密封胶条的重要性
2019-02-28 10:19:46
密封胶条的重要性
门窗的要害在密封。而密封的效果,胶条起着要害效果。密封胶条原料一般是PVC改性的,起要害效果的是里边参加的增塑剂,现在比较稳定的增塑剂有磷二二辛酯,二丁酯,但市场报价较高。所以一些小供应商就用一些廉价的东西替代,例如废机油,炼油厂剩余的油根柢等,这给今后的用户埋下了很大的危险。
这些危险表现在:1、门窗密闭性低。质量差的密封胶条含用残次增塑剂或替代品,冬季易老化变硬,缩短。玻璃和型材间呈现缝隙,形成漏水,进尘埃。许多用户常常发现旱季塑窗里边的压条部位流出赤色液体,就是窗子玻璃与密封胶条间进水后腐蚀钢衬形成的。不光大大下降门窗的漂亮,还大大影响门窗的寿数。2、胶条表面呈现渗油现象。废机油和PVC根本不兼和密封胶条,表面很简单呈现油脂,在型材表面呈现黄色斑迹,不环保,有异味,污染空气。
好坏密封胶条的鉴别方法:1、看比重。同量的密封胶条优质的感觉要轻,反之要重。正规供应商一般用比重小的轻质碳酸钙作为填充剂,有些供应商则选用滑石粉,重钙,来添加产品的比重。由于供应的时分是按分量计价的。2、夏天的时分密封胶条与型材接触面是否污损变色,发黄渗油。3、用鼻子闻闻是否有异味,正常的PVC原料有一点醇味,很小,简直闻不到。
在门窗的制造过程中,密封胶条的投入占比重较小,可它的效果却不行小视。为了省小钱而不慎重挑选生产单位,真实因小失大。而门窗生产单位为了下降一点本钱选有残次的密封胶条,也会很快失掉诺言,其失掉的就不仅仅是一个客户了,也更不是明智之举 。
主流铝门窗密封胶条性能对比
2019-01-08 17:01:49
铝合金门窗密封胶条一般用于建筑门窗幕墙构件,如玻璃和压条、玻璃和扇、框与扇等结合部位,其设计思路是通过挤压变型实现铝合金门窗的密封效果,对空气、液体、粉尘等形成阻隔。以达到铝合金门窗隔热、隔音、防尘、防水的做用。所以要求铝合金门窗密封胶条具有良好的回弹性、密封性、耐候性。当下门窗密封胶条主流市场主流产品包括:PVC、三元乙丙(EPDM)、热塑性弹性体(TPV)、硅橡胶等四种。那么他们的在性能上有什么区别呢?
1、PVC
性能:生产污染环境;耐候性差;遇低温硬化、收缩、龟裂;综合物理机械性能差。可焊接。
比重:高档1.5g/cm3 ; 中档1.6g/cm3 ;低档1.7g/cm3
使用寿命:1-3年
推荐指数:不推荐使用。
2、三元乙丙(EPDM)
性能:良好的耐天候、臭氧、老化性能;较好的综合物理机械性能;对光氧化方面也十分优良。不可调色,不可焊接。
比重:1.3-1.35g/cm3
使用寿命:20年以上
推荐指数:普通工程非严寒地区推荐使用
3、热塑性弹性体(TPV)
性能:优良的抗臭氧、耐天候老化性能;较好的综合物理机械性能;对光氧化方面也十分优良。可调色,可焊接。
比重:1.05-1.15g/cm3
使用寿命:25年以上
推荐指数:寒冷地区推荐使用
4、硅橡胶
性能:优越的抗臭氧、耐天候老化性能;优异的弹性和良好的压缩变形;可调色,色泽牢固度高。不可焊接。
比重:1.18-1.25g/cm3
使用寿命:50年以上
推荐指数:严寒地区/高档工程推荐使用
石材幕墙密封胶不合格治理措施有哪些
2019-03-12 10:12:51
石材幕墙密封胶不合格管理办法:
(1)石材幕墙在干挂后对石材缝隙进行封堵时,有必要选用中性硅酮耐候密封胶,以防止污染石材。
(2)硅酮耐候密封胶还应有证明无污染的试验报告。
(3)室内石材墙面所用的硅酮结构密封胶、硅酮耐候密封胶,应契合《室内装饰装饰材料胶粘剂中有害物质定量》(GB18583)对胶体中游离甲醛、、、二、游离、二异酸酯、总挥发性有机物定量的规则。
教你识别优质和劣质的门窗密封胶条
2019-03-04 10:21:10
门窗密封条是门窗配件五金不行忽视的重要组成部分,判别门窗密封条的根据在于它的密封效果,一个质量好的门窗密封条是不会简单老化掉落的,而且可以起到很好的密封效果,还有防潮、隔噪音和防风防热等功能。市面上部分门窗密封条一般都是用PVC原料的,这是现已被筛选的原料,由于这种原料自身不环保,而且简单老化。现在盛行的则是三元乙丙橡胶,这里边是需求参加增塑剂(有磷二二辛酯,二丁酯,但市场报价较高)——好坏直接关系到了门窗密封条质量的好坏,就是由于这样许多供应商就用廉价的废油(废机油、炼油厂剩余的油根柢等),来代替里边的增塑剂,给用户埋下很大危险。在选购门窗密封条时应留意以下几方面。1、用鼻子闻闻是否有异味,正常的PVC原料有一点醇味,很小,简直闻不到。2、夏天的时分门窗密封条与型材接触面是否污损变色,发黄渗油。3、看比重。同量的门窗密封条优质的感觉要轻,残次的产品往往比重都是偏小的,反之要重。正规供应商一般用比重小的轻质碳酸钙作为填充剂,有些供应商则选用滑石粉、重钙来添加产品的比重。由于供应的时分是按分量计价的。残次门窗密封条的损害门窗密封条尽管比重较小,但效果不行小视。残次门窗密封条不只不环保,其间含有的异味,会对你的身体形成损伤,污染空气。1、不环保,有异味,污染空气。2、下降密闭性。质量差的密封胶条含用残次增塑剂或代替品,冬季易老化变硬,缩短。玻璃和型材间呈现缝隙,形成漏水、漏尘。许多用户常常发现旱季塑窗里边的压条部位流出赤色液体,就是窗子玻璃与密封胶条间进水后腐蚀钢衬形成的,不光大大下降塑窗的漂亮,还大大影响门窗的寿数。
密封胶对建筑外窗节能的影响分析
2019-03-12 10:12:51
1前语 建筑节能是执行我国“节能减排”方针的重要内容之一。在各种能耗中,建筑能耗占全国总能耗的27.5%以上。近几年,我国每年新建房子面积近20亿平方米,其间约90%为高耗能建筑;在既有的近400亿平方米建筑中,有95%是高耗能建筑,而这些高耗能建筑中又有50%的耗能是通过门窗流失的。我国在建筑物保温功能上与发达国家比较,外窗单位面积能耗是发达国家的2~3倍,门窗空气走漏率为发达国家的3~6倍。因而门窗节能是进步我国建筑节能的要害。
现在,我国的节能门窗首要从窗型、玻璃、窗框三个方面采纳办法,通过对热的对流、传导和辐射这3种热交换进行有用的阻断到达节能的意图。因为外窗的热丢失首要是通过玻璃的传导、辐射与存在的缝隙,因而,选用节能型玻璃(如中空玻璃)、加强外窗结构的气密性是完成外窗节能的重要途径,这其间密封胶起着十分重要的效果。
2中空玻璃的密封胶的选用
中空玻璃是现在运用较广的一种节能玻璃,具有优秀的隔热功能,其隔热才能首要来源于二玻璃间密封的空气层。此空气的导热系数为0.028W/m?K,远低于玻璃的导热系数(0.77W/m?K),密封的中空玻璃除玻璃四边用密封胶导热,其他大面积玻璃均依托空气层导热, 因而加大了热阻,显着进步了中空玻璃隔热效果。由此可知,决议中空玻璃质量功能的首要要素是密封胶的功能以及密封道数。
2.1中空玻璃密封胶的选用
常用的中空玻璃密封胶有聚硫胶、丁基热熔胶、聚酯胶和硅酮胶,聚硫密封胶是中空玻璃职业中最早运用的外层密封胶。2002年后,全球中空玻璃密封胶中,聚酯因其优秀的功能及环保性,替代聚硫胶占有了商场主导地位。表1是常用密封胶的功能比较。
2.1.1耐候性
密封胶的抗老化功能在很大程度上决议了中空玻璃的运用寿数。在常用的密封胶中,硅酮胶有很好的耐候性,在很宽的温度范围内能够长期运用而不蜕变;聚硫胶能在-50℃至100℃温度范围内亦可坚持其特性;而聚酯胶其表面易劣化,但对配方进行改进后,其运用寿数长也可达15~20年。
2.1.2透气率
透气量是一个非常重要的要素。中空玻璃隔热、防霜雾功能是通过其内部一层密封的、枯燥的空气(或是氩气、氙气等)层来完成的,一旦透气量到达必定程度,在较低温度时,就会结霜结露,中空玻璃的运用功能也就失效。因而,要求密封材料对气体具有杰出的隔绝功能或具较低的透气率。
常见的中空玻璃密封胶中,丁基胶的水蒸汽透过率最低,但丁基胶是热塑性的,只用做内层密封,一般不独自运用;聚硫胶具有较低的透气率,是制造中空玻璃的抱负材料;硅酮胶的透气率较高,约为10~15g/m2?d?cm,一般地,运用硅酮胶密封胶时选用双道密封结构;与聚硫胶和硅酮胶比较,聚酯的水气浸透率是最低的,运用聚酯的制造的中空玻璃的质量会更为优秀。
2.1.3粘接性
丁基热熔胶归于非化学粘接,低温粘接性差;硅酮胶因为自身就有很强的粘结功能,所以运用硅酮胶作中空玻璃密封条不需要再涂底胶,直接升温便可与玻璃很好地粘接在一同;但它的耐水性较差,因为玻璃与窗框之间简单积存雨水,通过日晒,水温最高可达80℃左右,在此条件下,胶的粘接强度会下降,胶层与玻璃之间就会脱粘而导致中空玻璃失效;聚硫胶与玻璃的粘接性差,一般需参加不饱和聚酯来进步其与玻璃的粘接性或运用双道密封结构;聚酯胶因含有极性很强、化学生动性很高的异酸酯基(—NCO)和酯基(—NHCOO—),它与含有生动氢的材料和玻璃等表面光洁的材料都有着优秀的化学粘接力,而聚酯与被粘接材料之间发生的氢键效果会使高分子内聚力添加,从而使粘接愈加结实。
试验结果表明:硅酮密封胶抗老化功能很好,运用寿数长,但它的透气量比聚硫橡胶密封胶要大,抗结霜结露功能较差,所以在长期范围内,它的运用效果没有聚硫橡胶密封胶好,且它的归纳本钱了略高于聚硫胶,可是聚硫胶粘接功能较差,有必要运用双道密封;与聚硫胶和硅酮胶比较,聚酯的水气浸透率是最低的,其接着性也较好,在其他条件不变的情况下,运用聚酯的制造的中空玻璃的密封寿数和耐久性应该要长一些。
此外,硅酮胶在反响过程中脱去易发散的小分子,会构成胶层表面的污染;聚硫胶的配方中需运用化学溶剂,当溶剂从边部密封的胶体中蒸发时,会对环境发生必定的污染;而运用不含溶剂的聚酯胶时,既不会生成易蒸发的有害物质,也没有溶剂蒸发的问题发生,从环保的视点考虑,更易广为承受。
2.2中空玻璃的密封结构
现在商场上中空玻璃的密封结构首要有胶条法和胶接法。胶条结构的主体材料是丁基或聚胶,胶条在加热、加压条件下在玻璃上构成一个非化学粘接表层,导致耐温度交变功能、耐候功能差(丁基或聚胶遇热易蠕变,遇冷则变硬);再者,胶条为热塑性体而非弹性体,因而抗位移变形才能很差。从实际运用效果看,中空玻璃漏气、漏水现象严峻,因而胶条结构的中空玻璃会逐步被筛选。胶接法密封结构首要有单道密封与双道密封,因为双道密封的中空玻璃的耐久性和密封寿数较单道密封的要长,所以现在双道密封的中空玻璃占商场主导地位。丁基胶在几种常用胶中的水气浸透率最低,通常被用作第一道密封,起阻隔水气、避免空气和惰性气体进出中空玻璃空腔的效果;第二道密封胶常用聚硫胶、聚酯胶和硅酮胶,首要是将玻璃和距离条粘结成一中空玻璃全体、避免气体走漏、弹性康复并缓冲边部应力,并对避免水气浸透起辅佐效果。
总归,关于建筑门窗用中空玻璃应挑选丁基-聚硫系统(丁基胶作内层密封、聚硫胶作外层密封)或是环保型的聚酯系列密封胶。删去
铝合金门窗密封胶条类别与性能
2019-01-09 09:34:03
铝合金门窗密封胶条在各类型门窗中起到防水、密封、节能、隔音、防尘等作用。通常有较好的拉伸强度,良好的弹性。还有较好的耐候性、扩老化性。为了保证密封条与型材的紧固,密封条的断面结构尺寸必须与塑钢门窗型材匹配。
铝合金门窗密封条分为玻璃密封胶条和毛条两种。
铝合金门窗型材上通常都有密封胶条的槽口和压条。通过扇与框的胶条配合让玻璃和框扇更紧密,从而保证了门窗的气密性。密封胶条的安装也有要求,应保证接触部位的平整,不得卷曲,不得拉伸,接头应小于1MM,同时型号要与槽口、门窗预留间隙匹配,过大过小都会有相应的问题。当然密封胶条应选用无毒。无味环保专用密封胶条。
而毛条多装与推拉扇上,主要起到防风防尘的做风。同样规格也要相匹配,毛条规格过大或竖毛过高,不但装配困难,而且使门窗移动阻力增大,尤其是开启的初阻力和关闭的就位阻力较大。规格过小,竖毛条高度不够易脱出槽外,使(门)窗的密封性能大大降低。毛条分为普通毛条与硅化毛条。质量合格的毛条外观为表面平直,底版和竖毛光滑。无弯曲,底版上没有麻点。气泡。竖毛与底版粘合牢固,疏密度均匀,不易掉毛。
门窗的气密性、水密性,密封胶条居功至伟。但说到隔音,虽密封胶条有一定作用,但重头戏却落在了玻璃上。传统的单层玻璃隔音效果有限。而中空玻璃、中空夹胶玻璃的出现,极大的提升了窗户的隔音效果。
铝合金平开窗中密封胶条口型选用原则
2019-01-14 14:52:41
平开窗相对推拉窗具有密封性好,安全度高,与建筑物整体风格更和谐等特点,但由于造价较高,以前多在一些城市的商住楼、写字楼、高档住宅、别墅等中高档建筑应用,随着人们生活水平的提高,平开窗的在普通小区也开始广泛应用,对平开窗五性(气密性、水密性、抗风压、隔音、隔热)的影响,除了型材和五金件外,密封胶条的作用不可小觑,一套门窗,往往由于人们对密封胶条的忽视,造成门窗不密封的例子比比皆是;关于密封胶条的材料相关介绍较多,大家也可参照标准JGT/187-2006。有了合格的材料,没有合理的口型设计,密封当然也不能达到;而且不同的窗型对胶条的要求也不同。下面就密封胶条口型在铝合金平开窗中的选用提出一些看法。 一、普通平开窗中胶条口型的选用 普通平开窗(38、50等系列),多采用内外框两层密封,比较简单,选用胶条口型注意以下几点。 1.如门窗是采用合页安装的,因窗户关闭是沿合页做轴线压合的过程,全封闭口型胶条的压缩量不宜过大,1∽2mm就可以了,防止因压缩量过大,造成安装合页一侧闭合困难,非封闭口型的压缩量2∽3mm都可以。 2.如门窗是采用滑撑安装的,因窗户关闭类似平行压合的过程,胶条的压缩量可大些,不超过3mm都可以,前提是锁闭时不太费力即可。 二、平开下悬(内开内倒)窗中胶条口型的选用 平开下悬窗是国际上流行的一种窗型。使用者可通过旋转窗执手,实现窗的平开、下悬两种开启方式,以及窗的关闭。在下悬状态时,在不占用室内空间的情况下,可实现良好的通风,还可以防止偷盗者从窗进入。因为这种窗型结合了平开和下悬两种操作,采用这种窗型选用胶条口型注意以下几点: 1.室内选全封闭口型胶条压缩量不宜过大,1∽2mm就可以了,胶条的壁厚在0.8∽0.9mm为宜,太厚的口型或压缩量过大的口型容易造成锁闭困难,甚至不能锁闭。 2.室内胶条推荐选用非封闭口型的胶条,压缩量2∽3mm都可以。前提是胶条的壁厚1∽1.3mm为宜。 3,室外胶条如框扇间距小于2.5mm,推荐选用非封闭口型的胶条压缩量量0.5∽1mm即可。 三、隔热断桥平开窗中胶条口型的选用 隔热断桥的原理是在铝型材中间穿人隔热条,将铝型材断开形成断桥。有效阻止热量的传导。这种窗型多采中空玻璃。除采用内外框双道密封外,中间加了一道等压胶条密封,这种窗型可以说是当前密封效果较好的窗型。可组装成平开下悬窗或普通平开窗,这种窗型内外框两层密封选用胶条口型可参照平开下悬窗,但等压胶条的选用必须注意以下几点: 1.等压胶条是带隔热断桥复合窗密封好坏的关键,由于柜窗扇密封胶条具有一定压缩量,门窗闭合时已经需要一定的闭合力。若片面要求等压胶条的过盈配合量,就会存在关窗费力的现象;因此,等压教条的配合在门窗闭合时,B部分到稍有变形即可,B部份过盈配合量1∽2mm。且在选用五金件时,合页厚度应和厂家设计一致, 否则容易导致等压胶条密封的密封失败或窗扇无法闭合。 2.这种窗型由于型材型腔较大,又采用中空玻璃,自重较大,安装好后,如果五金件(合页、滑撑)质量不过关,极易产生窗扇非合页、非滑撑一侧下沉,即常说的掉角,所以型材厂设计窗型时A>5mm为宜;C<3∽mm,组装厂应充分考虑窗扇的重量,选用相应的五金件,避免产生掉角现象,窗扇卡在等压胶条顶部,造成窗户不能锁闭。
玻璃幕墙用铝型材及密封胶的质量要求
2018-12-21 09:27:41
关键词: 玻璃幕墙;铝合金型材;密封胶 1 前言 近年来玻璃幕墙建筑在我国迅速崛起,玻璃幕墙具有整体性强、结构轻盈、弹性连接好、抗震性能好、便于施工及维护方便等优点。当前我国的玻璃幕墙主要有明框、半隐框、隐框及全玻璃幕墙等,玻璃幕墙所用材料主要有铝合金型材和密封胶二部分。选材要根据当地气候情况,兼顾美观、实用、耐久等因素,现分述如下: 2 玻璃幕墙用铝合金型材的质量要求 铝合金型材有普通级、高精级和超高精级之分,幕墙用的铝合金型材应采用高精级,应进行表面质量、壁厚、膜厚、硬度等的检验。 2.1 表面质量的检验 铝合金型材表面质量的检验,应在自然散射光条件下,观察检查,不应使用放大镜,其表面质量应符合下列规定。 2.1.1 型材表面应清洁、色泽应均匀。 2.1.2 型材表面不应有皱纹、裂纹、起皮、腐蚀斑点、气泡、电灼伤、流痕、发粘以及膜(涂)层脱落等缺陷存在。 2.1.3 根据国家标准《铝合金建筑型材》(GB5237-2004)的规定,铝合金型材的表面质量,允许由于模具造成的纵向挤压痕深度及轻微的压坑、碰伤、擦伤和划伤等存在,其中在装饰面应不大于0.06mm,在非装饰面应不大于0.10mm。 2.2 壁厚的检验 玻璃幕墙受力杆件采用的铝合金型材壁厚应按国家标准《铝合金建筑型材》(GB5237-2004)和《玻璃幕墙工程技术规范》(JGJ102-96)的有关规定执行。检验时,对未安装上墙的铝型材可用游标尺选取不同部位进行测量,对已安装上墙的铝型材可用金属测厚仪进行测量。 2.2.1 用于横梁、立柱等主要受力杆件的截面受力部位的铝合金型材壁厚实测值不得小于3 mm。 2.2.2 壁厚的检验,应采用分辨率为0.05 mm的游标卡尺或分辨率为0.1mm的金属测厚仪在杆件同一截面的不同部位测量,测点不应小于5个,并取最小值。 2.3 膜厚的检验 铝合金型材的各种膜不仅起装饰,而且更重要的是防止自然界有害因素对铝合金的腐蚀作用,因此,膜厚不宜太薄,但也不能太厚,一方面增加铝合金成本,另一方面膜太厚有可能发生膜与铝合金粘结力降低,使膜层发生空鼓,开裂甚至脱落等现象,铝合金型材膜厚的检验应符合下列规定。 2.3.1 根据《铝合金建筑型材》(GB5237-2004)的规定,阳极氧化膜最小平均膜厚不应小于15μm,最小局部膜厚不应小于12μm。 2.3.2 根据《粉末静电喷涂铝合金建筑型材》(YS/T407-1997)的规定,粉末静电喷涂涂层厚度的平均值不应小于60μm,其局部厚度不应大于120μm且不应小于40μm。 2.3.3 根据《电泳涂漆铝合金建筑型材》(YS/T100-1997)的规定,电泳涂漆复合膜局部膜厚不应小于21μm。 2.3.4 根据《氟碳漆喷涂型材》(GB5237-2004)的规定,氟碳喷涂涂层平均厚度不应小于30μm,最小局部厚度不应小于25μm。 2.3.5 检验膜厚,应采用分辨率为0.5μm的膜厚检测仪检测。每个杆件在装饰面不同部位的测点不应少于5个,同一测点应测量5次,取平均值,修约至整数。 2.4 硬度的检验 根据《铝合金建筑型材》(GB5237-2004)的规定,铝型材力学性能可在硬度试验和拉伸试验中只做一项(仲裁试验为拉伸试验),铝型材的硬度试验一般用维氏硬度计进行,由于它不便于现场试验,故目前主要是采用《铝合金韦氏硬度试验方法》(YS/T420-2000)的钳式硬度计进行现场检测。
