您所在的位置: 上海有色 > 有色金属产品库 > 硅酮胶强度 > 硅酮胶强度百科

硅酮胶强度百科

纳米碳酸钙在硅酮胶中常见问题及解决办法

2019-03-08 11:19:22

这些白色粉末看起来毫不起眼,它却简直占有每年无机粉体运用量的70%以上,是塑料工业中运用数量最大、运用面最广的粉体填料——碳酸钙,以低价的报价、优异的加工功能等很多长处成为塑料加工职业首选的材料。除了塑料范畴,碳酸钙在硅酮胶中的运用也越来越多。 通常在制备硅酮胶时会参加少数的纳米碳酸钙(CCR)来补强,并下降成本,别的也使胶体坚持杰出外观。可是纳米碳酸钙在运用过程中需求留意以下几个问题: 1、水分含量构成粉体聚会 碳酸钙水分较高,则颗粒表面的羟基(-OH)增多,其聚集体呈现出彼此凝集的倾向,在液聚会硅烷效果下构成三维网络,使胶料的黏度增大,并在基猜中构成1~3mm颗粒,构成混炼时刻延伸。因而,碳酸体在运用前须烘干,操控水分含量在0.8%以下。 2、二次聚会构成粒径较大 二次聚会一般简单呈现在粒径较小的纳米碳酸钙产品中,跟着纳米碳酸钙粒径的规模缩小到40-60nm时,颗粒比表面积增大(22~34m2/g),内聚力增强,易构成结合严密的硬团,即为多孔状的二次粒子。硅酮胶捏合过程中二次粒子难以涣散均匀,并且颗粒数量较多时,制品表面简单呈现颗粒,乃至“麻面”或“雾面”现象。因而需求经过一次或屡次研磨将涣散,或许延伸捏合时刻。 3、PH值过高催化固化 Ph值过高会使硅酮胶的贮存稳定性下降,Ph越高,硅酮胶固化越快。贮存稳定性是硅酮胶制品的一个非常重要的质量指标,理论上碳酸钙的PH值呈弱碱性,能够选用弱有机酸或有机酸盐,对其进行表面包覆,对碳酸钙表面有必定的中和效果,将其PH值操控在9.5以下。 4、表面处理缺少或过剩 当表面处理缺少时,碳酸钙颗粒表面为极性部分,与硅酮胶中非极性有机物中难相容,构成涣散困难,呈现混炼时难“吃粉”延伸捏合时刻,即便充沛混合后,因为碳酸钙表面缺少满足有机物表面活性剂包覆,使硅酮胶系统与极性碳酸钙界面触摸几率显着添加,而碳酸钙表面存在较多的羟基,这些基团能与液相硅橡胶分子链中的Si-O键构成氢键(物理吸附),其成果将会发生两种不同的效果:一方面导致硫化胶物理力学功能的进步,另一方面也会在系统内部发生结构化现象,导致胶料的贮存稳定性下降。 当表面处理剂过剩时对硅酮胶的出产相同发生晦气影响,或许构成黏结功能下降、制品物理功能下降。 对黏结功能的影响: 因为硅酮胶是一种粘胶制品,要求有必要与施工介质表面有杰出的黏粘功能,为进步这种黏粘功能,硅酮胶配方中较多选用硅烷偶联剂改善增强,这种黏粘功能是靠硅烷偶联剂中的活性基团与施工介质表面以范德华力或氢键构成物理吸附或许凭借基团的反响构成化学键。当碳酸钙表面处理剂过量时,其有机基团数量显着增多(特别以有机杂合物为首要表面处理剂的纳米碳酸钙产品更为显着),硅烷偶联剂中的部分基团会与碳酸钙表面活性剂分子中有机基团键合,然后影响对施工界面黏结功能。 对制品物理功能的影响: 表面处理剂过量使碳酸钙颗粒表面与硅酮胶系统直接氢键结合的几率削减,首要依托表面活性剂有机分子与系统的结合,因为碳酸钙表面活性剂分子以有机长链分子为主,这种有机分子之间的结合力体现较为柔性,因而固化后的硅酮胶制品模量较低,如果在碳酸钙表面有恰当的一部分能与硅酮胶系统氢键结合,则系统的网状结构更为结实,内聚力更强。这样的制品抗撕裂强度会有所进步。别的,表面处理剂中的短链有机物易挥发,当处理过量时,产品的挥发份会升高,使硅酮胶真空捏合过程中抽出的低沸点有机物添加。 5、影响脱醇型胶贮存稳定性 在一些硅酮胶厂商中曾呈现过该问题,给对纳米碳酸钙和硅酮胶厂商带来较大的困惑。因为硅酮胶的出产工艺及产品特性决议硅酮胶制品在参加交联剂后制得的制品须密封贮存,一旦制品呈现质量问题则很难对制品进行返工处理,构成的丢失较大。 据相关材料闪现,脱醇型硅酮胶一般多选用高水解活性硅烷偶联剂,在没有引进羟基和水分铲除剂情况下,碳酸钙中的微量水分和硅烷偶联剂简单反响生成游离醇,然后引起系统的贮存稳定性和硫化功能下降。特别是表面处理缺少的产品在贮存过程中吸潮非常快,加之纳米碳酸钙二次粒子水分自身就很难扫除,因而有理由以为该条件下的碳酸钙颗粒表面具有较多水分和羟基,相应构成以碳酸钙为结点的部分微观网状结构,严峻时呈现部分微观结构化,应力会集现象,构成较多散布均匀的细微“颗粒”(实践缩短或突起)。 这种“颗粒”还有一个独特现象是当系统温度升高时会逐步消失,能够解释为:因为系统温度升高,分子热运动加重,使微观的交联结合被损坏,部分应力随之削弱或消失,故硅酮胶表面和内部分子结构康复到正常状况,出了暂时的“颗粒”消失。当系统温度下降后,“颗粒”在本来方位从头闪现。

