是指炉料在高温(1300-1600K)炉内发作必定的物理、化学改动,产出粗金属或金属富集物和炉渣的冶金进程。炉料除精矿、焙砂、烧结矿等外,有时还需增加为使炉料易于熔融的熔剂,以及为进行某种反响而加人复原剂。此外,为供给必要的温度,往往需加人燃料焚烧,并送人空气或富氧空气。粗金属或金属富集物因为与熔融炉渣互溶度很小和密度的差异而分层得以别离。富集物有锍、黄渣等,它们需求进一步吹炼或用其他办法处理才干得到金属。    本质上能够分为氧化熔炼和复原熔炼。此外还有其他的熔炼办法,如复原硫化熔炼、蒸腾熔炼、沉积和反响熔炼,因为种种原因已不多用。    (一)氧化熔炼    是以氧化反响为主的熔炼进程,如硫化铜、镍矿藏质料的造锍熔炼、锍的吹炼、硫化锑精矿鼓风炉熔炼等。熔炼进程中发作的首要反响是:                    MeS(s,l)+O2(g)====Me(l)+SO2(g)                  MeS(s,l)+1.5O2(g)====MeO(s,l,g)+SO2(g)                [Me′S](l)+(MeO)(l)====[MeS](l)+[Me′O](l)    式中的Me, Me'代表金属,[]代表主金属熔体,()代表熔渣。    氧化熔炼是一个富集和别离进程,如铜、镍硫化精矿,在熔炼时将Cu、Ni富集到锍中,一同被氧化后与杂质金属(如Fe)与脉石一道造渣除掉而别离。熔炼按所用设备分为鼓风炉熔炼、反射炉熔炼、电炉熔炼;按工艺特征则分为闪速熔炼、熔池熔炼、旋涡熔炼、富氧熔炼、热风熔炼和自热熔炼等。    1.闪速熔炼    这是一种将硫化精矿(铜、镍精矿)、熔剂与氧气或富氧空气或预热空气一同喷人赤热的反响塔内,使炉料在飘悬状况下敏捷氧化和熔化的熔炼办法。该熔炼进程的氧化反响和传统工艺没有本质上差异,仅仅经过熔炼设备和工艺的改进来改进硫化精矿氧化的动力学条件,抵达强化熔炼的意图。闪速熔炼的长处是:①细颗粒物料悬浮于紊流中,气一固一液三相的传质传热条件好,化学反响速度快;②喷人的细颗粒干精矿具有大的表面积,硫化物的氧化反响速度随触摸面积增大而明显进步;③反响速度快,单位时间内放出热量多,使燃料耗费下降,然后削减因燃料焚烧带人的废气量,成果进步了烟气中的SO2含量,为烟气综合运用了发明条件。    属闪速熔炼领域的有:奥托昆普(Outokumpu )型、世界镍公司因科(Inco)型、基夫赛特(Kivcet)法和氧气喷撒熔炼(OSS)法等。    2.熔池熔炼    这是一种将炉料直接加人鼓风翻腾的熔池中敏捷完结气、液、固相间首要反响的强化熔炼办法。办法适用于有色金属质料熔化、硫化、氧化、复原、造锍和烟化等冶金进程。[next]    为追根问源,该办法能够追溯至19世纪末和20世纪初转炉吹炼铜锍和鼓风炉渣的烟化炉。但它们只局根于处理反射炉、电炉或鼓风炉料所得的液态中间产品(铜锍和炉渣)。用该办法直接处理硫化精矿仍是20世纪70年代往后的事。属该办法领域的现代熔池熔炼新办法有:诺兰达法(1973)、三菱法(1974)、特尼思特法(1977)、白银炼铜法(1980)、氧气底吹炼铅法( 1981)、互纽科夫熔炼法(1984)、顶吹旋转转炉法(TBRC)、艾萨熔炼法炼铅和转炉直接炼铜法等。这些办法首要用于铜(镍)精矿造锍熔炼、铜(镍)锍吹炼、硫化精矿直接熔炼(包含接连炼铜和直接炼铅)以及含铅锌氧化物料和炉渣的复原和烟化。    按反响气体鼓人熔体的办法,可分为侧吹、顶吹和底吹三种类型的熔池熔炼办法。    (1)侧吹  从设于侧墙和埋入熔池的风口直接将富氧空气鼓人铜锍一炉渣熔体内,未经枯燥的精矿与熔剂加到受鼓风激烈拌和的熔池表面,然后浸没于熔体之中,完结氧化和熔化反响。归于此类的有诺兰达法、瓦纽科夫熔炼法、特尼恩特法和白银炼铜法等炼铜办法。    (2)顶吹  从炉顶往炉内插人喷,喷出口距熔池液面必定高度或浸没于熔体之中。依据冶金反响的需求,喷人氧化性或复原性气体,在湍动的熔池内完结氧化或复原反响。归于此类的有三菱法、顶吹旋转转炉法和艾萨熔炼法等炼铜、炼镍和炼铅办法。    (3)底吹  氧气底吹炼铅法选用卧式长形圆筒反响器,在用隔墙分隔的氧化段和复原段都设有数个底吹喷嘴。在氧化段喷吹氧气,使硫化铅精矿氧化成金属铅或高铅(锌)炉渣;生复原段喷吹氧气和复原剂(煤粉或天然气),贫化炉渣,收回铅锌。    3.旋涡熔炼    这是一种细粒炉料和粉状燃料随高速气流沿旋涡室的切线方向进人,并在旋涡室内的旋流中敏捷完结首要冶金反响的熔炼办法。炉料成分和气相间的反响速度大,因而是一种能强化冶金进程的熔炼办法。它的生产能力比惯例的鼓风炉熔炼大得多。    工艺进程为:处理物料随一次风(20-40 m3/s)喷人旋涡室,二次风(100m3/s)沿旋涡室的切线方向喷人而发作高速旋转流,细颗粒物料敏捷完结焙烧和熔炼反响;粗颗粒由离心力效果加快抵达炉壁,并构成熔融状黏膜,缓慢向下流人沉积池,黏膜的缓慢活动不只延伸炉料停留时间,有利于反响完结,并且也起到维护炉壁的效果。    4.热风熔炼    这是一种将预热空气或预热富氧空气鼓人冶金炉以强化冶金进程的熔炼办法。在有色金属冶炼进程中,大多都依赖于燃料焚烧和硫化物氧化反响供给热量,以保持必定的高温,使炉料抵达熔融状况,完结预订的氧化或复原反响,完成金属或金属富集物与脉石的别离。因为,首要是热风显热可代替部分燃料焚烧所发作的热量,使燃料耗费下降,并使助燃的风量削减,也下降了单位金属的烟气量和烟气带走的热丢失,进步热运用率和下降燃料的耗费。其次是热风使燃料和反响物的活性进步,有利于进步燃料焚烧温度和彻底程度,也有利于进步硫化物氧化和氧化物复原的反响速度和复原程度,起强化冶炼进程和进步金属收回率的效果。再次是热风能使熔炼炉的高温会集,加快了炉料熔化速度,进步炉渣的过热程度。[next]    预热鼓风用于高炉炼铁已有一个多世纪的前史。但对有色金属冶炼运用热风还仅仅是20世纪中叶的事,现在已广泛地运用于铜、镍闪速熔炼,鼓风炉炼锌和铅。    5.富氧熔炼    这是一种运用工业氧气部分或悉数代替空气以强化冶金进程的熔炼办法。在20世纪中因为高效价廉的制氧办法的开发,氧气炼钢和富氧炼铁得到广泛运用。与此一同,在有色金属熔炼中也开端用富氧开发新的熔炼办法和改造传统的熔炼办法。    有色金属冶炼进程发作硫化矿的氧化反响是:                     2MeS+3O2→2MeO+2SO2              (氧化熔炼)                      [FeS]+(MeO)→[MeS]+(FeO)     (造锍熔炼)                     [MeS]+O2→[Me]+SO2                (直接熔炼)                     [MeS]+2(MeO)→3[Me]+SO2          (锍的吹炼)    但是,从硫化矿熔炼取得金属的进程从头到尾是氧化进程,当熔炼鼓风中氧浓度愈大,炉内氧的分压愈高,氧的分散速度也愈快,硫化矿的氧化速度也随之增加。    氧化矿或氧化物料的复原熔炼大多运用固体碳质燃料作发热剂和复原剂,其首要反响是:                   C+O2→CO2                 (碳的彻底焚烧)                   C+CO2→2CO                (碳的氧化反响)                   MeO+CO→Me十CO2           (氧化物复原反响)    依据燃料焚烧理论,最高温度随鼓风中氧含量的增加而升高,焚烧速度加快,气相中的分压和炉内温度升高,然后加快了复原反响和炉料的熔化。    