关于断桥铝门窗硅酮玻璃胶的基本知识。
2019-03-04 10:21:10
不管什么样的高级门窗在运用的时分都会有空隙就有必要用建筑胶密封住,才干确保门窗有杰出功能。他们分别是防水密封胶、发泡胶、硅酮玻璃胶,这是门窗设备中必用的产品,在塑钢门窗设备中会用到防水密封胶、发泡胶;而断桥铝门窗设备中会用到发泡胶、硅酮玻璃胶或许以上三种都会用到。
硅酮密封胶是以聚二甲基硅氧烷为首要原料,辅以交联剂、填料、增塑剂、偶联剂、催化剂在真空状态下混合而成的膏状物,在室温下经过与空气中的水发作应固化构成弹性硅橡胶。
一:硅酮玻璃胶分类
硅酮玻璃胶从产品包装上可分为两类:单组份和双组份。单组份的硅酮胶,其固化是因触摸空气中的水分而发作物理性质的改动;双组份则是指硅酮胶分红A、B两组,任何一组独自存在都不能构成固化,但两组胶浆一旦混合就发作固化。现在商场上常见的是单组份硅酮玻璃胶,本书以介绍此种玻璃胶为主。
单组份硅酮玻璃胶按性质又分为酸性胶和中性胶两种。酸性玻璃胶首要用于玻璃和其它建筑材料之间的一般性粘接。而中性胶克服了酸性胶腐蚀金属材料和与碱性材料发作反响的特色,因而适用范围更广,其商场报价比酸性胶稍高。商场上比较特殊的一类玻璃胶是硅酮结构密封胶,因其直接用于玻璃幕墙的金属和玻璃结构或非结构性粘合安装,故质量要求和产品层次是玻璃胶中较高的,其商场报价也较高。
二:硅酮玻璃胶简述
单组份硅酮玻璃胶是一种相似软膏,一旦触摸空气中的水分就会固化成一种坚韧的橡胶类固体的材料。硅酮玻璃胶的粘接力强,拉伸强度大,一起又具有耐候性、抗振性,和防潮、抗臭气和习惯冷热改动大的特色。加之其较广泛的适用性,能完成大多数建材产品之间的粘合,因而运用价值非常大。硅酮玻璃胶由其不会因本身的分量而活动,所以能够用于过顶或侧壁的接缝而不发作下陷,塌落或流走。它首要用于干洁的金属、玻璃,大多数不含油脂的木材、硅酮树脂、加硫硅橡胶、陶瓷、天然及合成纤维,以及许多油漆塑料表面的粘接。质量好的硅酮玻璃胶在摄氏零度以下运用不会发作揉捏不出、物理特性改动等现象。充沛固化的硅酮玻璃胶在温度到204℃(400oF)的情况下运用仍能坚持继续有用,但温度高达218℃(428oF)时,有用时刻会缩短。硅酮玻璃胶有多种色彩,常用色彩有黑色、瓷白、通明、银灰、灰、古铜六种。其它色彩可根据客户要求订做。
三:硅酮玻璃胶用处
(一)、酸性玻璃胶
1、适合作密封、阻塞防漏及防风雨用处,室内室外两者皆宜(室内效果更佳),防渗防漏效果显著。
2、粘接轿车的各种内部装修,包含:金属、织物和有机织物及塑料。
3、接合加热和制冷设备上的垫片。
4、在金属表面加装无螺孔的筋条、铭牌以及漆加塑料材料。5、对烘箱门上的窗口、气体用具上的烟道、管道接头、通道门进行封口。
6、为齿轮箱、压缩机、泵供给即时成形的防漏垫。
7、对船仓以及窗口密封。
8、拖车、货车驾驶室玻璃窗的密封。
9、粘合和密封设备部件。
10、构成防磨涂层。
11、镶嵌和填充薄金属片迭层、道管网络和设备机壳。
(二)、中性耐候胶
1、适用于各种幕墙耐候密封,特别引荐用于玻璃幕墙、铝塑板幕墙、石材干挂的耐候密封;
2、金属、玻璃、铝材、瓷砖、有机玻璃、镀膜玻璃间的接缝密封;
3、混凝土、水泥、砖石、岩石、大理石、钢材、木材、阳极处理铝材及涂漆铝材表面的接缝密封。大多数情况下都无需运用底漆。
(三)、硅酮结构胶
1、首要用于玻璃幕墙的金属和玻璃间结构或非结构性粘合安装。
2、它能将玻璃直接和金属构件表面衔接构成单一安装组件,满意全隐或半隐框的幕墙规划要求。
3、中空玻璃的结构性粘接密封。
四:各种硅酮玻璃胶运用时均会遭到以下约束
1、长时刻浸水的当地不宜施工;
2、不与会渗出油脂、增塑剂或溶剂的材料相溶;
3、结霜或湿润的表面不能粘合;
4、彻底密闭处无法固化(硅胶需*空气中的水分固化);
5、基材表面不洁净或不结实。
(一)、酸性玻璃胶更有以下约束条件:
酸性硅酮玻璃胶会腐蚀或不能粘合铜、黄铜(及其它含铜合金)、镁、锌、电镀金属(及其它含锌合金),一起主张砖石料制成物品及碳化铁体基质上不要运用酸性玻璃胶,在甲基酸盐(PLEXIGLAS)、聚碳酸、聚、聚乙烯和TEFLON(特氟隆、聚四氟乙烯)制成的材料上运用本品将无法取得很好的粘接效果及好的相溶性。移动大于接缝宽度25%的衔接也不适合用酸性玻璃胶,在结构用玻璃上也较好不必普通酸性玻璃胶(酸性结构胶在外),别的在有磨蚀以及会发作本质坏处的当地不该运用酸性玻璃胶。硅酮酸性胶的基材表面温度超越40℃不宜施工。
(二)、中性耐候胶还有以下约束条件:
中性耐候胶不适用于结构性玻璃安装;基材表面温度超越50℃不宜施工。
(三)、硅酮结构胶还有以下约束条件:
硅酮结构胶的基材表面温度超越40℃不宜施工。
五:硅酮玻璃胶运用办法
1、运用:单组份硅酮玻璃胶即时能够运用,用打胶很简单将它从胶瓶内打出,并可用抹刀或木片修整其表面。
2、粘住时刻:硅酮胶的固化进程是由表面向内开展的,不同特性的硅胶表干时刻和固化时刻都不尽相同(固化时刻的具体阐明请参阅第四篇的《技术参数》内容),所以若要对表面进行修补有必要在玻璃胶表干前进行(酸性胶、中性通明胶一般应在5-10分钟内,中性杂色胶一般应在30分钟内)。假如选用分色纸来掩盖某一当地,涂胶后,必定要在外皮构成前取走。
3、固化时刻:玻璃胶的固化时刻是跟着粘接厚度添加而添加的,例如12mm厚度的酸性玻璃胶,或许需3-4天才干凝结,但约24小时内,已有3mm的外层已固化。粘接玻璃、金属或大多数木材时,室温下72小时后就具有20磅/英寸的抗剥离强度。若运用玻璃胶的当地部分或悉数关闭,那么,固化时刻则由密闭的紧密程度决议。在密闭的当地,就有或许永久坚持不固化。若进步温度将使玻璃胶变软。金属与金属粘合面的空隙不该超越25mm。在各种粘接场合,包含密闭情况下,粘接后的设备运用前,应全面查看粘接效果。酸性玻璃胶在固化进程中,因醋酸的蒸发会发作一股味,这种味将在固化进程中消失,固化后将无任何异味。
4、粘接:
A.将金属及塑料表面彻底擦净,去油污,然后除了塑料先用漂洗悉数表面外,橡胶表面运用砂纸打磨,然后用擦。运用时请恪守运用该溶剂的留心事项。
B.将玻璃胶均匀涂在准备就绪的物体表面上,假如是将两个表面粘接起来,可把一面先找方位放好,再用满足的力揉捏另一面以挤出空气,但留心不要挤出玻璃胶。
C.将粘接的设备置于室温下,待玻璃胶固化。
5、密封:将硅酮玻璃胶用于密封的场合,也相同依照上述几个进程进行,将玻璃胶用力挤入接合面或缝隙中,使玻璃胶与表面充沛触摸。
6、清洁:玻璃胶未固化前可用布条或纸巾擦掉,固化后则须用刮刀刮去或二、等溶剂擦拭。
7、留心事项:酸性玻璃胶在固化进程中会释放出刺激性气体,对人的眼睛和呼吸道有刺激性效果。醇型中性胶在固化进程中释放出甲醇。甲醇有潜在的致癌风险,并是已知的皮肤和呼吸道过敏物,蒸发气体会使眼睛、鼻、咽喉发炎。所以应在通风杰出的环境中运用本产品,防止进入眼睛或长时刻与皮肤触摸(运用后,吃饭、吸烟前应洗手),不得咽入本品。勿让儿童触摸;施工场所应通风杰出;如不小心溅入眼睛,运用清水冲刷,并随即求医。彻底固化后的玻璃胶则无任何风险。
8、一般攻略:运用前,请仔细阅读玻璃胶的正确施工办法和用处,请留心对安全运用和有关对身体健康损害的阐明。
六:硅酮玻璃胶存储
贮存和寄存期限玻璃胶应寄存于阴凉、枯燥处,30℃以下。质量好的酸性玻璃胶可确保有用保存期12个月以上,一般酸性玻璃胶可保存6个月以上;中性耐候及结构胶可确保9个月以上的保质期。假如瓶已翻开,请在短期内运用完;玻璃胶如未用完,胶瓶有必要密封,再次运用时,应旋下瓶嘴,去除一切阻塞物或替换瓶嘴。
纳米碳酸钙在硅酮胶中常见问题及解决办法
2019-03-08 11:19:22
这些白色粉末看起来毫不起眼,它却简直占有每年无机粉体运用量的70%以上,是塑料工业中运用数量最大、运用面最广的粉体填料——碳酸钙,以低价的报价、优异的加工功能等很多长处成为塑料加工职业首选的材料。除了塑料范畴,碳酸钙在硅酮胶中的运用也越来越多。
通常在制备硅酮胶时会参加少数的纳米碳酸钙(CCR)来补强,并下降成本,别的也使胶体坚持杰出外观。可是纳米碳酸钙在运用过程中需求留意以下几个问题:
1、水分含量构成粉体聚会
碳酸钙水分较高,则颗粒表面的羟基(-OH)增多,其聚集体呈现出彼此凝集的倾向,在液聚会硅烷效果下构成三维网络,使胶料的黏度增大,并在基猜中构成1~3mm颗粒,构成混炼时刻延伸。因而,碳酸体在运用前须烘干,操控水分含量在0.8%以下。
2、二次聚会构成粒径较大
二次聚会一般简单呈现在粒径较小的纳米碳酸钙产品中,跟着纳米碳酸钙粒径的规模缩小到40-60nm时,颗粒比表面积增大(22~34m2/g),内聚力增强,易构成结合严密的硬团,即为多孔状的二次粒子。硅酮胶捏合过程中二次粒子难以涣散均匀,并且颗粒数量较多时,制品表面简单呈现颗粒,乃至“麻面”或“雾面”现象。因而需求经过一次或屡次研磨将涣散,或许延伸捏合时刻。
3、PH值过高催化固化
Ph值过高会使硅酮胶的贮存稳定性下降,Ph越高,硅酮胶固化越快。贮存稳定性是硅酮胶制品的一个非常重要的质量指标,理论上碳酸钙的PH值呈弱碱性,能够选用弱有机酸或有机酸盐,对其进行表面包覆,对碳酸钙表面有必定的中和效果,将其PH值操控在9.5以下。
4、表面处理缺少或过剩
当表面处理缺少时,碳酸钙颗粒表面为极性部分,与硅酮胶中非极性有机物中难相容,构成涣散困难,呈现混炼时难“吃粉”延伸捏合时刻,即便充沛混合后,因为碳酸钙表面缺少满足有机物表面活性剂包覆,使硅酮胶系统与极性碳酸钙界面触摸几率显着添加,而碳酸钙表面存在较多的羟基,这些基团能与液相硅橡胶分子链中的Si-O键构成氢键(物理吸附),其成果将会发生两种不同的效果:一方面导致硫化胶物理力学功能的进步,另一方面也会在系统内部发生结构化现象,导致胶料的贮存稳定性下降。
当表面处理剂过剩时对硅酮胶的出产相同发生晦气影响,或许构成黏结功能下降、制品物理功能下降。
对黏结功能的影响:
因为硅酮胶是一种粘胶制品,要求有必要与施工介质表面有杰出的黏粘功能,为进步这种黏粘功能,硅酮胶配方中较多选用硅烷偶联剂改善增强,这种黏粘功能是靠硅烷偶联剂中的活性基团与施工介质表面以范德华力或氢键构成物理吸附或许凭借基团的反响构成化学键。当碳酸钙表面处理剂过量时,其有机基团数量显着增多(特别以有机杂合物为首要表面处理剂的纳米碳酸钙产品更为显着),硅烷偶联剂中的部分基团会与碳酸钙表面活性剂分子中有机基团键合,然后影响对施工界面黏结功能。
对制品物理功能的影响:
表面处理剂过量使碳酸钙颗粒表面与硅酮胶系统直接氢键结合的几率削减,首要依托表面活性剂有机分子与系统的结合,因为碳酸钙表面活性剂分子以有机长链分子为主,这种有机分子之间的结合力体现较为柔性,因而固化后的硅酮胶制品模量较低,如果在碳酸钙表面有恰当的一部分能与硅酮胶系统氢键结合,则系统的网状结构更为结实,内聚力更强。这样的制品抗撕裂强度会有所进步。别的,表面处理剂中的短链有机物易挥发,当处理过量时,产品的挥发份会升高,使硅酮胶真空捏合过程中抽出的低沸点有机物添加。
5、影响脱醇型胶贮存稳定性
在一些硅酮胶厂商中曾呈现过该问题,给对纳米碳酸钙和硅酮胶厂商带来较大的困惑。因为硅酮胶的出产工艺及产品特性决议硅酮胶制品在参加交联剂后制得的制品须密封贮存,一旦制品呈现质量问题则很难对制品进行返工处理,构成的丢失较大。
据相关材料闪现,脱醇型硅酮胶一般多选用高水解活性硅烷偶联剂,在没有引进羟基和水分铲除剂情况下,碳酸钙中的微量水分和硅烷偶联剂简单反响生成游离醇,然后引起系统的贮存稳定性和硫化功能下降。特别是表面处理缺少的产品在贮存过程中吸潮非常快,加之纳米碳酸钙二次粒子水分自身就很难扫除,因而有理由以为该条件下的碳酸钙颗粒表面具有较多水分和羟基,相应构成以碳酸钙为结点的部分微观网状结构,严峻时呈现部分微观结构化,应力会集现象,构成较多散布均匀的细微“颗粒”(实践缩短或突起)。
这种“颗粒”还有一个独特现象是当系统温度升高时会逐步消失,能够解释为:因为系统温度升高,分子热运动加重,使微观的交联结合被损坏,部分应力随之削弱或消失,故硅酮胶表面和内部分子结构康复到正常状况,出了暂时的“颗粒”消失。当系统温度下降后,“颗粒”在本来方位从头闪现。
结构用无缝钢管标准
2019-03-19 09:03:26
结构用无缝钢管(GB/T8162-1999)是用于一般结构和机械结构的无缝钢管。结构用无缝钢管标准要遵守。
铝型材门窗处理角部架结构加强与密封的方法
2019-03-12 10:12:51
跟着我国建筑职业开展,近年来铝合金门窗也得到了迅速地开展。在铝合金门窗迅速开展的一起其质量问题也日益突显。最主要的问题会集在型材本身的质量、隔热条、五金配件以及门窗的角部强度和密封上。今日,咱们针对那些运用角码衔接的铝合金门窗的角部加强与密封常遇到的问题谈谈观点。 现在还有不少人过错地以为:出产铝合金门窗只需切开设备的切开精度较高,角码合作恰当,加上组角机组角固定,便可使铝合金门窗的角部强度和密封性到达要求。事实上,现在大多数运用角码衔接的铝合金门窗就是用这种工艺出产出来的。这种简略的机械固定的衔接是一种刚性衔接,很难习惯门窗在出产、运送、装置和长时刻运用中所遇到的各种力的效果而不被损坏。 首要,咱们有必要了解铝合金型材的物理功能。 铝合金型材和其它任何材料相同存在着温差应力。温差应力是指一种材料因为温度的改动而引起的应力,一般为线性胀大/缩短系数。 咱们能够核算铝合金型材在正常运用温度范围内的尺度改变,即线性胀大/缩短率公式如下:
L=L0(1+αΔT)
其间:L:改变后的长度
L0:原长度
α:为胀大/缩短系数,关于铝合金型材来说,在-40°C+50°C的范围内,其值为2.4×10-5/°C
ΔT:为温度(摄氏)改变值
核算举例:铝合金型材原长为1米,温度改变值为+50°C-40°C=90°C
L=1m(1+2.4×10-5°C×90°C)=1.00216m
就是说:1米长铝合金型材在的90°C温度改变下就会发生2.16mm的长度改变量。关于铝合金门窗仅用刚性衔接的角部强度来说,这一改变量将发生摧毁性的影响,使门窗角部各零件的彼此方位紊乱或变形,反映在门窗的角部无疑是丧命的缺点。这种缺点是任何螺栓或组角机用刚性衔接没有办法补偿的。 其次,在铝合金门窗出产、装置过程中,因为转移、运送、装置施工时的移动差错,以及门窗装置完成后,铝合金门窗要长时刻接受本身分量效果,接受窗洞口、建筑物墙体变形静应力差错,开关窗、风压、环境声波等尖峰冲击和频率纷歧的振荡影响,这种振荡有时会诱发门窗发生共振,对门窗全体强度构成影响。 上述这些原因都会使门窗角部的空隙会跟着时刻的推移逐步加大和错位,构成门窗气密性、水密性、隔音、隔尘功能下降,严峻的还会构成门窗变形,发生不良后果。现在由此而发生的工程胶葛已越来越多,严峻影响了铝合金高品质门窗的全体名誉和形象。 其实,铝合金门窗的角部强度和密封只需运用专用的铝合金门窗组角胶即可,但惋惜的是大多数门窗厂以及开发商、行政主管部门以及相关建筑规划、监理等单位没有真实认识到专用组角胶在进步门窗全体质量上的重要效果。有些门窗组装厂没有运用组角胶或过错地将玻璃胶、结构胶、环氧胶等当作铝合金门窗专用组角胶在运用。 现在市场上常假充组角胶的胶有三类: 1、玻璃胶 又称硅酮密封胶;对铝合金的粘接力较差,耐候性差,易老化,硬度很低,弹性太大,固化时胶体不胀大,不能使角码与型腔严密粘接成为一体。 2、结构胶 对铝合金粘接较差,固化时刻长,产品多有异味,固化时不胀大,无法发生较高的强度。 3、环氧胶 固化后无弹性,无法习惯窗体的微震,易酥化和破碎,组角后长时刻强度不行,会发生开裂、掉渣现象。
为什么咱们发起有必要运用专用组角胶?是因为专用铝合金门窗组角胶有如下特色: 1、胶体归于改性聚酯基胶粘剂,不含溶剂,契合环保要求。 2、初固化时刻短,大约10分钟,有利于进步出产功率。分为单、双组分两种,愈加合适“角码涂胶插接和角部全体注胶”两种工艺的要求。 3、固化后硬度很高,但不脆,具有低弹性和极好的防水功能,使角码与型材腔壁的粘接为耐性衔接,然后补偿、削减窗角部位的各种变形、开裂情况,有用处理门窗角部的渗漏问题。 4、单组份胶组角胶彻底固化后,角码与型材内腔的有用粘接部位的剪切强度能够到达10.3N/mm2,双组份组角胶剪切强度能够到达18N/mm2,大大进步窗角强度。就是说,我国普通60系列型材的抗剪切角强度都能够超越。 5、胶体在固化过程中稍微发泡、胀大,构成金属与金属衔接之间的弹性垫,有用削弱各种力的传导,起到避震、缓冲垫的效果。 6、耐侯性强,本领-40°C+80°C的温度改变,胶体为白色或半透明,打出的胶体不会在短期内变黄。双组份组角胶可在230°C的高温下耐受30分钟,合适粉末喷涂等后期加工需求。 7、与专用清洗剂合作,少数溢胶清洁便利,绝不损伤型材表面的涂层和漆面,环保无毒。 现在市场上很多推行运用的德国“卫仕”系列组角胶和相关配套组合产品,是针对铝合金门窗角部结构加强及密封专业规划的,习惯多种组角要求,是铝合金门窗厂和各开发商的最正确的挑选。 咱们呼吁开发商、行政主管部门、建筑规划、监理等单位以及广阔门窗厂商有识之士,以对顾客及门窗职业担任为任务,注重产品质量,在铝合金门窗组角时发起运用,能使门窗增强隔热性、气密性、水密性、隔音性的专用组角胶。 咱们也真诚地期望与广阔同行和朋友沟通讨论相关技术问题,并得到各位职业精英的支撑、辅导和协助,一起打造高水平的铝合金门窗产品,为咱们的工作增添光彩。