关于断桥铝门窗硅酮玻璃胶的基本知识。

2019-03-04 10:21:10

不管什么样的高级门窗在运用的时分都会有空隙就有必要用建筑胶密封住,才干确保门窗有杰出功能。他们分别是防水密封胶、发泡胶、硅酮玻璃胶,这是门窗设备中必用的产品,在塑钢门窗设备中会用到防水密封胶、发泡胶;而断桥铝门窗设备中会用到发泡胶、硅酮玻璃胶或许以上三种都会用到。   硅酮密封胶是以聚二甲基硅氧烷为首要原料,辅以交联剂、填料、增塑剂、偶联剂、催化剂在真空状态下混合而成的膏状物,在室温下经过与空气中的水发作应固化构成弹性硅橡胶。   一:硅酮玻璃胶分类   硅酮玻璃胶从产品包装上可分为两类:单组份和双组份。单组份的硅酮胶,其固化是因触摸空气中的水分而发作物理性质的改动;双组份则是指硅酮胶分红A、B两组,任何一组独自存在都不能构成固化,但两组胶浆一旦混合就发作固化。现在商场上常见的是单组份硅酮玻璃胶,本书以介绍此种玻璃胶为主。   单组份硅酮玻璃胶按性质又分为酸性胶和中性胶两种。酸性玻璃胶首要用于玻璃和其它建筑材料之间的一般性粘接。而中性胶克服了酸性胶腐蚀金属材料和与碱性材料发作反响的特色,因而适用范围更广,其商场报价比酸性胶稍高。商场上比较特殊的一类玻璃胶是硅酮结构密封胶,因其直接用于玻璃幕墙的金属和玻璃结构或非结构性粘合安装,故质量要求和产品层次是玻璃胶中较高的,其商场报价也较高。   二:硅酮玻璃胶简述   单组份硅酮玻璃胶是一种相似软膏,一旦触摸空气中的水分就会固化成一种坚韧的橡胶类固体的材料。硅酮玻璃胶的粘接力强,拉伸强度大,一起又具有耐候性、抗振性,和防潮、抗臭气和习惯冷热改动大的特色。加之其较广泛的适用性,能完成大多数建材产品之间的粘合,因而运用价值非常大。硅酮玻璃胶由其不会因本身的分量而活动,所以能够用于过顶或侧壁的接缝而不发作下陷,塌落或流走。它首要用于干洁的金属、玻璃,大多数不含油脂的木材、硅酮树脂、加硫硅橡胶、陶瓷、天然及合成纤维,以及许多油漆塑料表面的粘接。质量好的硅酮玻璃胶在摄氏零度以下运用不会发作揉捏不出、物理特性改动等现象。充沛固化的硅酮玻璃胶在温度到204℃(400oF)的情况下运用仍能坚持继续有用,但温度高达218℃(428oF)时,有用时刻会缩短。硅酮玻璃胶有多种色彩,常用色彩有黑色、瓷白、通明、银灰、灰、古铜六种。其它色彩可根据客户要求订做。   三:硅酮玻璃胶用处   (一)、酸性玻璃胶   1、适合作密封、阻塞防漏及防风雨用处,室内室外两者皆宜(室内效果更佳),防渗防漏效果显著。   2、粘接轿车的各种内部装修,包含:金属、织物和有机织物及塑料。   3、接合加热和制冷设备上的垫片。   4、在金属表面加装无螺孔的筋条、铭牌以及漆加塑料材料。5、对烘箱门上的窗口、气体用具上的烟道、管道接头、通道门进行封口。   6、为齿轮箱、压缩机、泵供给即时成形的防漏垫。   7、对船仓以及窗口密封。   8、拖车、货车驾驶室玻璃窗的密封。   9、粘合和密封设备部件。   10、构成防磨涂层。   11、镶嵌和填充薄金属片迭层、道管网络和设备机壳。   (二)、中性耐候胶   1、适用于各种幕墙耐候密封,特别引荐用于玻璃幕墙、铝塑板幕墙、石材干挂的耐候密封;   2、金属、玻璃、铝材、瓷砖、有机玻璃、镀膜玻璃间的接缝密封;   3、混凝土、水泥、砖石、岩石、大理石、钢材、木材、阳极处理铝材及涂漆铝材表面的接缝密封。大多数情况下都无需运用底漆。   (三)、硅酮结构胶   1、首要用于玻璃幕墙的金属和玻璃间结构或非结构性粘合安装。   2、它能将玻璃直接和金属构件表面衔接构成单一安装组件,满意全隐或半隐框的幕墙规划要求。   3、中空玻璃的结构性粘接密封。   四:各种硅酮玻璃胶运用时均会遭到以下约束   1、长时刻浸水的当地不宜施工;   2、不与会渗出油脂、增塑剂或溶剂的材料相溶;   3、结霜或湿润的表面不能粘合;   4、彻底密闭处无法固化(硅胶需*空气中的水分固化);   5、基材表面不洁净或不结实。   (一)、酸性玻璃胶更有以下约束条件:   酸性硅酮玻璃胶会腐蚀或不能粘合铜、黄铜(及其它含铜合金)、镁、锌、电镀金属(及其它含锌合金),一起主张砖石料制成物品及碳化铁体基质上不要运用酸性玻璃胶,在甲基酸盐(PLEXIGLAS)、聚碳酸、聚、聚乙烯和TEFLON(特氟隆、聚四氟乙烯)制成的材料上运用本品将无法取得很好的粘接效果及好的相溶性。移动大于接缝宽度25%的衔接也不适合用酸性玻璃胶,在结构用玻璃上也较好不必普通酸性玻璃胶(酸性结构胶在外),别的在有磨蚀以及会发作本质坏处的当地不该运用酸性玻璃胶。硅酮酸性胶的基材表面温度超越40℃不宜施工。   (二)、中性耐候胶还有以下约束条件:   中性耐候胶不适用于结构性玻璃安装;基材表面温度超越50℃不宜施工。   (三)、硅酮结构胶还有以下约束条件:   硅酮结构胶的基材表面温度超越40℃不宜施工。   五:硅酮玻璃胶运用办法   1、运用:单组份硅酮玻璃胶即时能够运用,用打胶很简单将它从胶瓶内打出,并可用抹刀或木片修整其表面。   2、粘住时刻:硅酮胶的固化进程是由表面向内开展的,不同特性的硅胶表干时刻和固化时刻都不尽相同(固化时刻的具体阐明请参阅第四篇的《技术参数》内容),所以若要对表面进行修补有必要在玻璃胶表干前进行(酸性胶、中性通明胶一般应在5-10分钟内,中性杂色胶一般应在30分钟内)。假如选用分色纸来掩盖某一当地,涂胶后,必定要在外皮构成前取走。   3、固化时刻:玻璃胶的固化时刻是跟着粘接厚度添加而添加的,例如12mm厚度的酸性玻璃胶,或许需3-4天才干凝结,但约24小时内,已有3mm的外层已固化。粘接玻璃、金属或大多数木材时,室温下72小时后就具有20磅/英寸的抗剥离强度。若运用玻璃胶的当地部分或悉数关闭,那么,固化时刻则由密闭的紧密程度决议。在密闭的当地,就有或许永久坚持不固化。若进步温度将使玻璃胶变软。金属与金属粘合面的空隙不该超越25mm。在各种粘接场合,包含密闭情况下,粘接后的设备运用前,应全面查看粘接效果。酸性玻璃胶在固化进程中,因醋酸的蒸发会发作一股味,这种味将在固化进程中消失,固化后将无任何异味。   4、粘接:   A.将金属及塑料表面彻底擦净,去油污,然后除了塑料先用漂洗悉数表面外,橡胶表面运用砂纸打磨,然后用擦。运用时请恪守运用该溶剂的留心事项。   B.将玻璃胶均匀涂在准备就绪的物体表面上,假如是将两个表面粘接起来,可把一面先找方位放好,再用满足的力揉捏另一面以挤出空气,但留心不要挤出玻璃胶。   C.将粘接的设备置于室温下,待玻璃胶固化。   5、密封:将硅酮玻璃胶用于密封的场合,也相同依照上述几个进程进行,将玻璃胶用力挤入接合面或缝隙中,使玻璃胶与表面充沛触摸。   6、清洁:玻璃胶未固化前可用布条或纸巾擦掉,固化后则须用刮刀刮去或二、等溶剂擦拭。   7、留心事项:酸性玻璃胶在固化进程中会释放出刺激性气体,对人的眼睛和呼吸道有刺激性效果。醇型中性胶在固化进程中释放出甲醇。甲醇有潜在的致癌风险,并是已知的皮肤和呼吸道过敏物,蒸发气体会使眼睛、鼻、咽喉发炎。所以应在通风杰出的环境中运用本产品,防止进入眼睛或长时刻与皮肤触摸(运用后,吃饭、吸烟前应洗手),不得咽入本品。勿让儿童触摸;施工场所应通风杰出;如不小心溅入眼睛,运用清水冲刷,并随即求医。彻底固化后的玻璃胶则无任何风险。   8、一般攻略:运用前,请仔细阅读玻璃胶的正确施工办法和用处,请留心对安全运用和有关对身体健康损害的阐明。   六:硅酮玻璃胶存储   贮存和寄存期限玻璃胶应寄存于阴凉、枯燥处,30℃以下。质量好的酸性玻璃胶可确保有用保存期12个月以上,一般酸性玻璃胶可保存6个月以上;中性耐候及结构胶可确保9个月以上的保质期。假如瓶已翻开,请在短期内运用完;玻璃胶如未用完,胶瓶有必要密封,再次运用时,应旋下瓶嘴,去除一切阻塞物或替换瓶嘴。

包胶铜线

2017-06-06 17:50:09

包胶铜线是广泛应用于生产领域的一种铜线。用PU和TPR包胶,目的都是要提高产品的手感舒适度和增强产品的耐磨性。TPU和TPR同属于热塑性弹性体,都具有很好的弹性,耐磨性和拉伸强度,但TPU的耐磨性和耐刮性和拉伸强度会更好。但TPR可以做得更软些,硬度可以做到30A以下,而TPU目前最软也就60A左右;另外,TPR包ABS,ABS/PC,PP,PA的效果比TPU要好,附着力要强。    滚筒包胶应用 行业 :物流,包装 传统的热硫化包胶的滚筒由于硫化压强低,硫含量偏高而耐磨性能差,使用中易老化。导致对输送带的附着力下降,清洁功能差。 TIP TOP冷硫化包胶技术橡胶密实度高,耐磨性强,寿命为热包胶的数倍;且摩擦系数高,大大降低了胶带应力;橡胶弹性佳,防粘附性能好。采用TTP TOP的滚筒包胶材料可在现场或加工厂操作方便快捷。世界上许多高强度的输送带的驱动滚轮都使用TIP TOP 的包胶材料。  综合成本大大低于传统的热包胶REMALINE UNI-60高抗磨损性具有优良的性价比适用于各种从动轮,惰轮及改向轮 REMAGRIP 70/CN-SL优异的产品性能 价格 比:质量卓越的产品配合极具竞争力的 市场 推广 价格附加的纵向槽纹增加了胶面的导水性能包胶材料的浪费被减低到最少四种标准厚度:10 mm 12 mm 15 mm 18 mm配合特别的菱形开槽及纵向槽纹,适合各种驱动滚轮包胶 REMAGRIP CK-X型系列胶板优异的摩擦系数有效防止传送带在潮湿,泥泞的工作环境下的打滑陶瓷的有效分布降低了总体材料重量,从而使操作和施工变得容易增加了滚筒的使用寿命优越的性能 价格 比现场施工,方便快捷 。    随着社会生产的不断发展,包胶铜线的应用领域也将更加广泛,这对于包胶工艺的改进和发展提出了新的挑战。

抗拉强度符号_抗拉强度的定义

2019-05-29 18:51:08

抗拉强度的界说及表明符号------抗拉强度符号试样拉断前接受的最大标称拉应力。抗拉强度是金属由均匀塑性变形向部分会集塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载才能。关于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在接受最大拉应力之前,变形是均匀共同的,但超出之后,金属开端呈现缩颈现象,即发作会集变形;抗拉强度符号关于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的开裂抗力。符号为RM,单位为MPa。试样在拉伸过程中,材料通过屈从阶段后进入强化阶段后跟着横向截面尺度显着缩小在拉断时所接受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或许强度极限(σb),单位为N/mm2(MPa)。它表明金属材料在拉力效果下反抗损坏的最大才能。计算公式为:σ=Fb/So式中:Fb--试样拉断时所接受的最大力,N(牛顿); So--试样原始横截面积,mm。抗拉强度( Rm)指材料在拉断前接受最大应力值。当钢材屈从到必定程度后,因为内部晶粒从头排列,抗拉强度符号其反抗变形才能又从头进步,此刻变形尽管开展很快,但却只能跟着应力的进步而进步,直至应力达最大值。尔后,钢材反抗变形的才能显着下降,并在最单薄处发作较大的塑性变形,此处试件截面敏捷缩小,呈现颈缩现象,直至开裂损坏。钢材受拉开裂前的最大应力值称为强度极限或抗拉强度。单位:N/mm2(单位面积接受的公斤力)抗拉强度:Tensile strength.抗拉强度=Eh,其间E为杨氏模量,h为材料厚度抗拉强度符号目前国内丈量抗拉强度比较遍及的办法是选用全能材料试验机等来进行材料抗拉/压强度的测定!