1952年加拿大世界镍公司(Inco)首要选用工业氧气(含氧95%)闪速熔炼铜精矿,熔炼进程不需再增加任何燃料,烟气SO2浓度可达80%,这是富氧熔炼的最早一例。随后奥托昆普(Outakumpu )型闪速炉以及随后开发的熔池熔炼办法,为诺兰达法、三菱法、白银炼铜法、氧气底吹炼铅法相继都运用富氧进行熔炼。    依据经济分析,只需(单位质量)油的报价/(单位质量)氧气报价≥4时,运用氧气代替油在经济上就是可行的。    6.硫化精矿自热熔炼    这是一种首要由精矿中硫化物的氧化及氧化亚铁造渣等反响热来保持高温熔炼进程的熔炼办法。因不用补加或补加很少的燃料故称自热熔炼。这儿所说的自热熔炼并非早年处理含硫不低于36%的黄铁矿型含铜块矿,熔炼自需补加2%--4%焦炭即可,而是含有新的含义。因为制氧技能和喷发冶金的开展及动力紧缺,充分运用精矿本身氧化反响热、造渣反响热的热量和富氧进行喷发熔炼,经强化熔炼而削减热丢失,完成自热熔炼。[next]    实践证明,闪速熔炼炼铜,选用40%的富氧和473K的热风进行熔炼,产出65%的铜锍,便可实施自热熔炼。自热熔炼不只能够下降熔炼进程的能耗,且削减烟气量,进步烟气SO2浓度,利于削减对环境的污染。自热熔炼应是往后的首要开展方向。    (二)复原熔炼    这是一种金属氧化物料在高温熔炼炉复原气氛下被复原成熔体金属的熔炼办法。    复原熔炼选用碳质复原剂,如煤、焦炭。在高温条件碳质复原剂与金属氧化物发作的首要反响有:                                   MeO+C====Me十CO                                  MeO+CO====Me+CO2                                    CO2+C====2CO    因为MeO和C的反响为固相触摸,受触摸面的约束,反响不可能很好进行,CO气体复原剂对金属氧化物的复原起首要效果。为此有必要加过量复原剂,以确保MeO和CO反响发作的CO2在高温下被过剩碳复原为CO。这样循环着不断地为氧化物复原供给满足的气体复原剂。    冶炼物猜中除主金属氧化物外往往还含有多种非有必要的金属氧化物,在复原熔炼进程中也复原成金属,并且熔于主金属中,所以复原熔炼得到的金属是含有多种杂质的粗金属。如鼓风炉熔炼铅、反射炉熔炼锡、铋和锑等。为得到纯金属还需进一步精粹。    除了金属氧化物外,复原熔炼正常与否与高铁氧化物的复原和造渣密切相关。物猜中的高价铁氧化物被复原成贱价铁氧化物(FeO),然后与物猜中的SiO2、CaO等组分反响造渣。复原条件有必要操控妥当,不然生成Fe3O4或Fe都将影响复原熔炼进程的进行。因而操控好高价铁的复原反响是断定技能条件的首要因素。    以上技能条件除依据其氧化标准生成自由能改动来判别其复原次第及程度外,也常用反响MeO+CO====CO2+Me的平衡常数logKp=PCO2:PCO来进行比较断定。    四、精粹    精粹是粗金属去除杂质的提纯进程。关于高熔点金属,精粹还具有细密化效果。有化学精粹和物理精粹两大类。    (一)化学精粹    为抵达高度提纯意图,往往需求化学精粹和物理精粹,运用杂质和主金属某些化学性质的不同完成其别离。    1.氧化精粹    运用氧化剂将粗金属中的杂质氧化造渣或氧化蒸腾除掉的精粹办法,精粹效果及除杂极限不只与主金属和杂质元素的氧化物标准生成自由能改动(△Go)有关,并且还取决于杂质和氧化物的活度。[next]    2.硫化精粹    加人硫或硫化物以除掉粗金属中杂质的火法精粹办法。能否适用此法取决于主金属和杂质金属对硫的亲和力。当金属熔体加硫之后,因为主金属的浓度(活度)比杂质金属大得多,所以首要被硫化生成主金属硫化物MeS,然后才发作以下除杂反响:                                  MeS+Me′====Me′S+Me    该反响能否进行决定于硫化物标准生成自由能改动△Go。    反响必要条件是Ps2(Me′S) > Ps2(MeS),即主金属硫化物在给定的条件下的离解压大于杂质硫化物的离解压,才干构成杂质硫化物。假如所构成的各种杂质硫化物在熔体中的溶解度小,密度也比主金属的小,它们便会浮到熔体表面而被除掉。粗铅、粗锡和粗锑加硫除铜、铁是硫化精粹的典型比如。    3.氯化精粹    通人或加人氯化物使杂质构成氯化物而与主金属别离的火法精粹办法。该办法是根据氯对杂质的亲和力大于主金属,并生成的氯化物不溶或少溶于主金属为前提条件的。    氯化精粹在粗铅除锌,粗铝除钠、钙、氢,粗铋除锌,粗锡除铅等方面都有广泛运用。    现举例说明。粗铅氯化精粹时是往铅液中通人,使锌构成ZnCl2进人浮渣而与铅别离。此刻铅也部分被氯化,但又被锌按下式置换:                                PbCl2+Zn====ZnCl2+Pb    因而氯化精粹铅时,铅的丢失很少。铅液中其他杂质,如砷、锑、锡也构成氯化物蒸腾而与铅别离。    4.碱性精粹    向粗金属熔体加人碱,使杂质氧化与碱结组成渣而被除掉的火法精粹办法。办法的本质是在精粹进程顶用氧或其他氧化剂(如NaNO3)使杂质氧化,然后与加人的碱金属或碱土金属化合物溶剂反响,生成更为安稳的盐(渣)加快反响的进行,并使反响进行愈加彻底。碱性精粹用于粗铜除镍,粗铅除砷、锑、锡,粗锑除砷等。    (二)物理精粹    是以物理改动为主,运用它们的物理性质不同脱除杂质的办法。如精馏精粹、真空精粹、熔析精粹等。    1.精馏精粹    运用物质沸点的不同,替换进行屡次蒸腾和冷凝除掉杂质的火法精粹办法。精馏精粹包含蒸馏和分凝回流两个进程。[next]    精馏通常在精馏塔中进行,气液两相经过逆流触摸,进行相际传热传质。液相中的易蒸腾组分进人气相,所以在塔顶冷凝得到简直纯的易蒸腾组分,塔底得到简直纯的难蒸腾组分。塔顶一部分分凝液作为回流液从塔顶回来精馏塔,塔顶回流入塔的液体量和塔顶产品量之比称之为回流比,其巨细影响精馏操作的别离效果和能耗。    精馏精粹适用于彼此溶解或部分溶解的金属液体,不适用于两种具恒沸点的金属熔体。在有色金属冶金中,精馏成功地用于粗锌的精粹之一。    2.真空精粹    在低于或远低于常压下脱除粗金属中杂质的火法精粹办法。真空精粹除能防止金属与空气中氧氮反响和防止气体杂质的污染外,更重要的是对许多精粹进程(特别是脱气)还能发明有利于金属和杂质别离的热力学和动力学条件。真空精粹首要包含真空蒸馏(提高)和真空脱气。    真空蒸馏(提高)是在真空条件下运用各种物质在同一温度下蒸气压和蒸腾速度不同,操控恰当的温度使某种物质选择性蒸腾和冷凝来取得纯物质的办法。这种办法首要用来提纯某些沸点较低的金属,如、锌、硒、碲、钙等。    真空脱气即在真空条件下脱除气体杂质,包含经过化学反响而使某些杂质以气体形状的脱除。真空脱气进程的效果首要是下降气体杂质在金属中的溶解度。    3.熔析精粹    运用杂质或其化合物在主金属中的溶解度改动的性质,经过改动精粹温度将其脱除的火法精粹办法,熔析精粹运用了熔化一结晶相变规则,即运用均匀二元系或多元系液体,在相变温度下开端凝结时,会变成两个或几个组成不同的平衡共存相,杂质将富集在其间的某些固相或液相中,然后抵达金属提纯的意图。如粗铅除铜,从Cu-Pb二元系状况图得知,共晶温度599℃,分出含铜的理论值为铜0.06%;一般操控温度为613℃,铅含铜要大于0.06%,但尚有砷、锑存在时,则它们与铜生成不溶于铅的化合物—固溶体,可使铅中铜降至理论值以下0.02%-0.03%。