全面解读铝门窗的角部的结构加强与密封
2018-12-25 09:32:43
随着我国建筑行业发展,近年来铝合金门窗也得到了迅速地发展。在铝合金门窗迅速发展的同时其质量问题也日益突显。最主要的问题集中在型材本身的质量、隔热条、五金配件以及门窗的角部强度和密封上。今天,我们针对那些使用角码连接的铝合金门窗的角部加强与密封常遇到的问题谈谈看法。
目前还有不少人错误地认为:生产铝合金门窗只要切割设备的切割精度较高,角码配合适当,加上组角机组角固定,便可使铝合金门窗的角部强度和密封性达到要求。事实上,目前大多数使用角码连接的铝合金门窗就是用这种工艺生产出来的。这种简单的机械固定的连接是一种刚性连接,很难适应门窗在生产、运输、安装和长期使用中所遇到的各种力的作用而不被损坏。
首先,我们有必要了解铝合金型材的物理性能。
铝合金型材和其它任何材料一样存在着温差应力。温差应力是指一种材料由于温度的改变而引起的应力,通常为线性膨胀/收缩系数。
我们可以计算铝合金型材在正常使用温度范围内的尺寸变化,即线性膨胀/收缩率公式如下:L=L0(1+ΑΔT)其中:L:变化后的长度L0:原长度Α:为膨胀/收缩系数,对于铝合金型材来说,在-40°C+50°C的范围内,其值为2.4×10-5/°CΔT:为温度(摄氏)变化值计算举例:铝合金型材原长为1米,温度变化值为+50°C-40°C=90°CL=1M(1+2.4×10-5°C×90°C)=1.00216M
就是说:1米长铝合金型材在的90°C温度变化下就会产生2.16MM的长度变化量。对于铝合金门窗仅用刚性连接的角部强度来说,这一变化量将产生摧毁性的影响,使门窗角部各零件的相互位置错乱或变形,反映在门窗的角部无疑是致命的缺陷。这种缺陷是任何螺栓或组角机用刚性连接没有办法弥补的。
其次,在铝合金门窗生产、安装过程中,由于搬运、运输、安装施工时的挪动误差,以及门窗安装完成后,铝合金门窗要长期承受自身重量作用,承受窗洞口、建筑物墙体变形静应力误差,开关窗、风压、环境声波等尖峰冲击和频率不一的振动影响,这种振动有时会诱发门窗产生共振,对门窗整体强度造成影响。
上述这些原因都会使门窗角部的间隙会随着时间的推移逐渐加大和错位,造成门窗气密性、水密性、隔音、隔尘性能下降,严重的还会造成门窗变形,产生不良后果。目前由此而产生的工程纠纷已越来越多,严重影响了铝合金高品质门窗的整体声誉和形象。 其实,铝合金门窗的角部强度和密封只要使用专用的铝合金门窗组角胶即可,但遗憾的是大多数门窗厂以及开发商、行政主管部门以及相关建筑设计、监理等单位没有真正认识到专用组角胶在提高门窗整体质量上的重要作用。有些门窗组装厂没有使用组角胶或错误地将玻璃胶、结构胶、环氧胶等当作铝合金门窗专用组角胶在使用。目前市场上常冒充组角胶的胶有三类:12后一页
包胶铜线
2017-06-06 17:50:09
包胶铜线是广泛应用于生产领域的一种铜线。用PU和TPR包胶,目的都是要提高产品的手感舒适度和增强产品的耐磨性。TPU和TPR同属于热塑性弹性体,都具有很好的弹性,耐磨性和拉伸强度,但TPU的耐磨性和耐刮性和拉伸强度会更好。但TPR可以做得更软些,硬度可以做到30A以下,而TPU目前最软也就60A左右;另外,TPR包ABS,ABS/PC,PP,PA的效果比TPU要好,附着力要强。 滚筒包胶应用
行业
:物流,包装 传统的热硫化包胶的滚筒由于硫化压强低,硫含量偏高而耐磨性能差,使用中易老化。导致对输送带的附着力下降,清洁功能差。 TIP TOP冷硫化包胶技术橡胶密实度高,耐磨性强,寿命为热包胶的数倍;且摩擦系数高,大大降低了胶带应力;橡胶弹性佳,防粘附性能好。采用TTP TOP的滚筒包胶材料可在现场或加工厂操作方便快捷。世界上许多高强度的输送带的驱动滚轮都使用TIP TOP 的包胶材料。 综合成本大大低于传统的热包胶REMALINE UNI-60高抗磨损性具有优良的性价比适用于各种从动轮,惰轮及改向轮 REMAGRIP 70/CN-SL优异的产品性能
价格
比:质量卓越的产品配合极具竞争力的
市场
推广
价格附加的纵向槽纹增加了胶面的导水性能包胶材料的浪费被减低到最少四种标准厚度:10 mm 12 mm 15 mm 18 mm配合特别的菱形开槽及纵向槽纹,适合各种驱动滚轮包胶 REMAGRIP CK-X型系列胶板优异的摩擦系数有效防止传送带在潮湿,泥泞的工作环境下的打滑陶瓷的有效分布降低了总体材料重量,从而使操作和施工变得容易增加了滚筒的使用寿命优越的性能
价格
比现场施工,方便快捷 。 随着社会生产的不断发展,包胶铜线的应用领域也将更加广泛,这对于包胶工艺的改进和发展提出了新的挑战。
包胶铝线
2017-06-06 17:50:05
包胶铝线,作为铝线的一种产品,适用于各类手工艺品、家居装饰品、时尚衣架等等。包胶铝线能实现您各种大胆的创意,为满足各类人群需求,将不同想法于彩色铝线融为一体,以其独特、新颖来吸引人们的眼球,质地柔软便于您随时更换造型。包胶铝线的特点:耐酸碱、抗腐蚀、韧性好、强度好,高温120摄氏度不褪色。包胶铝线具以下特性:1.包胶铝线电镀色泽均匀、艳丽,颜色不易脱落,历久弥新。2.包胶铝线的柔软度够,易折,易弯曲,易成形,不伤您手。3.包胶铝线的韧性够,可重复弯折,不易断裂,具可塑性。铝有较好的延展性(它的延展性仅次于金和银),在100 ℃~150 ℃时可制成薄于0.01 mm的铝箔。这些铝箔广泛用于包装香烟、糖果等,还可制成铝丝、铝条,并能轧制各种铝制品。铝粉具有银白色光泽(一般
金属
在粉末状时的颜色多为黑色),常用来做涂料,俗称银粉、银漆,以保护铁制品不被腐蚀,而且美观。纯的铝很软,强度不大,有着良好的延展性,可拉成细丝和轧成箔片,大量用于制造电线、电缆、无线电工业以及包装业。它的导电能力约为铜的三分之二,但由于其密度仅为铜的三分之一,因而,将等质量和等长度的铝线和铜线相比,铝的导电能力约为铜的二倍,且
价格
较铜低,所以,野外高压线多由铝做成,节约了大量成本,缓解了铜材的紧张。想要了解更多包胶铝线的相关资讯,请浏览上海
有色
网(
www.smm.cn
)铝频道。
结构无缝钢管GB-T 8162-1999标准
2019-03-15 09:13:19
结构用无缝管是用于一般结构和机械结构的无缝钢管。结构无缝钢管GB-T 8162-1999标准 第一章 钢管生产概论
1.1 钢管的分类 1.2 钢管的技术要求钢管生产的技术依据
对钢管的尺寸偏差的要求 1.2.3 对钢管的长度要求 1.2.4 外形 1.2.5 重量 不同用途的钢管应各有什么样的技术条件 1.2.7 我公司的主要产品管线管、油管和套管的主要技术要求 1.2.8 钢管技术要求中常用术语
1.2.6 1.3 钢管的主要生产方法 第二章 热轧钢管生产工艺流程
2.1 一般工艺流程
穿孔 2.1.2 轧管
第三章
定减径(包括张减)
2.2 各热轧机组生产工艺过程特点
连续轧管机的几种形式 2.2.2 三辊(斜)轧管机轧管 各机组的异同
2.3 轧钢的几种形式
纵轧 2.3.2 横轧 斜轧
管坯及管坯加热
3.1 管坯准备 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2
管坯库 管坯上料 管坯锯切 环形炉简述
3.2 管坯加热
炉子结构及辅助设备 3.2.3 环形炉自动化系统(资料不全待定)
第四章 穿孔
4.1 二辊斜轧穿孔机及穿孔过程 4.2 斜轧穿孔运动学 4.2.1
两辊穿孔机运动学
2无缝钢管生产技术
4.3 穿孔的咬入条件 4.3.1 4.3.2
一次咬入条件 二次咬入条件4.4 孔腔形成机理 4.5 斜轧穿孔时的金属变形 4.5.1 4.5.2 4.6.1 4.6.3
管坯受力情况 金属变形
4.6 穿孔工具及设计
轧辊 4.6.2 导盘 导板 4.6.4 顶头
4.7 穿孔机调整参数确定 4.8 其他穿孔方法
压力穿孔 推轧穿孔 4.8.3 斜轧穿孔
4.8.1 4.8.2 4.9 力能参数的计算
轧制力 4.9.2 顶头轴向力的确定 4.9.3 斜轧力矩计算
4.9.1 4.10 穿孔机的设备组成
斜轧穿孔机的设备由哪几部分组成? 4.10.2 主传动的方式及特点? 4.10.3 管坯定心机的组成结构? 4.10.4 穿孔机机座(牌坊)有哪几部分组成?
4.10.1
导盘调整方式有哪几种? 4.10.6 三辊定心的作用和结构? 4.10.7 顶杆的冷却形式有哪些? 4.10.8 顶头的使用方式有几种?
4.10.5 4.11 常见工艺问题
内折 4.11.2 前卡 4.11.3 中卡
4.11.1
后卡(镰刀) 4.11.5 链带 4.11.6 壁厚不均
4.11.4 第五章 毛管轧制
5.1 限动芯棒连轧管机(MPM)
工艺描述 5.1.2 MPM 连轧管机的设备结构、平面布置及相关技术参数 5.1.3 MPM 连轧管机组的工作原理和工艺控制
5.1.1 5.1.4
主要设备及参数
目录
3
5.1.5 5.1.6 5.1.7
MPM 连轧管机轧制工具 MPM 连轧机的孔型设计
连轧机组在线检测系统 5.1.8 常见生产事故
5.2 PQF 连轧机组(PREMIUM QUALITY FINISHING) 5.2.1 5.2.2
概述
连轧工艺 5.2.3 PQF 主机说明 5.2.4 脱管机说明 5.2.5 芯棒循环系统 工具准备与更换 5.2.7 常见质量缺陷
5.2.6 5.2.8 连轧基本理论 5.3 新 型 ASSEL 轧 管 机 5.3.1 5.3.2 5.4.1 5.4.2 5.4.3
主要工艺设备 主要调整参数 自动轧管机轧管
Accu-Roll 轧管机轧管
5.4 其他热加工钢管的延伸方法
顶管机顶管 5.4.4 挤压钢管 5.4.5 周期轧管机(皮尔格轧管机)轧管
5.4.6
热扩钢管
第六章 钢管的再加热、定径与减径 钢管的再加热、 6.1 钢管空心轧制理论 6.1.1 6.1.2 6.2.1 6.2.3 6.2.4
张减速度制度原理
CARTAT 系统介绍
6.2 定径工艺
工艺描述 6.2.2 定径机的设备结构、平面布置及相关技术参数 定径机组的工作原理和工艺控制 操作及调整 6.2.5 常见事故处理方法 6.2.6 质量缺陷及控制要点
6.3 张力减径工艺
工艺概述 6.3.2 设备参数及工艺数据介绍 6.3.3 质量检查
6.3.1
关于可调机架 6.3.5 轧制之前的现场检查 6.3.6 工具的准备和更换过程 6.3.7 工艺控制参考
6.3.4 第七章 轧制表的编制
4无缝钢管生产技术
7.1 编制原则和程序 7.1.1 编制原则 7.1.2 编制轧制表的要求 7.1.3 编制轧制表的步骤 7.1.4 轧制表编制方法 7.2 编制方法 7.3 编制实例 第八章 钢管的冷却和精整 8.2 轧管厂精整管排锯 8.2.1 8.2.2
精整锯切机组设备概述
管排锯的切割过程及工艺控制要点 8.2.3 常见切割缺陷的处理方法
8.3 轧管厂精整矫直机 8.3.1 8.3.2 8.3.3
精整矫直机组设备概述
矫直机相关参 矫直原理 8.3.4 矫直机的矫直过程及工艺控制要点 8.3.5 常见矫直缺陷的处理方法
8.3.6 8.4.1 8.4.3 8.5.1 8.5.3
工具管理
8.4 热处理
前言 8.4.2 热处理的定义和意义 热处理基本原理
8.5 无损检测
无损探伤概论 8.5.2 漏磁探伤 涡流(ET)检测 8.5.4 磁粉检测 8.5.5 电磁超声
8.6 人工检查 8.6.1 8.6.2 8.7.1 8.7.2
检查程序 热轧无缝钢管缺陷 质量保证的控制要点简述
8.7 钢管的质量保
质量控制点 8.7.3 工艺文件的编制与执行 8.7.4 其它
第九章 钢管的试验检测 9.1 钢管的力学性能
前 言 9.1.2 金属材料的力学性能 9.1.3 管材工艺性能试验
9.1.1
目录
5
9.2 钢中的各种组织和夹杂物 9.2.1 9.2.2
钢中的各种组织简介
钢中非金属夹杂物含量的测定标准评级图显微检验法 9.2.3 金属平均晶粒度测定方法 9.3.1 直读光谱仪 9.3.2 碳硫分析仪
第四章
4.1 二辊斜轧穿孔机及穿孔过程
穿孔
1886 年德国的曼内斯 今天在无缝钢管生产过程中,穿孔工艺被广泛应用而且非常经济 。 曼兄弟申请了用斜辊穿孔机生产管状断面产品的专利。 专利中描述了金属变形时内部力的作 用和使用两个或多个呈锥形的轧辊进行穿孔,因此被称作曼内斯曼穿孔过程。 由 R.C 斯蒂菲尔发明的导板使得穿孔后的毛管长度得到增加。 后来狄舍尔发明了导盘, 使穿孔效率得到更大提高。 1970 年出现了锥形辊的穿孔机 , 在 它比以前的穿孔机在金属的 变形上有明显的改进。 在无缝钢管生产中,穿孔工序的作用是将实心的管坯穿成空心的毛管。穿孔作为金属变 形的第一道工序,穿出的管子壁厚较厚、长度较短、内外表面质量较差,因此叫做毛管。如 果在毛管上存在一些缺陷, 经过后面的工序也很难消除或减轻。 所以在钢管生产中穿孔工序 起着重要作用。 当今无缝钢管生产中穿孔工艺更加合理,穿孔过程实现了自动化。 斜轧穿孔整个过程可以分为三个阶段 第一个不稳定过程--管坯前端金属逐渐充满变形区阶段,即管坯同轧辊开始接触(一次 咬入)到前端金属出变形区,这个阶段存在一次咬入和二次咬入。 稳定过程--这是穿孔过程主要阶段,从管坯前端金属充满变形区到管坯尾端金属开始离 开变形区为止。 第二个不稳定过程—为管坯尾端金属逐渐离开变形区到金属全部离开轧辊为止。 稳定过程和不稳定过程有着明显的差别, 这在生产中很容易观察到的。 如一只毛管上头 尾尺寸和中间尺寸就有差别,一般是毛管前端直径大,尾端直径小,而中间部分是一致的。 头尾尺寸偏差大是不稳定过程特征之一。 造成头部直径大的原因是: 前端金属在逐渐充满变 形区中,金属同轧辊接触面上的摩擦力是逐渐增加的,到完全充满变形区才达到最大值,特 别是当管坯前端与顶头相遇时,由于受到顶头的轴向阻力,金属向轴向延伸受到阻力,使得 轴向延伸变形减小,而横向变形增加,加上没有外端限制,从而导致前端直径大。尾端直径 小,是因为管坯尾端被顶头开始穿透时,顶头阻力明显下降,易于延伸变形,同时横向展轧 小,所以外径小。 生产中出现的前卡、后卡也是不稳定特征之一,虽然三个过程有所区别,但他们都在同 一个变形区内实现的。变形区是由轧辊、顶头、导盘(导板)构成。见图 4-1。 从图中可以看出,整个变形区为一个较复杂的几何形状,大致可以认为,横断面是椭圆 形,到中间有顶头阶段为一环形变形区。纵截面上是小底相接的两个锥体,中间插入一个弧 形顶头。 变形区形状决定着穿孔的变形过程,改变变形区形状(决定与工具设计和轧机调整)将 导致穿孔变形过程的变化。穿孔变形区大致可分为四个区段,如图 4-2 所示 。 Ⅰ区称之为穿孔准备区, (轧制实心圆管坯区)。Ⅰ区的主要作用是为穿孔作准备和顺
8
无缝钢管生产技术
利实现二次咬入。这个区段的变形特点是:由于轧辊入口锥表面有锥度,沿穿孔方向前进的 管坯逐渐在直径上受到压缩, 被压缩的部分金属一部分向横向流动, 其坯料波面有圆形变成 椭圆形,一部分金属轴向延伸,主要使表层金属发生形变,因此在坯料前端形成一个“喇叭 口”状的凹陷。此凹陷和定心孔保证了顶头鼻部对准坯料的中心,从而可减小毛管前端的壁 厚不均。穿孔变形区中四个区段
Ⅱ区称为穿孔区,该区的作用是穿孔,即由实心坯变成空心的毛管,该区的长度为从金 属与顶头相遇开始到顶头圆锥带为止。这个区段变形特点主要是壁厚压下,由于轧辊表面与 顶头表面之间距离是逐渐减小的,因此毛管壁厚是一边旋转,一边压下,因此是连轧过程,这个 区段的变形参数以直径相对压下量来表示,直径上被压下的金属,同样可向横向流动(扩径)和 纵向流动(延伸)但横向变形受到导盘的阻止作用,纵向延伸变形是主要的。 导盘的作用不仅可
第四章
穿孔
9
以限制横向变形而且还可以拉动金属向轴向延伸,由于横向变形的结果,横截面呈椭圆形。 Ⅲ区称为碾轧区,该区的作用是碾轧均整、改善管壁尺寸精度和内外表面质量,由于顶 头母线与轧辊母线近似平行,所以压下量是很小的,主要起均整作用。轧件横截面在此区段 也是椭圆形,并逐渐减小。 Ⅳ区称为归圆区。 该区的作用是把椭圆形的毛管, 靠旋转的轧辊逐渐减小直径上的压下 量到零,而把毛管转圆,该区长度很短,在这个区变形实际上是无顶头空心毛管塑性弯曲变 形,变形力也很小。 变形过程中四个区段是相互联系的, 而且是同时进行的, 金属横截面变形过程是由圆变 椭圆再归圆的过程4.2.1
斜轧穿孔运动学
两辊穿孔机运动学
4.2.1.1 螺旋轧制的速度分析 穿孔机轧辊是同一方向旋转,且轧辊轴相对轧制轴线倾斜,相交一个角度称作前进角。当 圆管坯送入轧辊中,靠轧辊和金属之间的摩擦力作用,轧辊带动圆管坯—毛管反向旋转,由于 前进角的存在,管坯—毛管在旋转的同时向轴向移动,在变形区中管坯—毛管表面上每一点都 是螺旋运动,即一边旋转,一边前进。 表现螺旋运动的基本参数是: 切向运动速度、 轴向运动速度、 和轧辊每半转的位移值 (螺 距)。 首先来讨论轧辊上任意一点的速度,如果轧辊圆周速度为 VR,则可以分解为两个分量 (切向分量和轴向分量)。
10
无缝钢管生产技术管 坯 轴