包胶铝线

2017-06-06 17:50:05

包胶铝线,作为铝线的一种产品,适用于各类手工艺品、家居装饰品、时尚衣架等等。包胶铝线能实现您各种大胆的创意,为满足各类人群需求,将不同想法于彩色铝线融为一体,以其独特、新颖来吸引人们的眼球,质地柔软便于您随时更换造型。包胶铝线的特点:耐酸碱、抗腐蚀、韧性好、强度好,高温120摄氏度不褪色。包胶铝线具以下特性:1.包胶铝线电镀色泽均匀、艳丽,颜色不易脱落,历久弥新。2.包胶铝线的柔软度够,易折,易弯曲,易成形,不伤您手。3.包胶铝线的韧性够,可重复弯折,不易断裂,具可塑性。铝有较好的延展性(它的延展性仅次于金和银),在100 ℃~150 ℃时可制成薄于0.01 mm的铝箔。这些铝箔广泛用于包装香烟、糖果等,还可制成铝丝、铝条,并能轧制各种铝制品。铝粉具有银白色光泽(一般 金属 在粉末状时的颜色多为黑色),常用来做涂料,俗称银粉、银漆,以保护铁制品不被腐蚀,而且美观。纯的铝很软,强度不大,有着良好的延展性,可拉成细丝和轧成箔片,大量用于制造电线、电缆、无线电工业以及包装业。它的导电能力约为铜的三分之二,但由于其密度仅为铜的三分之一,因而,将等质量和等长度的铝线和铜线相比,铝的导电能力约为铜的二倍,且 价格 较铜低,所以,野外高压线多由铝做成,节约了大量成本,缓解了铜材的紧张。想要了解更多包胶铝线的相关资讯,请浏览上海 有色 网( www.smm.cn )铝频道。

抗拉强度单位和抗拉强度单位换算

2019-05-29 18:38:53

抗拉强度单位  抗拉強度(tensile strength)  抗拉強度( бb )也叫強度極限指材料在拉斷前接受最大應力值。  抗拉强度单位-當鋼材屈从到必定程度后,因为內部晶粒从头排列,其反抗變形才能又从头进步,此時變形雖然發展很快,但卻只能隨著應力的进步而进步,直至應力達最大值。尔后,鋼材反抗變形的才能明顯下降,并在最单薄處發生較大的塑性變形,此處試件截面敏捷縮小,出現頸縮現象,直至斷裂破壞。鋼材受拉斷裂前的最大應力值稱為強度極限或抗拉強度。  單位:kn/mm2(單位面積接受的公斤力)  抗拉強度:extensional rigidity.  抗拉強度=Eh,其间E為楊氏模量,h為材料厚度  现在國內測量抗拉強度比較遍及的办法是才用萬能材料試驗機等來進行材料抗拉/壓強度的測定!  1.屈从點(σs)鋼材或試樣在拉伸時,當應力超過彈性極限,即便應力不再添加,而鋼材或試樣仍繼續發生明顯的塑性變形,稱此現象為屈从,而產生屈从現象時的最小應力值即為屈从點。設Ps為屈从點s處的外力,Fo為試樣斷面積,則屈从點σs=Ps/Fo(MPa),MPa稱為兆帕等于N(牛頓)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈从強度(σ0.2)有的金屬材料的屈从點極不明顯,在測量上有困難,因而為了衡量材料的屈从特性,規定產生永久殘余塑性變形等于必定值(一般為原長度的0.2%)時的應力,稱為條件屈从強度或簡稱屈从強度σ0.2。3.抗拉強度(σb)僥饧在拉伸過程中,從開始到發生斷裂時所達到的最大應力值。它表明鋼材反抗斷裂的才能巨细。與抗拉強度相應的還有抗壓強度、抗彎強度等。抗拉强度单位設Pb為材料被拉斷前達到的最大拉力,Fo為試樣截面面積,則抗拉強度σb= Pb/Fo (MPa)。4.伸長率(δs)僥饧在拉斷后,其塑性伸長的長度與原試樣長度的百分比叫伸長率或延伸率。5.屈強比(σs/σb)鋼材的屈从點(屈从強度)與抗拉強度的比值,稱為屈強比。屈強比越大,結構零件的可靠性越高,一般碳素鋼屈強比為0.6-0.65,低合金結構鋼為0.65-0.75合金結構鋼為0.84-0.86。6.硬度泥度表明材料反抗硬物體壓入其表面的才能。它是金屬材料的重要功能指標之一。一般硬度越高,耐磨性越好。常用的硬度指標有布氏硬度、洛氏硬度和維氏硬度。瓥布氏硬度(HB)以必定的載荷(一般3000kg)把必定巨细(直徑一般為10mm)的淬硬鋼球壓入材料表面,坚持一段時間,去載后,負荷與其壓痕面積之比值,即為布氏硬度值(HB),單位為公斤力/mm2(N/mm2)。痥洛氏硬度(HR)盥HB>450或许試樣過小時,不能选用布氏硬度試驗而改用洛氏硬度計量。它是用一個支撑角120°的金剛石圓錐體或直徑為1.59、3.18mm的鋼球,在必定載荷下壓入被測材料表面,由壓痕的深度求出材料的硬度。根據試驗材料硬度的不同,分三種不同的標度來表明:HRA:是选用60kg載荷和鉆石錐壓入器求得的硬度,用于硬度極高的材料(如硬質合金等)。HRB:是选用100kg載荷和直徑1.58mm淬硬的鋼球,求得的硬度,用于硬度較低的材料(如退火鋼、鑄鐵等)。HRC:是选用150kg載荷和鉆石錐壓入器求得的硬度,用于硬度很高的材料(如淬火鋼等)。盥維氏硬度(HV)以120kg以內的載荷和支撑角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)抗拉强度单位换算延伸率(δ):描绘材料塑性功能的目标——延伸率δ和截面缩短率ψ。延伸率即试样拉伸开裂后标距段的总变形ΔL与原标距长度L之比的百分数:δ=ΔL/L×100%。 抗拉强度的单位:kn/m㎡(单位面积接受的公斤力)  压强单位是帕(Pa),1Pa= 1N/㎡  1kg的质量能够发生9.8牛顿的力  1MPa=10^6Pa=10^6 kn/㎡=1 kn/m㎡,  1pa=1 kn/㎡,  1kg=9.8n,  1mpa=1000kpa=1000000pa,lbf是 是1磅力,1lbf=4.44822N      不是应力单位应力、压强、压力:磅力每平方英寸 lbf/in2 1 lbf/in2=144 lbf/ft2=6894.76Pa         应力、压强、压力:磅力每平方英尺 lbf/ft2 1 lbf/ft2=47.3880 kPa  我就找到这么多抗拉强度单位换算,不太全,可是仍是想拿出来和我们共享一下..... 

高强度铝合金成分

2018-12-28 14:46:50

类别 代号主要化学成分(余量为铝)(%)锌镁铜铁硅锰其它相当美国牌号压力加工铝合金LY120.251.2-1.83.8-4.90.500.500.30-0.90铬0.1020242124LY160.100.025.8-6.80.300.200.20-0.40 2219LC45.1-6.12.1-2.91.2-2.00.500.400.30铬0.18-0.35钛0.02-0.107075 铸造 铝合 金ZL702 0.4-0.61.3-1.8≤0.358-100.10-0.35钛0.10-0.35SAE354.0ZL204  4.6-5.3≤0.1≤0.060.6-0.9镉0.15-0.25钛0.15-0.35K0-1(210.0)ZL-S3051.0-1.57.5-9.0  铍0.03-0.10钛0.10-0.20锆0.10-0.20 X-250ZL-50126.39-6.461.51-1.65  0.11-0.16 铬0.14-0.17钛0.15-0.17Arcast67