湿法冶金法

2019-01-04 17:20:18

湿法冶金就是在低温下(一般低于100℃)用适当的溶剂来处理矿石、精矿或半成品,使其中要提取的金属溶解进入溶液,从而与不溶解的脉石或其他杂质分离,并随后从溶液中提取我们所需的金属的方法。它一般包括浸出、过滤、净化(包括液固分离)及提取金属4个过程。湿法冶金多用于处理低品位矿石。它在稀有金属冶金中占有很重要的地位,大多数稀有金属的提取都需要经过湿法冶金的处理。        在重有色金属冶金中,目前铜的生产约15%~20%,用湿法生产,锌的生产约40%用湿法生产。其金属金和银大部分也用湿法冶金提取。湿法冶金与火法冶金比较有很多优点,例如金属回收率高,原料综合利用可能性大,可以直接处理难选或难熔的贫矿,燃耗低,生产过程易于控制,劳动条件比较好,与火法冶金相比较减轻了废气对环境的污染。但其设备与工艺均比火法冶金复杂。

材料冶金进展

2019-01-04 09:45:26

冶金是指从矿石中提取金属或金属化合物,用各种加工方法将金属制成具有一定性能的金属材料的过程和工艺。冶金的技术主要包括火法冶金、湿法冶金以及电冶金。 火法冶金是指矿石或精矿中的部分或全部矿物在高温下经过一系列物理化学变化,生成另一种形态的化合物或单质,分别富集在气体、液体或固体产物中,达到所要提取的金属与脉石及其它杂质分离的目的。湿法冶金是使要提取的金属成某种离子(阳离子或络阴离子)形态进入溶液,从溶液中除去这些杂质后通过置换、还原、电积等方法从净化液中将金属提取出来的过程。电冶金主要有电热冶金和电化学冶金两个方面,电热冶金是指电能转变为热能进行冶炼的方法,电化学冶金主要包括电解和电积:溶液电解使金属从含金属盐类的溶液或熔体中析出。可列入湿法冶金一类;后者称为熔盐电解,不仅利用电能的化学效应,而且也利用电能转变为热能,借以加热金属盐类使之成为熔体,故也可列入火法冶金一类。 材料具有很广阔的外延,根据材料的化学组成可分为金属材料、无机非金属材料、高分子材料和复合材料;根据材料用途可分为结构材料和功能材料。在本课程中提出的材料冶金,是指用冶金的方法去解决材料的问题。提到冶金,范围限定在金属材料上。 金属材料的性能一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括机械性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。金属材料的机械性能即材料的使用性能,是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。常用的机械性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。 材料中原子间的结合以及排列方式在很大程度上决定了材料所表现出来的宏观性质,原子之间的键合主要有:离子键,共价键,金属键,分子键和氢键;在金属晶体结构中晶体缺陷的形成也是由于在晶体生长,加工等各个环节出现的,使晶体内部的原子排列出现偏离理想位置,或出现排列混乱的区域而引起的。 随着科技的发展,许多单一元素材料的性能已经不能满足要求,因此大多数材料都是由多种元素组成的,不同的元素混合成新的材料时,由于元素间物理的和化学的相互作用,形成具有一定晶体结构和一定成分的相,相是指材料中结构相同,成分与性能均一并以界面相互分开的组成部分,材料中,相的数量、大小等随化学成分,制备工艺等发生变化,影响相结构的因素有:负电性因素,原子尺寸因素,电子浓度因素。 在材料凝固与结晶过程中理论上,材料液态到固态的转变是一个基本的相变过程,其中纯金属的凝固时凝固理论的基础。液态金属的X射线表示,液态金属的近邻原子之间具有某种与晶体结构相近的排列规律,但这种排列的规律性不能向晶体那样延伸至远距离。可见,液相的微小范围内,存在着原子间的紧密接触、规则排列的小集团,称之为短程有序或者近程有序。研究还表明,液态金属的短程有序集团并非固定不动和一成不变的,而是在不断变化之中。高温下原子的热运动较为激烈,短程有序集团只能维持短暂的时间,而新的短程有序原子集团又同时出现。此起彼伏,与那些无序的原子之间形成动态平衡。这种现象称为液态金属的结构起伏或者相起伏。这些结构起伏的短程有序集团为形核提供了条件,晶核都是由这些短程有序集团发展而来。在过冷的液态金属中,晶核一旦形成后伴随的就是晶体的长大。晶核和晶体长大的方式主要与液固两相界面的结构以及液固两相界面前温度分布有关,金属凝固完成后的组织取决于形核与长大两个过程,晶核的多少决定了晶粒的多少或者晶粒的粗细,晶体的长大主要影响组织形态。传统的材料科学中有以下共性规律:晶体学结构规律、材料缺陷与断裂强度、材料的相变原理、材料的形变与断裂规律、材料的强韧化原理(固溶强化、细晶强化、第二相强化、相变增韧、晶界玻璃相析出强韧化。通过对这些规律的研究与把握,来控制制得材料的性能。 在冶金过程中,主要有以下几个环节,就每一个环节的原理与过程,探讨其对材料制备的影响。 干燥:除去原料中的水分,干燥温度一般为400-600℃。焙烧是指将矿石或精矿置于适当的气氛下,加热至低于它们的熔点温度,发生氧化、还原或其他化学变化的冶金过程。其目的是为改变原料中提取对象的化学组成,满足熔炼的要求。按焙烧过程控制的气氛的不同,可分为氧化焙烧、还原焙烧、硫酸化焙烧、氯化焙烧等。煅烧是指将碳酸盐或氢氧化物的矿物原料在空气中加热分解,除去二氧化碳或水分,变成氧化物的过程,也成焙解。烧结和球团,将不同粉矿混匀或造球后加热焙烧,固结成多孔块状或球状的物料,是粉矿造块的主要方法。在以上过程中,发生氧化还原等化学变化,原子间的键合发生了改变,对材料的性质与性能造成影响。 熔炼是指将处理好的矿石或者其他原料,在高温下通过氧化还原反应,使矿石中金属和杂质分离为两个液相层即金属液和熔渣的过程,也叫冶炼。按冶炼条件可分为还原熔炼,造锍熔炼,氧化吹炼等。精炼是进一步处理熔炼所得到的含有少量杂质的粗金属以提高其纯度。吹炼的实质是氧化熔炼,就是将造锍熔炼所得到的锍的熔体,一般在转炉中借助鼓入空气中的氧或者富氧空气使铁硫和其他杂质元素氧化,或造渣或挥发与主体金属分离而得到的金属。蒸馏是指将冶炼的物料在间接加热的条件下,利用在某一温度下各种物质挥发度不同的特点,使冶炼物料中某些组分分离出来的方法。所谓浸出就是将固体物料加到液体溶剂中,使得固体物料中的一种或者几种有价金属溶解到溶液中,而脉石和某些非主要金属入渣,使提取金属与脉石和某些杂质分离。 水溶液电解:是指在水溶液电解质中,插入两个电极-阴极与阳极,通入直流电,使水溶液电解质发生氧化还原反应,这个过程称为水溶液电解。因使用的阳极不同,有可溶阳极和不可溶阳极之分,前者称为电解精炼,后者成为电解沉积。熔盐电解,是用熔融盐作为电解质的电解过程,主要用于提取轻金属。这是由于这些金属的化学活性很大,电解这些金属的水溶液得不到金属。 冶金学是材料学的前身,从冶金的角度寻找解决材料学问题的方法是一种寻溯源的过程,具有更微观,更容易调控的特点,比如对超细金属管的制备,生物材料制备等,材料冶金必将为为材料学的发展提供新的思路。

