您所在的位置: 上海有色 > 有色金属产品库 > 磷铁粉 > 磷铁粉百科

磷铁粉百科

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

用镍磷铁生产电解镍

2019-02-11 14:05:44

镍磷铁是钙磷肥出产进程中的副产品,一般地讲,镍磷铁的产值约为钙镁磷肥出产值的1.5%,其镍含量一般为4%~7%。跟着钙镁磷肥出产值迅速增长,镍磷铁的合理处理,对贫镍矿的综合利用具有重要意义。       磷矿石一般含(20%~30%)及二氧化硅、三氧化二铝、三氧化二铁等。蛇纹石(3MgO·2SiO2·2H2O)一般含氧化镁30%~38%、二氧化硅35%~40%及铁、镍、钴和少数的铂族元素。在高炉熔炼磷肥进程,炉猜中镍和铁的氧化物被焦炭和复原成熔融状况的金属镍和金属铁,并因为炉猜中有很多的二氧化硅存在,磷矿石中部分的磷被复原成元素磷,然后构成镍磷铁合金,钴及铂族元素被富集于其间,其成分实例见表1。   表1  镍磷铁化学成分实例,%产地NiPFeCuCoS淅江4.507.5264.000.380.16 淅江6.338.1963.000.650.28 鹰潭5.0610.5971.230.950.301.32       镍磷铁合金含镍4.5%~5.5%、磷10%~15%、铁65%~75%,一般可视为三元合金。磷与铁、镍、钴、铜在熔融状况下能彻底互溶。实际上,磷与铁、镍、钴、铜能生成许多金属化合物,从合金含磷量来看,镍磷铁合金中存在的可能是Fe3P、Ni2P、Co2P等化合物,而且它们的稳定性按Ni2P→Co2P→Fe3P→Cu3P摆放逐步削弱。       由镍磷铁出产电解镍的工艺进程,包含反射炉熔炼、电炉熔炼、浇铸粗镍阳极、镍电解精粹、电解液净化等。其工艺流程见图1。  图1  镍磷铁出产电解镍工艺流程       一、镍磷铁反射炉熔炼       (一)概述       含镍4%~50%的镍铁合金。最低熔点为1436℃,最高溶点为1539℃,在反射炉中吹炼这种高熔点合金是不可能的。实践证明,当合金含磷6.5%左右时,合金熔点在1200℃以下。因而,反射炉熔炼的关键在于怎么保存磷。       从元素氧化物生成自在焾看,低于900℃时,磷比其他金属更易氧化,其次第是磷、铁、钴、镍、铜;温度高于900℃时,铁比磷易于氧化,而且跟着温度的升高,两者间氧化的速度差加大,这时,向熔融的镍磷铁中鼓入空气并在有满意的二氧化硅的情况下,铁优先氧化,合金中将保存元素磷。这样,铁不断除掉,镍在合金中也不断得到富集。       反射炉吹炼镍磷铁应处理的另一个问题是耐火材料。       镍磷铁在吹炼进程中,发作很多的铁、磷氧化物,这些氧化物对各种耐火砖均具有极为剧烈的腐蚀性,炉衬极易损坏,使吹炼作业难以进行。选用硅砖作砌炉材料,在较低的温度(1220~1250℃)下,选用饱满氧化硅渣(含SiO225%以上),能够按捺炉渣对耐火材料的腐蚀,实验标明,厚度为300mm的炉墙寿数可达90d。       (二)质料       镍磷铁的首要成分实例见表2。   表2  镍磷铁的首要成分实例,%例序NiPFeCuCoS15.9612.7278.960.210.521.2825.0610.5971.250.950.307.2835.969.4875.170.760.16未分析44.5816.1270.400.340.221.8856.2412.3276.000.310.25未分析       (三)技能操作条件       镍磷铁反射炉熔炼是镍的开端富集进程,包含加料、氧化、放渣、放合金等作业。        1、加料       在炉温上升达1300℃及保温4h后开端加料。首要参加石英砂0.8~1.6t,镍磷铁8~10t,然后进行闷烧及熔化炉料。        2、氧化       炉料熔化后进行吹风氧化,在没有熔剂的情况下,铁和磷即发作氧化,生成氧化亚铁和,并生成磷酸二铁(3FeO·P2O5)。       部分镍、钴、铜亦发作氧化反响,但生成的氧化物在炉内合金熔体中遇到铁和磷时,又被复原成金属。       为了坚持合金熔点在1200℃以下,须坚持合金含磷6.5%左右。其办法是连续参加石英砂造渣,将磷保存下来。       榜首氧化周期,从炉料熔化后开端,连续参加石英砂0.8~1.6t,镍磷铁10~15t,而且边吹风氧化边加料,吹风氧化时刻一般4h以上。       第二氧化周期,从放渣后开端,先加石英砂0.8t,再加镍磷铁5t,吹风氧化期间,连续参加石英砂0.8~1.6t,每次吹风氧化时刻3h以上。       石英砂的参加量,以操控渣含SiO220%~25%为准,石英砂与镍磷铁参加量之比一般为0.25∶1,如质料含磷高,石英砂可少加。此外,含磷低的与含磷高的质料应调配处理,含磷低的质料只可占20%~25%,防止合金含磷过低而使熔炼作业难以进行。       电炉渣含镍较高,须回来反射炉处理。每个氧化周期,电炉渣参加量只可占镍磷铁的20%,防止渣含碱性氧化物过高而加速合金脱磷的速度。榜首氧化周期和终究的一、二氧化周期均不加电炉渣。氧化期间,因为有满意的SiO2存在,铁不断被氧化造渣除掉,镍不断被富集,合金中保存了必定数量的磷。        3、放渣       放渣时炉温1300℃,放渣速度8~12t/h,每个氧化周期放渣时刻约1h,熔池合金面操控在渣口底线以下。        4、放合金       放合金时炉温1300℃,合金含镍45%左右,浇铸场砂模于2~3d前作好前预备,合金直接注入砂模中。       一炉操作实例为:累计参加镍磷铁90~140t(一般为120t),熔剂石英砂24~30t,氧化周期16~24个,冶炼时刻72~108h,产出镍磷铁一次合金8~10t。       (四)产品       反射炉吹炼镍磷铁的产品有一次合金及炉渣。表3为镍磷铁吹炼产品成分实例。   表3  镍磷铁吹炼产品成分实例,%产品NiPFeCoCuCaOAl2O3SiO2MgOFeOP2O一次 合金40.337.9545.922.81.6      一次 合金44.56.8544.001.961.59      一次 合金51.67.6636.771.711.30      炉渣0.05~ 0.456.5~ 7.5 0.03~ 0.080.068~ 0.351.19~ 1.541.98~ 3.5726.58~ 34.20.55~ 1.5549.0~ 55.61~14.1       反射炉炉渣含有约7.0%的可溶性,可直接直销农业作磷肥。       镍、磷、铁、铜、钴在吹炼产品中的散布实例见表4。   表4  镍、磷、铁、铜、钴在吹炼产品中的散布,%元素投入料产出合金产出炉渣损失率含量分配率含量分配率含量分配率Ni5.3410044.5090.50.2276.243.26P10.581006.857.785.9691.01.22Fe68.3010044.007.7437.087.704.56Co0.3251001.96567.500.054725.307.20Cu0.3941001.59245.600.13753.001.40       一次合金含镍档次与镍入合金率的联系实例见表5。   表5  一次合金档次与镍入合金率的联系实例,%出炉合金含镍镍入合金率38.6292.8046.6990.8044.5090.544.5089.549.6089.057.7680.765.2784.90       如前所述,合金含磷较低时熔点上升,简单积结在炉内和机械地夹杂在炉渣中,因而剧烈下降镍的直接回收率。实验证明,当合金含镍46.6%时,镍的直接回收率为90.8%,当合金的镍富集到65%时,镍的直接回收率下降到84.9%。因而,能够以为合金富集到含镍45%左右较为适宜。       二、镍磷铁电炉熔炼       (一)质料       质料为镍磷铁反射炉熔炼得的一次合金(见表3。)       (二)技能操作条件       反射炉产出的一次合金在电炉中熔炼成粗镍阳极,其进程包含:加料、氧化、蒸锌、脱氧、浇铸等作业。        1、加料       每炉处理镍磷铁一次合金2t,加料时刻约0.5h。加料完毕后,在料面上加块度为20~30mm的焦炭。通电起弧熔化炉料,熔化时刻约1h。电流2000~3000A,电压120~160V。        2、氧化       炉料熔化后,在炉温1350~1400℃时吹风氧化。在氧化0.5h后,连续参加氧化镁160~180kg,石英砂60kg,进行造渣。       氧化进程,有部分镍、钴发作氧化,生成的镍钴氧化物在遇到金属铁时又部分被复原。       吹风氧化生成的P2O5对炉衬(镁砖)发作化学浸蚀作用。参加氧化镁,操控渣含MgO20%左右。这种渣对炉衬的浸蚀作用不大,渣的流动性也较好。        3、蒸锌       在吹风氧化3h后,合金含镍达75%左右时,如质料含锌较高,则进行插木蒸锌。蒸锌时,进步炉温至1600℃以上,将湿润的树木刺进镍熔体,持续15min左右,再升温,再插树木,重复进行2~3次,使合金含锌下降至0.0004%以下。        4、脱氧       蒸锌完毕后,通电升温40min,出炉前10min,加石油焦10kg脱氧,使合金断面结晶细密。        5、浇铸       出炉温度约1550℃,阳极铸模为生铁模,模内涂刷骨灰或石墨粉,模温100℃,立式浇铸。镍熔体经中间包注入立模中,浇好后,即可拆开铸模,取出阳极板。如合金含硫较高,则须放置数小时后拆模,以防阳极板开裂。       出产实例:每炉处理镍磷铁一次合金2t,冶炼时刻6~7h,产出粗镍阳极板(二次合金)1.2~1.5t。       (三)产品       镍磷铁一次合金经电炉熔炼的产品为镍阳极板及电炉渣,其成分实例如下:       镍磷铁阳极(%):NiCoFeCu75~801.5~2.510~151.5~3.0PbZnPC0.001~0.0040.002~0.0040.1~0.30.05       当配入铬物料时,阳极板含Cr4%~12%。       镍磷铁电炉渣(%):NiCoCuP3~40.02~0.270.07~0.487~13SiO2CaOMgOFeO15~200.5~1.020~2335~45       电炉熔炼一次合金时镍、钴、铜在吹炼产品中的分配见表6。   表6  镍钴铜在电炉吹炼中的散布,%元素投入料阳极板炉渣含量分配率含量分配率含量分配率Ni44.31007294.01.051.93Co2.041001.8953.70.254Cu1.781002.3479.800.29       三、镍电解精粹       (一)概述       镍电解精粹选用阳极隔阂电解法,粗镍阳极含Ni≥75%,阴极种板为钛板,电解质为氯化镍溶液。电解槽内大、小隔阂架由木材制成。阴极隔阂袋由3号帆布制成。种板入槽电解8h后取书。制离镍片制成始极片,压纹后,作为阴极入槽电解。       阳极液中杂质含量(g/l)一般为:铁1.5~2.0,铜0.2~0.5,钴0.2~0.6,锌0.0008~0.001,铅0.0006~0.001。因为阳极含镍档次较低,所以阴极进液与阳极出液含镍一般相差2~4g/L,除造液弥补外,还须抽出一部分阳极液进行浓缩,以防止镍离子的贫化。       电解造液的阴极、阳极均为镍电解残极,槽电压1.2~3.5V。槽边设有吸风设备扫除槽百酸气及氯化体的吸风设备,并经淋洗塔水洗后排放,造液周期三d,终究溶液面分:HCl5~10g/L,Ni≥100g/L,并入阳极出液中净化处理。       (二)质料       镍电解用阳极板为电炉熔炼富集镍后浇铸成的阳极,其成分实例见镍电解精粹概述。       (三)、技能操作条件       镍电解出产技能条件实例见表7。   表7  镍电解出产技能条件实例项目单位技能条件项目单位技能条件阴极液成分g/L 电解液流量L/(h·袋)18~25Ni 80~90阳极液pH值 1.5~2.5Co 0.002阴阳极液位差mm30~50Fe ≤0.0006阳极尺度mm(780~820)×330×40Cu ≤0.0004阴极尺度mm(780~820)×(680~710)Pb ≤0.0001阳极块数块/槽17+2Zn ≤0.0004阴极块数块/槽16Cr ≤0.008同极中心距mm180Na 40~50电流密度A/m2220~280H2BO3 2~5槽电压V1.8~2.5Cl 150~165种板在槽周期H8有机物 <1.2阴极在槽周期D3~5pH值 4.3~4.8阳极在槽周期d10~15电解液温度℃65~75          (四)产品        1、电解镍       产品质量契合GB6516-86特号镍或一号镍规则,特号加一号镍应在90%以上,其间特号镍占75%以上。       电解镍杂质成分实例见表8。   表8  电解镍杂质成分实例,%元素例1例2例3例4元素例1例2例3例4Zn0.000760.00050.00050.0005Mg0.00030.00030.00030.0003Pb0.00050.00070.00080.0012Mn0.00020.00020.00020.0002Sn0.00030.00030.00030.0003Si0.00030.00030.00030.0003Sb0.00030.00030.00030.0003Fe0.00060.00060.00060.0006As0.00060.00060.00060.0006Co0.000190.00310.00330.0019Bi0.00030.00030.00030.0003S0.00050.00050.00080.0005Cd0.00030.00030.00030.0003C0.00290.00240.00460.0029Cu0.00030.00030.00030.0003P0.00010.00010.00010.0001Al0.00060.00060.00060.0006             2、阳极泥       阳极泥的产出量约为阳极溶解量的4%~7%,首要含镍、铜及少数铂族金属。        3、残极       电解槽出槽的残极又用作造液槽的阴、阳极,然后回来电炉工序。       四、电解液净化       (一)概述       上冶镍磷铁电解投产初期,电解液净化工艺包含碳酸镍中和除铁、除铜、除钴、717号树脂沟通除锌四部分。技能条件见表9。   表9  电解液净化技能条件项目单位中和除铁硫化除铜除钴树脂沟通除锌溶液温度℃60~80常温55~65常温溶液pH值 2.5~3.5开端2.5~3.0 终究1.6~2.54.2~4.8 合格液杂质含量g/LFe≤0.5Cu≤0.0001Co≤0.002Zn≤0.0003渣含镍 铁渣Ni∶Fe≤ 1∶5铜渣Ni∶Cu≤ 3∶1钴渣Ni∶Co≤ 2∶1        后改为酸性氧化、N235萃取、701号树脂沟通除铅、通氯净化四步。       为扫除溶液体系中堆集的钠离子及平衡溶液体积,须从出产体系中抽出部分阳极液或部分净化后液,制成粗、精制碳酸镍,作为中和剂别离用在阳极液酸性氧化及通氯净化工程。       (二)质料       净化工序的质料为阳极出液,其成分(g/L)为:Co0.2~0.6,Fe1.5~2.0,Cu0.2~0.5,Zn0.008~0.001,Pb0.0006~0.001,pH=0.5~2.0。当处理含铬物料的阳极板时,阳极液成分不在上述范围内。       (三)技能操作条件        1、酸性氧化       电解阳极出液中一般含铁0.5~3g/L,大部分呈二价,而N235萃取剂仅对三价铁有萃取作用。为此,萃取前通氯将二价铁离子氧化成三价。技能条件如下:       溶液温度       40~50℃       溶液pH值      1.5~2.0       氧化剂              氧化结尾       Fe2+≤0.05g/L       2、N235萃取        N235是一种胺型萃取剂,其盐即R3N·HCl能与金属和氯离子所构成的络合物起沟通作用。在氯化镍溶液中,Fe3+、Cu2+、Co2+等金属离子生成阴离子络合物,如铜生成(CuCl4)2-、钴生成(CoCl4)2-,因而能被胺型萃取剂萃取,而镍在氯化物溶液中呈阳离子状况存在,留于水相中,然后到达萃取除杂质的意图。       (1)有机相组成        N235               20%~25%        200号火油         70%~75%       脂肪醇(C8~C10)   5%       (2)萃取技能条件       萃取工艺技能操作条件如下:  项目有机相/水相级数液相组成萃取除杂质段0.5~0.78酸性氧人后液反萃钴段1.4~1.73HCl+NaCl溶液反萃铁段1.7~1.75∶130.3%H2SO4溶液水洗段2∶12自来水有机相再生1.4~1.722mol/L HCl       萃取净化作用实例见表10。   表10  萃取净化作用实例,g/L元素萃取前杂质萃取后杂质Cu0.03~0.20.0002~0.0004Zn0.001~0.00080.0003~0.0004Co0.08~0.30.01~0.10Fe0.8~3.00.1~0.5Cr0.05~0.60.05~0.6Cl150~165150~165         (3)钴的反萃       萃入有机相中的钴用氯化钠水溶液进行反萃,得到氯化钴溶液。因为原液中含钴量较低,反萃钴液可重复运用,使其含量上升至10~15g/L后即可互换。反萃液送往反响锅进行浓缩。至含钴达20~30g/L送钴体系提取钴。       (4)铁的反萃       铁、铜、锌萃入有机相后,在反萃钴时,有一部分进入钴液,大部分留在有机相中。选用0.3%稀硫酸进行反萃,使铁、铜、锌进入水相弃去。       (5)有机相再生       萃取所用有机相中的胺呈盐状况,在选用0.3%硫酸反萃铁后,已转化为硫酸盐,故需用处理转型。先通过两级自来水洗刷,除掉部分硫酸根,然后用2mol/L饱满,饱满后的废可回来运用,并定时替换。通过饱满今后的有机相,回来萃取体系运用。        3、701号树脂沟通除铅       萃取剂N235在氯化物溶液中萃取铅的作用不明显。为使溶液含铅从0.001g/L降到0.00015g/L以下,以满意镍电解的要求,选用701号弱碱性阴离子沟通树脂进行沟通脱铅。技能条件如下:       沟通柱         6根并联为一组,一组备用       溶液流向       进步,下出       树脂装入量     180~200kg/柱       原液pH值      0.5~1.5       沟通流量       0.7~0.8m3/(柱·h)       沟通后液含铅   ≤0.0001g/L       沟通后吸附铅的树脂,用5%的稀进行再生,并用自来水冲刷至pH=2~4,即可持续运用。        4、中和水免除铬       当处理含铬阳极板时,电解液含铬大于0.01g/L时即须除铬。除铬工序在通氯净化之前进行。其操作条件如下:       溶液温度    65~75℃       溶液pH值   4.8~5.0       中和剂      NiCO3或Na2CO3       一般作业时刻为1.5~2.0h,在操作中,温度应一直坚持在65℃以上,并剧烈鼓风。除铬后液含铬低于0.01g/L。        5、通氯净化       因为萃余液中杂质铁、钴含量较高,达不到电解要求,故在树脂沟通除铅后通氯净化,进一步除掉铁、钴等杂质。技能条件如下:       溶液温度    50~60℃       中和剂      碳酸镍       溶液pH值    4.5~5.0       通氯时刻     1.5~2.0h       (四)产品       阳极出液经净化处理后的产品有净化合格液、反萃钴液、反萃铁液、洗水等,其成分实例见表11。   表11  净化后各类产品成分实例项目NiCoFeCuZnPb净化合格液,mg/L ≤2≤0.6≤0.4≤0.4≤0.1反萃钴液,g/L3.5015.3027.9   3.3614.1623.2   3.8013.6019.6   反萃铁液,g/L0.0830.0404.35   0.0380.0253.04   0.0580.0263.40          净化后的终究产品为阴极电解液,其质量要求见表7。       (五)首要技能经济指标       电解、净液出产的首要技能经济指标实例如下:       镍电解总收率    91%~95%       镍电解直收率    75%~78%       残极率          20%~25%       电流效率        96%~97%       直流电耗        3500kW·h/t       沟通电耗        1000 kW·h/t       耗费        6000kg/t       硫酸耗费        500 kg/t       碱粉耗费        2000 kg/t       液碱            800 kg/t                   400 kg/t        N235           40 kg/t       火油           200 kg/t       氯化钠         40 kg/t                  20 kg/t     &a, mp;n, bsp; (六)首要设备实例,  &nbs, p;    1、反射炉1台       规格:炉床面积12.9m2,炉底厚415mm,炉墙厚600mm,炉顶厚330mm,炉顶、炉墙、炉底均用硅砖砌筑,炉底斜度2.8%,炉后部比前部高150mm。合金放出口直径27mm,炉顶加料口有水套设备。        2、三相电炉1台       炉壳直径2000mm,加料炉门以下熔池深230mm,炉墙厚350mm,合金放出口宽130mm,炉门宽400mm,炉底厚380mm,炉顶厚300mm,炉底炉顶用铝镁砖砌筑,炉墙用镁砖砌筑。       附属变压器,额外容量750kVA,低压侧的电压120/160V,最大电流2700A,答应过负荷值20%。        3、电解槽16个(其间造液槽4个)       规格:3280×1180×1300mm。        4、净液槽8个       规格:φ2.5×4.5m,内衬耐酸瓷砖,槽内装有钛材盘形加温管。        5、萃取箱共18级       规格:箱体为5mm厚的钢板,内衬3mm厚的软塑料       拌和室:750×750×1300mm       澄清室:1350×750×1300mm        6、树脂沟通柱12根       每6根柱并联成一组,出产、备用各一组。       规格:φ500×1800mm。