纯铜抗拉强度

2017-06-06 17:50:05

纯铜抗拉强度是245-315N/mm2。    此外黄铜:335-440N/mm2、铬铜:380N/mm2以上、磷青铜:490N/mm2以上、快削黄铜:335N/mm2以上。可以说纯铜的抗拉强度没有铜合金的抗拉强度要高。    1.普通黄铜    它是由铜和锌组成的合金。    当含锌量小于 39% 时,锌能溶于铜内形成单相 a ,称单相黄铜 ,塑性好,适于冷热加压加工。    当含锌量大于 39% 时,有 a 单相还有以铜锌为基的 b 固溶体,称双相黄铜, b 使塑性小而抗拉强度上升,只适于热压力加工。    若继续增加锌的质量分数 ,则抗拉强度下降,无使用价值。     我们用代号“ H +数字”表示, H 表示黄铜,数字表示铜的质量分数。如 H68 表示含铜量为68%,含锌量为32%,的黄铜,铸造黄铜则在代号前“ Z ”字,如 ZH62。如 Zcuzn38 表示含锌量为38%,余量为铜的铸造黄铜。H90、H80单相,金黄色,故有金色共称之,称为镀层,装饰品,奖章等。H68、H59 属于双相黄铜,广泛用于电器上的结构件,如螺栓,螺母,垫圈、弹簧等。一般情况下,冷变形加工用单相黄铜 热变形加工用双相黄铜。    2.特殊黄铜    在普通黄铜中加入其它合金元素所组成的多元合金称为黄铜。常加入的元素有铅、锡、 铝等,相应地可称为铅黄铜、锡黄铜、铝黄铜。加合金元素的目的。主要是提高抗拉强度改善工艺性代号:为“ H +主加元素符号(除锌外)+铜的质量分数+主加元素质量分数+其它元素质量分数”表示。如:HPb59-1 表示铜的质量分数为59%,含主加元素铅的质量分数为1%,余量为锌的铅黄铜。    锡黄铜:锡可显著提高黄铜在海洋大气和海水中的抗蚀性,也可使黄铜的强度有所提高。压力加工锡黄铜广泛应用于制造海船零件。    铅黄铜:铅能改善切削加工性能,并能提高耐磨性。铅对黄铜的强度影响不大,略为降低塑性。压力加工铅黄铜主要用于要求有良好切削加工性能及耐磨的零件(如钟表零件),铸造铅黄铜可以制作轴瓦和衬套。    铝黄铜:铝能提高黄铜的强度和硬度,但使塑性降低。铝能使黄铜表面形成保护性的氧化膜,因而改善黄铜在大气中的抗蚀性。铅黄铜可制作海船零件及其它机器的耐蚀零件。铅黄铜中加入适量的镍、锰、铁后,可得到高强度、高耐蚀性的特殊黄铜,常用于制作大型蜗杆、海船用螺旋桨等需要高强度、高耐蚀性的重要零件。    硅黄铜:硅能显著提高黄铜的机械性能、耐磨性和耐蚀性。硅黄铜具有良好的铸造性能,并能进行焊接和切削加工。主要用于制造船舶及化工机械零件。    锰黄铜:锰能提高黄铜的强度,不降低塑性,也能提高在海水中及过热蒸汽中的抗蚀性。锰黄铜常用于制造海船零件及轴承等耐磨部件。    铁黄铜:黄铜中加入铁,同时加入少量的锰,可起到提高黄铜再结晶温度和细化晶粒的作用,使机械性能提高,同时使黄铜具有高的韧性、耐磨性及在大气和海水中优良的抗蚀性,因而铁黄铜可以用于制造受摩擦及受海水腐蚀的零件。    镍黄铜:镍可提高黄铜的再结晶温度和细化其晶粒,提高机械性能和抗蚀性,降低应力腐蚀开裂倾向。镍黄铜的热加工性能良好,在造船工业、电机制造工业中广泛应用。 由于纯铜抗拉强度比较低,所以应用并不广泛。 

6063铝合金强度

2017-06-06 17:50:10

6063铝合金强度比6061低,抗拉强度 σb (MPa):130~230 ,受拉屈服强度 55.2 MPa。    6063铝合 金属 低合金化的Al-Mg-Si系高塑性合金。具有诸多可贵特点:    1.热处理强化,冲击韧性高,对缺可不敏感。    2.有极好的热塑性,可以高速挤压成结构复杂.薄壁.中空的各种型材或锻造成结构复杂的锻件,淬火温度范围宽,淬火敏感性低,挤压和锻造脱模后,只要温度高于淬火温度。即可用喷水或穿水的方法淬火。薄壁件(6<3mm)还可以实行风淬。    3.焊接性能和耐蚀性优良,无应力腐蚀开裂倾向,在热处理可强化型铝合金中,Al-Mg-Si系合金是唯一没有发现应力腐蚀开裂现象的合金。4.加工后表面十分光洁,且容易阳极氧化和着色。其缺点是淬火后若在室温停放一段时间在时效,会对强度带来不利影响(停放效应)。    6063铝合金广泛用于建筑铝门窗、幕墙的框架,为了保证门窗、幕墙具有高的抗风压性能、装配性能、耐蚀性能和装饰性能,对铝合金型材综合性能的要求远远高于工业型材标准。 在国家标准GB/T3190中规定的6063铝合金成分范围内,对化学成分的取值不同,会得到不同的材质特性,当化学成分的范围很大时,其性能差异会在很大范围内波动,以致型材的综合性能会无法控制。因此,优选6063铝合金的化学成分成为生产优质铝合金建筑型材的最重要的一环。 合金元素的作用及其对性能的影响 6063铝合金是AL-Mg-Si系中具有中等强度的可热处理强化合金,Mg和Si是主要合金元素,优选化学成分的主要工作是确定Mg和Si的百分含量。    了解更多有关6063铝合金强度的信息,请关注上海 有色 网。 

隔热断桥型材抗剪强度试验和横向抗拉强度检测

2018-12-29 16:57:11

隔热断桥型材抗剪强度试验:   取(100±1)mm长复合隔热铝合金型材,在(23±2)℃、湿度为45%~55%的环境中保存两天,通过抗剪强度检测仪将作用力均匀地推向型材切面,给进速度为1~5mm/min,记录所加荷载和相应的剪切变形数。   抗剪强度计算式:   T=F1mix/L   式中:T——抗剪强度;   F1max——最大抗剪力;   L——试样长度。   组合弹性值是在剪切失效单位长度的作用力与位移H的比值,按下公式计算:   K=F1/(H×L)   DIV>式中:K——组合弹性;   H——在剪切力F(N)作用下产生的位移,单位为mm;   L——试样长度;   F1一抗剪力。   隔热断桥型材横向抗拉强度检测:横向抗拉强度试验在剪切力失效后进行。内、外层铝合金型材之间出现2mm位移后为剪切力失效。通过横向抗拉强度检测仪,将作用均匀地施加在隔热铝型材的内、外层铝合金型材上,时向外拉伸。横向抗拉强度计算式:   Q=F2max/L   式中:Q——横向抗拉强度;   F2max——最大抗拉力;   L——试样长度。

高强度铜合金

2017-06-06 17:50:05

高强度铜合金牌号:QSn8-0.3标准:GB/T 13808-1992●特性及适用范围:为含有铁、锰元素的铝青铜,属于高强度耐热青铜,高温(400℃)下力学性能稳定,有良好的减摩性,在大气、淡水和海水中抗蚀性很好,热态下压力加工良好,可热处理强化,可焊接,不易纤焊,可切削性尚好。●化学成份:铜 Cu :余量锡 Sn :≤0.1锌 Zn:≤0.5铅 Pb:≤0.02铅 Pb:≤0.02硼 P:≤0.01镍 Ni:3.5~5.5铝 Al:9.5~11.0铁 Fe:3.5~5.5锰 Mn:≤0.3硅 Si :≤0.1注:≤1.0(杂质) 

冷拔钢筋的强度

2019-03-18 08:36:58

一般情况下我们经常接触的冷加工有两种:冷拉和冷拔 1.冷拉:对钢筋施加拉力进行强力拉伸,要求拉应力超过钢材的屈服强度但要低于抗拉强度。拉伸完成后静止一段时间使冷拉时效发挥出来。此时的钢筋塑性、冲击韧性变差,强度和硬度提高。强度提高幅度可达50%。 2.冷拔:加工措施与冷拉相似,稍微复杂些,强度提高可达90% 这两种冷加工都是以牺牲钢材的变形能力为代价,达到了提高强度和硬度的效果,但是经过处理后的钢材屈强比增大,安全储备降低,延性降低,破坏前不再有明显的变形发生。对于可能承受动力荷载的部位或重要部位是禁止使用此类钢筋的。 冷拔钢筋的强度 冷拔的冷作硬化可提高材料的抗拉强度。提高的程度与材料的原始机械性能和冷拔的减径量、冷拔道次有密切关系。 金属的塑性变形是通过位错运动来实现的.塑性变形过程中,位错运动的阻力主要来自位错本身.而在冷加工时,依靠机械使钢筋塑性变形时其位错交互作用的增强、位错密度提高和变形抗力增大这些方面的相互促进,很快导致金属强度和硬度的提高.冷拉可提高屈服度节约材料,将热轧钢筋用冷拉设备加力进行张拉,经冷拉时效后使之伸长.冷拉后,屈服强度可提高20%-25%,可节约钢材10%-20%, 冷拔此工艺比纯拉伸作用强烈,钢筋不仅受拉,而且同时受到挤压作用,经过一次或多次冷拔后得到的冷拔低碳钢丝其屈服点可提高40%~60%,抗拉强度高,塑性低,脆性大,具有硬质钢材特点.

胶磷矿除镁降硅选矿技术

2019-01-16 11:53:19

胶磷矿除镁降硅选矿技术        云南、四川、湖北宜昌、神农架和保康一带的磷矿属沉积型磷块岩,呈隐晶质块体,假鲕粒状集合体,即胶磷矿,属难选矿石。矿床:分三个成矿层位,其中下层为具 工业价值的矿层。下矿层又分为三个矿层,即上、下贫矿层和中富矿层,形成“两贫夹一富” 的矿层结构。上贫矿层(Ph13-3)由白云岩条带磷块岩组成,平均品位18.01%,为碳酸盐型矿石。 中层矿层(Ph13-2)由致密条带磷块岩组成,平均品位32.79%。下贫矿层(Ph13-1)矿石由泥质条带磷块岩组成,平均品位15.16%,属硅酸盐型矿石。整个Ph13矿层属混合型矿石。区内富矿少,大量存在的是贫矿石。 以下列出宜昌和保康两矿点的原矿化学组成(表1)。 2、矿石矿物组成及嵌布特征矿石中主要有用成分为胶磷矿,脉石矿物以白云石、石英和粘土矿物为主,其次有长石、云母、碳酸盐矿物等。  矿石矿物颗粒微细,磷矿物与脉石矿物紧密共生,呈胶体或隐晶、微晶质。胶磷矿镜下为褐色 、棕色或无色,呈似胶状、砂屑状,矿物集合体为鲕粒,假鲕粒结构,常混杂有粘土矿物,碳酸盐,硅质,铁质,与脉石相间分布,形成所谓“内生”脉石。表1 原矿化学组成分析结果项目P2O5CaOMgOCO2烧失量酸不溶物R2O3FSO4-2SSiO2宜昌19.2539.9810.8522.8322.704.501.630.560.700.35/保康21.8038.144.9212.4112.18/3.731.82//13.32碳酸盐类脉石矿物为白云石、方解石、多呈细粒状集合体和脉状组成的白云条带,有的呈不规则集合体散布于胶磷矿集合体中,有些交代胶磷矿鲕粒而出现。白云石一般含量高,其粒度小于0.01-0.6毫米,呈半自形、自形。石英分布于泥硅质矿石中,呈棱角状、次滚圆状,粒度0.01-0.04毫米。由上述可知,磷矿物与脉石矿物呈细粒嵌布,从选矿角度看,需要将矿石磨至-200目或更细,方能使矿物单体解离。 单一浮选流程技术指标产品名称产率(%)品位(%)回收率(%)备注磷精矿69.7532.592.15产品含MgO0.58%,含 SiO22.08%