电冶金概述

2019-01-04 09:45:48

应用电能进行冶金作业的总称。它包括使用电流产生冶金反应,从矿物或其他原料中提取金属的所有冶金过程。电冶金主要分电解过程和电热过程两大类。 一、电解过程电解是使直流电流通过金属盐的水溶液或金属化合物的熔融体引起化学分解的过程,结果在阴极电沉积析出金属,而在阳极发生阴离子的电氧化过程或可溶性阳极的溶解过程。 电解在冶金工业上有两方面的应用:①电解冶金,即电解金属盐的水溶液或熔融物以提取金属;②电解精炼,就是使不纯的金属阳极溶解生成金属离子,并让后者在阴极上以纯金属的形式电沉积下来,这样达到使金属纯化的目的。 电解冶金包括:①以酸或碱溶液处理矿石,浸取金属盐溶液;②净化浸取液;③在阴极上电沉积出金属;④电解处理过的溶液重新送入浸取工段使用等过程。 电解冶金法最先应用于从低品位铜矿(含铜约1.5%或更少)提取铜,提取率达80%~90%,生产成本低。后来,该法也被用来提取锌,但方法比较复杂。目前此法已用于镉、锑、钴、铬、铁、镓、锰和银等金属的提取。 熔盐电解是工业上用来制取那些太活泼以致不能用碳还原其氧化物或其他化合物的金属,或不能从水溶液中电沉积的金属。全部铝,大部分镁、钠、钾、钙、铍、钍、钼和混合稀土金属等都是用熔盐电解法生产的。电解溶于熔融氟化物中的纯氧化铝生产金属铝是1886年C.M.霍尔在美国和P.L.T.埃鲁在法国分别建立的方法。美国电解制铝的用电量约占全国总用电量的4%,因此,降低电解制铝的电能消耗是目前电冶金方法的一个重要研究课题。 电解精炼是将不纯的金属块置于电解液中作为阳极,电解时阳极金属溶解生成金属离子,并在阴极上电沉积出纯金属。关于铜电解精炼的报道始于1865~1870年间J.埃尔金顿的专利,金属电解精炼的成本通常比炉炼为高,但由于不同金属的电极电势(位)不同,通过控制电压电解能达到分离的目的,电解精炼得到的金属纯度较高,还能回收有价值的副产物,如电解精炼铜时可回收得到金、银和铂等贵金属,这是炉炼法做不到的。除铜外,铅、金、银、镉、镍等也常用电化学法精炼。 电热过程  电热过程是电能转变为热能的过程。在金属的冶炼、精炼、熔融或合金化等过程中都要用到电炉。电炉有电阻炉、电弧炉和感应炉等,在这些电炉中电流通过炉料电阻或产生电弧,或因电感应而转变为热。电炉比燃料炉优越,因为在电炉中,金属或其他炉料内部直接产生热,而不必由燃料燃烧产生的火焰或热气流把热传给炉料,可达到比较高的温度;电炉法还能精确控制炉温和炉内环境气氛。美国于1906年开始小规模电炉炼钢,炉温高,能较好地控制炉温、炉内环境和渣的组成,符合近代冶金要求精确控制钢的成分含量的需要。电炉钢无气孔,较致密,为机械性能较好的优质钢。铁合金和许多合金钢只能在电炉中炼制。电炉法冶炼出的镍、铜、铜合金及其他有色金属的吨位也很大。电炉冶炼的主要缺点是电能耗费大,成本高。

银矿石冶金

2019-03-04 16:12:50

银矿石依据矿藏成分及挖掘状况粗分为两类。    一类是以银为主,一起伴生有金,或含少数铜、铅、锌。它们多是由原生银金矿,或铜、铅、锌硫化矿氧化蚀变后次生的氧化矿,含银档次低至数十、高至数千克/吨。银矿藏首要是银金矿(AgAu),辉银矿(Ag2S),锑银矿(Ag3Sb)和角银矿(AgCl)。我国已有罗山、桐柏、贵溪等十多个大中型银矿建成投产,矿石可直接或浮选为银精矿后冶金处理。    另一类多是铅、锌、银共生硫化矿床或是铅,锌矿床中一些银档次较高(可达数千乃至数万克/吨)的富银矿体或富集地段,这类资源矿点多,散布广,规划都较大。共生矿床的特点是:①矿床的工业类型比共生金矿杂乱,共生金属多达9-12种,除铅、锌、银外,常含金、稀有及稀散金属镓、铟、、锗、镉及铁、铜、锡、砷、锑等,有较大归纳利用价值;②矿藏品种多,铅、锌矿藏各有十多种,但首要是方铅矿(PbS)及闪锌矿(ZnS),银矿藏品种也许多但首要是辉银矿(Ag2S),还有淡红银矿(3Ag2S•As2S3)、深红银矿(3Ag2S•Sb2S3);③银的首要载体矿藏是方铅矿,但当含砷高时也常与毒砂连生,含铜较高经常呈黝铜矿(Cu•Ag•Fe)12Sb4S13。    这类矿石有必要浮选别离和富集。浮选工艺有混合浮选、分步浮选、分支串流浮选等各种流程,浮选的产品一般为铅精矿及锌精矿。矿石中锌高铅低时往往还含铜(0.3%-0.6%),则需先铜铅混合浮选后再分选出铜精矿。因为浮选是一种物理选别办法,选择性不高,在所有浮选产品中各种有价金属都有涣散。有的选矿工艺还分选出一种富银精矿,含铅低时可独自冶金处理,但含铅高时又不如与铅精矿兼并处理。    铜、铅精矿一般都用火法熔炼富集,银的收回率较高,而锌精矿不管用湿法或火法提取锌,银都残留在渣中,进一步处理收回率较低。因而共生矿优先浮选工艺都力求使银富集在铅、铜精矿中,尽量削减在锌精矿及尾矿中的涣散。下表为我国几个大型选矿厂浮选主产品中银的收回状况。[next]我国大型铅、锌、银共生矿浮选品中银的档次和收回率选厂原矿Ag/(g/t)准则流程主产品中银档次/(g/t)铜精矿铅精矿锌精矿硫铁矿尾矿水口山70优先选铅,锌硫混选再分选 1190110308-68-13-10-7八家子180铜名混选再分选,锌硫混选再分选4916165359120641-4.5-54-11-11-20栖霞山194先脱碳后铜铅混选,锌硫混选别离分选5386165333017724-18-27-10-35-6凡口105铅锌异步混合浮选 6272323116-40-43-10-6注:括号中数字为收回率(%)     当矿石中含有较粗粒度银矿藏时,在浮选流程中添加重选过程可进步银收回率。银矿山曩昔堆集的浮选尾矿中每吨仍含数克至数十克银(如桐柏的尾矿含银52g/t),用螺旋溜槽或摇床等重选办法从尾矿中进一步收回银,已引起重视。重选银精矿可进步银收回率2%-3%。