还原铁粉让普通铁精粉身价倍增

2018-12-13 10:31:09

日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )         北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。    据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网

高磷铁矿石浸出脱磷试验研究

2019-02-18 15:19:33

跟着钢铁工业的开展,可利用的铁矿资源日益趋向贫、细、杂。我国高磷铁矿石储量占总储理的14.86%,达74.5亿元。现在,因含磷较高而无法得到充分利用。 鄂西高磷铁矿中,首要矿藏-赤铁矿的嵌布粒度一般极细,且常与其他矿藏共生、胶结或相互包裹,现在被国内外公认为最难选的铁矿石类型。因而,研讨铁矿石除磷技能具有非常重要的含义。 近年来,国内外针对不同的矿石性质,进行了较为深化的铁矿石除磷工艺研讨,而酸浸及微生物浸出办法,对该类铁矿石进行浸矿除磷实验研讨,被认为是卓有成效的办法。本实验选用酸浸及微生物浸出法对该类矿石进行处理,以期到达提铁除磷的作用。 经镜下判定、XRD和扫描电镜归纳研讨标明,矿石的组成矿藏品种较为简略,铁矿藏以赤铁矿为主,其次是褐铁矿,偶见磁铁矿;脉石矿藏以石英居多,次为鲕绿泥石、胶磷矿、白云石、方解石和高岭石。 一、实验材料与办法 (一)实验材料 草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HN03、HC1均为分析纯,配制成0.1mol/L; 菌种。生物浸出实验中,菌株选用嗜酸氧化亚铁硫杆菌(At.f菌)和黑曲霉菌。其间,At.f菌采自广西某温泉流,经纯化判定得到,黑曲霉菌采自武汉某菜地土壤,经纯化判定得到。 培育基。At.f菌选用9K培育基:(NH4)2S04 3g,KCl0.1g,MgS04·7H2O 0.5g,K2HP04 0.5g,Ca(N03)2 0.Olg,蒸馏水700mL,pH=3.0,121℃灭菌20min,参加300mL预先配成14.78%的FeS04·7H20溶液并过滤除菌;黑曲霉选用无机磷培育基:葡萄糖lOg, (NH4)2S04 0.5g,NaCl 0.3g,KCl O.3g, MgS04·7H2O 0.3g,  FeS04·7H20 0.03g, MnSO4·4H20 0.03g,其间3g Ca3 (P04)2改为K2HP04 lg,蒸馏水1L,天然pH,121℃灭菌20min。 (二)实验办法 酸浸酸浸实验选用250ml锥形瓶,别离盛装相应的酸溶液lOOml,参加原矿,在空气浴振动器中进行振动拌和,反响时间为40h。   生物浸出实验选用250ml锥形瓶,别离选用在摇床中培育7d的At.f菌过滤液和培育15d的黑曲霉菌过滤液lOOml(中速滤纸过滤),矿浆浓度均为2%。 在没有特别阐明的情况下,培育菌液时锥形瓶体积为250mL,培育基体积为lOOmL, At.f菌接种量为10%,真菌选用1ml黑曲霉菌孢子溶液,其浓度为l08 cpu/ml,在摇床中振动,其间At.f菌所用摇床转速140r/min,温度30℃,黑曲霉菌所用摇床转速180r/min,温度32℃。 二、成果与评论 (一) 酸浸除磷 酸品种对浸除磷作用的影响。别离选用0.1mol/L的草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HNO3、HCL对该矿石进行浸矿除磷作用的实验研讨,矿浆的浓度为2%,其成果见图1。图1  5种酸对矿石的提铁降磷作用 从图1(a)中能够看出,柠檬酸(C6H8O7)除磷作用最差,仅为77.84%,其他4种酸的磷去除率均在80%以上,其间,草酸(C2H204)除磷作用最佳,为95.52%,其次为硫酸(93.91%),硝酸与作用挨近。 从图1(b)能够看出,除草酸浸矿后铁档次与原矿挨近(43.73%),其他4种酸作用后作档次均有进步。其间,在进步铁档次方面,硫酸作用最佳,处理后铁档次为49.08%,硝酸与作用挨近,但均高于柠檬酸。别的,针对铁损失率方面,除了草酸作用后,铁损失率为8.83%外,其他4种酸处理后,铁损失率都低于2%。无机酸作用好于有机酸,硫酸处理后铁回收率为99.57%。 由以上分析可知,单一无机酸提铁除磷归纳作用优于单一有机酸,其间硫酸作用最佳。 但天然界中许多真菌能一起发生多种有机酸,其间黑曲霉菌能一起发生很多的草酸、柠檬酸等。考虑到柠檬酸除磷作用差,但具有提铁作用,草酸除酸作用好,除磷作用欠安等归纳要素,将草酸与柠檬酸按不同份额混合进行浸矿除磷。 混合有机酸对浸矿除磷作用的影响。将不同份额的草酸与柠檬酸进行混合浸矿,其混合份额别离为100∶0、80∶20、60∶40、20∶80、0∶100,矿浆浓度为2%,其成果如图2所示。图2  混合草酸与柠檬酸对矿石的提铁降磷作用 (100∶0、80∶20、60∶40、40∶60、20∶80、0∶100) 从图2(a)中能够看出,跟着草酸与柠檬酸混合份额的下降,除磷率呈下降的趋势。在份额为100∶0~20∶80之间,除磷率均在92%以上;但当酸液中只要柠檬酸时,除磷率显着下降,只要75.29%。阐明酸液中有草酸存在的情况下,除磷作用比较显著。 由图2(10)中可看出,在混合份额100∶0~20∶80之间,铁档次相对原矿改变不大,均为44%左右;而当只要柠檬酸存在时,处理后铁档次为46.87%,提铁作用较好;而跟着草酸与柠檬酸份额的下降,铁的回收率呈逐步添加的趋势。 由以上分析,可进一步断定草酸除磷作用优于柠檬酸,但柠檬酸提铁作用优于草酸。而两种酸的混合物能到达较好的提铁除磷作用,这可为将来断定真菌产酸品种起到必定探究作用。 矿浆浓度对硫酸浸矿除磷作用的影响。在矿浆浓度为2%时,单一硫酸浸矿除磷作用最佳,浸矿后的浸出液PH值仍较低,故其酸性仍能处理部分铁矿石。调查矿浆浓度对硫酸浸矿除磷作用的影响,其成果如图3所示。图3  硫酸在不同矿浆浓度条件下对矿石的提铁降磷作用 从图3(a)中能够看出,跟着矿浆浓度的添加,除磷率逐步下降。当矿浆浓度为2%时,除磷率到达93.06%;当矿浆浓度到达5%时,处理后矿石中磷含量为0.18%;除磷率为78.82%;当矿浆浓度到达6%时,矿石中磷含量为0.25%,除磷率为70.59%。 从图3(a)中能够看出,在矿浆浓度低于6%时,铁回收率均大于97.89%,且相对改变不大。而铁档次方面,跟着矿浆浓度的添加,铁档次呈下降的趋势。当矿浆浓度为6%时,铁档次为46.54%。 由以上分析可知,当矿浆浓度≤5%时,除磷作用能到达工业要求。 (三)生物浸出除磷实验 选用At.f菌进行浸矿实验,将成长7d后的At.f菌用慢速滤纸过滤,用过滤后的菌液浸矿,矿浆浓度2%,At.f菌成长过程中PH值改变见图4。24d后浆矿浆过滤,烘干,其固体中磷含量为0.25%。 黑曲霉菌浸矿除磷。取2环黑曲老菌孢子接种于100ml无机磷培育基中,黑曲霉菌成长过程中PH值改变见图5。图4  At.f菌浸矿过程中pH的改变图5  黑曲霉菌成长过程中pH值改变 因为一步浸矿过程中,黑曲霉菌丝会将矿藏包裹,导致浸矿后菌矿难以别离,故选用两步浸矿法进行浸矿。将过滤液(不含菌丝和孢子)直接浸矿,矿浆浓度为2%,反响40h后,过滤、烘干矿石,化验成果为:剩下磷含量为0.2 2%,到达了较好的除磷作用。 三、结  论 (一)浸除磷实验中选用lOOml 0.1mol/L的草酸(C2H2O4)、柠檬酸(C6H8O7)、H2SO4、HNO3、HCL,矿浆浓度为2%,单一的无机酸提铁降磷作用优于有机酸。其间,硫酸作用最佳;柠檬酸除磷作用最差,但对进步铁档次有必定作用;草酸除磷作用最好,但铁损失率最大。 (二)有机混合酸浸矿方面,跟着草酸与柠檬酸混合份额的下降,除磷率逐步下降,回收率逐步进步,处理后铁档次相对安稳。在混合份额介于100∶O~20∶80之间时,除磷作用较抱负。 (三)跟着矿浆浓度的添加,单一硫酸浸矿除磷率逐步下降,处理后矿石铁档次也逐步下降铁回收率改变不大。当矿浆浓度为5%时,除磷率能到达78.82%;高于6%时,除磷作用达不到相关要求。 (四)选用At.f菌和黑曲霉菌进行浸矿除磷浸出后固体中磷含量别离为0.25%、0.22%,到达了较好的除磷作用。