轧辊轴线线下VaR=VRCOSβ=πD Nb/60×COSβ切向旋转速度 (1) VtR=VR sinβ=πD Nb/60×Sinβ轴向速度 (2) 式中 D所讨论截面的轧辊直径,mm; Nb轧辊转速, rpm;v β咬入角。 在轧制过程中由于坯料靠轧辊带动,轧辊将相应的速度传递给管坯,则管坯速度为: VB=πD Nb/60×COSβ (3) 但实际上轧辊速度和金属速度并非完全相等。 一般金属运动速度小于轧辊速度, 即两者 之间产生滑移,可用滑移系数来表示两者速度,这样 VaR =πD Nb/60×COSβ×ητ (4) VtR=πD Nb/60×sinβ×η0 (5) 式中:ητ 切向滑移系数, η0 轴向滑移系数,两者小于 1。 不同的材料有不同的滑移系数,参考如下: 碳钢 η0 = 0.8~1.0 低合金钢 η0 = 0.7 ~ 0.8 高合金钢 η0 = 0.5 ~ 0.7 在生产中最有实际意义的是毛管离开轧辊时的那一点速度,众所周知,出口速度愈大, 即生产率也愈高。为了简化计算,一般假设轧辊出口速度等于 VtR,实际误差包含在滑移系 数中。 毛管离开轧辊一点的轴向滑移系数可用公式(2)求出轴向速度,除以毛管长度得出理论的 穿孔时间,再和实测时间相比,即η0=T 理/T 实.这样确定η0 后,则可计算出毛管离开轧辊的轴 向速度。 螺距在变形中是个可变值,并且随着管坯进入变形区程度增加而增加,这是由于管坯-
第四章
穿孔
11
毛管断面积不断减小而轴向流动速度不断增加所致。 毛管离开轧辊一点的螺距值计算公式为: T=π/2×η0/ητ×d×tgβ 式中:d毛管直径
4.3
穿孔的咬入条件
斜轧穿孔过程存在着两次咬入, 第一次咬入是管坯和轧辊开始接触瞬间, 由轧辊带动管 坯运动而把管坯曳入变形区中,称为一次咬入。当金属进入变形区到和顶头相遇,克服顶头 的轴向阻力继续进入变形区为二次咬入。 一般满足了一次咬入的条件并
不见得就能满足二次咬入条件。在生产中我们常常看到, 二次咬入时由于轴向阻力作用,前进运动停止而旋转继续着即打滑。
4.3.1
一次咬入条件
一次咬入既要满足管坯旋转条件又要满足轴向前进条件。 管坯咬入的力能条件由下式确定: Mt ≥ Mp + Mq + Mi 式中:Mt - 使管坯旋转的总力矩; Mp—由于压力产生的阻止坯料旋转力矩 Mq—由于推料机推力而在管坯后端产生的摩擦力矩 Mi—管坯旋转的惯性矩 如果忽略 Mq、 Mi(值很小)则一般的表达式为: n (Mt + Mp) ≥ 0 (n—轧辊数)
(6)
前进咬入条件是指管坯轴向力平衡条件, 也就是, 曳入管坯的轴向力应大于或等于轴向 阻力,其表达式为: n (Tx-Px) + P′ ≥ 0 (7) 式中:Tx—每个轧辊作用在管坯上的轴向摩擦力 Px--每个轧辊作用在管坯上正压力轴向分量 P′—后推力 (一般为零) 一次咬入所需旋转条件 下面的公式表明在管坯咬入时力的平衡, 两个重要参数, 摩擦系数和角速度可以通过下 面公式计算。
(8) 式中: ——轧辊入口锥角 ——咬入角 ——辊喉处的直径减径值
12
无缝钢管生产技术
若想管坯咬入顺利些,可以将咬入角变大些、轧辊的入口锥角小些,或者通过施加管坯 的推入力和加大轧辊表面的辊花深度。
4.3.2
二次咬入条件
二次咬入的力能条件 二次咬入中旋转条件比一次咬入增加了一项顶头/顶杆系统的惯性阻力矩,其值很小。 因此二次咬入旋转条件,基本和一次咬入相同。二次咬入的关键是前进条件。 二次咬入时轴向力的平衡条件: n (Tx-Px) -Q′ ≥ 0 (9) 式中:Q′—顶头鼻部的轴向阻力 二次咬入所需旋转条件 二次咬入的条件在轴向管坯的推入力要大于顶头和管坯与轧辊之间的摩擦力, 能实现二 次咬入的前提是在管坯接触顶头前(x=自由长度) 管坯至少要旋转一周。
式中:d B——管坯直径
4.4
孔腔形成机理
斜轧实心管坯时, 在顶头接触管坯前常易出现金属中心破裂现象, 当大量裂口发展成相 互连接,扩大成片以后,金属连续性破坏,形成中心空洞即孔腔。见图 4-5。在顶头前过早 形成孔腔,会造成大量的内折缺陷,恶化钢管内表面质量,甚至形成废品,因此在穿孔工艺 中力求避免过早形成孔腔。
图 4-5
孔腔示意图
影响孔腔形成的主要因素有: 变形的不均匀性(顶头前压缩量)
第四章
穿孔
13
不均匀变形程度主要决定于坯料每半转的压缩量(称为单位压缩量),生产中指顶头前 压缩量。 顶头前压缩量愈大则变形不均匀程度也愈大, 导致管坯中心区的切应力和拉应力增 加,从而容易促进孔腔的形成。一般用临界压缩量来表示最大压缩量值的限制,压缩量小于 临界压缩量则不容易或不形成孔腔。 椭圆度的影响 穿孔过程中在管坯横断面上存在着很大的不均匀变形, 椭圆度愈大, 则不均匀变形也愈 大。 按照体积不变定律可知, 横向变形愈大则纵向变形愈小, 将导致管坯中心的横向拉应力、 切应力以及反复应力增加,加剧了孔腔的形成趋势 单位压缩次数的影响 在生产中主要指管坯从一次咬入到二次咬入过程中管坯的旋转次数, 次数的增多就容易 形成孔腔。 钢的自然塑性 钢的自然塑性由钢的化学成分、 金属冶炼质量以及金属组织状态所决定, 而组织状态又 由管坯加热温度和时间所影响。一般来说塑性低的金属,穿孔性能差,容易产生孔腔。
4.5
4.5.1
斜轧穿孔时的金属变形
管坯受力情况
图 4-6 显示管坯的受力情况,图中显示 F 为轧辊方向(平面)的力,为压应力,在接触 点的位置显示为最大。中心部位(导盘方向)显示为拉应力,理论上在导盘的中心部位受力 为最大。因为管坯的不断旋转,同一部位的受力情况不断变化,导致中心部位的金属受到交 变应力的作用,中心产生疏松,形成孔腔。
图 5 金属受理分析图 4.5.2 金属变形 斜轧穿孔过程中存在着两种变形,即基本变形(或宏观变形)和附加变形(称不均匀变形) 基本变形是指外观形状的变化, 这种变形是可以直观的, 如由实心圆管坯变成空心的毛
图 4-6
4.5.2
金属变形 金属变形
基本变形完全是几何尺寸的变化, 与材料的性质无关, 而且基本变形取决于变形区的几
14
无缝钢管生产技术
何形状(由工具设计和轧机调整所决定)。 附加变形指的是材料内部的变形, 是直观不到的变形, 附加变形是由于材料中内应力所 引起的,是增大材料的变形应力,引起材料中产生的缺陷,所以在实际生产中如何来减小附 加变形是很重要的。 4.5.2.1 基本变形 基本变形即延伸变形,切向变形和径向变形(壁厚压缩)。这三种变形都是宏观变形, 表示外观形状和尺寸变化。基本变形可用下式表示: 径向应变增量:
r = ln
纵向(延伸)应变增量:
s1 s0
l = ln
切向(圆周)应变增量:
l1 l0
t = ln
4.5.2.2 附加变形
2 ( D1 s1 ) D0
附加变形包括有扭转变形, 纵向剪切变形等, 附加变形是由于金属各部分的变形不均匀 产生的,附加变形会带来一系列的后果,如造成变形能量增加,以及由于附加变形所引起的 附加应力,容易导致毛管内外表面上和内部产生缺陷等。 纵向剪切变形主要是由于顶头的轴向阻力所造成的, 一方面轧辊带动管材轴向流动, 而 顶头要阻止金属轴向流动, 最终导致各金属轴向流动有差异, 可是各层金属又是互相联系的, 是一个整体,所以在各层金属间必然产生附加变形和附加应力,特别是和轧辊、顶头直接接 触的表面层金属 ,由图中可看出,附加变形更大些,因此毛管内外表面很容易出现缺陷或 者使管坯表面原有的缺陷发展扩大。 切向剪变形往往是造成毛管内外表面产生缺陷原因之一 (如裂纹、 折迭、 离层等缺陷) 。
4.6
穿孔工具及设计
穿孔机工具主要包括:轧辊、顶头和导板(导盘)。这些工具是直接参与金属变形的。 除此之外,还包括顶杆、毛管定位叉、导管、导槽等部件。 工具的尺寸和形状要求合理,这样才能保证穿出高质量的毛管,保证穿孔过程的稳定、 生产率高、低能耗、工具耐磨性高、使用寿命长的要求。
4.6.1
轧辊
穿孔机轧辊形状主要有盘式辊、桶形辊和锥形辊,盘式辊很少使用,常用的是桶形辊和
第四章
穿孔
15
锥形辊。 从大体的形状来看, 桶形辊和锥形辊度一般是由两个锥形段组成的, 即入口锥和出口锥。 如果细分的话, 入口锥又可以分为一段式和两段式, 两段式是为了改善咬入条件和减少从车 次数。根据毛管扩径量的需求,出口锥也可以分为一段式和两段式,两段式用于大扩径量的 机组。 另外,有的轧辊在入口锥和出口锥之间采用过渡带即轧制带,有的则没有。轧制带的作 用是防止两锥相接处形成尖锐棱角,这种棱角在穿孔时会使毛管外表面产生划伤。 轧辊的特征尺寸指轧辊最大直径和辊身长,轧辊最大直径和辊身长度是根据轧辊长度、 轧制速度、咬入条件、轧制产品规格、电能消耗、轧辊重车次数等因素确定。 轧辊直径增加, 则咬入条件改善、 轧制速度提高、 轧辊重车次数增加、 轧辊的利用率高, 但同时也增加了轧制压力和电能消耗。 4.6.1.1 轧辊的入口锥角和出口锥角 轧辊的入口锥角和出口锥角? 轧辊入口锥的角度大小决定管坯能否顺利咬入和积累足够的力以克服顶头阻力使管坯 穿成毛管。相关的文献指出,入口锥角在 2~40 之间,一般情况下将轧辊的入口锥设计成两 段,第一段的角度在 1~30 之间,为的是保证管坯的咬入,第二段的角度在 3~60 之间,为 的是防止形成孔腔。 轧辊的出口锥角在 3~40 之间,这取决于管坯的扩径量,扩径量越大,角度越大。 4.6.1.2 轧辊的入口锥和出口锥长? 轧辊的入口锥和出口锥长? 确定轧辊入口锥和出口锥的长度首先为了校核轧辊的长度是否满足毛管咬入和扩径的 要求,其次为在生产中合理使用轧辊。 轧辊入口锥长的计算公式为:
轧辊出口锥长的计算公式为:
注:DB-管坯直径; E-轧辊距离; DR-毛管直径; αe—轧辊入口锥段的空间角,可以近似等于轧辊入口锥角; αa—轧辊出口锥段的空间角,可以近似等于轧辊出口锥角。
4.6.2
导盘
导盘的作用是封闭孔型。导盘设计要素主要有:接触弧半径和厚度。见图 4-7。
16
无缝钢管生产技术
图 4-7
4.6.2.1 导盘的轮廓 导盘的轮廓是由一般有两个半径入口半径 R2、 出口半径 R1 组成, 根据经验我们可以确 定其值的大小: R2=(0.66~0.70)*DB 入口半径: R1=(0.8~0.87)*DB 出口半径: 4.6.2.2 导盘厚度 到盘厚度由最小轧辊距离和导盘与轧辊的最小间隙决定。大小为: B=(0.8~1.0)* DB 注:DB-管坯直径
4.6.3
导板
导板的设计原则是:一种管坯需要设计一种导板,如果是用一种管坯生产不同尺寸的毛 管,可以只设计一种导板。 导板的纵剖面形状应与轧辊辊形相对应,也有入口锥、压缩带和出口锥组成。导板入口 锥主要起到引导管坯的作用,使管坯中心线对准穿孔中心线。当管坯与上、下导板接触时, 它起着限制管坯椭圆度的作用。 限制椭圆度是为了避免过早形成孔腔, 同时促进金属的纵向 延伸。导板的出口锥起限制毛管横变形,并控制毛管轧后外径的作用。 压缩带是过渡带,它不在导板的中间,而是向入口方向移动,移动值一般在 20~30mm, 也有到 50mm 的。 移动的目的是: 可以减小管坯在顶头上开始碾轧时的椭圆度和减小导板的 轴向阻力,提高穿孔速度。 导板的入口锥角一般等于轧辊入口锥角或比轧辊入口锥角大 10~20,出口锥角一般等 于轧辊的出口锥角或比轧辊的出口锥角小 0.50~10。 导板的横断面形状是个圆弧形凹槽, 这是为了便于管坯和毛管旋转。 凹槽的圆弧可做成 单半径或双半径的。 导板的长度由变形区长度决定,压缩带宽度一般为 10~20mm. 导板的厚度根据轧辊距离来确定, 以薄壁毛管为设计对象。 适应薄壁管的导板一定适应
第四章
穿孔
17
厚壁管的生产。
4.6.4
顶头
顶头的种类按冷却方式来分,有内水冷、内外水冷、不水冷顶头(穿孔过程和待轧时间 内都不冷却,主要指生产合金钢用的钼基顶头): 按顶头和顶杆的连接方式来分,有自由连接和用连接头连接顶头。 按水冷内孔来分,有阶梯形、锥形和弧形内孔顶头。内孔与外表面之间的壁厚有等壁和 不等壁两种。 按顶头材质分,有碳钢、合金钢和钼基顶头。 从扩径段分:有 2 段式、3 段式、4 段式。扩径率小于 20%用 2 段式顶头,大于 20%用 3 或 4 段式顶头。 为延长顶头的使用寿命, 应通过加强冷却水的压力来提高顶头在孔型中顶头的冷却, 尤 其是顶头的前部。使用内水冷主要是为了降低顶头内部温度,应尽可能降到最低水平,冷却 水压应保证在 10~15 bar。 影响顶头寿命的因素: 管坯材质,合金含量越高,变形抗力越大,顶头寿命越低; 顶头化分和热处理工艺,热处理工艺决定顶头寿命。 穿孔时间和管坯长度,穿孔时间越长,顶头温度越高,顶头越容易变形和损坏。 顶头在穿孔过程中,顶头承受着交变热应力、摩擦力及机械力的作用,力的大小影响顶 头的寿命。顶头过分磨损会划伤毛管内表面,粘钢后产生内折。 顶头一般是轧制的、 锻造的或者是铸钢的。 搬运顶头时应保护表面的氧化层, 避免脱落, 否则影响使用寿命。 更换标准是: 顶头头部磨损,磨损带长度超过 5mm,破损面积超过 30cm2. 穿孔段出现裂纹;裂纹长度超过 60mm,宽度在 1.0mm 左右。 粘钢,有粘钢就该更换。 剔废的顶头原则上不能重复使用,若重车,需要再次热处理。 4.6.4.1 计算过程: 计算过程: 下面以 2 段式顶头举例说明设计过程,设计的前提是必须已知轧辊的尺寸和管坯直径、 毛管直径、毛管壁厚及咬入角。 ——确定轧制带处(HP)的辊距(E) 辊距(E)的大小取决于: 材料的钢级 管坯的直径 毛管壁厚 下面是一些常见钢中的辊距值(E) E = 0.84 to 0.9 * DB = 84 to 90 %, usual 86 – 89 % 碳钢: E = 85 ~ 90 %, 87 ~ 90 % 低合金钢: E = 88 ~ 91 %, 88 ~ 90 % 高合金钢 确
定轧辊的入口长度(Le)和出口长度(La),计算它们是为了验证其长度是否超过
18
无缝钢管生产技术
轧机的设计长度,公式见前面轧辊设计部分。 如果计算的结果是入口长度(Le) 或出口长 度(La) 比轧辊现有的相应部分大的话就得加大轧辊间距(E)或者增加入口锥角和出口锥 角 ——确定顶头直径(Dd)
——毛管与顶头的间隙值(CH),目前仍以经验值或经验公式为主
——确定顶头坪滑段的长度(LGT2) 平滑段的作用是均匀壁厚的偏差, 长度至少要保证毛管能够转一周并加上保险系数。 即
SF—平滑系数 1.2 ~2, 通常为 1.5 --咬入角 LGT2 必须小于顶头过 HP 处的长度, 否则的话减小系数值。 平滑段的角度 似等于轧辊的出口锥角 ——确定顶头穿孔段末端的直径(DR)
近
——计算顶头前伸量 Ld1 顶头前伸量的大小影响着穿孔的过程和毛管的质量.生产中应避免在顶头的前部形成空 腔 ,这样有利于减轻毛管内表面的缺陷。但起决定性的影响内表面缺陷的因素有顶头前直 径减径率和管坯接触顶头前转动的次数。换句话说,顶头前直径减径率的参考极限值如下: 碳钢 低合金钢 高合金钢 ——自由段长度 (GL), 机关批从接触轧辊到顶头前的长度,必须保证管坯转一周。
GF1 to 1.5 如果轧辊之境与管坯直径的比值较大的话, GF 可以取值范围为 0.8 to 1 所以顶头位置(Ld1)为: 顶头前伸量的值至少要大于 40mm,系数 GF 通常影响顶头位置和 顶头前的压下量。 ——确定顶头长度(Ld)
第四章
穿孔
19
顶头再 HP 后长度(Ld2)计算公式如下:
所以顶头长(Ld)为 —— 确定顶头鼻部的直径(F) 一般情况下 F = 0.25 to 0.30 * Dd (Dd圆弧半径为:
圆弧半径值 (Rd) 范围在 300~ 900 mm 之间. 的 限值。 4.6.4.2 顶头计算过程(2 段式顶头) 顶头计算过程( 段式顶头) ——给定
2 段式顶头的圆弧半径值不要取上
——计算 辊距 E 177,2 mm (选择直径压下率为 88.6 % of DB, 见附表 1 ) 入口锥长度
出口锥长度
顶头与毛管的间隙
20
无缝钢管生产技术
Clearance: CH10 mm (见附表 2)
桶形棍—— CH (锥形辊取值比桶形辊大)
平滑段长度
故取 确定平滑段开始处的直径
自由工作段长度(咬入段) 选择 GF 1.05
顶头前伸量
顶头在 HP 点后的长度
顶头长
核查顶头前伸量
第四章
穿孔
21
核查实际的咬入系数 F=0.2*165 F= 33mm
22
无缝钢管生产技术
附表 1: ——直径压下率
——径壁比 附表 2: CH
壁厚
第四章
穿孔
23
4.7
穿孔机调整参数确定
现代的穿孔机在整个机组中承担的变形量愈来愈大。 表示穿孔变形的参数有: 直径扩径 率、延伸系数、轧制带处的压下量、顶头前压下量。 直径扩径率 一般在 3~40%的范围内,锥形辊穿孔机的扩径率明显高于桶形辊穿孔机。扩径率大, 容易产生内外表面缺陷或恶化壁厚不均,因此最好采用等径或小扩径穿孔。图 4-8 显示锥形 辊与桶形辊扩径值的比较。
图 4-8
扩径值比较
延伸系数 延伸系数大意味着毛管壁厚薄。管坯直径愈大,在同一壁厚下,延伸系数愈大。随着锥 形辊穿孔机的的广泛使用,以 180 机组为例,穿孔毛管的最小壁厚可以达到 8mm。 轧制带处的压下量 它表示管坯直径在轧制带处的变化量,取值范围在 9~12%,穿孔薄壁管取大值,厚壁 管取小值。 它表示管坯直径从一次咬入点到二次咬入点的变化量, 它的大小决定管坯的二次咬入效 果,过大又容易形成钢管内折缺陷。 穿孔机主要的调整参数有轧辊距离、顶头前伸量、导板(导盘)距离、前进角的大小和 轧辊转速(导盘速度)。 调整的基本原则是毛管几何尺寸满足轧管机组的要求,壁厚均匀且内外表面良好。 调整的方法可以参考下表(表中没有涉及到前进角的调整):
24
无缝钢管生产技术
原
因
辊 减小 增加 减小 增加 增加 减小 - -
距
导 - - - -
距
顶 前 量 - - 增加 减小 增加 减小 - - 多增加 多减小 (增加) (减小)
壁厚稍微厚 壁厚稍微薄 壁厚太厚 壁厚太薄 外径太大 外径太小 外径稍微大 外径稍微小 外径、壁厚都太大 外径、壁厚都太小 外径太大、壁厚太小 外径太小、壁厚太大 如何确定轧辊距离?