砂金矿冶金

2019-03-04 16:12:50

我国的砂金资源首要散布在东北和西北各省,一半以上的砂矿资源正在开发利用。砂金矿中金档次一般为0.2 g/m3,金矿藏多是密度大和化学慵懒的天然金。其粒度散布规模很宽,从大金块(历史上入类采到的10 kg以上的金块约有8000-10000块,最重的285 kg)到毫米级粒状、到数微米至数十微米的弥散微细状都有。重选是从砂矿中提金的首要办法。但惯例的重选办法,很难高效、高收回率地收回细粒度(< 200μm)及呈薄片状的金粒。因而,重选时,往往还辅以化、混等办法以进步金的收回率。化可有用收回<200μm细粒金,混可收回70μm~1.5mm的金粒。    混法是一种陈旧和简略的物理提金办法,在水介质中可选择性的滋润金属状况的金、银,并构成“齐合金”将金银从矿石中捕集出来。混时有必要使与涣散的金粒充沛触摸,可将参加磨矿机中在磨矿的一起进行混(称为内混),或磨矿后在别的的混器(如溜槽、研磨混器、冲力振荡摇床、干式混设备等设备)中进行混(称为外混)。混产出的齐合金密度大,沉于矿浆底部,其他矿砂则被水流冲走。搜集的齐合金再用水冲刷除掉杂质及重砂,用帆布织物压滤别离剩余的,然后在420-800℃下蒸馏别离收回,残余物即为海绵状粗金。    因为的毒性及环境和劳动保护的严格要求,该法已约束运用。

提取冶金的分类

2019-02-18 15:19:33

提取冶金按进程及办法分类,能够分为火法冶金、湿法冶金和电冶大类。也有人把电冶金归人火法冶金的领域。 一、火法冶金(pyromatallurgy) 火法冶金是指在高温下对矿石进行复原、氧化熔炼等反响及熔化作业制取金属和合金的进程。火法冶金的流程一般包含质料预备(选矿、烧结、球团、焙烧等)、熔炼进程和精粹进程等首要工序。它是提取冶金的首要办法,现在工业上大规模的钢铁冶炼、首要的有色金属冶炼和某些稀有金属的提取,都是用火法冶金办法出产的。 二、湿法冶金(hydrometallurgy) 湿法冶金是选用液态溶剂,一般为无机水溶液或有机溶剂,进行矿石浸出、别离和提取出金属及其化合物。湿法冶金的流程首要包含浸取、固-液别离、溶液净化与富集、从溶液中制取产品等工序。现在湿法冶金首要用于有色金属、稀有金属及贵金属的提取,使用规模也日益扩展。 三、电冶金(electro metallurgy) 电冶金是指用电能从矿石或其他质料中提取和精粹金属的进程。例如,熔盐电解铝、电弧炉炼合金钢、电渣重熔等。 上述的提取冶金进程,均有其各自的特色及相应的适用规模,但也都有必定的局限性。当时,提取冶金所面对的状况是 (一)矿石质料的有用金属挖掘档次遍及下降,矿石中的矿藏组成更为杂乱; (二)对产品金属及其化合物的品种、质量及纯度的要求越来越高; (三)国际名国对消除污染及生态环境保护的要求愈加严厉。 现代提取冶规模出产工艺流程的挑选与组合,首要取决于所处理矿石质料的特色、拟收回金属的品种和对产品质量的要求,也取决于有关的技能经济指标与地域的条件,如工艺技能流程、设备设备、动力燃料及试剂的报价、市场经济以及生态环境保护的要求等许多要素。一般分为全火法冶金流程和全湿法冶金流程,但更多的是选用联合流程,即火法冶金与湿法冶金的联合流程、冶金与选矿的联合流程等。因而,合理地组合各种提取进程,发挥各种办法的优势,开宣布能够处理低档次矿石和难处理杂乱矿石的新冶炼办法、改善和强化现有的冶炼进程,以扩展资源规模、添加产品品种、挺高产品质量、下降出产成本、削减环境污染,这是提取冶金工作者的使命。 从矿山挖掘出的原矿百,往往成分很杂乱且金属档次低。一些多金属的复合矿石,则常伴生有多种有价组分,并含有很多的脉石矿藏或杂质。除少数的单一的富矿石能够直接进行冶炼外,绝大多数原矿石都需求经过恰当的物理或化学办法进行预处理,经过富集、别离或除掉有害杂质,或将它们转变成具有适宜于冶炼与提取的物理或化学状况,这就涉及到矿石质料的预处理进程。根据具体状况与要求的不同,最常用的矿石质料的预处理办法,首要有选矿与焙烧两种进程。

冶炼厂熔剂磨碎分级流程的选择与计算

2019-01-07 17:38:01

一、流程选择       当冶炼工艺采用湿式配料时,要求熔剂粒度小于0.2mm,熔剂经破碎作业后需再经过磨碎作业。有时,闪速炉熔炼和熔池熔炼的熔剂亦需经过磨碎。一般采用一段磨碎,磨碎机的排料送螺旋分级机分级,形成闭路。白银自产铜精矿用湿式配料配入熔剂,石英右和石灰石先经三段开路破碎流程破碎到-15mm,然后给入1500×1500mm湿式球磨机,排料流入分级机,其返砂返回球磨机,溢流泵至精矿浓密池配入精矿中,其流程见图1和2。    图1  三段开路破碎筛分流程图实例    图2  熔剂磨碎分级流程实例       二、流程计算       以图2为例,其计算方法如下:   Q1=Q4 Q5=CQ1 Q2=Q3=Q1+Q5       式中:          Q1Q2……-各产物数量,t/h;          C-磨碎机循环负荷率,%由试验或生产数据确定,或参考表1选定。   表1  磨碎机不同磨碎条件下适宜的循环负荷配置条件磨碎段磨碎粒度上限 mmC值 %磨碎机与分级机闭路Ⅰ0.5~0.3 0.3~1.0150~350 250~600磨碎机与旋流器比例Ⅰ0.4~0.2 0.2~1.0200~350 300~600

鼓风炉化矿采用的原料、熔剂和燃料

2019-01-07 07:51:21

一、铅锌氧化矿     表1为会泽铅锌矿的铅锌氧化矿化学成分实例。 表1  铅锌氧化矿各矿种的化学成分实例,%(一)矿种PbZuGe g/tFe共生矿3.19~7.13.63~13.1950~9013.53~17.0砂矿0.65~4.480.68~14.6519~533.18~26.32单锌矿0.11~2.940.72~6.0840~601.5~8.68古炉渣3.29~5.115.15~9.4839~5320.8~32.4续表1  铅锌氧化矿各矿种的化学成分实例,%(二)矿种SiO2CaOMgOAl2O3共生矿10.02~14.658.90~16.220.32~7.491.32~8.03砂矿4.69~50.120.46~22.130.11~9.53.40~18.56单锌矿2.3~23.139.34~42.371.84~12.660.71~10.5古炉渣18.6~22.51.04~4.171.30~3.503.6~6.4    二、熔剂     熔剂为石灰石。用制团的方法造块时,块状石灰石加入鼓风炉;用烧结法造块时,石灰石的粒度应小于6mm,在烧结配料时加入,以期得到自熔性烧结块。    三、燃料     表2为焦炭性质及化学成分实例。 表2  焦炭性质及化学成分实例焦种块度 mm固定碳 %挥发分 %灰分 %灰分的化学成分,%SiO2FeCaOMgOAl2O3土焦20~20050~673~1030~4053~5910~123~101.514~17机焦30~15081.61.8316.0244.510.061.240.81