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

含铁粉矿球团化制备工艺研究

2019-01-24 09:36:35

近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。 在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。 本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。 一、试验条件与方法 (一)原材料 1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。 2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程 每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。 (三)抗压力测试 试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。 (四)所用仪器与设备 加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析 (一)加热固化制度对球团抗压力的影响 所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。 试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。 从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。 (二)粘结剂加入量对抗压力的影响 在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。 (三)不同粉矿条件下的抗压力 为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。 按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。 通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。 三、结论 (一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。 (二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。 (三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。 参考文献 [1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64. [2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36. [3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98. [4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50. [5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20. [6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.

利用磁选机提取河沙铁粉的工艺介绍

2019-01-16 17:42:18

由于近几年我国钢铁原料----铁精粉价格的攀升,河沙选铁的利润大幅度提高,专用机械----河沙选铁船、磁选机等系列选矿设备得以在全国范围内大面积推广。 中科公司生产的河沙铁粉提取磁选机有实际的应用效果。 这些选矿设备大致的工作原理为:通过磁选机将河沙中的磁性铁选出来。下面就具有代表性的设备--挖沙选铁船的构造、原理以及操作规程简介如下: 挖沙选铁船由浮体、链斗挖沙系统、筛分系统、磁选系统、尾沙排除系统、动力系统组成。 首先,河道里有水,我们的选矿设备必须要浮在水面上工作,因此我们用3.5-4毫米的钢板做成了浮体,根据挖沙深度的不同,浮体的宽度和长度都有相应的尺寸要求,一般宽度在1.5-2米之间,长度在16-32米之间。 另外,我们为了增加船的稳定性,两个浮体之间间隔了一定的距离,一般为1.5米左右。顾名思义,这套选矿设备的上料系统是链斗式的挖沙系统,河沙由链斗提上来以后,因为有大小不一的石子,为了保护磁选机的安全,必须经过筛分系统。根据河道的环境不同,一般来说,石子比较少、直径比较小的河道用自震式比较好,维修方便,节省动力(约3KW)。而石子很多,直径又比较大的河道就要用滚筒式的筛子了。经过筛分后的石子一般直接流入河道,如果有经济价值也可由传送带输送到岸上出售;河沙转入磁选系统。磁选系统主要是磁选机和水洗精选系统。 磁选机的磁表强度一般要达到3800-4500高斯,规格为750*2200-2400,这样配套才能达到90%的净选率。水洗的作用是提高毛铁粉的品位,一般可在30-45之间自由调节。尾沙排除系统的作用是将选去铁粉的尾沙排到远离本机械的地方,以保证本机械能正常的工作。一般有自流式、传送带式、抽沙泵式三种形式当然这也是根据河道的具体环境来定的。

炼钢炉尘提取还原用铁粉重选技改实践

2019-01-21 18:04:35

一、前言 炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。 由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。 二、原因分析 (一)原料分析 铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。 炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。 另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。 (二)原工艺流程及存在的缺陷 1、原工艺流程  原工艺流程如图1所示。2、原工艺存在的缺陷 (1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。 (2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。 (3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。 (4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。 三、解决措施 针对现有生产工艺存在的问题,对现有工艺进行了优化。 (一)新工艺流程 经改造后的新工艺流程(略) (二)改造措施 1、将一段摇床改为螺旋溜槽。 2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。 3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。 4、在新增球磨机后增加一台磁选机。 四、改进效果 经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。 五、结论 (一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。 (二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。

高磷铁矿石氯化离析-弱磁选新工艺研究

2019-02-22 09:16:34

磷是钢铁冶炼进程中首要的有害元素之一。跟着冶金工业的开展,钢铁厂商对铁精矿磷含量的要求越来越高,故开发铁精矿高效降磷技能现已火烧眉毛。 现在高磷铁矿石的降磷办法首要有:①物理选矿法。该办法是将矿石细磨至磷矿藏与铁矿藏充沛解离,然后经过磁选、重选或浮选来降磷,但降磷作用不太抱负;②化学选矿法。该办法经过用硝酸、或硫酸对铁矿石进行浸出来完结降磷,是一种较为有用的降磷办法,并且磷矿藏无须完全单体解离,只要能露出出来与浸出液有触摸就可到达降磷的意图。但该法耗酸量大、本钱高.并且简单导致矿石中可溶性铁矿藏溶解,构成铁的丢失。③微生物浸出法。该办法首要是经过微生物代谢产酸下降系统的pH值来使磷矿藏溶解,一起代谢酸还会与Ca2+,Mg2+,Al3+等离子螯合构成络合物,然后促进磷矿藏的溶解。存在的问题是仍处于实验阶段,离真实的产业化尚有较大距离。④冶炼法。该法是在铁水入转炉或电炉前,用碱性氧化物或碱性渣使铁水中的磷构成磷渣来完结脱磷。此法作用非常好,但本钱昂扬,且在我国基本上还处于基础研讨阶段。 本研讨选用一种新办法-氯化离析-弱磁选工艺来对高磷铁矿石进行提铁降磷。 一、实验矿样 实验矿样为云南某高磷铁矿石样品,含铁41.56%,含磷1.13%,铁首要以赤褐铁矿、菱铁矿、硅酸铁、磁铁矿等方式存在。试样风化现象比较严峻,原始粒度组成为+5mm占35%左右,-5+1mm占45%左右,-1mm占20%左右,实验前将其加工成悉数小于5mm备用。 试样的光谱分析、化学分析、铁物相分析成果见表1~表3,加工成-5mm后的粒度分析成果见表4。 表1  试样光谱分析成果%表2  试样多元素化学分析成果%表3  试样铁物相分析成果%从表1~表3可知:试样中可收回的有价元素只要铁,其他有价元素铜、锌、铅、钼、镍、钴、钛、金、银等含量均较低;有害元素硫、砷含量不超支,但磷含量严峻超支,为1.13%。试样中的可选性铁为赤褐铁矿、菱铁矿和磁铁矿中的铁,三者占全铁的91.15%。 表4显现,铁和磷在各个粒级的散布较为均匀。 表4  -5mm试样粒度分析成果 二、实验流程 氯化离析的基本原理是:氯化剂在高温作用下被分解成高活性的氯化体;氯化体与矿石中的金属氧化物发作反响,敏捷生成具挥发性的金属氯化物;挥发性金属氯化物被炭质复原剂激烈吸附,其间的金属在复原剂构成的复原气氛作用下离析出来并掩盖在复原剂表面,可经过选矿得到较好的收回。 氯化离析曩昔一般用于处理镍、钴、铜矿石,用于处理铁矿石则归于一种新办法。本实验运用该办法对云南某高磷铁矿石进行提铁降磷研讨,实验工艺流程见图1。 实验中调查氯化剂品种和用量、复原剂品种和用量、离析焙烧温度和时刻、离析产品磨矿细度、弱磁选磁感应强度对铁精矿目标的影响。所用氯化剂别离为L1,L2,L3,L4,复原剂别离为焦炭,褐煤,无烟煤,烟煤。复原剂均加工到-1mm运用。图1  氯化离析-弱磁选实验流程 需求阐明的是,原矿经离析焙烧后会有必定的烧失量,因而实验中铁精矿收回率均对离析产品计。 三、实验成果与评论 (一)氯化剂品种和用量实验 氯化剂的品种和用量直接影响氯化离析进程中挥发性金属氯化物的生成,进而影响铁精矿的目标。在复原剂(焦炭)用量为10%,离析温度为1000℃,离析时刻为60min,弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的条件下,别离选用不同用量的4种氯化剂按图1流程进行实验,实验成果见图2~图5。图2  氯化剂L1用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图3  氯化剂L2用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图4  氯化剂L3用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图5  氯化剂L4用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 从图2~图5可知:L1,L2,13提铁降磷的作用不抱负,精矿铁档次较低,且磷含量均在0.30%以上。而L4具有显着的提铁降磷作用,跟着其用量的添加,精矿铁档次和收回率逐步升高,磷含量逐步下降,当其用量为15%时,精矿铁档次达75.25%,磷含量降至0.226%,铁收回率为82.32%,尔后精矿目标改变较小。因而,挑选L4作为氯化剂,并断定其用量为15%。 (二)复原剂品种和用量实验 复原剂在离析进程中起着供给复原性气氛和作为载体吸附挥发性金属氯化物的两层作用。现在用得较为遍及的固体复原剂首要为焦炭、褐煤、无烟煤和烟煤,其间焦炭具有强度较高、复原透气性好、杂质少等长处,不足之处在于报价较为贵重,而褐煤、无烟煤、烟煤与焦炭比较报价低廉,但灰分高,杂质多,易污染矿石。在氯化剂L4用量为15%,离析温度为1000℃,离析时刻为60min,弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的实验条件下,比较这4种复原剂对铁精矿目标的影响,实验成果见图6~图9。图6  褐煤用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图7  烟煤用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-收回率图8  无烟煤用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率图9  焦炭用量实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 从图6~图9可知:选用褐煤、无烟煤、烟煤作为复原剂时,尽管跟着复原剂用量添加,精矿铁档次和铁收回率逐步升高,磷含量逐步下降,但磷含量一向在0.30%以上;而选用焦炭作为复原剂时,跟着焦炭用量的添加,精矿铁档次逐步升高,铁收回首先升高后下降,磷含量则一向未超越0.30%,并且呈不断下降的趋势。因而,挑选焦炭作为复原剂,并断定其用量为10%,此刻精矿铁档次为75.25%,磷含量为0.226%,铁收回率为82.32%。 (三)离析温度实验 因为离析是一个化学相变的进程,故温度是要害影响要素之一。温度过低,不能供给满足的化学反响能,不利于反响的进行;反之,温度过高,简单导致矿石软化粘结,并且将来生产本钱高,操作难度大。在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析时刻为60min、弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的条件下,按图1流程进行离析温度实验,实验成果见图10。图10  离析温度实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 图10显现,跟着温度的升高,精矿铁档次和铁收回率呈先升高后下降的趋势,磷含量呈先下降后升高的趋势;此外,在焙烧进程中发现,温度为1050℃时,矿石有软化粘结现象,温度持续升高至1100℃时,矿石有80%以上粘结在一起,影响选别目标。归纳考虑,焙烧温度取1000℃比较适宜,此刻能够得到铁档次为75.27%,磷含量为0.227%,铁收回率为82.62%的铁精矿。 (四)离析时刻实验 在其他条件必定的情况下,离析时刻越长,离析反响进行得越完全,但一起也会因其他元素有更多的时机参加反响而影响铁精矿目标;反之,离析时刻过短,有用的正反响不能完全完结,也会影响铁精矿目标。在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,弱磁选磁感应强度为0.12T,球磨细度为-0.074mm占85.38%的条件下,按图1流程进行离析时刻实验,实验成果见图11。图11  离析时刻实验成果 ■-Fe档次;◆-P含量;▲-Fe收回率;●-P收回率 图11显现,跟着离析时刻的延伸,精矿铁档次和铁收回率呈先升高后下降的趋势,磷含量呈先下降后升高的趋势,但这些目标的改变程度都比较小。归纳考虑,断定离析时刻为45min,此刻精矿铁档次为76.06%,磷含量为0.217%,铁收回率为83.11%。 (五)弱磁选磁感应强度实验 在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,离析时刻为45min,球磨细度为-0.074mm占85.38%的条件下,按图1流程进行弱磁选磁感应强度实验,实验成果见表5。 从表5可知,跟着弱磁选磁感应强度的进步,精矿铁档次逐步下降,铁收回率和磷含量逐步上升。统筹各项目标,挑选弱磁选磁感应强度为0.16T。 (六)球磨细度实验 在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,离析时刻为45min,弱磁选磁感应强度为0.16T的条件下,按图1流程进行球磨细度实验,实验成果见表6。 表5  弱磁选磁感应强度实验成果注:矿石烧失率=9.68%,离析产品Fe档次为46.05,P含量为1.26%。下同。 表6  球磨细度实验成果%表6显现,跟着球磨细度的进步,精矿铁档次逐步上升,磷含量逐步下降,铁收回首先上升后下降。统筹精矿目标和磨矿本钱,挑选球磨细度为-0.074mm占85.38%。 (七)全流程归纳条件重复实验 经过以上实验,断定的全流程归纳条件为焦炭用量10%,氯化剂L4用量15%,离析温度1000℃,离析时刻45min,球磨细度-0.074mm占85.38%,弱磁选磁感应强度0.16T。按此归纳条件进行全流程重复实验,实验成果见表7。 表7  全流程归纳条件重复实验成果%从表7能够看出,选用所断定的工艺条件对实验矿样进行氯化离析-弱磁选处理,能够获得杰出的提铁降磷作用,铁精矿产率(对离析产品)为50.88%~52.00%,铁档次为75.33%~76.44%,磷含量为0.215%~0.218%,SiO2含量为5.44%~6.01%,铁收回率(对离析产品)为83.63%~85.66%。 四、定论 (一)云南某铁矿石铁矿藏首要为赤褐铁矿和菱铁矿,一起含磷较高,选用惯例的选矿工艺较难得出抱负的选别目标。 (二)在复原剂焦炭用量为10%,氯化剂L4用量为15%,离析温度为1000℃,离析时刻为45min,磨矿细度为-0.074mm占85.38%,弱磁选磁感应强度为0.16T的条件下,选用氯化离析-弱磁选工艺处理该矿石,可得到铁精矿铁档次在75.33%以上,磷含量在0.218%以下,铁收回率在83.63%以上的杰出目标。 (三)对高磷铁矿石选用氯化离析-弱磁选工艺进行提铁降磷是一种新办法。很多的实验研讨标明,该工艺对高磷鲕状赤铁矿石、高磷菱铁矿石、高磷硫砷难选铁矿石等也能获得较好的选矿目标。