蜂窝铝板封缝注胶工艺

2018-12-29 09:42:59

(1) 将蜂窝铝板保护膜折边部分撕开,按90°转角折边处贴上美纹纸,美纹纸在四角胶缝处应折90°转角,整个板块美纹纸一次到位,用力抹平,避免美纹纸折皱。   (2) 填充泡沫棒,要求密实平直。   (3) 注胶时应按直线走,从上至下,从左至右,一次打完。   (4) 刮胶时应按注胶步骤一次到底,在角部处刮拉速度稍微缓慢一些。   (5) 撕去美纹纸成外向45°倾斜拉扯,应把撕掉美纹纸集中处理,避免环境污染。

胶铝成期市亮点 沪胶5月成交额同比增13倍

2019-01-16 11:51:38

昨日上海期交所发布5月份成交统计概况月报。月报显示,天胶期货当月成交额为43835761.56万元,同比增1304.44%;当年累计成交额为164226216.77万元,同比增939.53%。     另外,月报显示,沪铜当月成交额为31018413.78万元,同比减25.29%;沪铝当月成交额为37420160.63万元,同比增3308.96%;沪燃料油当月成交额为7833593.71万元,同比增145.66%。  月报还显示,沪铜当月成交量为807328手,同比减69.67%;沪铝当月成交量为3297260手,同比增2408.30%;沪燃料油当月成交量为2114310手,同比增67.79%。  在持仓量方面,沪铜当月持仓量为86976手,同比减59.44%;而其余几个品种同比都有不同程度的增加。

高强度铝合金栏杆

2019-01-16 11:51:40

铝合金栏杆扶手采用微弧圆角宽幅高强度铝合金型材,时尚、稳重、高雅、大方;栏杆立柱及主要横梁采用圆弧形图案设计,动感流创,且尽量增大立柱受力面,安全、可靠,并配合普通圆形连接立柱。弧面一律朝外,整体美观、和谐统一,色彩鲜艳、丰富多样且可根据建筑外墙及整体环境色彩需要进行搭配。较重要的一点是铝合金栏杆的抗腐蚀性能极强。50年内不用作维修,维护处理,可节省一笔数额不菲的维护费用,同时也解决了因阳台栏杆生锈而造成的景观破坏及客户投诉而造成的地产开发公司的信誉损失。中煌建筑护栏设计有限公司网址http://www.all618.com

UOE钢管强度各向异性对抗压强度的影响及其预测方法

2019-03-15 11:27:19

最近10年来,为输送天然气,开展了在海底铺设管道管的深水研究项目。在天然气的远距离输送中,要求管道在深海下具有抵抗外部水压的抗压强度,因此一般使用UOE钢管。UOE钢管的制造方法为冷冲压成形法,钢管强度各向异性。为预测UOE钢管的抗压强度和弄清钢管的压坏机理,新日铁进行了钢管成形-性能评价一体化的数值解析模拟。数值解析模拟由钢管的二维成形模型和反映成形形状及残留应力的钢管三维压坏模型构成。通过实验,对钢管的壁厚、圆周方向位置中的强度各向异性进行了测定,同时对残留应力进行了测定,根据钢管的实际抗压强度,对数值解析模型的妥当性进行了评价。  1.UOE钢管的强度各向异性和残留应力       众所周知,影响钢管抗压强度的因素有形状不良(钢管的正圆度和壁厚不均)、屈服强度(YS)和残留应力。圆周方向的压缩屈服强度和残留应力有很大的相互关系。圆棒和圆柱试样(直径都是6mm)测定的壁厚断面的屈服强度分布表明,钢管外部圆周方向压缩屈服强度的下降特别明显。对壁厚位置中的S-S曲线比较表明,从壁厚中心开始出现在外部因弹性变形的鲍辛格效应而产生的圆形的S-S曲线。根据UOE钢管和油井用无缝钢管的比较可知,两种钢管的残留应力都趋于内面压缩,但UOE钢管残留应力值小。  2.数值解析模拟        在数值解析过程中,使用了综合模型对UOE钢管的成形-抗压强度进行了评估。在UOE钢管的成形模型(二维平面变形要素)中,使用了板材的S-S曲线,并将残留应力应用于压坏模型(三维固体要素)。由于只进行数值解析模拟难以精确预测对从板材到钢管的S-S曲线变化,因此采用半实验的方法(模拟变形试验)预测S-S曲线。即,把计算的等效塑性应变滞后作用于从板材取样的圆棒试样,然后对每个壁厚位置所得的压缩S-S曲线进行定义。  3.结果和研究  3.1压坏模型的妥当性       预测精度受模型的要素组合数、压力增量值、收敛判断值的支配,如果对这些影响因素进行校正,估计本模型的预测误差在5%左右,通过校正误差,可以进一步提高预测精度。       在对给出相同正圆度时的综合模型和椭圆近似模型的压坏值进行比较后发现两者没有比较大平均差,由此可知,通过将取决于最大外径和最小内径的正圆度做成近似于椭圆的参数,就可以将局部曲率变化的UOE钢管的外径分布用模型表示。对用椭圆模型预测的压坏值和预测UOE钢管抗压强度的普通公式的计算值进行了比较,发现不同D/t(外径/壁厚)和正圆度的预测值与普通公式预测值相同,由此推定采用成形-压坏综合模型也能获得相同的结果。因此,可以说综合模型能解析压坏机理,可以应用于成形条件对抗压强度影响的量化。  3.2UOE钢管的压坏机理       调查了采用圆棒试样模拟UOE钢管生产过程中预测的等效塑性应变滞后时的应力-应变关系,并对预测的S-S曲线和模拟曲线进行了比较,结果可知预测的S-S曲线与实际钢管的S-S曲线较一致,即使是受到不同应变滞后作用的壁厚断面,其YS也与实测值相同。在此次成形条件下的应变滞后中壁厚外部YS的下降受U冲压时的拉伸应变负荷所支配。另外,在钢管内侧几乎看不到因弹性变形的鲍格辛效应而产生的压缩YS下降。采用以上提出的模拟应变试验,能更加精确预测实际钢管圆周方向的强度。  4.结束语       根据UOE钢管的强度分布、强度各向异性和残留应力实测值,通过数值解析,求出了这些因素对钢管外部压坏特性的影响。结果明确了UOE钢管特有的现象,即由于圆周方向压缩YS的下降,因此抗压强度比均质材低,压坏的起点和残留应力的效果与均质材不同等。另外,还提出了用板材进行钢管成形时预测机械特性能变化的有效方法。

高强度7068铝合金

2018-12-28 15:58:41

高强度7068铝合金是美国凯撒铝及化学公司(Kaiser Aluminium & Chemical Comp.)发明的,现已由先进金属材料国际集团公司(Advanced Metals International Group)投入生产。这种合金的力学性能比传统的7XXX系超强合金的高得多,其屈服强度高达700N/mm2,比7075合金的高15%—20%,可用于制造航空航天器、汽车的阀体、联杆,以及自行车与爬山器械零部件。

密封胶条的重要性

2019-02-28 10:19:46

密封胶条的重要性   门窗的要害在密封。而密封的效果,胶条起着要害效果。密封胶条原料一般是PVC改性的,起要害效果的是里边参加的增塑剂,现在比较稳定的增塑剂有磷二二辛酯,二丁酯,但市场报价较高。所以一些小供应商就用一些廉价的东西替代,例如废机油,炼油厂剩余的油根柢等,这给今后的用户埋下了很大的危险。   这些危险表现在:1、门窗密闭性低。质量差的密封胶条含用残次增塑剂或替代品,冬季易老化变硬,缩短。玻璃和型材间呈现缝隙,形成漏水,进尘埃。许多用户常常发现旱季塑窗里边的压条部位流出赤色液体,就是窗子玻璃与密封胶条间进水后腐蚀钢衬形成的。不光大大下降门窗的漂亮,还大大影响门窗的寿数。2、胶条表面呈现渗油现象。废机油和PVC根本不兼和密封胶条,表面很简单呈现油脂,在型材表面呈现黄色斑迹,不环保,有异味,污染空气。 好坏密封胶条的鉴别方法:1、看比重。同量的密封胶条优质的感觉要轻,反之要重。正规供应商一般用比重小的轻质碳酸钙作为填充剂,有些供应商则选用滑石粉,重钙,来添加产品的比重。由于供应的时分是按分量计价的。2、夏天的时分密封胶条与型材接触面是否污损变色,发黄渗油。3、用鼻子闻闻是否有异味,正常的PVC原料有一点醇味,很小,简直闻不到。 在门窗的制造过程中,密封胶条的投入占比重较小,可它的效果却不行小视。为了省小钱而不慎重挑选生产单位,真实因小失大。而门窗生产单位为了下降一点本钱选有残次的密封胶条,也会很快失掉诺言,其失掉的就不仅仅是一个客户了,也更不是明智之举 。