电工铝杆用高效排杂净化熔剂介绍

2019-01-08 13:40:18

电工铝杆用高效排杂净化熔剂介绍福州大学机械工程系傅高升博士等研制的DJ-1熔剂是电工铝圆杆的一种高效排杂净化熔剂,当配以熔体过滤时,净化效果会显著提高,除杂率及气孔降低率分别可达83.6%及91.2%,并能改善气、杂存在形态,从而能显著材料的力学性能特别是塑性。晶粒细化剂在以该熔剂处理后的熔体中形核效果大为提高,改善材料的力学性能与降低电阻率。

高炉炼铁对碱性熔剂3个质量要求

2019-01-04 11:57:16

高炉炼铁对碱性熔剂3个质量要求 (1)碱性气化物(CaO+MO)含金高,酸性氧化物(SiO2十AL2U3 )愈少愈好。否则,冶炼单位生铁的熔刘消耗量增加,渣量增大.焦比升高。一般要求石灰石中CaO的质量分数不低丁50%.Si02和Al2O3的总质量分数不超过3.5%, 2)有害杂质硫、磷含量要少。石灰石中一般硫的质量分数只有0.01%-8.O8%,磷的质量分数为0.001%-0。03%。 (3)要有较高的机械强度要均匀,大小适中。适宜的石灰石入炉粒度范围是;大中型高炉为20-50mm,小型高炉为10-30mm。 当炉渣黏稠引起炉况失常时还可短期适量加人萤石(CaF2 ),以稀释渣和洗掉炉衬上的堆积物,因此常把萤石称洗炉剂.

电冶金(二)

2019-03-05 09:04:34

(三)电阻一电弧熔炼    电阻一电弧熔炼是使用电极与炉料之间发生的电弧和电流通过炉料发生的电阻热来熔炼金属的冶金进程,是有色金属冶炼中使用广泛的一种电热冶金办法。其炉子的主体结构与电弧熔炼炉相似。熔炼时电极都刺进炉猜中。熔炼中的热量除来自电极和炉料之间的电弧外,电流通过炉料所发生的电阻热也占相当大的比例。在加热办法这一点上,与电弧熔炼有很大差异,矿石或烧结矿是电阻一电弧熔炼的首要原料,因而又称为矿热熔炼。成套的电阻一电弧炉首要由炉体、电极设备和电源设备三部分组成(见图4)。有石墨电极(或碳素电极)和自焙电极两种。自焙电极是一种用无烟煤、焦炭和沥青拌和成的电料在电炉作业进程中自行烧结而成的。大多数电阻一电弧熔炼都选用自焙电极。电阻一电弧炉熔炼首要用于出产铁合金、、铜锍、镍锍、等冶金及化工产品。    (四)感应熔炼    感应熔炼是使用电磁感应和电热转化所发生的热量来熔炼金属的冶金进程。感应熔炼在感应炉内进行。感应炉相似一台变压器,其感应器为一次绕组,金属炉料自身或铁芯为二次绕组和负载,感应器和炉料之间为耐火坩埚熔池,见图5。当感应器接通电源时,在其中间便构成交变磁场,使处在磁场中的金属炉料内部发生感应电动势和感应电流,进而依靠金属炉料的电阻,将电能转化成为热能,用于加热和熔炼金属。感应熔炼按其电源频率分为高频(10-300 kHz)、中频(0.15-10 kHz)和工频(50Hz或60Hz)三种:按炉子的结构特色或电磁原理,分为有芯(闭槽式)和无芯(坩埚式)两类。有芯感应电炉因为感应器内有铁芯而能削减漏磁,有利于进步功率要素和电热功率,但熔炼温度较低,首要适用于铸铁、有色金属及其合金的熔炼。无芯感应电炉感应器内没有铁芯,漏磁较严峻,电热功率低,但熔炼温度较高,首要用于熔炼钢和合金。与其他电热冶金办法比较,感应熔炼的特色有:没有碳质电极和电弧下的高温区,冶炼进程中不会使熔炼金属增碳和吸收解离的气体分子,因而能熔炼出含气体极低的无碳或超低碳的特种合金和钢;交变磁场对坩埚中的金属具有拌和作用,能加快冶金反响完全完结;功率调理简洁,炉温易于控制,简单完成真空或特殊气氛下的冶炼进程。[next]    (五)电子束熔炼    电子束熔炼是使用电能发生的高速电子动能作为热源来熔炼金属的冶金进程,又称电子炮击熔炼。该法具有熔炼温度高、炉子功率和加热速度高、提纯作用好的长处,但也存在金属收率低、比电耗大等缺陷。首要使用于出产高熔点和活性金属和耐热合金钢。电子束熔炼炉首要由真空室、电子和用电源构成。电子束发射体系为其中心部分,电子结构方式繁复,常用的是近阴极的环状和远距离的磁聚集两种。环状是用环状金属钨丝作电子的阴极,与环状聚束极共处在负高电位,被熔炼的金属棒(或熔池)为阳极,处于零电位。阴极、聚束极和阳极构成加快电场,钨丝上的热电子被加快和聚集(电场聚集),构成高速电子流直接炮击金属棒或熔池,使金属熔化;磁聚集电子是用球面热金属钽、钨或其他合金作阴极,与灯罩形的聚束极共处于负高电位,带孔阳极(又称加快阳极)处于零电位,三个电极构成加快电场。阴极上的热电子被加快和聚集(电场聚集),穿过阴极中心孔构成高速运动的电子束,再用一个或多个磁透镜的磁场聚集和一个磁偏转场,使电子束引向金属棒和熔池,使金属熔化。电子束熔炼示意图见图6。电子束熔炼温度可达3000℃以上,炉内真空度达0.133-0.0133 Pa,极有利于真空下碳氧充沛反响,能得到杰出的脱氧作用。在熔炼进程中蒸气压比意图物金属高的杂质都能以金属蒸气方式逸出,一般通过两次熔炼可取得高纯度的金属材料。 [next]     (六)等离子熔炼    等离子熔炼是使用电能发生的等离子弧作为热源来熔炼金属的冶金进程。该法具有熔炼温度高、物料反响速度快的特色,常用于熔炼、精粹和重熔高熔点金属和合金。一般把正电荷和负电荷浓度持平的电离气体称为等离子体。电离气体的离子数与总质点数之比值称为电离度。电离度随电离温度升高和压力下降而增大,电离度为1,温度最高(106K)的等离子体称为高温等离子体。温度约为103-104K级规模,部分电离的等离子体称为低温等离子体。冶金上用得都是低温等离子体。冶金使用的直流等离子弧的弧心温度可达24000-26000℃。发生等离子体的设备,一般叫做等离子,有电弧等离子和高频感应等离子两类,等离子体一般由高熔点金属钨、钽作非自耗阴极,由喷嘴或加热物料作阳极构成。把作业气体通入等离子中,中有发生电弧或高频(5-20MHz)电场的设备,作业气体受作用后电离,生成由电子、正离子以及气体原子和分子的混合物组成的等离子体。等离子体从等离子喷口喷出后,构成高速、高温的等离子弧焰(其温度高于一般的弧焰)。等离子能够用惰性气体(氩)、复原性气体(氢)及两者的混合物或其他气体作介质,然后到达不同的冶金意图。例如,用惰性气体的等离子体,能够熔炼高熔点金属、生动金属,并对金属或合金进行提纯。用氢或含体作介质,能够从氧化物取得金属(铁、铝、银、钽、锆、钨等),如将氧化钨投入氢等离子弧(约2000-5000℃),即可制得特细(0.02-0.1μm)的非自燃钨粉,回收率达98%。用氩气和氧气作为作业气体和反响气体氧化TiCl4,在1500℃下反响时间仅10-2-10-3 s,所得TiO2晶粒粒度<1μm,适用于作特殊颜料。等离子体用作镍和镍钻合金进行蒸腾精粹,可脱除铅、锌、锡。高熔点金属钛、铌、铬等的重熔和提纯则选用真空等离子炉。