氧化铁皮的综合利用:可用于制取还原铁粉等

2019-02-26 11:04:26

轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。 (1)用于出产海绵铁或制取复原铁粉。 海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。 氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C 氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。 (2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。 氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。 别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。 (3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。 钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。 电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。

江西理工大学铁粉表面包镀镍新方法获专利

2019-03-12 11:03:26

近来,由江西理工大学科研人员研制的一种铁粉表面包镀镍办法取得国家专利。       据介绍,这是一种采用水热氢复原技能在铁粉表面上包镀一层金属镍或纳米镍粉的办法,归于有色金属冶金和粉末冶金材料技能领域。本发明生产工艺办法简略,易于操作,包镀镍层可控。       这种新办法是将硫酸镍或硫酸镍水溶液、、硫酸铵按必定份额参加水中,配成混合溶液,参加少数蒽醌、添加剂,再将需要被镍包镀的铁粉参加到混合溶液中,然后将含有铁粉的混合溶液转入高压釜内,密封高压釜。在高压釜内经高温高压水溶液氢复原处理,溶液中的镍离子复原沉积在铁粉表面,构成细密的金属镍层或纳米镍粉包镀层。包镀反响完成后,将高压釜内的物料冷却,排出表面包镀了金属镍的铁粉和水溶液,经过滤、枯燥,取得表面被金属镍包镀的铁粉产品。

联合选矿工艺新技术破解高磷铁矿工业化应用难题

2019-01-17 10:51:24

我国首个高磷铁矿工业化试验项目——湖北长阳县火烧坪高磷鲕状赤铁矿选矿工业化应用示范工程,近日通过专家组评审验收。专家介绍,这一项目创造性地采用联合选矿工艺新技术,破解了长期困扰我国高磷铁矿工业化应用的大难题。 专家组组长、中国工程院院士孙传尧说,我国高磷铁矿探明储藏量上百亿吨,由于“脱磷难”等技术原因,地下丰富的高磷铁矿资源成为啃不动的“硬骨头”。此次,长阳火烧坪高磷鲕状赤铁矿选矿工业化应用示范工程项目顺利实现了高磷铁矿的工业化开发利用,对我国铁矿开采业具有重大意义。 评审组专家评定,火烧坪矿采用的强磁选抛尾———双反浮选脱磷脱硅的联合选矿工艺新技术,具有成本低、运行平稳、环保节能、易于操作等特点。运用这项新技术,火烧坪全铁品位由原矿的40%~47%提高到57%左右,磷含量由原矿的1%左右下降到0.2%以下,回收率达65%,并且还有进一步提高的潜力。 2011年5月,总投资3.2亿元的我国首家高磷铁矿工业化试验工厂在长阳土家族自治县火烧坪乡建成,着手研发高磷铁矿选矿工艺新技术。之后在北京矿冶研究总院专家团队“牵手指导”下,经过反复试验,相关人员最终研制出适于火烧坪高磷鲕状赤铁矿的选矿工艺新技术。 孙传尧同时表示,由于矿石构成十分复杂,此项技术并不是对所有高磷铁矿都适用,能否推广还待进一步试验考证。

中南除磷剂-铁矿降磷捕收剂zn-158

2019-01-17 09:43:52

铁矿降磷捕收剂zn-158(商品名 中南除磷剂) 使用目的:铁矿提铁降磷 浮选性能:具有良好的降磷选择性能,提铁降磷。使用方法:将药剂用水兑成2-5%水溶液使用。 适用范围:高磷铁矿、高磷鲕状赤铁矿,胶磷矿。 环保性能:药剂无毒无害,易生物降解,对环境友好,符合环保要求。产品特点: 1. 含磷铁矿反浮选降磷,使磷< 0.2% ; 2. 可常温浮选,节能降耗; 3. 泡沫适中,浮选稳定,易于生产操作; 4.对高磷、特高含磷各类铁矿提铁降磷有特效,可实现含磷铁矿资源化。 产品质量标准:Q/CRX002-2008 包装规格:170公斤铁桶或塑料桶。 运输与贮存:不燃不爆,按一般化工产品运输。 密封,贮于阴凉干燥处。

高磷鲕状赤铁矿脱磷技术

2019-01-16 17:41:53

高磷鲕状赤铁矿脱磷技术:中国高磷铁矿的探明储量高达几百亿吨,其潜在的经济价值达10000亿美元。高磷铁矿具有以下特点:(1)品位高。一般在45%以上。(2)堪布粒度细,复杂难处理。镜下显微结构表面,赤铁矿堪布粒度在40微米以下占80%以上。(3)含磷较高。含磷在0.5以上。传统处理方法有物理选矿、化学选矿、冶炼脱磷、磁化焙烧和生物脱磷等,化学选矿、冶炼脱磷、磁化焙烧存在着生产成本高、污染环境等问题;生物脱磷尚处于实验室研究阶段;物理选矿,能耗小,成本低,但是铁精矿品位不高,有害杂质磷含量较高。本研究所对云南某处高磷铁矿,原矿含磷1.2%,含铁42.5%,含硅12.3%,进行了反浮选试验研究,取得了以下指标:铁精粉60%,含磷0.10%,回收率80%。