-(减小) -(增加) 减小 增加 - - - -
-(增加或减小) -(增加或减小) 多增加 多减小
轧辊距离指的是两个轧辊的轧制带之间的距离, 它是重要的调整参数之一。 确定轧辊距 离(E)的前提条件是应明确: ——管坯材质 ——管坯直径 ——毛管壁厚 下列数据为标准数据: E=(0.84~0.90)*DB 碳钢: 通常为(0.86~0.89)*DB 低合金钢: E=(0.85~0.90)*DB 通常为(0.87~0.90)*DB 高合金钢: E=(0.88~0.91)*DB 通常为(0.88~0.90)*DB 一般情况下,厚壁管上限值为 0.93*DB,薄壁管取下限。 如何确定导盘距离? 导盘距离与轧辊距离的比值决定着轧件在变形区中的椭圆度,而椭圆度又影响毛管质 量、咬入条件、轴向滑移、穿孔速度、扩径量、轧卡及毛管尺寸控制等。特别是对毛管质量 (穿孔合金钢管)影响更为明显,椭圆度越大,毛管内表面出现裂纹的可能性越大,过早形 成空腔的可能性越大。 生产中, 导盘距离总是大于轧辊距离, 二者比值即椭圆度系数, 一般在 1.07~1.15 之间, 穿孔厚壁管和合金管时取小值。 确定导盘距离可按椭圆度系数推导: A=(1.07~1.15)*E 注:A—导盘距离 E—轧辊距离 导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即
第四章
穿孔
25
直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。 如何确定顶头前伸量? 顶头前伸量的测量方法是, 将顶头/顶杆深入到轧辊之间, 测量顶头头部到轧辊轧制带 之间的距离。 确定顶头前伸量的步骤如下: Ld1=Le-X
X=π*DB*tan(β)*FE 注:Ld1—顶头前伸量 Le—轧辊入口锥长 β—前进角 FE—系数,取值范围在 1~1.5 之间 顶头前伸量和轧辊距离有着密切的联系,顶头前伸量增加,顶头前压下量减小,相反顶 头前伸量减小,顶头前压下量增加。 顶头前伸量调整在生产中有着重要意义。 因为顶头前伸量的大小和毛管质量、 咬入条件、 轴向滑移、穿孔速度、轧卡以及毛管尺寸控制等都有关。 什么是扩展值?如何确定顶头与毛管的间隙量? 毛管内径与顶头之差叫做扩展值, 计算扩展值是选择顶头直径的重要依据, 不同壁厚毛 管的扩展值是不同的, 不同形式的穿孔机扩展值变化的规律也不一样。 影响扩展值的因素还 有:变形区椭圆度、穿孔温度、钢种等。 扩展值用 CH 表示,大小为: CH=DH-2*SH-Dd 使用锥形辊穿孔机的扩展值 CH 值与桶形辊穿孔机的扩展值 CH 关系是: CHctp=1.5*CH CH 的经验值计算方法是: CH=(0.09+0.076*DB)-(0.007+0.0013*DB)*SH 注:DB—毛管外径 SH—毛管壁厚 Dd—顶头直径 如何计算穿孔的轧制时间? 穿孔的轧制时间的多少往往表示一个机组的能力大小, 斜轧穿孔机的工作时间由下面公 式计算:
式中 Dw—轧辊的工作直径;
26
无缝钢管生产技术
L1-变形区长―; L0-毛管长; n—轧辊转速; η0-轴向滑移系数; β-前进角(轧辊倾角) 如何选择轧辊的前进角? 前进角及轧辊轴线与轧制线在水平面内的夹角。选择的范围在 8~150 之间,常用的角 度为 10~120。。前进角的选择影响以下几方面: 前进角越大,毛管的出口速度越大,轧制时间相应减少,可以提高机组的节奏,还可以 降低工具消耗; 前进角越小,管坯咬入条件越好,原因是管坯与轧辊的接触面积增大,摩擦力增大的缘 故。 前进角的大小决定轧制力的大小,角度越大,轧机负载越大。若在一个轧辊上使用不同 直径的管坯(不同孔型),角度随管坯直径增加而减小。
4.8
其他穿孔方法
管坯的穿孔方式有压力穿孔,推轧穿孔和斜轧穿孔。
4.8.1
压力穿孔
压力穿孔是在压力机上穿孔, 这种穿孔方式所用的原料是方坯和多边形钢锭。 工作原理 是首先将加热好的方坯或钢锭装入圆形模中 (此圆形模带有很小的锥度),然后压力机驱 动带有冲头的冲杆将管坯中心冲出一个圆孔。 这种穿孔方式变形量很小, 一般中心被冲挤开 的金属正好填满方坯和圆形模的间隙,从而得到几乎无延伸的圆形毛管,延伸系数最大不超过 1.1。
4.8.2
推轧穿孔
推轧穿孔是在推轧穿孔机上穿孔,这种穿孔方式是压力穿孔的改进。把固定的圆锥形模 改成带圆孔型的一对轧辊。这对轧辊由电机带动方向旋转(两个轧辊的旋转方向相反),旋 转着的轧辊将管坯咬入轧辊的孔型, 而固定在孔型中的冲头便将管坯中心冲出一个圆孔。 为 了便于实现轧制,在坯料的尾端加上一个后推力(液压缸),因此,叫做推轧穿孔。 这种穿孔方式使用方坯,传出的毛管较短,变形量很小,延伸系数一般不大于 1.1。 推轧穿孔的优点如下: 坯料中心处于全应力状态,过程是冲孔和纵轧相结合,不会产生二辊斜轧的内折缺陷, 毛管内表面质量好,对坯料质量要求较低; 冲头上的平均单位压力比压力穿孔小 50%左右,因而工具消耗较小; 穿孔过程中主要是坯料的中心部分金属变形, 使中心粗大而疏松的组织很好的加工而致 密化,同时在压应力作用下,毛管内外表面不易产生裂纹。 生产率比压力穿孔高,可达每分钟两支; 以上两种穿孔多生产特殊钢种的无缝钢管,现存的机组很少,因变形量很小,毛管短且 厚, 因而在热轧无缝钢管机组中要设置斜轧延伸机, 将毛管的外径和壁厚减小并使管子延长。
第四章
穿孔
27
另外容易产生较大的壁厚不均。
4.8.3
斜轧穿孔
这种穿孔方式被广泛的应用于无缝钢管生产中, 一般使用圆管坯, 靠金属的塑性变形加 工来形成内孔,因而没有金属的损耗。 斜轧穿孔机的分类 斜轧穿孔机按照轧辊的形状可分为锥形辊穿孔机、 盘式穿孔机和桶形辊穿孔机。 按照轧 辊的数目分又可分为二辊斜轧穿孔机和三辊斜轧穿孔机。 锥形辊穿孔机、 桶形辊穿孔机 是当今广泛使用的主要机组, 锥形辊穿孔机的历史较短, 具有更多优点。比较如下: 桶形辊穿孔机的轧辊可以上下和左右布置,而锥形辊穿孔机的轧辊只能上下布置; 桶形辊穿孔机的轧辊由两个锥形组成,锥形辊穿孔机的轧辊由一个锥形组成; 桶形辊穿孔机的轧件速度变化为小-大-小, 锥形辊穿孔机的轧件速度随轧辊直径的增 加从小逐步增大; 毛管在孔型中的宽展,锥形辊穿孔机要小些,更有利金属轴向延伸变形,附加变形小,毛 管内表面质量好,壁厚精度较桶形辊穿孔机高; 锥形辊穿孔机的延伸系数比桶形辊穿孔机大, 更适合穿孔薄壁毛管, 使得轧管机组的机 架数目可以减少; 斜轧穿孔机不管轧辊的形状如何不同, 为了保证管坯曳入和穿孔过程的实现, 都由以下 三部分组成:穿孔锥(轧辊入口锥),辗轧锥(轧辊出口锥)和轧辊压缩带——由入口锥到 出口锥之过渡部分。 二辊式穿孔机和三辊式穿孔机的特点? 二辊式穿孔机主要有带导辊的穿孔机、 带导板的穿孔机和带导盘的穿孔机, 带导辊的穿 孔机一般不常用,只用于穿孔软而粘的有色金属,如铜管、钛管等。带导板的穿孔机具有孔 型封闭好、接触变形区长、穿出的毛管壁厚可以更薄的特点而仍然得到重视;带导盘的穿孔 机越来越得到发展,它的特点是: 生产率高,这是由于
主动导盘对轧件产生轴向拉力作用,导致毛管轴向速度增加。最快 可以达到 3~4 支/分; 由于导盘的轴向力作用,使管坯咬入容易一些,减少了形成管端内折的可能性,也可以 提高壁厚的精度; 导盘比导板有较高的耐磨性,从而减少了换工具的时间并提高了工具寿命; 三辊式穿孔机的特点是: 由于三个辊呈等边三角形布置,因而在变形中管坯横断面的椭圆度小; 由于三个辊都是驱动的,仅存在顶头上的轴向力,因而穿孔速度较快,但顶头上的轴向 阻力比二辊式大; 在轧制实心管坯时,由于管坯始终受到三个方向的压缩,加上椭圆度小,一般在管坯中 心不会产生破裂,即形成孔腔,从而保证了毛管内表面质量。这种变形方式更适合穿孔高合 金钢管。三个轧辊穿孔时坯料和顶头容易保正对中,因此毛管几何尺寸精度高,即毛管横断 面壁厚偏差小。 因穿孔薄壁毛管时容易形成尾三角,使毛管尾端卡在轧辊辊缝中,更适合穿孔中厚壁毛管。
28
无缝钢管生产技术
4.9
4.9.1
力能参数的计算
轧制力
计算总轧制压力,首先要确定接触面积。 4.9.1.1 变形区长度的确定 变形区的长度是入口断面到出口断面的距离。如图 4-9 所示。考虑送进角 α 时,变形区 长度按 4.1 式计算[11]。
图 4-9 穿孔时的变形区图示
l = l1 + l 2 = (
d p dH 2tgα 1
) cos α + (
dm dH ) cos α 2tgα 2
d 其中: p 入口断面上的管坯直径, mm ; d m 出口断面上的毛管直径, mm ; d H 轧辊之间的最小距离, mm ;
(4.1)
α 1 ——轧辊的入口錐母线倾角,度 α 2 ——轧辊的出口錐母线倾角,度 α ——送进角,度。
4.9.1.2 接触面宽度的确定 在斜轧穿孔时,沿变形区长度,接触表面的宽度是变化的。任一断面的接触宽度 b [12], 如图 4-10 所示。
第四章
穿孔
29
图 4-10
穿孔时的接触面积
b=
(4.2) 式中: D ——该断面上的轧辊直径; d ——该断面上的坯料直径; r ——径向压下量; 1 上式中的径向压下量 r ,根据图 4-1。对各个区域分别按下列公式计算。 对于区域Ⅰ, r 表示坯料在 k 转中两相邻断面半径之差 1 r = s tan α 1 对于区域Ⅱ, r 表示坯料在 k 转中两相邻断面壁厚之差 (4.3) (4.4) (4.5)
rd + 2r 2 d r 1+ + 2 D D
r = s(tan α 1 + tan γ )
对于区域Ⅲ,
r = s(tan γ tan α 2 ) 式中: γ ——顶头锥体的母线的倾斜角; s ——螺距。
η 0 F1 d1 tan α ηt F K 式中: F1 ——金属在出口断面上的面积;
s =π
(4.6)
η t ——出口断面的切向滑动系数,η t ≈ 1 ; η 0 ——轴向滑动系数;
η 0 = 0.68 ln α + 0.05 d0 ε0 f k dp F ——金属在所研究断面上的面积; d1 ——管坯在出口断面上的直径;
d 0 ——管坯的外径,mm; 式中: d p ——顶头的外径,mm; f ——摩擦系数;
(4.7)
α ——送进角; ε 0 ——顶头前坯料的径向压下量,%;
轧制过程中产生大的滑动是不利的, 它会使生产率降低, 工具磨损加快, 能量消耗增加,
30
无缝钢管生产技术
轧件质量恶化。因此,合理的设计应使滑动系数尽可能增大。 由式(4.6)可见,螺距是变化的,其值随轧件进入变形区坯料横断面面积的减小而增 大。 接触面积为
bi + bi +1 l 2 式中: bi 、 bi +1 ——在分点 i 及 i + 1 上的接触宽度; F =∑
(4.8)
l ——分点 i 及 i + 1 间的距离。
4.9.1.3 平均单位压力 p 的计算
' ' ' p = νnσ nσ' nσ'' σ s
(4.9)
式中:ν——中间主应力影响系数(取ν=1.15); ' ' nσ ——外摩擦及变形区几何参数影响系数(取 nσ = 1 ); ' nσ' ——外端影响系数; ' ' nσ'' ——张力影响系数(取 nσ'' = 1 ); σ s ——一定的变形温度、变形速度及变形程度金属的变形抗 力, MPa ; ' nσ' 的计算 1 外端影响的应力状态系数 入口錐侧变形区: ' nσ' 1 =1.5(1-2.7ε2) (4.10) ε 孔喉处的相对压下率;
ε = (d p d H ) / d p
出口錐侧变形区:
' ' nσ' 2 = 0.75nσ' 1
(4.11)
(4.12)
2 入口錐侧变形区平均单位压力 p1 =1.15×1.5(1-2.7 ε 2 ) σ s (4.13) σ s 不同变形温度、变形速度及变形程度时,沿入口锥长度 式中: 的平均变形抗力; 3 出口錐侧变形区平均单位压力
p2 =
4 平均单位压力
4 p1 3 7 p1 6
(4.14)
p=
5 变形抗力 σ s 的确定
(4.15)
变形抗力的确定首先是计算穿孔时的变形温度, 变形速度和变形程度数值, 然后根据该 钢种的实测变形抗力曲线,确定该变形条件下的变形抗力。确定入口锥的平均变形阻力:
第四章
穿孔
31
1) 变形温度:根据已有现场实测参考数值在 1180℃~1240℃ 2) 变形程度: 在斜轧穿孔入口锥碾轧实心坯的区域,变形程度为:
ε=
2 r dx
(4.16)
在斜轧穿孔出口锥碾轧毛管的区域,变形程度为:
ε=
r S + r 式中: r ——该截面的径向压下量; S ——该截面毛管壁厚; r = z x (tan α 1 ) ; z x ——单位螺矩;
(4.17)
α 1 ——入口锥辊面锥角;
d x ——该截面轧件直径;
η 1 Z x = πξ x d x x tan α ηy 2
式中: ξ x ——椭圆度系数; η x ——轴向滑动系数,查图表可得; η y ——切向滑动系数,近似为 1;
(4.18)
α ——送进角。
3) 变形速度: 在斜轧穿孔入口锥碾轧实心坯的区域,任一断面的沿接触弧的平均变形速度:
ε=
(4.19) 在斜轧穿孔出口锥碾轧毛管的区域,任一断面的沿接触弧的平均变形速度:
r R ω0 1 + m vt
2
ε=
其中:
r rp r + r rp vt + + 1 ln ω0 ( R + r ) R R r rp r R b R (弧度)
(4.20)
m=
(4.21)
ω 0 = arcsin
式中: ω 0 ——毛管咬入点所对应轧辊中心角; R ——入口区管坯任一断面的轧辊半径; r ——入口区管坯任一断面的管坯半径; r ——径向压下量;
(4.22)
32
无缝钢管生产技术
vt ——金属切向速度分量; rp ——顶头半径;
b ——轧辊和管坯接触宽度[13];
b=
re ——轧前管坯半径,即为 re =
椭圆度
2 Rre r Rr + (ξ 1) R + re R+r
dp
(4.23)
2 ;
ab dh ; 式中: a b ——导盘距离; d h ——轧辊距离;
ξ=
4.9.1.4 轧制压力 P 的计算
P = p×F
(4.24)
4.9.2
顶头轴向力的确定
确定斜轧穿孔时轴向力的大小对于生产有很重要的意义。 轴向力即为作用在顶杆上的压 力,轴向上的大小直接影响着顶杆强度及工作的稳定性。 顶头轴向力对轧辊所受的轴向力大小和轧制力矩的大小有直接影响。 因此在设计中, 为 了计算轧辊止推轴承,电机功率,顶杆的弯曲强度和顶杆的止推轴承,都要求较准确的确定 顶头轴向力的大小。如图 4-11 所示。
图 4-11
作用在顶头上的力
顶头的轴向力是由作用在顶头尖端上和主体上的两部分轴向力所组成。 顶头主体是由头 部、定径段和圆柱段组成。试验表明顶头尖端的轴向力只占顶头轴向力的 15%左右。因此, 顶头上的轴向力主要由作用在主体上的力决定。主体上的轴向力与坯料每转的送进距离有 关,送进距离越大,金属与工具接触面增大,作用在顶头上的轴向力就增大。 送进角愈大,送进距离也愈大,轴向速度增加,同时由于轧制压力的增加,其轴向分力 也增加,所有这些因素都使顶头所受的轴向力有较大的增长。
第四章
穿孔
33
穿孔过程中与顶头有关的重要力能参数指标有两个: 一个是顶头对金属的轴向力, 这个 力越大,顶杆产生的弯曲也越大,这样导致毛管壁厚不均匀增加;另外一个指标是顶头的轴 向力与轧辊上所受的总压力的比值 Q / P ,这个比值越小,金属对轧辊的轴向滑动就越小, 因而越有利于穿孔过程的力能条件。 顶头轴向力的确定用理论方法计算是很复杂的。 根据顶头受力的平衡条件而求出的轴向 力解析计算公式十分庞大,式中的各分力很难正确算出,因此在实际中无法应用。 作用在顶头轴向上的力基本公式计算为[12]:
Q = QH + 2 P0 (sin 0 + f cos 0 cos θ c ) (4.25) 式中: Q, QH 作用在顶头上和作用在顶头鼻部上的轴向力; P0 作用在顶头上的正压力;
0 顶头母线的倾斜角; θ c 倾斜角。
目前在设计时广为应用的办法是根据实际测定的 Q / P 比值来确定。 Q / P 比值的范围 在 27%~44%内,故推荐经验公式: Q =(0.35~0.50) P (4.26) Q =0.35 P 。 我们这里暂定为
4.9.3
斜轧力矩计算
4.9.3.1 转动轧辊所需的力矩 当没有顶头的情况下如图 4-12 所示,即轧件在前进方向没有受到轴向阻力时:
图 4-12
在没有顶头作用下斜轧的受力分析
34
无缝钢管生产技术
b M z = P R sin ω cos α + cos ω 2 ω 角由下式确定;
tan ω = b dx 式中: b ——轧辊与轧件平均接触宽度; d x ——轧制力作用面内的坯料直径;
(4.27)
(4.28)
α 送进角。
R ——合压力作用面上轧辊半径;
当有顶头时如图 4-13 所示,在前进方向受到顶头的轴向阻力(Q),这时传动轧辊所需 总轧制力矩为:
图 4-13
二辊穿孔机轧辊受力分析
M z = P ( R sin ω cos α +
b Q cos ω ) + R sin α 2 K
(4.29)
式中: K 轧辊数目; Q 顶头上的轴向力。 4.9.3.2 电机所需力矩 电机所需力矩除了轧制力矩外,还有摩擦力矩,空转力矩,动力矩。这些力矩的计算方 法与一般纵轧相同。 当不考虑动力矩时所需电机力矩:
M 电=
k
η1η 2
(
M Mm + + Mk) i i
(4.30)
式中: K ——轧辊数; M ——一个轧辊所需的轧制力矩; i ——减数箱传动比; M m ——产生在轧辊轴承中的摩擦力矩。
第四章
穿孔
35
由于传动扭矩是由穿孔主电机直接经主传动轴传至轧辊。所以减数箱传动比 i =1;
(4.31) 式中: f ——轧辊轴承中的摩擦系数, 滚珠轴承可取 f =0.004~0.006, 滑动轴承可取 f =0.08~0.1;
M m = Pf
dm 2
η1 ——齿轮机座传动效率,一般取 0.92~0.95; η 2 ——接轴传动效率,为 0.99;
M k ——空转力矩,空载时传动轧机主机列所需的力矩,它应
等于所有转动机件空转力矩之和。 一般可按经验方法确 定如下:
P ——轧制力; d m ——轴承摩擦园直径,即为轧辊辊颈直径;
M k ≈ 0.03M H M H ——电动机的额定转矩。
额定功率=3800kw 转速=62~110r/min
(4.32)
M H = 9.55
Ph 3800 = 9.55 × = 585.3kN m n 62
(4.33)
M k = 17.55kN m
4.9.3.3 电机功率的计算 根据已转换到电机轴上的总力矩 M 电,可求出电机功率:
N = 0.105M 电 n
式中: N ——电机功率,kw; M 电 ——总力矩,kN. m ;
(4.34)
n ——电机转速,r/min。
4.9.3.4 穿孔机轧制时间的确定 在电机校核中,需要用到纯轧时间和间隙时间。 1 纯轧时间的计算 斜轧的纯轧时间是指轧件通过变形区所需的时间——由管坯前端接触轧辊起到轧出的 毛管尾端离开轧辊止的时间间隔。
l+L πD n η x 1 r sin α 60 式中: l ——变形区长度; L ——毛管长度; T ——纯轧时间; T=
(4.35)
η x ——出口断面的轴向滑动系数;
36
无缝钢管生产技术
α ——送进角
D1 ——出口断面上的轧辊直径; nr ——轧辊的转速;
由此可见,为提高轧机生产效率,缩短纯轧时间,可以通过提高轧辊转速和加大送进角 来实现。 虽然也可以通过加大轧辊直径和增加滑动系数使纯轧时间减少, 但受到轧机结构和 咬入条件的限制,后面的方法是不可取的。 2 间隙时间的确定 由实际情况确定。
4.10
4.10.1
穿孔机的设备组成
斜轧穿孔机的设备由哪几部分组成? 斜轧穿孔机的设备由哪几部分组成
穿孔机设备由主传动、前台、机架和后台四大部分组成。主传动一般由主电机或主电极 +变速箱组成。前台设备一般包括受料槽、导管和推钢机组成。机架中包括轧辊和导向设备 (导盘或导板)。 后台设备主要包括定心辊、毛管回送辊道、顶杆小车、顶杆小车的止推座及将毛管从穿 孔机组运送到轧辊机组的运输设备,常见的运输设备有传送链、回转臂和电动车。
4.10.2
主传动的方式及特点? 主传动的方式及特点
穿孔机的主传动电机可以使用直流电机或交流电机。 直流电机一般通过传动轴直接与轧 辊连接,而交流电机则通过减速机和传动轴与轧辊连接。 一个机组可以使用一个电机,即一个电机连接减速机,减速机输出两个输出轴。也可以 两个电机串联后再接减速机单独驱动一个轧辊。 穿孔机使用的接轴有万向接轴和十字头接轴。 十
字头接轴具有良好的调节性能, 无论在 水平面和垂直平面内都可以产生相对的角位移。
4.10.3
管坯定心机的组成结构? 管坯定心机的组成结构
定心方法有两种,即热定心和冷定心。热定心是用压缩空气或液压在热状态下冲孔。特 点是生产效率高,设备简单,同时由于冲头形状与顶头鼻部形状相适应,能获得良好的定心 孔形状。从近些年的发展来看,热定心工序有逐步被取消的趋势。 冷定心是在离线状态下在机床上钻孔,冷定心仅在高合金或重要用途钢管的生产中采 用。
4.10.4
穿孔机机座(牌坊)有哪几部分组成 穿孔机机座(牌坊)有哪几部分组成?