玻璃胶典型问题及处理方法

2019-03-04 10:21:10

1、中性透明胶变黄是什么原因?   答:中性透明胶变黄是胶浆自身存在缺陷,主要是由中性胶内的交联剂和增粘剂引起的,原因是这两种质料带有“胺基”,胺基是极简略引起发黄的,许多进口品牌的玻璃胶也是因而有变黄的现象。别的中性透明胶假如与酸性玻璃胶一起运用,有或许导致中性胶固化后变黄;也或许是胶的寄存时间长会发作影响或是胶与基材发作反响所构成的。   2、中性瓷白胶为何会有变粉红的现象?有些胶固化后一个星期又变回瓷白?   答:醇型的中性胶或许有这种现象呈现,那是出产质料钛铬合物引起的。钛铬合物自身是赤色的,而胶的瓷白色彩是胶中的钛在起调色作用。但胶是有机物,而有机化学反响绝大大都都是可逆反响,还有副反响的发作。温度恰好是引起这些反响的要害,温度高了发作正反响使色彩有改变,但温度降下来安稳今后反响又逆向进行,康复本来的姿态。出产技能及配方把握得好,应该能够防止此现象呈现。   3、有些国产透明胶,打出来五天后变瓷白色彩?中性绿色胶施工后变瓷白色彩,为什么?   答:这也应该是胶的质量问题,归于原材料挑选及验证上的问题。由于有些国产胶里加有增塑剂,易蒸发;而有些胶内加有较多补强填料,当增塑剂蒸发,胶条因缩短而被拉伸,现出填料色彩(中性胶一切填料自身是白色的)。各种五颜六色胶是添加色素使其变成各种色泽,假如颜料挑选上有问题,胶在施工后色彩会变;或者是色彩胶在施工时打得太薄,胶在固化进程中固有的少数缩短使胶色彩会变浅,这种状况主张施胶时坚持必定的厚度(3mm以上)。   4、为什么镜子反面打上玻璃胶,一段时间后,镜面呈现花斑或胶的痕迹?   答:市场上镜子一般有三种不同的反面镀层:、纯银和铜。常见的镜子施胶一段时间后镜面呈现花斑,此状况应该是用户运用了酸性玻璃胶,而酸性玻璃胶一般与上述原料会发作反响,构成镜面看到花斑。因而咱们着重应该选用中性胶,而中性胶分为醇型和酮肟型两种。若铜底的镜选用酮肟型中性胶,则酮肟会对铜质原料有细微腐蚀,施工一段时间后镜面看到背面施胶处有腐蚀过的痕迹,若改用醇型中性胶便不会呈现此现象。以上都是由于基材多样性构成的选材不妥。因而主张用户用胶之前,较好做一个相溶性测验,看胶是否与材料相溶才用。选用恰当的玻璃胶产品才干防止不必要的丢失。   5、有些玻璃胶打出来时有盐粒般巨细的粒状,而固化后有些粒状又会主动化解,为什么?   答:这是挑选胶的原材料配方上的问题。由于某些胶内含有的交联剂,在温度较低的环境下有结晶现象,交联剂在胶瓶内凝聚,打出来后便会看见有盐粉粒般巨细的粒状,但它渐渐会溶化的,所以固化后粒状又会主动化解。这种状况对胶的质量影响不大。呈现此状况,主要是受低温影响比较大。   6、有些国产胶打在玻璃上,7天仍未干胶,什么原因?   答:这种景象大都在天冷时分呈现。一、打胶过厚,干胶慢。二、施工环境影响,气候恶劣。三、胶浆过期或有问题。四、胶偏软,感觉干不透。   7、有些国产玻璃胶在施胶时呈现的气泡声,是什么原因?   答:或许有三种原因:一、分装时技能不过关,胶瓶内混入了空气;二、少数黑心供应商成心不压紧瓶底盖,瓶中留有空气却给人以装胶量足够的感觉;三、有些国产胶由于不是百分百硅酮胶,其间添加的填充料会与玻璃胶包装瓶的PE软胶发作细微化学反响,令胶瓶有胀大增高的现象呈现,空间内留存的空气进入胶浆使之发作空地,在施胶时就会打出气泡声。战胜这种现象的有用方法是:换用硬瓶包装,留意产品寄存环境(30℃以下阴凉处)。   8、为什么夏天有的中性胶打在混凝土和金属窗框的结合部位固化后会呈现许多气泡,而有的又不会?是不是质量的问题?为什么曾经没有相似现象呈现?   答:许多品牌的中性胶都有过相似现象呈现,经仔细检测和重复试验供认并不是胶的质量问题。由于中性胶有醇型和酮肟型两种,而醇型胶在固化进程中所含的甲醇会开释出气体(甲醇在50℃左右开端蒸发),特别遇到太阳直射或高温反响更激烈。别的混凝土和金属窗框是很难透气的,加上夏天温、湿度都较高,固化会更快,胶开释的气体就只能从未彻底固化的胶层中跑出来,固化的胶条上就会呈现巨细不一的气泡。而酮肟型中性胶在固化进程中不会开释出气体,就不会发作气泡。但酮肟型中性胶的缺陷是一旦技能、配方处理欠好,冬季在固化进程中遇冷就有时机呈现缩短龟裂现象,技能好,配方过关的就没有此现象呈现。当然酮肟型的中性胶报价比醇型稍贵。   曩昔没呈现相似现象是由于曩昔建筑施工单位在这种当地用硅酮胶的很少,一般往往运用的是类的防水密封材料,因而硅酮中性胶起泡的现象不是很遍及;近年来逐步广泛选用硅酮类密封胶,这大大提高了工程质量层次,但由于对材料特性不了解以致于选材不妥构成密封胶起泡现象。   处理此类问题应留意以下几点:一、较稳重的做法是先做部分运用测验以调查是否契合运用需求(一般施胶后的两、三天就能够看到反响);二、辨明运用时间和基材类型,挑选恰当的中性胶运用:夏天挑选酮肟型,冬季挑选醇型;三、坚持施工表面洁净、枯燥;四、夏天施胶时应避开高温时段(35℃以上)和太阳直射,一般黄昏较适宜;五、相似工程可知会供应商技能人员盯梢。   9、怎么做相容性测验?   答:从严厉意义上讲,做胶粘剂和建筑基材间的相容性测验应该到国家供认的建筑材料测验部分去进行,但由于周知的原因,在这些部分送检得到成果的周期较长,费用高。有这种必要的工程当然必定要够等级的国家威望检测组织的查验合格陈述才干断定是否运用某建材产品,而一般性的工程能够将基材提供给玻璃胶的出产供应商做相容性测验,结构胶45天,中性胶、酸性胶35天左右能够得出测验成果。较简略方便的方法是用户自己能够将玻璃胶在少数基材上试打,待彻底固化后调查表面作用并用手试其抗剥离强度怎么,以简略断定该玻璃胶产品的粘力、拉力等是否契合运用需求。   10、酸性胶用在水泥上为什么很简略掉落?   答:这其实是玻璃胶应用上的一个较根本的问题。酸性胶在固化时发作醋酸,会与水泥、大理石、花岗岩等碱性材料的表面发作反响,构成一种白垩状的物质,然后引起掉落。

铜合金金属强度特性的影响

2019-05-29 19:33:30

铜合金金属强度特性的影响      (1)强度高的金属比强度低的金属活动均匀一般俐、磷青铜,H%等合金.金属活动均匀,而a黄铜, H68 , H80, HSn70-1、白钢、镍合金等金属活动不均匀。   (2)对同一种金属,低温时强度高.其金属活动要比高沮时的均匀。    (3)关于萦铜(纯铜),在热揉捏条件下,因为表面载化皮其有较好的光滑效果,所以揉捏时的金属活动较均匀。

风雨中抬起头 胶铝渐现涨势

2019-01-16 09:34:49

本周原油减产牵系大家眼球,周四明确减产油价却反弹有限,当周国内期市真英雄当属沪胶与沪铝,周五双雄领涨,当周走势流畅整体涨幅均超过5%,而上周明星农产品行情在喷发后,本周小幅回落。        20日,沪燃油612合约受原油反弹鼓励收高,报2966元/吨,涨47元或1.61%。当周沪燃油历经国际原油的暴跌冲击,稳守2900一线,显见国内需求增长并非虚言。而国际油价在当周止跌回稳,全凭减产。因沙特阿拉伯表示支持石油输出国组织(欧佩克)减产,19日国际市场原油价格出现回升。当天,纽约商品交易所11月份交货的轻质原油期货价格每桶上涨85美分,收于58.50美元。石油输出国组织(OPEC)周五达成协议,每日减产120万桶,这是OPEC两年多来首次减产,减产数量相当于OPEC 9月日产量的4.3%,幅度超过市场原先预期,并为2002年1月以来减产幅度较大一次,OPEC决定自11月1日起把日产量削减至2,630万桶。        沪胶周五继续反弹,701合约收于20600元/吨,这是今年8月28日以来较高的收盘价。我国8月份橡胶进口17万吨,同比增长超过19.7%,说明我国消费非常强劲;上周五有关部门表态宏观调控取得成效,后续调控力度将放缓;泰国遭遇严重水灾,严重影响橡胶供应;近年来我国汽车消费持续、稳步上扬,预计2006年汽车生产增加20%即370万辆,以及中国经济的强劲增长等等表明,天胶价格可以继续看高一线。橡胶现货商却对当前的橡胶消费表示忧虑:首先是关税下降的可能,随着橡胶价格的走高,天然橡胶进口关税的下降与否又被上层讨论,其次从轮胎工厂的现状看,轮胎积压较大,出口不畅;同时轮胎出口形势并不好,轮胎库存积压较大,国内轮胎厂家资金流薄弱,很容易出现问题。