铁矿脱磷选矿药剂

2019-01-16 17:41:53

铁矿脱磷选矿药剂铁矿脱磷捕收剂zn-158(商品名 中南脱磷剂)使用目的:铁矿提铁降磷浮选性能:具有良好的降磷选择性能,提铁降磷。使用方法:将药剂用水兑成2-5%水溶液使用。适用范围:高磷铁矿、高磷鲕状赤铁矿,胶磷矿。环保性能:药剂无毒无害,易生物降解,对环境友好,符合环保要求。产品特点:1. 含磷铁矿反浮选降磷,使磷< 0.2% ;2. 可常温浮选,节能降耗;3. 泡沫适中,浮选稳定,易于生产操作;4. 对高磷、特高含磷各类铁矿提铁降磷有特效,可实现含磷铁矿资源化。产品质量标准:Q/CRX002-2008包装规格:170公斤铁桶或塑料桶。运输与贮存: 不燃不爆,按一般化工产品运输。密封,贮于阴凉干燥处。

铁矿石脱磷反浮选药剂(国家专利产品)

2019-01-16 17:42:25

中南脱磷剂) 使用目的:铁矿提铁降磷 浮选性能:具有良好的降磷选择性能,提铁降磷。 使用方法:将药剂用水兑成2-5%水溶液使用。适用范围:高磷铁矿、高磷磁铁矿、宁乡式高磷鲕状赤铁矿、高磷褐铁矿、高磷菱铁矿, 环保性能:药剂无毒无害,易生物降解,对环境友好,符合环保要求。 产品特点: 1.含磷铁矿反浮选降磷,使磷<0.2% ; 2. 可常温浮选,节能降耗; 3. 泡沫适中,浮选稳定,易于生产操作; 4.对高磷、特高含磷各类铁矿提铁降磷有特效,可实现含磷铁矿资源化。 产品质量标准:Q/CRX002-2008 包装规格:170公斤铁桶或塑料桶。 运输与贮存:不燃不爆,按一般化工产品运输。 密封,贮于阴凉干燥处。 电话:15084821323 谢工高磷铁矿石选矿降磷一直是国内外选矿行业公认的难题。铁矿石中铁矿物与磷的嵌布关系相当复杂,磷在铁矿中存在的形式多样,但磷与铁矿物的嵌布关系可总结为两种,一种是磷与铁都以独立的矿物出现,另一种是磷以离子吸附态形式存在于铁矿物中。对于第一种形式存在的磷,可以通过细磨使铁矿物与磷矿物完全解离,然后采用磁选法、重选或浮选法进行分选,也可以采用化学方法浸出、微生物浸出脱磷。其中化学浸出方法是一种较为有效的脱磷方法,而且矿石中磷矿物无须完全单体解离,只要暴露出来与浸出液接触就可以达到降磷的目的,但由于化学浸出耗酸量大,成本高,废水对环境污染大,而且容易导致矿石中可溶性铁矿物溶解,造成铁的损失,工业应用较少见。对于第二种形式的磷,无论磨多细,磷都不会以单矿物形式解离出来,此类矿石应采用选矿工艺对铁进行富集,在冶炼中脱磷,即铁水预处理脱磷,或是采用微生物浸出脱磷。冶炼过程中脱磷基本原理为炼钢铁水在人转炉或电炉前,以碱性氧化物或碱性渣与铁水中的磷发生反应形成磷渣进行脱磷。此法效果非常好,但成本高昂,且冶炼脱磷在我国已有院校正在研究。微生物浸出降磷机理是,经过富集、筛选、驯化、诱变等过程培养的高效溶磷微生物菌种,能够摄取矿石中的磷作为其营养物质,同时其代谢过程中还不断产酸,酸的产生也增强了溶磷活性,但周期长,目前也没有大规模应用,对于其工业应用是值得探人研究的。中南选矿专家(www.znxkw.com)在国家科技部重大专项的支持下,进行了艰苦的研究,通过对我国高磷铁矿进行普查和摸底及试验,如原矿含磷1.2%-3.2%,含铁46.5%,含硅12.3%,进行反浮选试验研究,使用一种牌号为中南除磷剂的捕收剂,取得了以下指标:铁精粉58%,含磷0.10%,回收率85%,并在多家高磷铁矿进行实验,取得相近的实验效果,使我国高磷鲕状赤铁矿提铁降磷技术取得突破性进展,使高磷鲕状赤铁矿从此进入工业应用阶段。提铁降磷选矿工艺工程及降磷药剂填补世界空白,在高技术快速转化的今天,矿业投资者犀利敏锐的目光一旦聚焦高磷鲕状赤铁矿提铁降磷,将可在未来五到十年,打造一大批矿业百亿富翁,同时他们将成为国家基础建设的功臣而名垂史册。

最有效的铁矿脱磷选矿药剂

2019-01-17 09:43:52

铁矿脱磷选矿药剂 铁矿脱磷捕收剂zn-158(商品名 中南脱磷剂) 使用目的:铁矿提铁降磷 浮选性能:具有良好的降磷选择性能,提铁降磷。使用方法:将药剂用水兑成2-5%水溶液使用。 适用范围:高磷铁矿、高磷鲕状赤铁矿,胶磷矿。 环保性能:药剂无毒无害,易生物降解,对环境友好,符合环保要求。产品特点: 1. 含磷铁矿反浮选降磷,使磷< 0.2% ; 2. 可常温浮选,节能降耗; 3. 泡沫适中,浮选稳定,易于生产操作; 4.对高磷、特高含磷各类铁矿提铁降磷有特效,可实现含磷铁矿资源化。 产品质量标准:Q/CRX002-2008 包装规格:170公斤铁桶或塑料桶。 运输与贮存:不燃不爆,按一般化工产品运输。 密封,贮于阴凉干燥处。

高磷赤铁矿脱磷技术简介

2019-01-16 17:41:53

根据矿石品位不同可分为富矿和贫矿,一般富矿指含铁量在60%以上,25%-60%之间的称为贫矿,我国铁矿石储量丰富但有近80%属于贫矿,开采难度大成本高。铁矿石是我国钢铁工业的主要原料,国内钢铁行业的快速发展带动了铁矿石的旺盛需求。近年来,我国钢铁工业快速发展,钢铁产量先后突破2亿、3亿、4亿吨,2007年达到4.89亿吨,到2008年中国成为世界上首个年粗钢产量超过5亿吨的国家,2009年我国钢铁行业粗钢产量达到5.678亿吨,同比增长13.5%,但是从我国已查明的铁矿资源自然丰度上看,品位低,平均品位31-32%,低于世界平均水平11个百分点,97%以上是难于直接利用的贫矿,开采难度较大。而我国铁矿石储量2002年为578.72亿吨,仅占世界总量的18.67%,我国钢铁产量已经占到世界总量的40%以上。由此可见,我国铁矿石资源在总量、质量上相对不足、无法独立支撑国内庞大钢铁工业的快速发展。钢铁工业的快速发展带动了铁矿石旺盛的需求,2009年我国进口铁矿石达到6.3亿吨,近期市场价格暴涨,目前已经上涨至135美元的协定价,现货价最高更是逼近200美元,虽然国内大量资本进入铁矿石开采业,我国的铁矿石供应量快速增加。但铁矿石属于不可再生的矿产资源,虽然新增产能在暴力的刺激下大量增加,但与此同时,许多矿井也在不断枯竭。高磷赤铁矿是我省乃至我国潜在的优势矿产,广泛分布在鄂西、湖南、重庆、云南等地。已探明储量100多亿吨,远景资源量200亿吨以上。我省已探明储量近22亿吨,广泛分布在宜昌西部和恩施州。由于矿石含磷量高,有用矿物粒度细,选矿脱磷难度大成本高,极大的限制了该类铁矿石的工业利用。高磷赤铁矿提铁脱磷技术长期以来一直是国际国内冶金选矿技术攻关难题。目前除少量零星高磷赤铁矿开发利用于水泥配料外,基本处于闲置状态。中南选矿专家专利技术-高磷鲕状赤铁矿脱磷技术:中国高磷铁矿的探明储量高达几百亿吨,其潜在的经济价值达10000亿美元。高磷铁矿具有以下特点:(1)品位高。一般在45%以上。(2)堪布粒度细,复杂难处理。镜下显微结构表面,赤铁矿堪布粒度在40微米以下占80%以上。(3)含磷较高。含磷在0.5以上。传统处理方法有物理选矿、化学选矿、冶炼脱磷、磁化焙烧和生物脱磷等,化学选矿、冶炼脱磷、磁化焙烧存在着生产成本高、污染环境等问题;生物脱磷尚处于实验室研究阶段;物理选矿,能耗小,成本低,但是铁精矿品位不高,有害杂质磷含量较高。本研究所对云南某处高磷铁矿,原矿含磷1.2%,含铁46.5%,含硅12.3%,进行了反浮选试验研究,取得了以下指标:铁精粉58%,含磷0.10%,回收率85%。