穿孔机的机座大多由包括以下几部分: 转鼓,又称作轧辊箱。作用是放置轧辊,轧辊在转鼓内滑动或与转鼓紧固在一起。 轧辊倾角调整装置,常用的驱动设备是电机+蜗轮蜗杆+定位器(编码器),作用在转 鼓上。一般放置的位置在牌坊的侧面。由于立式穿孔机的下转鼓在水平面以下,冷却水及氧 化铁皮的长时间冲刷,工作环境恶劣,给电机的维护带来困难,用液压马达替代电极可以解 决此问题。
第四章
穿孔
37
轧辊倾角调整的平衡装置 与轧辊倾角调整装置组合,消除穿孔过程中产生的间隙和冲击。根据转鼓的形状不同, 安装的位置可以与倾角调整装置在一侧或另外一侧。常使用液压缸实现此功能。 轧辊的平衡装置 作用是消除穿孔过程中对轧辊的瞬间冲击。 机盖 机盖上一般安装轧辊间距的调整装置。
4.10.5
导盘调整方式有哪几种? 导盘调整方式有哪几种
导盘调整主要指导盘的间距调整、高度调整和轴向调整。 导盘的间距调整,一般由电机、蜗轮蜗杆组成,驱动导盘装置的底座并配以消除间隙的 平衡装置; 导盘的高度调整,因孔型封闭的要求,左右导盘的高度不同,调整的方式有垫片调整即 直接在刀盘下面加垫片和楔块调整调整即通过楔块并配以平衡装置。 导盘的轴向调整,这种方式不常用。因导盘在穿孔时的接触长度比导板短,为了减小毛 管尾部的椭圆度, 在穿孔机的设计阶段就将导盘的中心线向后移动一些距离。 后移的距离使 机组大小而定,一般在 30 毫米以内。
4.10.6
三辊定心的作用和结构? 三辊定心的作用和结构
由于顶杆很长且直径较小, 因此顶杆的刚度较差。 为了增加顶杆刚度和防止顶杆在穿孔 过程中的抖动,在穿孔机的后台设置定心辊装置。老式穿孔机因毛管较短,定心辊的数目一 般为 3~4 架,随着毛管长度的增加现代的穿孔机定心辊数目为 6~7 架。 每一台定心辊装置有三个互为 1200 布置定心辊组成,即上定心辊和 2 个下定心辊。 在轧制过程中定心辊的另外作用是: 当毛管未接近定心辊时,三个定心棍将顶杆抱住,并随顶杆而转动。作用是使顶杆轴线 始终保持在轧制线上,不至于因弯曲而产生甩动; 当毛管接近定心辊时,上下定心辊同时打开一定距离(小打开位置),使毛管进入三个 定心辊之间,毛管就在三个定心辊中旋转前进,其导向的作用; 当一只毛管完全穿透之后,上定心辊向上抬起一个较大的距离(大打开位置),布置在 定心辊之间的升降辊同时将毛管托住。 定心辊的驱动最早是由气缸完成的, 使用在小机组上。 后来被液压缸代替。 定心辊小打开的间距需要根据毛管直径的变化而调整, 调整距离指导行毛管时三个辊的 距离,距离的大小为毛管直径加毛管跳动量,毛管的跳动量一般为 8~12 毫米左右,薄壁管 可以取上限,厚壁管取下限。 小打开位置调整一般通过调整丝杠来限制液压缸的行程, 最新型的液压缸缸体内带有位 置检测装置,调整行程只需在调整终端上修改数值即可,具有简单、安全、快捷的优点。 第一架三辊定心辊的位置大多放置在机架以外, 为了减小毛管头部的壁厚不均, 最新的 设计机组将第一架三辊定心辊伸入到机架内或者在机架内设立四辊或三辊式的定心装置。
4.10.7
顶杆的冷却形式有哪些? 顶杆的冷却形式有哪些
顶杆的循环方式主要有两种。
38
无缝钢管生产技术
一种为顶杆不循环,此种方式顶杆一般为内水冷式,而顶头为外水冷式,每穿孔一次更 换一个顶头或者直到一个顶头损坏才更换; 另一种方式为顶杆循环使用,此种顶杆结构简单、维护方便,每组一般需要 6~12 支才 能循环使用。
4.10.8
顶头的使用方式有几种? 顶头的使用方式有几种?
顶头的使用方式主要有以下几种: 顶头与顶杆连接在一起一同进行循环的。顶头损坏后需要离线进行更换,一般情况下, 一组顶杆 6~7 支,冷却站在轧线之外,占地面积较大。 顶头在线循环。即使用一支顶杆,每穿孔一次,顶头更换一次,一般情况下使用三个顶 头,顶头循环的次序是 1,2,3,再 1,2,3。这种方式只更换顶头,使用方便,生产节奏 快。但要求顶头的定位精确,工具加工精度高,设备运转正常,否则的话,容易发生顶头与 顶杆连接不牢,顶头脱落的情况。 一个顶头/顶杆单独使用。当顶头损坏后,须在线更换顶头顶杆。
管道、容器、设备结构用无缝钢管标准
2019-03-19 11:03:29
1 管道、容器、设备结构用无缝钢管标准范围 本标准规定了管道、容器、设备结构用无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 本标准适用于宝山钢铁股份有限公司生产的用于制造管道、容器、设备及其它结构中有较高要求的碳素钢及低合金钢热轧无缝钢管。2 管道、容器、设备结构用无缝钢管标准规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 228 金属材料 室温拉伸试验方法 GB/T 242 金属管扩口试验方法 GB/T 246 金属管压扁试验方法 GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 2102 钢管的验收、包装、标志及质量证明书 GB/T 7735 钢管涡流探伤检验方法 GB/T 8163 输送流体用无缝钢管3 管道、容器、设备结构用无缝钢管标准尺寸、外形、重量 3.1 外径和壁厚 3.1.1 外径和壁厚如表1、表2所示。根据需方要求,经供需双方商定,可供应表1、表2规定以外的钢管。3.1.2 外径的允许偏差应符合表3规定。 3.1.3 壁厚的允许偏差应符合表4规定。3.2 长度 3.2.1 钢管的通常长度为6m~12m。经供需双方协议,可供应5m~12m长度范围内的定尺钢管,其长度允许偏差应符合表5的规定。 3.2.2 根据需方要求,经供需双方协议,也可供应其他长度的钢管。 3.3 外形 3.3.1 钢管的弯曲度不得大于如下规定:壁厚≤15mm 1.0mm/m 壁厚>15mm 1.5mm/m 3.3.2 钢管的两端端面应与钢管轴线垂直,切口毛刺应清除。 3.4 重量 3.4.1 钢管按实际重量交货,亦可按理论重量交货。钢管每米理论重量列于表1、表2(钢的密度按7.85kg/dm3)。 表1 钢 管 规 格 表(DIN系列)
表2 钢 管 规 格 表(国标系列) 表3 管道、容器、设备结构用无缝钢管标准外径允许偏差外径 da mm 外径允许偏差 ≤50 ±0.5mm >50 ±1%da
表4 壁厚允许偏差 外径da≤130mm 外径da>130mm 壁厚S 壁厚S S≤2·Sn 2·Sn<S≤4·Sn S>4·Sn S≤0.05da 0.05da<S≤0.11 da S>0.11 da +15% -10% +12.5% -10% ±9% +15% -10% ±12.5% ±10% 注:Sn为标准壁厚(见表1和表2)
表5 定尺长度的允许偏差 定尺长度 长度允许偏差 ≤ 6m +10mm 0 > 6m +15mm 0 3.4.2 钢管的实际重量与理论重量的偏差不得大于下列规定: 单根钢管 +10% -8% 不少于10吨时的车载量 +10% -5% 3.5 标记示例 用St44.0钢制造的外径为76.1mm,壁厚为2.9mm的钢管其标记为: 钢管St44.0-76.1×2.9-Q/BQB 203-2003 4 技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表6规定。经供需双方协商,可供应其它牌号的钢管。 表6 钢的牌号和化学成分 牌 号 化 学 成 分 % C Si Mn P S Cr Ni Cu St37.0 ≤0.17 0.17~0.37 0.35~0.65 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 St44.0 ≤0.21 0.17~0.37 0.50~0.80 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 St52.0 ≤0.22 ≤0.55 ≤1.60 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 St55 0.33~0.41 0.17~0.37 0.50~0.80 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 CK45 0.42~0.50 0.17~0.37 0.50~0.80 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20
4.1.2 钢管的成品化学成分允许偏差按GB/T 222的有关规定。 4.2 冶炼方法 钢管所用的钢采用电炉或氧气转炉冶炼。 4.3 交货状态 4.3.1 钢管通常以热轧状态交货,用户要求正火处理,需在订货时商定。 4.3.2 如果钢管终轧温度与正火温度相同,认为满足了正火要求。 4.3.3 如果要求钢管表面涂防腐涂料,应在订货时商定。 4.4 力学性能 钢管室温下的纵向力学性能应符合表7的规定 表7 力学性能 牌 号 抗拉强度 Rm, MPa 下屈服强度ReL, MPa 断后伸长率 A,% 壁厚 mm ≤16 >16 St37.0 350~480 ≥235 ≥225 ≥25 St44.0 420~550 ≥275 ≥265 ≥21 St52.0 500~650 ≥355 ≥345 ≥21 St55 540~645 ≥295 ≥285 ≥17 CK45 590~730 ≥335 ≥325 ≥14 注:当屈服现象不明显时,以规定非比例延伸强度Rp0.2代替下屈服强度。 4.5 密实性钢管应逐根进行涡流探伤检验,以检验钢管的密实性。需方如对钢管的密实性进行复验时,也可按GB/T 8163的规定进行水压试验,但最高试验压力不超过20MPa。 4.6 工艺试验 4.6.1 用St37.0、St44.0、St52.0钢制造的钢管,应进行压扁试验。根据需方要求,供需双方商定并在合同中注明,用St55钢制造的钢管也可进行压扁试验。 压扁试验后,试样上不允许存在裂缝或裂口,钢管压扁后平板间距离按下式计算: H= (1+C)S --------------------------------------------------------------------------------C+S/da 式中:S-钢管的公称壁厚,mm; da-钢管的公称外径,mm; α-单位长度变形系数,对于St37.0,α=0.09;对于St44.0、St52.0,α=0.07;对于St55 ,α=0.06 如果S/da大于0.15,该牌号钢的α值应减小0.01。 4.6.2 根据需方要求,并在合同中注明,用St37.0、St44.0、St52.0钢制造,壁厚不大于8mm的钢管,可进行扩口试验。 扩口试验在冷状态下进行,顶口锥度为30°、45°、60°中的一种,扩口后试样不得出现裂缝或裂口,扩口试样外径扩口率应符合表8规定。表8 扩口率 牌号 扩口率 % 内径/外径 ≤0.6 >0.6~0.8 >0.8 St37.0 St44.0 10 12 17 St52.0 8 10 15 4.7 管道、容器、设备结构用无缝钢管标准表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除掉,但清理处的实际壁厚不得小于壁厚所允许的最小值。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。5 管道、容器、设备结构用无缝钢管标准检验与试验 5.1 钢管的尺寸应用合适的量具逐根进行测量。 5.2 钢管的内、外表面需在照明下用肉眼逐根进行检查。 5.3 钢管的检验项目、取样数量和试验方法应符合表9的规定。表9 钢管的检验项目、试验方法及取样数量序号 检验项目 试验方法 取样数量 1 化学成分 GB/T 222,GB/T 4336 每炉一个试样 2 拉伸试验 GB/T 228 每批一个试样 3 压扁试验 GB/T 246 每批一个试样 4 扩口试验 GB/T 242 每批一个试样 5 涡流探伤 GB/T 7735 逐根
5.4 组批规则 5.4.1 钢管按批进行检验和验收。每批钢管应由同一规格、同一牌号、同一炉号的钢管组成。当需方事先未提出特殊要求时,碳素钢管可以不同炉号的同一规格、同一牌号的钢管组成一批。 5.4.2 钢管每批为200根,剩余钢管的根数不小于100根时,单独为一批;小于100根时,应并入相邻的一批中。 5.5 复验与判定原则 对于拉伸试验、压扁试验及扩口试验,初验如有一项试验结果(包括该项试验所要求的任一指标)不合格,则应将该根钢管剔除,并从同一批钢管中重新取2根钢管复验不合格的项目,复验结果即使有一个指标不合格,则整批钢管不予验收。 供方可对复验不合格的钢管进行正火处理,作为新的一批提交验收。6 包装、标志和质量证明书 钢管的包装、标志和质量证明书应符合GB/T 2102的规定。 Q/BQB 203-2003 附录A(资料性附录) 预计温度下的强度特性值 表 A.1 St37.0、St44.0、St52.0牌号的钢管预计温度下的强度特性值Rp0.2 牌 号 预计温度下的强度特性值MPa 50℃ 200℃ 250℃ 300℃ 壁厚 mm ≤16 >16~25 ≤16 >16~25 ≤16 >16~25 ≤16 >16~25 St37.0 255 235 185 175 165 155 140 135 St44.0 275 265 215 205 195 185 165 160 St52.0 355 345 245 235 225 215 195 190 注: 1 表列值为规定非比例延伸强度RP0.2的估计值,未被证实。此值在计算时应考虑代入较高的安全系数(例:DIN 2413-1972版中适用范围为20%)。 2 对于大于50℃至小于200℃中间范围,应在20℃(见表7)和200℃之间线性内插,不随意凑成整数。
表A.2 St55牌号的钢管预计温度下的强度特性值下屈服强度 牌 号 下屈服强度,MPa 20℃ St55 355 注:1 对于按DIN 2413计算壁厚的钢管,20℃时的强度特性值,可用于120℃以下的温度。 2 外径≤30mm、壁厚≤3mm的钢管,允许降低10MPa。
附加说明: 本标准与DIN1629-1984、DIN2448-1981的一致性程度为非等效。 本标准代替Q/BQB 203-1999。 本标准与Q/BQB 203-1999相比主要变化如下: ――外径范围上限扩大到180.0mm; ――通常长度下限修改6m; ――加严P、S、Cu含量的要求; ――涡流探伤采用国家标准。
紫铜带密封垫的选用
2019-02-27 13:26:37
选用准则 紫铜带密封垫的选用准则是,关于要求不高的场合可凭经历选用, 不合当令再替换。但对那些要求严厉的场合,如压力迸发、可燃 气体温度高、有腐蚀性的活动介质、流速高且有必定压力和温度 的管道等,则应依据作业压力、作业温度、活动介质腐蚀性以及 零件结合面的情况和形状来选用。 一般来说,常温低压条件下选用非金属软紫铜带密封垫,中压高温 时选用金属与非金属组合的紫铜带密封垫或金属紫铜带密封垫;在温度和压力较 大动摇条件下,应选用弹性好的或自紧式密封层;在低温、腐蚀性 介质或真空条件下,应选用具有特殊功能的紫铜带密封垫。 选用紫铜带密封垫的影响要素 由上述可知,零件技能情况及作业条件、紫铜带密封垫材料及密封 功能等对合理选用紫铜带密封垫有必定影响,现举例一二予以阐明。 1)零件结合面情况。零件结合面情况不同,要求运用的密封 垫也不同。例如:润滑的零件结合面,一般应选用低压、软质和较 薄的紫铜带密封垫;高压作业条件下、零件强度满足时应选用厚而软的密 封垫,不宜选用金属紫铜带密封垫。由于这时要求的压紧力过大,导致 螺栓较大的变形、零件压紧力减小,反而使紫铜带密封垫有效性下降。只 有在零件结合面狭隘而润滑的情况下可运用金属紫铜带密封垫,由于此 时在相同螺栓拧紧力的情况下紫铜带密封垫有较大的压紧力,能够坚持 满足的密封度。 2)零件结合面粗糙度。这对密封作用影响很大,特别是当采 用非软质紫铜带密封垫时。这是由于零件结合面粗糙度大是构成走漏的 主要原因之一。软质紫铜带密封垫对零件结合面粗糙度要求较低,这是由于它简单变形,能堵住两零件 结合面微凸体彼此触摸而构成的走漏通道,然后确保了杰出的密 封作用。
推拉窗密封条应用
2018-12-29 09:43:06
密封材料
一般推拉窗均采用毛条密封,而平开窗一般采用胶条密封。采用毛条密封比采用胶条密封的防漏水、防漏气性能差很多。加片毛条,比传统的毛条质量好,但还是不如胶条。一方面是由于两种密封条安装部位结构明显不同,毛条的密封性不及胶条的密封性i另一方面是由于两种密封条主体材质、结构原因。气密要间隙足够小就行,而水密要求无间隙。
推拉窗密封条全部改用胶条密封。传统推拉窗密封条之所以一般采用毛条,主要由于推拉窗开启时,开启扇与密封条之闾滑动摩擦。毛条与开启扇之间的滑动摩擦力要比胶条与开启扇之间摩擦小。为了减小开启力,因而采用毛条密封,也降低了推拉窗的性能。当推拉窗开启扇与胶条密封条相对滑动时,为降低摩擦力可对胶条进行表面光滑处理。或者采用类似平开窗密封方式。关闭时,开启扇与密封条紧密接触从而密封。开启时,二者分离,不产生摩擦。
在确保胶条断面形式前提下,尽量降低胶条硬度,降低启闭力。还要增加胶条压合量,弥补加工误差缺陷以及自身`型材变形,增强密封性。
密封道
密封道连续封闭、密封效果才能好。由于结构原因,平开窗很容易形成连续密封道;而推拉窗结构较复杂,密封道不容易连续。不容易连续就不想办法解决了,知难而退,因而,造成推拉窗不如平开窗性能好的结果。更有甚者,有的厂家的推拉窗产品的密封条根本没起作用,形同虚设,这样的产品依然提供给用户,这是侵犯用户的合法权益,对用户极端不负责任,更影响推拉窗产品的声誉。
结构白铜
2017-06-06 17:50:04
结构白铜和精密电阻合金用白铜(电工白铜)的区别 结构白铜的特点是机械性能和耐蚀性好,色泽美观。结构白铜中,最常用的是B30、B10和锌白铜。另外,还有铝白铜、铁白铜和铌白铜等。B30在白铜中耐蚀性最强,但
价格
较贵。铝白铜的性能同B30接近,
价格
低廉,可作B30的代用品。锌白铜于15世纪时就已在中国生产使用,被称为“中国银”,所谓镍银或德银也属此类锌白铜。锌能大量固溶于铜镍之中,产生固溶强化作用,且抗腐蚀。锌白铜加铅以后能顺利的切削加工成各种精密零件,故广泛使用于仪器仪表及医疗器件中。这种合金具有高的强 白铜手炉2度和耐蚀性,弹性也较好,外表美观,
价格
低廉。铝白铜中的铝能显著提高合金的强度及耐蚀性,其析出物还可产生沉淀硬化作用。 结构白铜广泛用于制造精密机械、化工机械和船舶构件。精密电阻合金用白铜(电工白铜)有良好的热电性能。BMn 3-12锰铜、BMn 40-1.5康铜、BMn 43-0.5考铜以及以锰代镍的新康铜(又称无镍锰白铜,含锰10.8~12.5%、铝2.5~4.5%、铁1.0~1.6%)是含锰量不同的锰白铜。锰白铜是一种精密电阻合金。这类合金具有高的电阻率和低的电阻率温度系数,适于制作标准电阻元件和精密电阻元件。是制造精密电工仪器、变阻器、仪表、精密电阻、应变片等用的材料。康铜和考铜的热电势高,还可用作热电偶和补偿导线。更多结构白铜和精密电阻合金用白铜(电工白铜)的区别请详见上海
有色金属
网
冬季门窗如何密封才能保温
2018-12-24 09:29:03
冬至过了,一年中最冷的时候来了。不少朋友抱怨,家里开着暖气空调,可还是不暖和。归根究底是因为门窗漏风。确实是这样,在靠近窗口和露台的地方,确实温度要低很多。因此,有专家提醒各位业主,冬季要做好门窗密封,防止室内漏风,温度流失。
导致窗户漏风的原因
良好的密封性是衡量门窗质量的指标之一。许多人反映的家中门窗漏风的原因主要可归结为型材不平整、密封条老化、框架与墙体之间出现裂缝、五金件老化等。此外,某些业主家中门窗在最初测量时出现偏差,如窗扇尺寸偏小无法与窗框密合,也为漏风埋下了隐患。由于密封胶条问题而导致漏风问题,业主可根据门窗的规格与型号购买与之相对应的密封条,自行更换。由于其他原因造成的漏风问题,则需要业主联系专业技术人员进行检修。
密封效果取决于型材和开启方式
断桥铝型材价格偏贵,但保温、隔热、密封效果优于塑钢型材。此外,建议消费者选择带有双层中空玻璃结构的外窗,其玻璃与玻璃之间留有一定的空隙,因此具有良好的保温、隔热、隔声性能。在窗户的开启方式上,平开窗的密封效果普遍优于推拉窗。原因在于平开窗一般采用密封胶条进行密封,而推拉门窗一般采用毛条进行密封,胶条的密封效果优于毛条密封。另外平开窗的开启扇部位采用多锁点五金件进行锁紧密封,密封效果较佳。而推拉窗一般都采用勾锁或碰锁进行锁紧,密封效果较差。
T形口门解决门缝漏风
为避免门缝漏风,许多木门企业都推出T形口门。与传统的平口门相比,T形口门门扇边缘呈T形转折状,突出的部位正好压在门套上,使门的密封性得到改善。此外,如果室内的木门门缝过大,业主则可以通过调整合页等五金件来进行校正,让门扇与框架更加贴合。
■ 防漏方案
门窗型材不平整
门窗漏风的主要原因就在于门窗扇与框之间的密合度,型材的平整是影响密合度的重要因素。假如型材的平整度不够或变形,就会使得门窗扇与框之间存在一定的缝隙,造成漏风。
解决方案
门窗型材不平或变形,应当及时联系门窗厂商,由其上门进行旧门窗的拆除以及新门窗的安装,拆除、测量到安装大约需要3-7天时间。
密封条质量残次或老化
密封条是门窗密封的关键,目前市面上的密封条质量差别很大。优质的密封条具有较强的韧性,耐磨性强,不易断裂;而质量差的密封条十分脆弱,容易腐蚀、断裂,达不到密封效果。如密封条安装不好,出现了不平或起鼓的情况,都有可能导致漏风。一般来说,门窗的密封条都有一定的使用年限,开关门窗次数频繁则可能导致密封条提前老化,需要业主及时检查及更换。
解决方案
单纯由于密封条质量问题而引起的漏风,可通过更换新密封条来解决。据鑫大利塑钢厂市场部李丹介绍,消费者可到建材市场购买密封条,然后自行安装或联系专业人员来安装。目前市场上质量较好的密封条是三元乙丙材质密封条,这种材质韧性较强,不易老化。自行购买单价大约为5元/米,厂商提供则按50-60元/平方米收费安装。
在建材市场自行购买密封条时,可先闻闻是否有刺激性气味儿,若味道刺鼻则表示其化学成分可疑,不要轻易购买。也可把密封条缠紧在型材上,在阳光下放置一段时间,看型材表面与密封条的接触面是否出现污损变色,若密封条的表面渗油、脏手,则不能购买。
12后一页
镍电炉结构(一)
2019-01-25 15:49:32