湿法冶金(四)

2019-03-05 09:04:34

当料液中的交流离子分散到树脂表面后,还需求以下进程才干完结交流的完好进程:①膜分散即溶液中的交流离子抵达离子交流树脂和溶液构成的表面膜后,在向这层膜内进行分散;②粒子分散即交流离子抵达离子交流树脂相后,持续在离子交流树脂颗粒内部进行分散;③发作交流反响;④交流下来的离子在离子交流树脂内分散,分散到离子交流树脂颗粒表面;⑤交流下来的离子持续分散穿过颗粒表面膜。    影响离子交流反响速度的要素有交流树脂的品种、交流离子、离子浓度、搅搅拌作业温度等,真实影响交流速度的是分散。    (六)电渗析    是一种以电.位差为推动力,使用离子交流膜的挑选透过性,从溶液中脱除或富集电解质的膜别离技能。电渗析的功用首要取决于离子交流膜,它以高分子材料为基体,接上可电离的功用基团而成。按功用基团的性质,能够把交流膜分为阳膜和阴膜两类。从膜结构上分析阳膜含有酸性功用基团,能离解出阳离子,只允许透过阳离子。阴膜含有碱性功用基团,能离解出阴离子,只允许透过阴离子。离子交流膜的挑选透过性是根据膜上固定离子的电性效果,由于它的电荷和活动离子的电荷电性相反,故能招引溶液中的异性电荷离子进人膜内,随后又透过膜转人另一侧溶液中;与此一起排挤同性电荷离子,不能进人膜内,留在溶液中。    进行电渗析的设备为电渗析器,它由离子交流膜、隔板和电极组成。片状的阳膜和阴膜替换摆放,隔板放置在其间,隔板仅1-2mm厚,内有隔网起坚持膜的距离和扰动液流,这样构成一系列相间的小水室,设有进出水管。渗水器的两头设电极室,端侧有电极,阳极用石墨或涂钉的钦制造,阴极则用不锈钢制造。    当含盐溶液通人渗析器的每个水室时,在直流电场的效果下,溶液中的离子作定向的搬迁。由于阳膜只允许阳离子经过而截留阴离子,反之也相同,其结果是相邻的水室,一个室变成无离子的无盐溶液,另一室则聚集了离子,到达浓缩和别离的意图。在湿法冶金中电渗析作为技能别离杂质或富集金属的单元技能得到广泛使用。    (七)膜别离技能    是在外加推动力下,使溶液中的溶剂或溶质挑选性地经过隔阂的别离办法。根据外加推动力和别离膜的不同,膜别离包含反浸透、超滤、微孔过滤、分散渗析和液膜别离等。反浸透、超滤和微孔过滤以不同的压力差作外加推动力,到达溶剂与溶质、巨细溶质粒子和悬浮物与溶液别离的意图。分散渗析以离子浓度差作为推动力。液膜别离则使用物质在液膜中的溶解度和浸透速度不同完成物质的别离。    膜别离在湿法冶金使用中的开展趋势是:①开展新式膜材料和别离技能,以习惯湿法冶金中高温高酸碱介质的要求,进步材料的稳定性和使用寿命;②开展别离技能的归纳工艺,扩展使用规模,进步别离功率;③结合膜别离和惯例别离技能,以下降能耗、节约出资、进步经济效益;④开展新式膜别离设备。[next]    四、从溶液中提取金属    把水溶液中所含的金属物料经过金属状况的转化从溶液中分出收回单元的操作进程,是湿法冶金的重要进程之一。从溶液中提取金属的办法分电解法和化学法两种。而化冶金则是兼具二者的一种特殊冶金办法。    电解提取又称电解堆积,是向含金属盐的水溶液或悬浮液中经过直流电而使其间的某些金属堆积在阴极的进程。    化学提取是用一种复原剂把水溶液中的金属离子复原成金属的进程。    电解提取和化学提取各有其优缺陷。电解提取不需很多试剂,对环境污染小,特别适合于大规模出产,是工业上从水溶液中提取铜、镍、锌的首要办法。但该法耗费很多电能,不适用于电力缺少的区域。此外,一次性设备出资大,占地面积大,操作周期长。而化学提取规律具有不需求耗费很多的电能、设备出资少、占地面积小、操作周期短等长处;缺陷是需求耗费复原剂,发作的废液经处理才干排放。    精粹冶金是使用浸取固体物猜中的金属,然后用歧化沉积从含液中提取金属的进程。化冶金只适用于提取铜、银等少量几种金属,除电解提取则详见第三节电冶金部分。现别离叙说化学提取和腈法冶金。    (一)电解提取    内容详见第三节电冶金部分。    (二)化学提取    用复原剂把水溶液中的金属离子复原为金属态分出的提取金属的办法。工业常用的复原剂有、SO2气体、亚铁离子、铁、锌、铝、铜等金属以及草酸和联胺等。    1.加压氢复原法    在压煮器(高压釜)内用使水溶液中的金属水溶物复原成金属、化合物或贱价离子的化学提取办法。    氢从水溶液中分出金属的反响为: [next]    当金属的电极电位大于氢的电极电位(ФMe>ФH)时,能够用氢复原分出金属,直至ФMe=ФH停止。    经过上式可知,增大金属复原程度,其一是经过增大氢分压和进步溶液的pH值来下降氢电位;其二是靠添加溶液中金属离子浓度来进步金属电位。跟着复原进程的进行,溶液中的金属浓度不断下降,ФMen+/Me也不断下降,而H+浓度不断添加,Ф2H+/H2不断上升,当ФMen+/Me=Ф2H+/H2时复原反响到达平衡。当然,随之压力、温度升高对复原金属是有利的。为了处理分出金属的新相生成问题,需预先往水溶液中加人晶种。现在该办法用于别离金属和出产金属粉末与金属氧化物。    2.二氧化硫复原法    以二氧化硫为复原气体将溶液中的金属离子复原成贱价离子或金属的化学提取办法。    SO2溶于水生成H2SO3 ,是杰出的复原剂。因而,二氧化硫的复原效果实质上是经过进行的。电极SO42-/SO32-的标准电极电位Ф0=+0.20V,因而,二氧化硫能将溶液中电位较正的一些金属离子复原成贱价离子或金属。    二氧化硫复原法在湿法冶金中广泛用于铜、金和锌等出产中。    3.亚铁复原法    以亚铁离子为复原剂将溶液中金属离子直接复原沉积出金属的化学提取办法。由于亚铁具有较正的标准电极电位,因而许多常见杂质难以分出而可得到高纯度金属粉末,且亚铁复原剂制备简单和报价便宜。    4.置换    用电极电位较负的金属将金属盐水溶液或某些不溶盐悬浮液中电极电位较正的金属离子复原成金属的进程。具有电极电位较渗(的金属称为置换剂。在湿法冶金出产进程,置换既可作为溶液中金属提取的一种手法,也可作为溶液净化的办法。    按金属在水溶液中标准电极电位排序,任何一种金属都可将其后边的金属置换出来。任何一种金属都能够作为置换剂。常见金属的标准电极电位列入表1中。[next]表3-1  常见金属的标准电极电位(298K,1mol/L溶液)金属电极标准电极电位Ф0/V金属电极标准电极电位Ф0/V金属电极标准电极电位Ф0/VK+/K-2.925Fe2+/Fe-0.44Sb2+/Sb0.1Ca2+/Ca-2.87Cd2+/Cd-0.402Bi3+/Bi0.2Na+/Na-2.713Co2+/Co-0.3As3+/As0.3Mg2+/Mg-2.37Ni2+/Ni-0.25Ca2+/Ca0.337Al3+/Al-1.66Sn2+/Sn-0.14Ag+/Ag0.8Mn2+/Mn-1.19Pb2+/Pb-0.126Mg2+/Mg0.854Zn2+/Zn-0.7632H+/H2±0.000Au3+/Au1.5    在挑选置换剂时,首要考虑的是电极电位的巨细,一起还有必要考虑溶液特性、金属收回的难易程度和经济要素以及是否污染溶液对提取金属发作影响等。常用的置换剂有铁、锌、铅、镍、钻等,其形状有板、粒和粉,粉状的表面积大,效果最好。置换广泛用于浸出液提取金属,并用于溶液净化。    5.联胺复原法    联胺即用N2H4·H2O与适量合作将水溶液中的金属盐复原成金属粉末的化学提取办法。又称肼或复原法,是制取金属粉末的重要办法之一。    联胺是一种无色油状液体,但有毒和有气味,具有很强的复原效果。联胺将金属离子复原成金属,无论是不溶性盐(AgCl)或可溶性盐(AgNO3),都是先与效果转变成金属配离子,然后将金属配离子复原成金属,如:[next]                      AgCl+2NH3·H2O====Ag(NH3)2·Cl+2H2O            4Ag(NH3)2Cl+N2H4+4H2O====4Ag+N2+4NH4Cl+4NH3·H2O    该法出产的银粉粒度细、纯度高,是制造银触头的抱负材料。    6.歧化沉积法    操控必定条件使溶液或溶盐中具有多种价态的金属离子,发作本身的氧化复原生成高价态的离子和金属的化学办法。    一些具有多种价态的金属如铜、镓、铟、铝、钛、锆、铪、铌和钽等,都可用歧化沉积法提纯,其特点是金属有必要具有多价态的特性。如铟的歧化沉积提纯,是先用氯化氢使铟生成InCl:                        2In(I)+2HCl(g)→2InCl(s)+H2(g)    制得的InCI(s)在水中发作歧化反响得到高纯海绵铟。                          3InC1(s)→InCl3(t)+2In(海绵)    (三)腈法冶金(nitrile metallurgy)    是用腈的水溶液提取金属的一种湿法冶金办法。又叫甲基腈,是出产腈的一种副产品。对Cu+和Ag+有很强的合作力。此法是由澳大利亚人帕克(A.J.Parker)在20世纪70年代提出的。    在的存在情况下常温反响:                      Cu0+Cu2+====2Cu+    向右进行平衡常数K=10-6,但当有时,以上反响的K=108-1022,并随浓度的添加,K值持续增大,阐明Cu0简单氧化成Cu+而进人溶液。这是帕克提出该法的根据。    该法首要用于从含铜的固体物料(粗铜粉、置换铜、废杂铜屑以及氧化铜离析产品),氧化铜矿和硫化铜中提取铜。应该说,该法仍是一种很有出路的办法,由于该法出资少,总处理费用低,产品质量高。但现在还处在实验阶段,真实用于工业出产,还需做很多的作业。