高强度塑合金管性能

2019-03-15 10:05:15

高强度塑合金管的性能指标要求       塑合金管又称塑合金复合通信管或塑合金电力电缆保护管。 是以聚氯乙烯为主要原料,综合应用具有协同效应的 多元高分子材料共混合金技术,配以增韧剂,抗老化 剂及其他辅助添加剂等,经分部捏合及配合整体捏合 工艺,经过互穿网络合金化处理。    高强度塑合金管通过大量的摸底、调研、咨询后,采用正交试验法和多元合金网络协同技术,综合运用了多种具有协同效应的功能型高分子材料,配以相应的增韧剂、刚性增补剂、防老剂及其他辅助添加剂等,并经分部捏合与整体捏合相配合的方法,经过试制、试验、分析、总结、删选和改进等,最后成功地开发出了第三代通讯管材——高强度塑合金管。也称为塑合金管或塑合金复合通信管。高强度塑合金管各项综合技术指标处于国内同类产品的领先水平,可替代钢管用于信息管线穿越马路的埋地敷设工程。组合排列容易、施工简便、既可降低工程造价,又可延长通信管道的使用寿命。产品广泛适用于互联网、移动电力及所有使用光、电缆作为传输路由的部门。 1 .外观与结构  (1) 外方内圆双层复合结构,一次挤压成型,可放置不同口径的光电缆,与原有水  泥管块、波纹管等管道可以自由过渡、组合,并有相应的配件如接头、堵头、勒带、专用胶水、修补片等便于施工操作。如图1 所示。高强度塑合金管结构 (A:内径 B:外形 C:壁厚)  (2) 结构尺寸  表1 结构尺寸    规格最小内径(毫米)外形(毫米)每根长度(米)壁厚(毫米)92mm规格不小于8392X92(±0.5)6(+0.03)不小于3.5110mm规格不小于100110X110(±0.5)6(+0.03) 不小于4.4 (3) 外形结构为弧角方形,管材R角:15±2mm。    (4) 内壁光滑,穿线省力。    (5) 管材颜色均匀一致,管材内外壁不允许有气泡、裂口、分解变色线及明显的杂质等缺陷。    (6) 管材两端面应平整且轴线垂直,管材轴线方向不应有明显的弯曲现象。每米翘曲不大于20毫米。    (7) 接头、堵头产品外观无缺陷、损伤、性能尺寸符合设计要求。    2、材料    (1) 采用优质ABS等工程塑料一次挤出。    (2) 柔韧性:可弯曲,一段6米的管材,弯曲强度大于1米。    (3) 在各种酸缄度的环境中,耐腐蚀性和抗老化性能好    (4) 阴燃(离火即熄),其燃烧性能应符合GB/T5169.7 1985标准中有关规定。    (5) 使用寿命50年以上。    (6) 专用胶水内不得含有硬块,不溶颗粒和其他杂质;不得呈胶凝状态;不得有分层现象,在未搅拌的情况下不得有析出物。    3、 性能要求    表2 性能要求    序号项目条件性能要求92mm规格110mm规格1抗冲击性能0℃,2kg,1.5m9/10通过9/10通过2抗压强度≥400 KN/m2≥300 KN/m23拉伸屈服强度≥30MPa≥30MPa4维卡软化温度GB/T8802≥82℃≥82℃5低温坠落试验-20℃,1m高度,不开裂不开裂6老化后拉伸强度变化率120℃,6h-20~20%-20~20%7耐腐蚀性28~32%小于1.50g/ m2小于1.50g/ m228~32%硫酸 38~42

隔热铝型材聚氨酯隔热浇注胶的优点

2019-03-11 11:09:41

1、隔热节能作用好    铝型材聚酯隔热浇注胶的K值为0.12W/MK,出产的铝型材彻底密封没有接缝可为建筑物门窗供给最佳的保温作用。    2、优秀的力学功能    铝型材聚酯隔热浇注胶具有杰出的抗拉伸、防开裂性和延伸性等力学功能,以及较高的耐冲击、耐磨损、耐切开与耐开裂的特性。    3、铝型材规划灵活多样窗型丰厚外形漂亮节能    铝型材聚酯隔热浇注胶技能的工艺比较简略,对铝型材没有特殊要求,横截面精巧,规划的随意性大。通过威固注胶式隔热处理后的铝门窗,在坚持原有的颜色丰厚、强度大、精巧漂亮等特色的一起,保温节能功能亦得到很大的进步。通过隔热处理后的铝型材,可加工推拉、提拉、表里平开、翻转平开等各种窗型,还能够加工成圆弧窗等异型窗,亦可应用于幕墙规划。    4、铝型材出产功率更高    出产程序简略,聚酯隔热浇注胶技能一起完结浇注、固化、断桥的工艺,合适规模化、接连化出产。    5、节省铝型材门窗幕墙的铝用量    在到达平等隔热作用要求的条件下,运用聚酯隔热浇注胶的铝型材用量相对于用其它类型出产的隔热铝型材,单位用铝量可节省10%以上。别的由所以接连化无缝出产,比较其它出产方式,聚酯隔热浇注式铝型材能有用地下降铝损耗,铝损耗只要约为1%-2%。    6、可削减玻璃上凝露现象    玻璃的凝露现象形成建筑物质量不抱负,运用聚酯隔热浇注办法可有用削减玻璃上的凝露现象。    7、可确保在紫外线长时间照耀下功能不变    浇注胶式隔热铝型材受紫外线长时间照耀后,隔热浇注胶及铝型材力学功能没有改变,安全性完结不受影响。    8、适用于多雨湿润环境    铝型材聚酯隔热浇注胶对错吸水高分子聚合材料,充沛泡水后,各方面功能不会下降,合适在多雨湿润环境中运用。    9、抗震功能好    铝型材隔热浇注胶可与铝型材坚持优胜的粘弹性力学结合。且隔热浇注胶自身的开裂伸长率大于20%,这样就有用的确保了运用威固隔热浇注胶的铝型材门窗幕墙在必定震级内坚持无缺。    10、在高端温地区功能有确保    铝型材聚酯隔热浇注是特殊配方的高分子热固性塑料。在极点高温环境(50℃)和极点低温环境(-41℃)的条件下,威固隔热浇注铝型材的力学功能依然可到达国家确保。    11、隔热浇注胶归于绿色环保产品    隔热铝型材聚酯隔热浇注胶是一种绿色环保产品,不含挥发性有机化合物(VOC)及任何有害重金属,既不会影响人类健康,又不会对环境发生任何损害。