大型铜镍太熔炼电炉一般采用矩形电炉,它是由电炉本体和附属设备所组成。 1)炉体 矩形电炉炉体主要组成部分有:炉基和炉底、炉墙、炉顶、钢骨架、加料装置、熔体放出口、排烟系统、测温装置和供电系统等,如图所示。 (1)炉基和炉底。矿热电炉炉底温度较高,需要良好的通风冷却,所以电炉基由若干个(国内某厂为96个)耐热钢筋混凝土支柱组成,支柱一般高于1.7m,便于空气流通冷却和观察炉底情况。支柱地表面向安全坑一侧倾斜,以保证炉子发生事故时,高温熔体顺利流入安全坑内。支柱上方铺设成对的工字钢梁,其上铺设一层厚钢板(国内某厂使用40#工字钢,钢板厚度为40mm),钢板上砌筑镁质的粘土质耐火砖炉底,炉底为反拱形,以防止熔体侵入后,炉底砌体上浮。炉底反拱取每米炉宽升高100~200mm。炉底主要由粘土砖层与镁砖构成,两层之间留有30~50mm镁砂层。[next] (2)炉墙。炉墙的外壳一般采用30~40mm厚钢板制成,内砌耐火砖。由于电炉高温度区集中在电极附近,所以熔池区炉墙常用镁砖或铬镁砖砌筑,而最外层耐火粘土砖,渣线以上全用耐火粘土砖,炉墙砖均为湿砌,墙体留有一定的膨胀缝。为了延长炉寿命,近年来有些工厂没炉体四周外炉墙安装冷却水套,效果很好。由于炉子两端没有熔体放出口,炉衬易损坏,故端墙较侧墙厚。两侧墙设有工作门及防爆孔,便于开停炉、观察炉况的排泄炉内高压气体之用。 (3)炉顶。因矿热电炉的炉膛空间温度不高,拱形炉顶一般用300mm厚的楔形耐火高铝砖砌成。炉顶沿炉子中心线设有电极插入孔、转炉渣返回孔。中心线两侧还设有加料孔、排烟孔。由于炉顶开洞较多,这些部位用异形砖筑。先将炉顶砖砌好后,随即浇铸灌高铝质钢纤维低水泥浇注料。 2)钢骨架及紧固装置 为了使炉墙具有必要的刚性,在砖体的外面包一层厚30~40mm的钢壳板。围板外面用骨架加固。 电炉炉底的底板为带筋钢板,安在底梁上,底梁支撑在柱状基础上。 电炉内架由许多立柱组成,立柱相互之间的距离为1.5~20.m。两侧相互对立的柱子用拉杆拉紧,拉杆分别从炉顶上面和炉底下面通过,拉杆端头用螺母和销紧螺母达压紧在夹持立的柱的横梁上,横梁和螺母之间装有弹簧,以缓冲炉墙和炉顶受热膨胀时所产生的水平推力,拉杆是用直径50~70mm的圆钢制作的接头连接。 3)排烟系统 为使烟气从炉膛均匀排出,通常在炉顶设有多个烟孔,其配置视电极排列而定。烟气经烟道、旋风收尘器、电收尘器一系列净化设备后,根据烟气SO2浓度高低送去制酸或排空。 4)电炉加料装置 物料是从炉顶上的矿仓加到炉子 里去的,一般是利用炉顶两侧的刮板运输机,将物料运至小料仓,然后经加料管加到炉膛里,物料给料和配料,采用电振器来进行。 5)熔炼产物放出口 在炉子的一端设有2~4个放低镍锍口,位于炉底以上200~500mm的不同标高上。电炉熔炼的低镍锍,通常是稍许过热的(1200℃)。当放出过热低镍锍时,放过热镍锍时,放出口附近的砖体为低镍锍所浸透,而放出口本身因受蚀而直径变大。为了使放出口具有一定的直径,在孔的外面装有耐火衬套。耐火衬套是用耐高瘟铬镁质材料组成,也有用石墨衬套的,其孔径为30mm。衬套嵌入可拆卸放出口的锥孔中,要使衬套孔的中心和砖体上的低镍锍口中心相一致,使衬套对正中心并固定起来,所用的工具是最大的铸铁环、长箍和楔子,可拆卸的放出口板用连板或楔子固定在炉子外壳上。[next] 放渣口一般为2~4个,设在炉子另一端上,距离炉底的高度为1450~1750mm。放渣口的标高低于渣面,是渣含镍最低的部位。 6)测温装置 为了便于观察炉子的工作情况,在炉体的炉墙和炉顶等不同部位、不同熔池深度分别安装有热电偶,以测量指示各部位温室度变化情况。 7)设备的冷却与知短网防尘 (1)炉底冷却。电炉炉底和导电铜排设有通风冷却高施。电炉炉底由于镍锍 过热而有可能造 成炉底渗漏镍锍,采用处部强制通风进行冷却。每台电炉各用一台风机供风。炉底风机的运行视炉底温度高氏而定。当温底正常(400~500℃),可以不通冷却风;如温度过高(大于600℃),则必须通风。 (2)供电短网(铜排)冷却。由变压侧引出的导电铜排有两种型式:一种是水冷式管状铜管采用循环水冷,另一种是片状铜排采用通风冷却。片状铜排外部装有密封罩,因此必须对导电铜排加以密封,以防止因粉尘堆积而造成片间知短路。密封罩用厚1.5~2mm钢板制成,并用炉底冷却风向罩内供风进行冷却。 8)电极装置 为了向电极供电,每根电极都有一套夹持、供电及使电极活动的装置。电极活动的装置。电极夹持的构件主要为铜瓦,并通过铜瓦向电极供电。铜瓦为铜质弧形中空或预埋铜管冷却的长瓦状水套,其弧形与电极的外圆相吻合.在同一水平上沿电极壳环抱配置,一般为6~8块。电极的上下活动机构可分为机械式与液压式两种,机械式的方法是通过卷扬设备带动电极上下活动,液压式的方法是通过固定于楼板上的液压缸的柱塞升降,带动固定于电极的压放同样可以通过机械的方法和液压的方法来完成,前者通过钢带的续接,而后者是通过多组液压设备来完成。金川公司电炉的电极压放系统一直是采用洗衣液压方式,由以前的四组上下摩擦环、中间缸、二道 摩擦环及铜瓦楔紧起缸来完成,减少了中间缸,使设备更为简单。电极装置(包括夹持系统、升降压放系统)一个重要的问题是电极的绝缘,应给予充分的注意。应保证在任何已情况下绝缘都安全可靠。
胶磷矿除镁降硅选矿技术
2019-01-16 11:53:19
胶磷矿除镁降硅选矿技术
云南、四川、湖北宜昌、神农架和保康一带的磷矿属沉积型磷块岩,呈隐晶质块体,假鲕粒状集合体,即胶磷矿,属难选矿石。矿床:分三个成矿层位,其中下层为具 工业价值的矿层。下矿层又分为三个矿层,即上、下贫矿层和中富矿层,形成“两贫夹一富” 的矿层结构。上贫矿层(Ph13-3)由白云岩条带磷块岩组成,平均品位18.01%,为碳酸盐型矿石。 中层矿层(Ph13-2)由致密条带磷块岩组成,平均品位32.79%。下贫矿层(Ph13-1)矿石由泥质条带磷块岩组成,平均品位15.16%,属硅酸盐型矿石。整个Ph13矿层属混合型矿石。区内富矿少,大量存在的是贫矿石。 以下列出宜昌和保康两矿点的原矿化学组成(表1)。 2、矿石矿物组成及嵌布特征矿石中主要有用成分为胶磷矿,脉石矿物以白云石、石英和粘土矿物为主,其次有长石、云母、碳酸盐矿物等。 矿石矿物颗粒微细,磷矿物与脉石矿物紧密共生,呈胶体或隐晶、微晶质。胶磷矿镜下为褐色 、棕色或无色,呈似胶状、砂屑状,矿物集合体为鲕粒,假鲕粒结构,常混杂有粘土矿物,碳酸盐,硅质,铁质,与脉石相间分布,形成所谓“内生”脉石。表1 原矿化学组成分析结果项目P2O5CaOMgOCO2烧失量酸不溶物R2O3FSO4-2SSiO2宜昌19.2539.9810.8522.8322.704.501.630.560.700.35/保康21.8038.144.9212.4112.18/3.731.82//13.32碳酸盐类脉石矿物为白云石、方解石、多呈细粒状集合体和脉状组成的白云条带,有的呈不规则集合体散布于胶磷矿集合体中,有些交代胶磷矿鲕粒而出现。白云石一般含量高,其粒度小于0.01-0.6毫米,呈半自形、自形。石英分布于泥硅质矿石中,呈棱角状、次滚圆状,粒度0.01-0.04毫米。由上述可知,磷矿物与脉石矿物呈细粒嵌布,从选矿角度看,需要将矿石磨至-200目或更细,方能使矿物单体解离。 单一浮选流程技术指标产品名称产率(%)品位(%)回收率(%)备注磷精矿69.7532.592.15产品含MgO0.58%,含 SiO22.08%
蜂窝铝板封缝注胶工艺
2018-12-29 09:42:59
(1) 将蜂窝铝板保护膜折边部分撕开,按90°转角折边处贴上美纹纸,美纹纸在四角胶缝处应折90°转角,整个板块美纹纸一次到位,用力抹平,避免美纹纸折皱。
(2) 填充泡沫棒,要求密实平直。
(3) 注胶时应按直线走,从上至下,从左至右,一次打完。
(4) 刮胶时应按注胶步骤一次到底,在角部处刮拉速度稍微缓慢一些。
(5) 撕去美纹纸成外向45°倾斜拉扯,应把撕掉美纹纸集中处理,避免环境污染。
结构用无缝钢管
2019-03-18 11:00:17
1 40CrB结构用无缝钢管适用范围 本暂行供货技术条件规定了40CrB结构用热轧无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 本暂行供货技术条件适用于宝山钢铁股份有限公司生产的用于制造履带销套用或其他结构用的40CrB热轧无缝钢管。
2 40CrB结构用无缝钢管规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 224 钢的脱碳层深度测定方法 GB/T 225 钢的淬透性末端淬火试验方法 GB/T 5777 无缝钢管超声波探伤方法 GB/T 7735 钢管涡流探伤检验方法 Q/BQB 203 管道、容器、设备结构用无缝钢管 ASTM E45 测定钢中夹杂物试验方法 ASTM E112 平均晶粒度的测定方法
3 40CrB结构用无缝钢管尺寸、外形和重量 3.1 钢管的外径和壁厚应符合Q/BQB 203中表1、表2的规定,其允许偏差按Q/BQB 203中表3、表4的规定执行。 3.2 钢管的长度、外形和重量应符合Q/BQB 203的规定。
4 技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。 4.1.2 钢管的成品化学成分允许偏差应符合GB/T 222的有关规定。 表1 牌号 化 学 成 分 % C Si Mn P S Cr B 40CrB 0.38~0.43 0.15~0.35 0.60~0.85 ≤0.025 0.010~0.030 0.90~1.20 0.0005~0.003
4.2 冶炼方法 钢管所用的钢采用电炉冶炼,并经炉外精炼。 4.3 交货状态 成品钢管以热轧状态交货。 4.4 淬透性 圆坯锻造后经870℃~880℃正火处理,按GB/T 225的要求加工成标准试样,采用845±5℃进行顶端淬火,其淬透性能应满足: 特殊要求可经供需双方协商。 4.5 脱碳层 每批在二根钢管上各取一个试样,按GB/T 224进行内外表面脱碳层检验。内、外表面总脱碳层深度分别不大于0.5mm和1.2mm。 4.6 奥氏体晶粒度 供方应根据ASTM E112采用930℃保温3小时淬火法检查奥氏体晶粒度,并保证奥氏体晶粒度应细于5级。 4.7 非金属夹杂 钢的非金属夹杂物应根据ASTM E45中A法检验。非金属夹杂物级别A类≤3.0,B类≤2.5,C类≤2.0,D类≤2.0。特殊要求可经供需双方协商。 4.8 密实性 钢管应按GB/T 7735中B级逐根进行涡流探伤检验,以检验钢管的密实性。 4.9 无损探伤 钢管应按GB/T 5777中C8级逐根进行超声波探伤检验。 4.10 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除,但清理处的实际壁厚不得小于壁厚所允许的最小量。特殊要求可与用户协商。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。
5 检验与试验、包装、标志和质量证明书 钢管的检验与试验、包装、标志和质量证明书应符合Q/BQB 203规定。1 适用范围 本暂行供货技术条件规定了40CrB结构用热轧无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 本暂行供货技术条件适用于宝山钢铁股份有限公司生产的用于制造履带销套用或其他结构用的40CrB热轧无缝钢管。
2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 224 钢的脱碳层深度测定方法 GB/T 225 钢的淬透性末端淬火试验方法 GB/T 5777 无缝钢管超声波探伤方法 GB/T 7735 钢管涡流探伤检验方法 Q/BQB 203 管道、容器、设备结构用无缝钢管 ASTM E45 测定钢中夹杂物试验方法 ASTM E112 平均晶粒度的测定方法
3 尺寸、外形和重量 3.1 钢管的外径和壁厚应符合Q/BQB 203中表1、表2的规定,其允许偏差按Q/BQB 203中表3、表4的规定执行。 3.2 钢管的长度、外形和重量应符合Q/BQB 203的规定。
4 技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。 4.1.2 钢管的成品化学成分允许偏差应符合GB/T 222的有关规定。 表1 牌号 化 学 成 分 % C Si Mn P S Cr B 40CrB 0.38~0.43 0.15~0.35 0.60~0.85 ≤0.025 0.010~0.030 0.90~1.20 0.0005~0.003
4.2 冶炼方法 钢管所用的钢采用电炉冶炼,并经炉外精炼。 4.3 交货状态 成品钢管以热轧状态交货。 4.4 淬透性 圆坯锻造后经870℃~880℃正火处理,按GB/T 225的要求加工成标准试样,采用845±5℃进行顶端淬火,其淬透性能应满足: 特殊要求可经供需双方协商。 4.5 脱碳层 每批在二根钢管上各取一个试样,按GB/T 224进行内外表面脱碳层检验。内、外表面总脱碳层深度分别不大于0.5mm和1.2mm。 4.6 奥氏体晶粒度 供方应根据ASTM E112采用930℃保温3小时淬火法检查奥氏体晶粒度,并保证奥氏体晶粒度应细于5级。 4.7 非金属夹杂 钢的非金属夹杂物应根据ASTM E45中A法检验。非金属夹杂物级别A类≤3.0,B类≤2.5,C类≤2.0,D类≤2.0。特殊要求可经供需双方协商。 4.8 密实性 钢管应按GB/T 7735中B级逐根进行涡流探伤检验,以检验钢管的密实性。 4.9 无损探伤 钢管应按GB/T 5777中C8级逐根进行超声波探伤检验。 4.10 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除,但清理处的实际壁厚不得小于壁厚所允许的最小量。特殊要求可与用户协商。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。
5 检验与试验、包装、标志和质量证明书 钢管的检验与试验、包装、标志和质量证明书应符合Q/BQB 203规定。1 适用范围 本暂行供货技术条件规定了40CrB结构用热轧无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 本暂行供货技术条件适用于宝山钢铁股份有限公司生产的用于制造履带销套用或其他结构用的40CrB热轧无缝钢管。
2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 224 钢的脱碳层深度测定方法 GB/T 225 钢的淬透性末端淬火试验方法 GB/T 5777 无缝钢管超声波探伤方法 GB/T 7735 钢管涡流探伤检验方法 Q/BQB 203 管道、容器、设备结构用无缝钢管 ASTM E45 测定钢中夹杂物试验方法 ASTM E112 平均晶粒度的测定方法
3 尺寸、外形和重量 3.1 钢管的外径和壁厚应符合Q/BQB 203中表1、表2的规定,其允许偏差按Q/BQB 203中表3、表4的规定执行。 3.2 钢管的长度、外形和重量应符合Q/BQB 203的规定。
4 技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。 4.1.2 钢管的成品化学成分允许偏差应符合GB/T 222的有关规定。 表1 牌号 化 学 成 分 % C Si Mn P S Cr B 40CrB 0.38~0.43 0.15~0.35 0.60~0.85 ≤0.025 0.010~0.030 0.90~1.20 0.0005~0.003
4.2 冶炼方法 钢管所用的钢采用电炉冶炼,并经炉外精炼。 4.3 交货状态 成品钢管以热轧状态交货。 4.4 淬透性 圆坯锻造后经870℃~880℃正火处理,按GB/T 225的要求加工成标准试样,采用845±5℃进行顶端淬火,其淬透性能应满足: 特殊要求可经供需双方协商。 4.5 脱碳层 每批在二根钢管上各取一个试样,按GB/T 224进行内外表面脱碳层检验。内、外表面总脱碳层深度分别不大于0.5mm和1.2mm。 4.6 奥氏体晶粒度 供方应根据ASTM E112采用930℃保温3小时淬火法检查奥氏体晶粒度,并保证奥氏体晶粒度应细于5级。 4.7 非金属夹杂 钢的非金属夹杂物应根据ASTM E45中A法检验。非金属夹杂物级别A类≤3.0,B类≤2.5,C类≤2.0,D类≤2.0。特殊要求可经供需双方协商。 4.8 密实性 钢管应按GB/T 7735中B级逐根进行涡流探伤检验,以检验钢管的密实性。 4.9 无损探伤 钢管应按GB/T 5777中C8级逐根进行超声波探伤检验。 4.10 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除,但清理处的实际壁厚不得小于壁厚所允许的最小量。特殊要求可与用户协商。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。
5 检验与试验、包装、标志和质量证明书 钢管的检验与试验、包装、标志和质量证明书应符合Q/BQB 203规定。
镍电炉的结构(二)
2019-01-25 15:49:32
国内外铜镍硫化矿熔炼电炉的技术参数见下表: 铜镍锍化矿熔炼电炉的主要参数项目国内某厂贝辰公司①北镍公司②诺里尔斯克公司汤普森公司炉膛内部尺寸(长×宽×高)/m21.5×5.5×4.022.74×5.54×5.111.2×5.2×4.023.2×6.0×5.127.4×6.71×3.96炉床面积/m2118.2512658139184电极直径/m11.11.21.21.22电极中心距/m33.233.23.76电极数目66366电炉变压器数目33133变压器容量(总容量)/kVA5500(16500)16667(50000)30000(30000)15000(45000)6000(18000)压侧线电压/V304~470800~475550~390743~551300~160功率强度/[kVA.m-2]14039651732498炉底砌砖镁砖粘土砖铬镁砖水泥、镁砖水泥镁质填料粘土砖铬镁砖渣线炉墙镁砖铬镁砖镁砖铬镁砖镁砖渣线以上炉墙砌砖粘土砖粘土砖粘土砖粘土砖粘土砖炉衬厚度/mm807 炉底(中心)/mm1250131092013101065出渣口端墙厚度/mm1040115092010401260出锍口端墙厚度/mm10401150121511501180侧墙厚度/mm80711506901040 炉顶厚度/mm300300300300950放锍口个数34343渣口个数34241渣口距炉底高度/mm13001750150014501525熔池深度/mm21000270025002700—镍锍深度/mm600~900600~800600~800600~900600~750电炉操作功率/kW 40000270004000012000-15000每根电极平均下降距离/(mm.d-1)250450~500400~500 吨炉料电能消耗/kWh600740780~815525~625400~430吨炉料电极消耗/kg5.7~7.84.12.92.8~3.41.75~1.9
①工作电压341V,电极深度700~1000mm;②工作电压500~550V,电极深度500~700mm。
复合管道密封管件在成都面世
2019-01-09 09:33:47
复合管道密封管件在成都面世一项专门用于铝塑复合管等复合管道的密封管件,由中铁二局集团建筑分公司研制成功,经四川省产品质量监督检验所检验合格,日前在成都面市。聚烯烃类高分子材料制成的管道是国家建设部重点推广的化学建材:它无毒、无污染,可塑性强,重量轻等诸多优点已被广大用户所认同,但接点的可靠密封及承受膨胀收缩所产生的应力却始终是围绕这一行业的一大难题。聚烯烃管,一般采用热熔连接,这种连接方法效果好,管件价位低,是目前我国塑料管的主要连接方式(个别采用粘接或法兰接及复合丝接);但塑料管的热膨胀系数较高,管道埋入墙体后如果直线距离过长,若未预接膨胀弯头,其膨胀和收缩所产生的应力无法消除,要靠自身的变形来承受,使用一段时间后,材料产生疲劳,节点部位较早出现龟裂或松动,甚至断裂,造成管网漏水密封失败。另一种常用的连接方式为挤压夹紧连接,此种方式主要应用于交联聚乙烯管、铝塑复合管等外壁较易变形的复合管道。复合管道的热膨胀系数低,弯头用量少,基本解决了轴向膨胀和收缩产生的蠕动应力,但径向与管件套管间的胀缩所产生的间隙却是靠橡胶圈的弹性来弥补,普通橡胶圈易老化(特别是较高温度的管网),安装时胶圈的几何形状得不到完全的理想密封状态,对后期的密封效果产生很大影响。中铁二局新研制出的复合管件,采用负压式密封,管内压力越高,其密封效果越好,管件密封部分由塑料内衬管与复合管内壁达成负压式密封,管道与管件的连接靠金属外套挤压夹紧,这样基本化解了轴向的蠕动力,也解决了径向胀缩不一致的难题。并且取消了橡胶圈,使该复合管件提高了密封效果,又增长了密封时间,使其寿命延长。该管网在使用一段时期后所产生的滴漏、松动、断裂问题得到了很好的解决。
胶铝成期市亮点 沪胶5月成交额同比增13倍
2019-01-16 11:51:38
昨日上海期交所发布5月份成交统计概况月报。月报显示,天胶期货当月成交额为43835761.56万元,同比增1304.44%;当年累计成交额为164226216.77万元,同比增939.53%。
另外,月报显示,沪铜当月成交额为31018413.78万元,同比减25.29%;沪铝当月成交额为37420160.63万元,同比增3308.96%;沪燃料油当月成交额为7833593.71万元,同比增145.66%。 月报还显示,沪铜当月成交量为807328手,同比减69.67%;沪铝当月成交量为3297260手,同比增2408.30%;沪燃料油当月成交量为2114310手,同比增67.79%。 在持仓量方面,沪铜当月持仓量为86976手,同比减59.44%;而其余几个品种同比都有不同程度的增加。
管道、容器、设备结构用无缝钢管标准Q/BQB 203-200
2019-03-18 11:00:17