某难选高磷赤褐铁矿提铁降磷选矿试验研究

2019-01-24 09:36:23

铁矿石作为钢铁工业的主要原料是一个国家的重要战略资源,近年来随着钢铁冶金工业的飞速发展,对铁矿石原材料的需求也越来越大。但是地球上有限的富铁矿和易选铁矿资源将逐步枯竭,研究高磷铁矿石的高效分选技术显得十分重要。高磷铁矿的选矿一直是选矿界的一大难题,我国高磷铁矿石储量占总储量的14.86%,达74.5亿t。因此加大对高磷铁矿石选矿和降磷的研究,开发有效、经济、实用的新方法、新技术势在必行[1、2]。云南某高磷铁矿矿石储量大,原矿含铁42%左右,铁矿物主要以赤铁矿和褐铁矿形式存在,有害杂质磷含量达0.586%,且磷矿物与铁矿物相互浸染,嵌布粒度极细,属高磷难选铁矿石。通过大量试验,确定采用还原焙烧-磁选-反浮选工艺处理该矿石,获得了铁精矿铁品位为61.72%、铁的回收率67.48%,铁精矿磷含量为0.20%选矿指标。 一、矿石性质 云南某高磷铁矿石中主要矿物为赤铁矿和褐铁矿,还有少量磁铁矿。脉石矿物主要为方解石、绿泥石、石英等。主要元素分析结果及物相分析结果见表1和表2。 表1  原矿主要化学成分(质量分数)/%表2  铜物相分析结果由表1和表2可知,该铁矿物主要目的元素是铁,原矿铁品位达到42.66%;有害元素硫和砷含量较低,有害元素磷的含量较高,为0.586%;该铁矿属于铁质泥铁矿,铁主要以赤褐铁矿形态存在,属高磷赤褐铁矿石,且磷矿物与铁矿物相互浸染,主要呈粒状分布于赤铁矿和褐铁矿中,嵌布粒度极细,属于非常难选铁矿石。 二、试验方案 对矿样分别进行了单一流程试验(强磁选、重选、直接浮选)和联合流程的试验(分级磁选、分级重选、磁浮/浮.磁联合选别和磁.重/重一磁联合选别),均未得到较好指标的铁精矿,精矿中磷的含量也不能降到0.2%以下。为此,改变思路,决定先用还原焙烧的方法把原矿还原为磁铁矿,再用磁选方法选出铁品位较高的铁精矿,再用反浮选的方法将铁精矿中的磷降到0.2%以下,得到品位合格和杂质磷不超标的铁精矿。 三、试验结果 (一)还原焙烧试验 焙烧温度、还原剂用量和焙烧时间是焙烧试验的主要影响因素。温度太低,反应进行太慢;温度太高会生成弱磁性的富氏铁或硅酸铁,从而影响精矿指标。焙烧时间太短,反应没有完全进行,会降低精矿品位和回收率;焙烧时间太长,会消耗大量的热能,同时使反应生成物的磁性大大降低,影响后面磁选的效果[3]。 将原矿破碎到-2mm后与粒度为-1mm、用量为5%的焦炭混合,还原焙烧20min,然后磨至-0.074mm粒级占100%,在磁选电流为2A条件下进行磁选,还原焙烧温度对试验效果的影响见图1。图1  焙烧温度试验结果 由图1可见,随着焙烧温度升高,铁品位和回收率均呈上升趋势。当焙烧温度达到1000℃之后,铁品位和回收率均下降。可见适宜的焙烧温度为1000℃。 将原矿破碎到-2mm后与-1mm的焦粉混合,焙烧温度为1000℃时还原焙烧20min,然后磨至-0.074mm粒级占100%,在磁选电流为2A条件下进行磁选,还原剂焦炭的用量对试验效果的影响见图2。图2  还原剂用量试验结果 由图2可见,随着焦炭用量增加,铁品位和铁回收率均呈先上升后下降的趋势,在焦炭用量为8%时出现极值。可见适宜的焦炭用量为8%。 将原矿破碎到-2mm后与-1mm焦炭混合,焦炭用量为8%,在1000oC下还原焙烧,然后磨至-0.074mill粒级占100%,在磁选电流为2A条件下进行磁选,还原焙烧时间对试验效果的影响见图3。图3  还原焙烧时间试验结果 由图3可见,随着还原焙烧时间延长,铁品位和铁回收均呈先上升后下降的趋势,在还原焙烧时间为30min时,铁品位和回收率均达到最大值。可见适宜的还原焙烧时间为30min。 (二)磁选试验 1、磁场强度试验将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨至-0.074mm粒级占100%,进行磁选,磁选电流对试验效果的影响结果见图4。图4  磁选电流试验结果 由图4可以看出,磁选电流太高时精矿铁品位达不到60%,磁选电流太低则铁精矿回收率达不到50%。磁选的电流为2.5A时选别指标较为适宜,此时的精矿品位为61.77%,回收率为68.25%。 2、磨矿粒度试验将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨矿,在磁选电流为2.5A条件下进行弱磁选,磨矿粒度对试验效果的影响结果见图5。图5  磨矿粒度试验结果 由图5可以看出,物料越细,铁矿物单体解离越充分,精矿铁品位越高,但物料太细导致磁选时铁的损失严重。根据试验结果,确定适宜的磨矿粒度为-0.054mm粒级占90%。 3、综合试验通过条件试验,确定各工艺参数后进行了综合试验。将原矿破碎到-2mm后添加-1mm焦炭8%,在1000℃下焙烧30min,然后磨矿至-0.054mm粒级占90%,在磁选电流为2.5A条件下进行弱磁选,可获得铁品位为60.86%、磷含量为0.42%、回收率为70.68%铁精矿。 (三)铁精矿降磷试验 由于该铁矿所含的磷矿物与铁矿紧密共生,浸染于氧化铁矿物颗粒边缘,并有少量的磷存在于铁矿石及铁质粘土的晶格中,部分磷矿物在焙烧过程中与铁矿物分离开,磷的含量由原来的0.59%降到了0.42%,但仍有部分磷矿物留在磁选精矿中,造成铁精矿的磷含量超标,所以进行了铁精矿反浮选降磷试验[4]。 以碳酸钠为pH调整剂、淀粉为抑制剂、RP为捕收剂、2油为起泡剂,对弱磁选精矿进行了一粗一精反浮选脱磷,试验流程见图6,试验结果见表3。图6  反浮选流程 表3  反浮选试验结果由表3结果可知,反浮选流程可以得到铁品位61.68%、回收率91.87%的铁精矿(相对于原矿为65.93%),铁精矿中磷降到了0.21%。 (四)全流程试验 在以上条件试验的基础上进行了全流程试验,试验流程见图7,试验结果见表4。图7  还原焙烧-磁选-反浮选全流程 表4  全流程试验结果由表4结果可知,采用还原焙烧.磁选.反浮选工艺处理该赤褐铁矿石,获得了铁精矿铁品位为61.72%、铁的回收率67.48%,铁精矿磷含量为0.20%的选矿指标。 四、结语 1、云南某铁矿石铁矿物主要以赤褐铁矿形式存在,磷含量达0.586%,矿物嵌布粒度微细,用常规物理选矿方法难以获得符合冶炼要求的铁精矿。通过大量试验,确定用还原焙烧-磁选-反浮选工艺流程处理该矿石,获得了精矿铁品位61.72%、磷含量0.20%、铁回收率67.48%的较好选别指标。 2、随着铁矿石资源的日益紧张和冶炼对原料越来越高的要求,本研究提出的焙烧-磁选-反浮选工艺为类似难处理微细粒高磷赤褐铁矿的开发利用提供了新的思路。 参考文献: [1] 林祥辉,罗仁美.鄂西难选铁矿的选矿与药剂研究新进展[J].矿冶工程,2007(3):28-29. [2] 孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-13. [3] 肖军辉.某细粒难选赤褐铁矿提铁降磷新工艺工业试验[J].金属矿山,2007(1):44-46. [4] 李广涛,张宗华.四川某高磷鲕状赤褐铁矿石选矿试验研究[J].金属矿山.2008(4):43-46. 作者单位 江西理工大学(艾光华、余新阳) 广西大学(魏宗武)

氧气顶吹熔融还原炼铁试验

2019-03-07 10:03:00

氧气顶吹熔融复原炼铁实验:介绍了氧气顶吹熔融复原技能的工艺、设备和氧在反响中最佳喷溅作用的模仿;此工艺选用浸入式水冷喷把富氧空气直接喷吹到渣层中来加强对熔池的拌和,强化传热传质.经过用昆钢供给的质料开始实验,得到了与传统高炉质量适当的优质铁水.该工艺能够运用传统高炉无法运用的高磷铁矿石作为炼铁质料,且能冶炼出含磷下降的铁水,脱磷也是这种工艺的特色之一。

氧化铜矿处理几种理论研究(二)