冶炼厂熔剂破碎筛分流程的计算

2019-01-07 17:38:01

破碎筛分流程计算,一般只求出各段破碎和筛分产品的产量Q和产率r,各作业过程的损失可忽略不计。       计算破碎筛分流程必须具备以下原始资料:       一、按原矿计的生产能力。       二、原矿的粒度特性:若无实测资料,可参考典型的粒度特性曲线(图1)进行近似计算,但要知道矿石的物理性质,如何碎性等级或硬度及供料最大粒度。    图1  原矿粒度特性曲线       三、各段破碎机的粒度特性:可参考图2至图7进行近似计算。    图2  颚式破碎机产品粒度特性曲线    图3  标准圆锥破碎机产品粒度特性曲线    图4  中型圆锥破碎机闭路破碎产品粒度特性曲线    图5  短头圆锥破碎机开路破碎产品粒度特性曲线   (因本图表不清,需要者可来电免费索取)    图6  短头圆锥破碎机闭路破碎产品粒度特性曲线   (因故图表不清,需要者可来电免费索取)    图7  PEX型细碎颚式破碎机与中型圆锥破碎机产品粒度特性曲线及其比较       计算时,各段筛分作业的筛分效率,固定筛一般为50%~60%,振动筛一般为80%~85%。       破碎筛分流程的基本类型及计算公式列于表1。   表1  破碎筛分流程的基本类型及计算公式      Q1-原矿两,t/h;     Q2,Q3,Q4……Qn-各产物的重量;     β1,β2……βn-原矿及各产物中小于筛孔的级别含量,%;     E-筛分效率,%;     Cc-破碎机的循环负荷,%;     Cs-筛分机的循环负荷,%。       破碎产品最大粒度d最大与破碎机排矿口、筛分作业的筛孔及筛分效率的合理组合关系见表2。   表2  d最大与破碎机排矿口、筛孔、筛分效率的关系矿石可碎性破碎流程组合关系破碎机排矿口 e筛孔 ɑ筛分效率E%中等闭路(流程c)0.8d最大1.2 d最大80~85闭路(流程d)0.8d最大1.4 d最大65开路(振动筛)0.4~0.5d最大1.0 d最大85难碎闭路(流程c) 1.15 d最大80~85闭路(流程d) 1.3 d最大65开路(振动筛) 1.0 d最大85       以图8的破碎筛分流程图为例,介绍其流程计算方法于下,为便于计算起见,改为图9形式。    图8  三段一次闭路破碎筛分流程图实例    图9  熔剂破碎筛分流程计算图       该厂处理中等可碎性石英石,日处理量为400t/d,按每日操作8h计,则Q1=50t/h。进厂的最大粒度D最大=300mm,要求破碎产品的最大粒度d最大为6mm和25mm两种。       按破碎比: ί=ί 1 ί 2 ί 3   ί=300/6=50       参照标题“冶炼厂熔剂破碎筛分流程的计算” 中的表2,取ί 1=3,ί 2=3则ί 3=ί/ ί 1 ί 2=50/(3×3)=5.5。       (一)各段破碎产品最大粒度的计算:   d2=D最大/ ί 1=300/3=100mm   d3=d2/ ί 2=100/3=33.3mm   d7=d3/ ί 3=33.3/5.5=6mm       (二)各段破碎机的排矿口(最大颗粒与排矿口尺寸比值Z查标题“冶炼厂熔剂破碎筛分流程的计算”中的表3)   e2=d2/Z=100/1.6=62.5mm(取65mm)   e3=d3/Z=33.3/1.9=17.5mm(取20mm)       短头圆锥破碎机的排矿口e7,参照表2。   e7=0.8,d7=0.8×6=4.8mm(取5mm)       (三)筛孔尺寸和筛分效率       根据对产品最大粒度的要求,确定ɑ1=25mm,ɑ2=6mm。       设E上、E下分别为上、下层筛的筛分效率取E上=0.8,E下=0.65。       (四)破碎作业计算       参照表1,   Q1=Q2=Q3=Q4+Q5=Q8=50t/h   Q6=Q7=C Q3       循环负荷率                      式中:          β30~25-破碎机排矿产物3中25mm以下粒级含量,%,查图3得出;          β70~25-破碎机排矿产物7中25mm以下粒级含量,%,查图6得出。       参照表1,   Q4=Q8β80~6E下=Q3β30~6E下+Q7β70~6E下                                 =50×0.25×0.65+25×0.52×0.65                                 =16.58t/h       式中:          β80~6-产物8中6mm以下粒级含量,%,应按实测资料计算,若无实测资料,可假设产物3和产物7中6mm以下粒级的全部通过上层筛,此处即按产物3和产物7的粒级特性曲线近似计算;          β30~6-产物3中小于6mm粒级含量,%,查图3得出;          β70~6-产物7中小于6mm粒级含量,%,查图6得出。   Q5=Q8-Q4=Q3-Q4=50-16.58=33.42t/h       任一产物的产率       式中:          Qn-任一产物的产量,t/h;          Q1-流程的给矿两,t/h。             (计算从略)