管道、容器、设备结构用无缝钢管 (Q/BQB 203-2003 代替 Q/BQB 203-1999) 标准手册下载 1 管道、容器、设备结构用无缝钢管范围 管道、容器、设备结构用无缝钢管标准规定了管道、容器、设备结构用无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 管道、容器、设备结构用无缝钢管标准适用于宝山钢铁股份有限公司生产的用于制造管道、容器、设备及其它结构中有较高要求的碳素钢及低合金钢热轧无缝钢管。 2 管道、容器、设备结构用无缝钢管规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 228 金属材料 室温拉伸试验方法 GB/T 242 金属管扩口试验方法 GB/T 246 金属管压扁试验方法 GB/T 4336 碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 2102 钢管的验收、包装、标志及质量证明书 GB/T 7735 钢管涡流探伤检验方法 GB/T 8163 输送流体用无缝钢管 3 尺寸、外形、重量 3.1 外径和壁厚 3.1.1 外径和壁厚如表1、表2所示。根据需方要求,经供需双方商定,可供应表1、表2规定以外的钢管。 3.1.2 外径的允许偏差应符合表3规定。 3.1.3 壁厚的允许偏差应符合表4规定。 3.2 长度 3.2.1 钢管的通常长度为6m~12m。经供需双方协议,可供应5m~12m长度范围内的定尺钢管,其长度允许偏差应符合表5的规定。 3.2.2 根据需方要求,经供需双方协议,也可供应其他长度的钢管。 3.3 外形 3.3.1 钢管的弯曲度不得大于如下规定: 壁厚≤15mm 1.0mm/m 壁厚>15mm 1.5mm/m 3.3.2 钢管的两端端面应与钢管轴线垂直,切口毛刺应清除。 3.4 重量 3.4.1 钢管按实际重量交货,亦可按理论重量交货。钢管每米理论重量列于表1、表2(钢的密度按7.85kg/dm3)。 表1 钢 管 规 格 表(DIN系列) 表2 钢 管 规 格 表(国标系列) 表3 外径允许偏差 外径 da mm 外径允许偏差 ≤50 ±0.5mm >50 ±1%da 表4 壁厚允许偏差 外径da≤130mm 外径da>130mm 壁厚S 壁厚S S≤2·Sn 2·Sn<S≤4·Sn S>4·Sn S≤0.05da 0.05da<S≤0.11 da S>0.11 da +15% -10% +12.5% -10% ±9% +15% -10% ±12.5% ±10% 注:Sn为标准壁厚(见表1和表2) 表5 定尺长度的允许偏差 定尺长度 长度允许偏差 ≤ 6m +10mm 0 > 6m +15mm 0 3.4.2 钢管的实际重量与理论重量的偏差不得大于下列规定: 单根钢管 +10% -8% 不少于10吨时的车载量 +10% -5% 3.5 标记示例 用St44.0钢制造的外径为76.1mm,壁厚为2.9mm的钢管其标记为: 钢管St44.0-76.1×2.9-Q/BQB 203-2003 4 技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表6规定。经供需双方协商,可供应其它牌号的钢管。 表6 钢的牌号和化学成分 牌 号 化 学 成 分 % C Si Mn P S Cr Ni Cu St37.0 ≤0.17 0.17~0.37 0.35~0.65 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 St44.0 ≤0.21 0.17~0.37 0.50~0.80 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 St52.0 ≤0.22 ≤0.55 ≤1.60 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 St55 0.33~0.41 0.17~0.37 0.50~0.80 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 CK45 0.42~0.50 0.17~0.37 0.50~0.80 ≤0.025 ≤0.020 ≤0.25 ≤0.25 ≤0.20 4.1.2 钢管的成品化学成分允许偏差按GB/T 222的有关规定。 4.2 冶炼方法 钢管所用的钢采用电炉或氧气转炉冶炼。 4.3 交货状态 4.3.1 钢管通常以热轧状态交货,用户要求正火处理,需在订货时商定。 4.3.2 如果钢管终轧温度与正火温度相同,认为满足了正火要求。 4.3.3 如果要求钢管表面涂防腐涂料,应在订货时商定。 4.4 力学性能 钢管室温下的纵向力学性能应符合表7的规定 表7 力学性能 牌 号 抗拉强度 Rm, MPa 下屈服强度ReL, MPa 断后伸长率 A,% 壁厚 mm ≤16 >16 St37.0 350~480 ≥235 ≥225 ≥25 St44.0 420~550 ≥275 ≥265 ≥21 St52.0 500~650 ≥355 ≥345 ≥21 St55 540~645 ≥295 ≥285 ≥17 CK45 590~730 ≥335 ≥325 ≥14 注:当屈服现象不明显时,以规定非比例延伸强度Rp0.2代替下屈服强度。 4.5 密实性 钢管应逐根进行涡流探伤检验,以检验钢管的密实性。需方如对钢管的密实性进行复验时,也可按GB/T 8163的规定进行水压试验,但最高试验压力不超过20MPa。 4.6 工艺试验 4.6.1 用St37.0、St44.0、St52.0钢制造的钢管,应进行压扁试验。根据需方要求,供需双方商定并在合同中注明,用St55钢制造的钢管也可进行压扁试验。 压扁试验后,试样上不允许存在裂缝或裂口,钢管压扁后平板间距离按下式计算: H= (1+C)S -------------------------------------------------------------------------------- C+S/da 式中:S-钢管的公称壁厚,mm; da-钢管的公称外径,mm; α-单位长度变形系数,对于St37.0,α=0.09;对于St44.0、St52.0,α=0.07;对于St55 ,α=0.06 如果S/da大于0.15,该牌号钢的α值应减小0.01。 4.6.2 根据需方要求,并在合同中注明,用St37.0、St44.0、St52.0钢制造,壁厚不大于8mm的钢管,可进行扩口试验。 扩口试验在冷状态下进行,顶口锥度为30°、45°、60°中的一种,扩口后试样不得出现裂缝或裂口,扩口试样外径扩口率应符合表8规定。 表8 扩口率 牌号 扩口率 % 内径/外径 ≤0.6 >0.6~0.8 >0.8 St37.0 St44.0 10 12 17 St52.0 8 10 15 4.7 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除掉,但清理处的实际壁厚不得小于壁厚所允许的最小值。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。 5 检验与试验 5.1 钢管的尺寸应用合适的量具逐根进行测量。 5.2 钢管的内、外表面需在照明下用肉眼逐根进行检查。 5.3 钢管的检验项目、取样数量和试验方法应符合表9的规定。 表9 钢管的检验项目、试验方法及取样数量 序号 检验项目 试验方法 取样数量 1 化学成分 GB/T 222,GB/T 4336 每炉一个试样 2 拉伸试验 GB/T 228 每批一个试样 3 压扁试验 GB/T 246 每批一个试样 4 扩口试验 GB/T 242 每批一个试样 5 涡流探伤 GB/T 7735 逐根 5.4 组批规则 5.4.1 钢管按批进行检验和验收。每批钢管应由同一规格、同一牌号、同一炉号的钢管组成。当需方事先未提出特殊要求时,碳素钢管可以不同炉号的同一规格、同一牌号的钢管组成一批。 5.4.2 钢管每批为200根,剩余钢管的根数不小于100根时,单独为一批;小于100根时,应并入相邻的一批中。 5.5 复验与判定原则 对于拉伸试验、压扁试验及扩口试验,初验如有一项试验结果(包括该项试验所要求的任一指标)不合格,则应将该根钢管剔除,并从同一批钢管中重新取2根钢管复验不合格的项目,复验结果即使有一个指标不合格,则整批钢管不予验收。 供方可对复验不合格的钢管进行正火处理,作为新的一批提交验收。 6 包装、标志和质量证明书 钢管的包装、标志和质量证明书应符合GB/T 2102的规定。 Q/BQB 203-2003 附录A(资料性附录) 预计温度下的强度特性值 表 A.1 St37.0、St44.0、St52.0牌号的钢管预计温度下的强度特性值Rp0.2 牌 号 预计温度下的强度特性值MPa 50℃ 200℃ 250℃ 300℃ 壁厚 mm ≤16 >16~25 ≤16 >16~25 ≤16 >16~25 ≤16 >16~25 St37.0 255 235 185 175 165 155 140 135 St44.0 275 265 215 205 195 185 165 160 St52.0 355 345 245 235 225 215 195 190 注: 1 表列值为规定非比例延伸强度RP0.2的估计值,未被证实。此值在计算时应考虑代入较高的安全系数(例:DIN 2413-1972版中适用范围为20%)。 2 对于大于50℃至小于200℃中间范围,应在20℃(见表7)和200℃之间线性内插,不随意凑成整数。 表A.2 St55牌号的钢管预计温度下的强度特性值下屈服强度 牌 号 下屈服强度,MPa 20℃ St55 355 注:1 对于按DIN 2413计算壁厚的钢管,20℃时的强度特性值,可用于120℃以下的温度。 2 外径≤30mm、壁厚≤3mm的钢管,允许降低10MPa。 附加说明: 本标准与DIN1629-1984、DIN2448-1981的一致性程度为非等效。 本标准代替Q/BQB 203-1999。 本标准与Q/BQB 203-1999相比主要变化如下: ――外径范围上限扩大到180.0mm; ――通常长度下限修改6m; ――加严P、S、Cu含量的要求; ――涡流探伤采用国家标准。 本标准的附录A为资料性附录。 本标准由宝山钢铁股份有限公司制造管理部提出。 本标准由宝山钢铁股份有限公司制造管理部起草。 本标准起草人:杨新亮。 本标准于1985年首次发布,1989年第一次修订,1994年第二次修订,1999年第三次修订。
结构管规格材质
2019-03-15 10:05:15
一般结构用钢管,简称结构管。
结构管 材质:20(GB8162-2008)
结构管规格 结构管规格 结构管规格 结构管规格28*8 34*5 38*4.7 43*229*2.5 34*5.5 38*5 43*329*4 34*6 38*5 43*3.529*4.5 34*6.5 38*5.5 43*530*1.5 34*7 38*6 43*630*2 34*7.5 38*7 43*730*2.3 34*8 38*8 43*7.530*2.5 34*9 38*9 43*830*3 35*1.5 38*10 43*930*3.5 35*2 39*4 43*1030*4 35*2.5 39*5 45*1.530*4.5 35*3 39*7 45*1.830*5 35*3.5 40*1.5 45*230*5.5 35*4 40*2 45*2.530*6 35*5 40*2.5 45*330*7 35*5.5 40*3 45*3.530*8 35*6 40*3.5 45*430.3*3.3 35*6.5 40*4 45*4.531*2.3 35*7 40*4.5 45*532*1.5 35*8 40*5 45*5.532*2 35*9 40*5.5 44.5*532*2.5 36*1.5 40*6 45*632*3 36*2 40*6.5 44.5*632*3.5 36*2.5 40*7 45*732*4 36*3 40*7.5 45*7.532*4.5 36*3.5 40*8 45*832*5 36*4 40*9 45*8.532*6 36*4.5 40*10 45*932*7 36*5 41*2 45*1032*7.5 36*5.5 41*4 45*1132*8 36*6 42*2 45*1232*9 36*7 42*2.5 46*2.532*10 36*8 42*3 46*532*11 36*9 42*3.5 46*5.533*3 37*2 42*4 47*333*5 38*1.2 42*4.5 47*4.533.5*3 38*1.5 42*5 46*833.5*4 38*2 42*5.5 48*1.834*2 38*2.5 42*6 48*234*2.5 38*3 42*6.5 48*2.534*3 38*3.5 42*7 48*334*3.5 38*4 42*8 48*3.534*4 38*4 42*9 48*434*4.5 38*4.5 42*10 48*4.5结构管规格 结构管规格 结构管规格 结构管规格48*5 53*11 57*15 68*648*5.5 53*12 58*1.8 68*6.348*6 53*14 58*11 68*748*6.5 53*1.5 60*2 68*848*7 53*6 60*2.5 68*948*8 54*2 60*3 68*1048*8.5 54*2.5 60*3.5 68*1148*9 54*3 60*4 68*1248*10 54*3.5 60*4.5 68*12.548*11 54*4 60*5 68*1448*12 54*4.5 60*5 68*1649*4 54*5 60*5.5 70*3.549*10 54*5.5 60*6 70*450*1.5 54*6 60*6.5 70*450*2 54*6.5 60*7 70*4.550*2.5 54*7 60*7.5 70*550*3 54*8 60*8 70*650*3.5 54*8.5 60*9 70*6.550*4 54*9 60*10 70*750*4.5 54*10 60*11 70*850*5 54*11 60*12 70*950*6 54*12 60*14 70*1050*7 54*14 63.5*2 70*1150*8 55*4.5 63.5*3 70*1250*9 55*5.5 63.5*3.5 70*1450*9 56*4 63.5*4 70*1650*10 56*4.5 63.5*4.5 73*350*11 56*5 63.5*5 73*3.550*12 56*6 63.5*5.5 73*451*1.8 56*9 63.5*6 73*4.551*3 57*3 63.5*7 73*551*3.5 57*3.5 63.5*8 73*5.551*3.6 57*4 63.5*9 73*651*3.8 57*4.5 63.5*10 73*751*4 57*5 63.5*14 73*851*4.5 57*5.5 63.5*15 73*1051*5 57*6 63.5*16 73*1151*5.5 57*7 68*3 73*1251*6 57*8 68*3.5 73*12.551*7 57*9 68*4 73*1451*8 57*9.5 68*4 73*1551*8.5 57*10 68*4.5 73*1651*9 57*12 68*5 73*1851*10 57*14 68*5.5 73*20结构管规格 结构管规格 结构管规格 结构管规格76*3.5 83*11 95*12 108*1476*4 83*12 95*12.5 108*1576*4.5 83*12.5 95*14 108*1676*5 83*13 95*15 108*1876*5.5 83*14 95*16 108*2076*6 83*15 95*18 108*2276*6.5 83*16 95*20 108*2576*7 83*18 95*22 108*2876*8 83*20 95*25 108*3076*9 83*22 102*4 114*476*10 83*25 102*4.5 114*4.576*11 89*4 102*5 114*576*12 89*4.5 102*5.5 114*5.576*12.5 89*5 102*6 114*676*14 89*5.5 102*7 114*6.576*15 89*6 102*8 114*776*16 89*6.5 102*9 114*876*18 89*7 102*10 114*976*18 89*7.5 102*11 114*1076*20 89*8 102*12 114*1180*3 89*8.5 102*12.5 114*1280*4 89*9 102*14 114*12.580*4.5 89*10 102*15 114*1380*5 89*11 102*16 114*1480*6 89*12 102*18 114*1580*7 89*12.5 102*20 114*1680*7.5 89*13 102*22 114*1880*8 89*14 102*25 114*2080*8 89*15 102*28 114*2280*10 89*16 102*30 114*2580*12 89*18 108*4 114*2880*14 89*20 108*4.5 114*3080*16 89*22 108*5 121*4.580*18 89*25 108*5.5 121*580*20 95*4 108*6 121*5.583*4 95*4.5 108*6.5 121*683*4 95*5 108*7 121*783*4.5 95*5.5 108*7.5 121*883*5 95*6 108*8 121*983*6 95*7 108*9 121*1083*7 95*8 108*10 121*1183*8 95*9 108*11 121*1283*9 95*10 108*12 121*12.583*10 95*11 108*12.5 121*14结构管规格 结构管规格 结构管规格 结构管规格121*16 133*15 146*30 159*32121*18 133*16 146*35 159*35121*20 133*18 152*5 159*40121*22 133*20 152*6 159*45121*25 133*22 152*7 168*6121*28 133*25 152*8 168*6.5121*30 133*28 152*10 168*7127*4.5 133*30 152*11 168*8127*5 140*4.5 152*12 168*9127*5.5 140*5 152*12.5 168*10127*6 140*5.5 152*13 168*11127*7 140*6 152*14 168*12127*7.5 140*6.5 152*16 168*14127*8 140*7 152*18 168*16127*9 140*8 152*20 168*18127*10 140*10 152*22 168*20127*11 140*11 152*25 168*22127*12 140*12 152*28 168*25127*12.5 140*12.5 152*30 168*28127*14 140*14 152*32 168*30127*16 140*16 152*35 168*32127*18 140*18 152*36 168*35127*20 140*20 152*40 168*38127*22 140*22 159*4.5 168*40127*25 140*25 159*5 168*45127*28 140*28 159*5.5 180*6127*30 140*30 159*6 180*7127*32 140*32 159*6.5 180*8127*35 140*35 159*7 180*10133*4.5 146*5 159*8 180*12133*5 146*6 159*9 180*14133*5.5 146*8 159*10 180*16133*6 146*10 159*11 180*18133*6.5 146*11 159*12 180*20133*7 146*12 159*12.5 180*22133*7.5 146*12.5 159*13 180*25133*8 146*14 159*14 180*28133*9 146*15 159*16 180*30133*10 146*16 159*18 180*32133*11 146*18 159*20 180*35133*12 146*20 159*22 180*40133*12.5 146*22 159*25 180*45133*13 146*25 159*28 194*6133*14 146*28 159*30 194*7结构管规格 结构管规格 结构管规格 结构管规格194*8 219*12 245*30 299*22194*10 219*13 245*32 299*25194*12 219*14 245*35 299*28194*14 219*14 245*36 299*30194*16 219*15 245*38 299*32194*18 219*15 245*40 299*34194*20 219*16 245*45 299*35194*22 219*17 245*48 299*36194*25 219*18 245*50 299*38194*28 219*20 245*60 299*40194*30 219*22 255*45 299*45194*32 219*23 273*7 299*50194*35 219*25 273*8 299*55194*40 219*26 273*9 299*60194*45 219*28 273*9.5 325*7203*6 219*30 273*10 325*8203*7 219*32 273*11 325*8.5203*8 219*35 273*12 325*9203*9 219*36 273*13 325*10203*10 219*40 273*14 325*11203*12 219*45 273*15 325*12203*14 219*48 273*16 325*13203*16 219*50 273*18 325*14203*18 219*55 273*20 325*15203*20 232*16 273*22 325*16203*22 232*18 273*25 325*16203*25 232*20 273*28 325*17203*28 245*7 273*30 325*18203*30 245*8 273*32 325*20203*32 245*9 273*35 325*22203*35 245*9 273*36 325*25203*36 245*10 273*40 325*28203*40 245*10 273*45 325*30203*45 245*11 273*48 325*32203*50 245*12 273*50 325*34219*6 245*12 273*60 325*35219*6.5 245*14 299*8 325*38219*7 245*16 299*9 325*40219*8 245*18 299*10 325*42219*8.5 245*20 299*12 325*45219*28 245*22 299*14 325*50219*78 245*25 299*16 325*56219*28 245*27 299*18 351*9219*12 245*28 299*20 351*10