黑色金属硬度及强度换算值

2019-01-24 09:35:03

黑色金属硬度及强度换算值硬度洛氏表面洛氏维氏布氏(F/D²=30)HRCHRAHR15NHR30NHR45NHVHBSHBW20.020.521.021.522.022.523.023.524.024.525.025.526.026.527.027.528.028.529.029.530.030.531.031.532.032.533.033.534.034.560.260.460.761.061.261.561.762.062.262.562.863.063.363.563.864.064.364.664.865.165.365.665.866.166.466.666.967.167.467.768.869.069.369.569.870.070.370.670.871.171.471.671.972.272.472.773.073.373.573.874.174.474.774.975.275.575.876.176.476.740.741.241.742.242.643.143.644.044.545.045.545.946.446.947.347.848.348.749.249.750.250.651.151.652.052.553.053.453.954.419.219.820.421.021.522.122.723.323.924.525.125.726.326.927.528.128.729.329.930.531.131.732.332.933.534.134.735.335.936.5226228230233235238241244247250253256259262266269273276280284288292296300304308313317321326225227229232234237240242245248251254257260263266269273276280283287291294298302306310314318(适用于含碳量由低到高的钢种)抗拉强度ób/MPa碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢7747847938038138238338438548648758868979089199309429549659779891002101410271039105210651078109211057427517607697797887988088188288388488598708808919029149259379489609729849961009102210341048106173674475376177077978879780781682683784785886988089290391592894095396698099310071022103610511067782787792797803809815822829836843851859867876885894904914924935946957969981994100710201034104874775376076777478178979780581382283184085086087088089190291392493694896197498710011015102910438508598698798909019129239359479599729859991012102710411056107178178879480180981682483284084885686587488389390291292293394395496597798910011013102610391052106674074975876777778679680681682683784785886887989090191392493694795997198399610081021103410471060硬度洛氏表面洛氏维氏布氏(F/D2=30)HRCHRAHR15NHR30NHR45NHVHBSHBW35.035.536.036.537.037.538.038.539.039.540.040.541.041.542.042.543.043.544.044.545.045.546.046.547.047.548.048.549.049.550.050.551.067.968.268.468.769.069.269.569.770.070.370.570.871.171.371.671.872.172.472.672.973.273.473.773.974.274.574.775.075.375.575.876.176.377.077.277.577.878.178.478.779.079.379.679.980.280.580.881.181.481.782.082.382.682.983.283.583.784.084.384.684.985.285.585.786.086.354.855.355.856.256.757.257.658.158.659.059.560.060.460.961.361.862.362.763.263.664.164.665.065.565.966.466.867.367.768.268.669.169.537.037.638.238.839.440.040.641.241.842.443.043.644.244.845.445.946.547.147.748.348.949.550.150.751.251.852.453.053.654.254.755.355.9331335340345350355360365371376381387393398404410416422428435441448454461468475482489497504512520527323327332336341345350355360365370375380385391396401407413418424430436442449370375381386392397403409415422428435441448455463470478486494502510518抗拉强度ób/MPa碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢1119113311471162117711921207122212381254127112881305132213401359137813971417143814591481150315261550157516001626165316811710107410881102111611311146116111761192120812251242126012781296131513351355137613981420144414681493151915461574160316331665169817321768108210981114113111481165118312011219123812571276129613171337135813801401142414461469149315171541156615911617164316701697172417521780106310781093110911251142115911771195121412331252127312931314133613581380140414271451147615021527155415811608163616651695172417551786105810741090110611221139115711741192121112301249126912891310133113531375139714201444146814921517154215681595162216491677170617351764108711031119113611531171118912071226124512651285130613271348137013921415143914621487151215371563158916161643167116991728175817881819107910941108112311391155117111871204122212401258127712961316133613571378140014221445146914931517154315691595162316511679170917391770117011951219124312671290131313361359138114041427145014731496152015441569159416201646167417021731176117921074108711011116113011451161117611931209122612441262128012991319133913611383140514291453147915051533156215921623165516891725硬度洛氏表面洛氏维氏布氏(F/D2=30)HRCHRAHR15NHR30NHR45NHVHBSHBW51.552.052.553.053.554.054.555.055.556.056.557.057.558.058.559.059.560.060.561.061.562.062.563.063.564.064.565.065.566.066.567.067.568.076.676.977.177.477.777.978.278.578.779.079.379.579.880.180.380.680.981.281.481.782.082.282.582.883.183.383.683.984.184.484.785.085.285.586.686.887.187.487.687.988.188.488.688.989.189.489,689.890.090.290.490.690.891.091.291.491.591.791.891.992.192.270.070.470.971.371.872.272.673.173.573.974.474.875.275.676.176.576.977.377.778.178.679.079.479.880.280.681.081.356.557.157.658.258.859.459.960.561.161.762.262.863.463.964.565.165.666.266.867.367.968.469.069.570.170.671.271.7535544552561569578587596606615625635645655666676687698710721733745757770782795809822836850865586894909527535544552561569577585593601608616622628634639643647650抗拉强度ób/MPa碳钢铬钢铬钒钢铬镍钢铬钼钢铬镍钼钢铬锰硅钢超高强度钢不锈钢1806184518091839186918991930196119932026181818501883191719511986202220581794182518561888185018811914194718011834186719011936197120082045182418571892192919662006204720902135218122302281233423902448250925722639附表4黑色金属硬度及强度换算值(主要适用于低碳钢)硬度抗拉强度ób/MPa洛氏表面洛氏维氏布氏HRBHR15THR30THR45THVHBSF/D2=10F/D2=3060.060.561.061.562.062.563.063.564.064.565.065.566.066.567.067.568.068.569.069.570.070.571.071.572.072.573.073.574.074.580.480.580.780.880.981.181.281.481.581.681.881.982.182.282.382.582.682.782.983.083.283.383.483.683.783.984.084.184.384.456.156.456.757.157.457.758.058.358.759.059.359.659.960.360.660.961.261.561.962.262.562.863.163.563.864.164.464.765.165.430.430.931.431.932.432.933.534.034.535.035.536.136.637.137.638.138.639.239.740.240.741.241.742.342.843.343.844.344.845.4105105106107108108109110110111112113114115115116117118119120121122123124125126128129130131102102103103104104105105106106107107108108109110110111112112113114115115116117118119120121375377379381382384386388390393395397399402404407409412415418421424427430433437440444447451硬度抗拉强度ób/MPa洛氏表面洛氏维氏布氏HRBHR15THR30THR45THVHBSF/D²=10F/D²=3075.075.576.076.577.077.578.078.579.079.580.080.581.081.582.082.583.083.584.084.585.085.586.086.587.087.588.088.589.089.584.584.784.885.085.185.285.485.585.785.885.986.186.286.386.586.686.886.987.087.287.387.587.687.787.988.088.188.388.488.665.766.066.366.667.067.367.667.968.268.668.969.269.569.870.270.570.871.171.471.872.172.472.773.073.473.774.074.374.675.045.946.446.947.447.948.549.049.550.050.551.051.652.152.653.153.654.154.755.255.756.256.757.257.858.358.859.359.860.360.9132134135136138139140142143145146148149151152154156157159161163165166168170172174176178180122123124125126127128129130132133134136137138140152155156158159161163164166168170172174455459463467471475480484489493498503508513518523529534540546551557563570576582589596603609硬度抗拉强度ób/MPa洛氏表面洛氏维氏布氏HRBHR15THR30THR45THVHBSF/D²=10F/D²=3090.090.591.091.592.092.593.093.594.094.595.595.096.096.597.097.598.098.599.099.5100.088.788.889.089.189.389.489.589.789.889.990.190.290.490.590.690.890.991.191.291.391.575.375.675.976.276.676.977.277.577.878.278.578.879.179.479.880.180.480.781.081.481.761.461.962.462.963.464.064.565.065.566.066.567.167.668.168.669.169.670.270.771.271.7183185187189191194196199201203206208211214216219222225227230233176178180182184187189192195197200203206209212215218222226229232617624631639646654662670678686695703712721730739749758768778788

6061铝棒强度分析及提高方法

2019-01-14 11:15:13

采用实验的方法研究了铝钛硼、过量硅、稀土、AlTiBRE中间合金以及热处理方式对6061铝棒强度的影响,并分析了其内部机理。研究表明,铝钛硼的含量,稀土的多少,AlTiBRE中间合金的加入以及热处理工艺对其强度均有影响。较后,在分析实验结果的基础上找到了提高强度的方法与途径    引言被广泛用于建筑等行业的6061铝棒不仅具有良好的热塑性、优良的耐蚀性及理想的加工性能,而且很易氧化着色。但生产中由于工艺不当,6061铝棒熔铸常出现粗晶组织、羽毛组织、相析出物,并在凝固时易出现铸造裂纹,严重影响了合金的质量,即使通过均匀化处理后    一是在铸锭时采用的铝合金成份;二是在铸锭完成时的材料均质;三是在铝型材成型前的三温控制及在线淬火;四是在铝型材成型后的时效,这是铝型材生产时提高硬度和强度的较基本的流程。如果从研究铝型材设计图纸的,还要考虑铝型材的厚薄、直线度、受力部位的承重等等。    测量不确定度的概念及其在测量活动中的重要意义,并结合实际,以6061铝棒固定滑×6000B电泳涂漆型材为试验材料,建立测量不确定度数学模型,确定其来源为屈服载荷、破坏载荷、试样宽度和试样厚度,计算出各分量的合成标准不确定度,进而算出抗拉强度、规定非比例伸长应力的合成标准不确定度,得出抗拉强度、规定非比例伸长应力的扩展不确定度。

高强度工业铝挤压型材优势

2018-12-29 16:57:09

1.该铝型材制作过程简单:   只需设计、切断/钻孔、组合即可完成;而传统材料通常要经过设计、切断/钻孔、焊接、喷沙/表面处理、表面喷涂等复杂过程。   2.材料可重复使用:   由于使用工业铝型材的机件在全部制作过程中没有热焊接,所以各部件可很方便的拆卸,所有材料和附件都可重复使用;而传统材料由于切割变形和高额拆解成本等原因事实很少重复使用。   3.节省工时:   由于制作过程简单,可节省大量工时成本;尤其是在由于制作错误而返工时,比使用传统材料可节省几倍的工时。   4.制作精度高:   于制作过程没有经历热焊接,材料无变形,所以装配精度高;而使用热焊接的传统材料则不可避免的要出现变形,从而影响最终装配精度。   5.外观华丽:   使用工业铝型材的设备外观更具现代感,其特有的阳极氧化镀膜比现有的各种涂装方法更加牢固稳定。

钨钢耐磨损性和强度

2019-05-29 21:08:52

 钨钢耐磨损性和强度     为硬质合金的特征的耐磨损功能,随硬度增高而增高。一起,一般以为强度随抗弯强度增高而增高。这些特性与钴含量、碳化钨颗粒直径巨细等有联系。硬度随钴量削减、碳化钨颗粒直径减小而变高,抗弯强度随钴量增多、碳化钨粒径减小而增大。

低合金高强度结构钢

2019-03-19 09:03:26

低合金高强度结构钢是指加入硼元素的钢。硼在钢中的作用主要是增加钢的淬透性,一般加入量很少(0.0003%~0.005%)。硼元素资源富有,价格便宜。钢中添加硼能显著节省镍、铬、钼等昂贵的合金元素,有可观的经济效益。低合金高强度结构钢的主要优点是价格便宜,在保证钢具有所需淬透性和力学性能的同时,钢的热、冷加工性能较好。主要缺点是,淬透性的波动比不含硼元素的钢大。 低合金高强度结构钢:含碳量为0.1%-0.25%,加入主要合金元素锰、硅、钒、铌和钛等;它的含合金总量<3%。钢管按强度分为300、350、400和450MPa等4个级别。 主要有Q295、Q345、Q390、Q420、Q460。

高强度Al-Mg-Si合金

2019-01-15 17:45:30

据美国专利6 994 760 B2报道,德国柯鲁斯集团(Corus Group)科布伦茨轧制厂(Corus Aluminium Walzrodukte GmbH, Koblenz)发明一种高强度Al-Mg-Si合金,其特点是中间金属化合物的含量低,因而既有高的强度又有良好的疲劳性能,其主要成分(质量%):Si痕量。铸锭在均匀化处理后,于530℃-560℃加热4-30h后热轧。