2019-02-14 10:39:39

(三)分支浮选在氧化铜矿浮选中的使用    据有关材料介绍,分支浮选对低档次矿石效果明显。铜矿峪矿石档次偏低,精矿产率小,契合选用分支浮选的条件,为了验证分支浮选工艺对这类矿石的适应性,实验采集了一批氧化率43.19%,原矿档次0.33%的矿石。    实验流程,加药地址与硫化矿相同,见下图。实验成果见下表。氧化矿低档次矿石分支再磨实验成果浮选工艺浮选目标%药剂用量  克/吨原矿档次精矿档次收回率混黄药乙酯油惯例浮选0.34721.49484.125009012分支浮选0.34123.49884.03275759单支精矿再磨0.34926.64884.13009012分支精矿再磨0.3326.0983.44275759     实验成果证明:分支浮选对氧化矿低档次矿石是有用的。精矿再磨进步精矿档次5%与硫化矿共同,阐明粗精矿再磨工艺对铜矿峪矿石是适用的。[next]    分支浮选工艺适合于铜矿峪低档次、精矿产率小的矿石,也适应于氧化矿。分支浮选工艺与粗精矿再磨工艺相结合,可以节约各种药剂10~15%,又能进步精矿档次4~5%。总的经济效果十分明显,是当时下降选矿本钱,进步经济效益的途径之一。                        (四)用铁粉从胆矾溶液中置换铜的机理研讨    在使铜从溶液里直接沉积的许多办法中(例如电解,用铁、铝或锌置换;用CO、H2、H2S或SO2沉积;以及用Ca(OH)2或CaCO3沉积),实践证明,只有用铁置换的办法对低浓度、多杂质的溶液才是经济上可行的。    我国江西铜业公司用萃取—电积法或石灰沉积法收回铜的矿山,现已改用铁粉置换法收回铜。铁粉置换法的经济效益已逐渐被知道,因而,经过理论分析和科学实验来进一步论述铁粉置换技能,仍具现实含义。北京矿冶研讨总院有人著文就铁粉置换技能,工艺要求,下降铁耗和取得高纯铜粉的办法进行了实验和评论。    1.铜离子被铁置换的行为    pH值与置换速度的联系   跟着溶液的pH值下降(游离酸添加),交流速度加速,溶液中无游离酸存在,则难以进行交流;跟着溶液中Cu2+含量下降,交流速度也随之减慢,最终到达溶解与沉积的平衡,交流率不再上升,这种平衡一向坚持到铁粉耗尽;胆矾和金属铁交流的适合pH值为2~2.5。    置换时刻与交流率的联系   跟着置换时刻添加,交流率上升,但速度减慢(因Cu2+浓度下降和pH值上升),当正反响和逆反响平衡时,交流率到达最高值,该值一向坚持到金属铁耗尽;金属铁被悉数溶解之后,溶液里过剩的游离酸使沉积铜被从头缓慢溶解,导致排出液含铜上升,交流率下降。因而,正确把握化学平衡极为重要。    铁粉用量与置换速度的联系   在相同的交流时刻里,复原铁粉用量越多,交流速度越快;当溶液的pH值超越4今后,交流率不再上升。溶液中有过量的金属铁存在时,可以避免溶液里Cu2+上升,但过多的铁粉用量将使沉积铜档次下降,酸耗添加。    溶液含铜量对交流的影响   溶液中Cu2+浓度越高,交流率越高,因而,在实践使用时应尽量进步进液浓度;采纳添加Cu2+和Fe°的碰撞频率及进步FeSO4分散速度之办法,以求加速交流速度和取得较高听交流率。    逆流交流实验  选用逆流交流法可以在挨近理论铁耗的状况下,一起取得高档次沉积铜和高听交流率;    实验条件为  进液每立升含铜5克,pH值为2,复原铁粉用量为理论铁耗的110%,交流时刻15分钟,实验成果核算于下表。产品批号排出液含铜克/升沉积铜档次Cu%交流率%10.199696.0720.00379599.9230.01994.799.6140.193.897.9350.8246.783.02[next]     溶液中氢离子浓度下降,交流速度减慢,导致排出液含铜量升高,交流率和沉积铜档次下降,因而,在交流进程中要严厉监控氢离子浓度的改动和当令的补加游离酸于交流液中;第一批交流液理论铁耗的5.5倍复原铁粉相遇,按化学反响原理它的交流率应当最高,但是恰恰相反,它的排出液含铜居然高达0.19克/升,这一“失常”现象极为重要,是逆流交流实验所赋予的很有含义的启迪。    Fe3+对置换的影响    在铜矿石的硫酸浸出液中,或多或少的存在必定数量的三价铁离子。在以铁粉置换铜时,溶液中的三价铁大部分按反响式Fe2(SO4)3+Fe→3FeSO4被复原成二价铁,然后添加了铁耗,所添加的铁耗量以彻底反响核算,是溶液中三价铁离子量的二分之一。依据实验所得到的数据,可以得出这样的定论:在用铁粉置换铜时,溶液傍边的Fe3+简直悉数被复原为Fe2+。因而,在交流进程中要避免Fe2+的氧化,Fe2+的氧化将使铁耗添加和加速Fe3+的水解,给置换作业带来损害。对处理Fe3+浓度很高的溶液,选用铁粉置换法是不适合的,在这种状况下,考虑预先将Fe3+复原是必要的。    2.铁粉置换法收回铜的实例    例1  武山铜矿石酸浸液铜的收回    武山归纳矿石酸浸液每立升含铜14.1克、含铁7.7克、含Fe3+0.25克,在交流时需求往每立升溶液中追加0.125克纯铁,做为将Fe3+复原成Fe2+之用。然后,再按每一克铜需求0.88克纯铁来核算理论铁耗。先用硫酸将溶液的pH值调至2,再在搅动的状况下参加铁粉置换15分钟。实验成果见下表。理论铁耗%沉积铜档次%交流率补白10096.7594.25溶液里尽管有多种离子,但重金属离子的含量很低,因而,在沉积铜中的共沉物很少。10595.499.4311090.45~10011590.5~10012084.6~100     例2  城市山铜锌矿石酸洗液铜的收回    江西城门山铜锌矿石中含有水溶铜和吸附铜,需将这部分铜用稀硫酸洗脱,再加以收回。酸洗液每立升含铜0.97克,因无其它离子的化学分析数据,故在核算铁耗时只能依据铜的含量核算,并以通用的工业铁耗标明。先钭酸洗液的pH值调至2左右,然后在搅动的状况下参加复原铁粉,交流15分钟,马上过滤,清洗。对所得成果列于下表。工业铁耗%沉积铜档次Cu%交流率%排出液pH10092.894.643.511088.798.143.512082.398.354     实验证明:用抱负溶液的参数实验成果,辅导天然含铜溶液的交流实践,是可行的。    3.胆矾溶液铁粉提铜原理    铁粉置换化学   铁粉置换进程发作的三个首要反响为:                             CuSO4+Fe→FeSO4+Cu          (1-1)                           Fe2(SO4)3+Fe→3FeSO4         (1-2)                            H2SO4+Fe→ FeSO4+H2           (1-3)[next]    在pH为2~2.5时,搅动的状况下式(1-1)为首要反响,而在停止的状况下式(1-2)则变得重要,当pH                      Cu+Fe2(SO4)3 → CuSO4+2FeSO4        (1-5)    Fe2+的氧化和Fe3+的水解:在浸出进程中含铁矿藏中铁的溶解以及硫化矿和某些其他矿藏氧化时,Fe3+的复原发作了适当数量的Fe2+,而Fe3+极易被氧化成Fe3+:                     4FeSO4+O2+2H2SO4→2Fe2(SO4)3+2H2O    (1-6)    当Fe2+氧化所构成的Fe3+超越了溶解度,或pH值有所添加时,三价铁就按(1-7)水解而到达新的平衡。                       Fe3++3H2O ←→Fe(OH)3+3H+         (1-7)    操控溶液pH值避免Fe(OH)3沉积分出   三价铁在浸进程是不可避免要发作的,而对沉积置换又是十分有害的,因而,避免Fe(OH)3沉积分出,对胆水提铜作业的胜败联系甚密。Fe(OH)3沉积的pH值与Fe3+离子浓度有关,当溶液pH超越3.7时,溶液傍边尽管Fe3+离子浓度很低(10-5M)也要被水解沉积分出,分出的Fe(OH)3固体进入沉积铜中则下降沉积铜档次,阻止铜离子被铁复原和下降置换速度。因而,当用铁复原铜时,溶液的pH值最佳操控规模开端为±2,停止为±3。    胆水铁粉提铜动力学    铁粉置换的反响发作在固—液界面,化学作用使界面和溶液内部的浓度发作差异,引起分散作用。但这种浓差只存在于紧贴固体表面的一层相对不动的液膜(分散层)内,而溶液内部是均匀的。在分散层内发作着溶液浓度的接连改动,反响物经过分散层向界面分散,产品则经过分散层脱离界面。    这样,在铁粉置换的反响中包含着分散和界面化学反响这两个环节。实验证明,相界面上的化学反响进行得很快,分散速度慢,成了阻止反响的环节,因而,进程的总速度就取决于分散速度。    胆水铁粉提铜整个反响速度V0等于:                                    D•A                             Vo = ———• △C              (1-8)                                   V•δ     式中V为溶液体积,△C标明分散层两头浓度的增量。    式(1-8)标明,固—液反响速度取决于分散系数D,相界面面积A和分散层厚度δ,凡能改动这些要素的办法,都能改动反响速度。    在铁粉置换操作中要注意以下几个问题:(1)复原铁粉的粒度,(2)温度,(3)拌和,(4)溶液酸度,(5)胆水浓度。    经过对抱负溶液和实践用水溶液的实验,以及对胆水铁粉提铜机理的评论,阐明,只需选用合理的工艺和对进程影响要素可以及时地检测和调整,就能以挨近理论值的低铁耗,取得高交流率和高档次沉积铜。

铁精粉工艺流程了解

2019-02-25 13:30:49

铁精粉选矿工艺:在炼钢污泥中湿式磁选铁精粉工艺办法是将炼钢污泥放入造浆池中,首要用水浸泡,然后用高压水冲击炼钢污泥并加恰当水使炼钢污泥浆到达规则细度,炼钢污泥浆经过造浆池中的筛网被泥浆泵输送到磁选机料箱,此刻磁选机分选出铁精粉和尾矿,铁精粉浆流入脱水池中脱水和贮存,尾矿浆排入尾矿坑;选用该办法可彻底收回炼钢污泥中的铁精粉,做到资源最大极限的使用,经济效益和社会效益非常可观。 水磁选铁精粉机及其使用办法 内容简介:水磁选铁精粉机及其使用办法。归于冶金选矿机械和选矿办法。以处理工业硫酸废渣中含铁部分无良好用处,并已形成公害等问题。本办法以磁铁招引硫酸废渣中的铁质成色;以非磁铁场快速消磁后提取铁质成分的显着作用,完成仅以2%至3%的质料本钱,再投入20%至40%的水磁选铁出产费用,到达100%的作用。并可极大地削减空气、环境、地表、地下水等污染。具有新增社会、经济效益,减轻厂商和大众公害的显着前进。 铁矿石铁精粉脱磷的处理办法 内容简介:本工艺是一种铁矿石、铁精粉脱磷的处理办法,可有用处理铁矿石、铁精粉含磷过高而不能被炼铁之用的问题,其处理的技能计划是,将高含磷铁矿石、铁精粉粉碎成粗颗粒,置入脱磷容器中,再参加等体积的稀溶液加热,在55-75℃下反响25-40分钟后,滤去溶液再用清水冲刷,重选即可,本办法简略,易操作,本钱低,脱磷作用好,可有用处理高含磷铁矿石、铁精粉的炼铁问题,为高磷铁矿的挖掘和使用发明了必要的条件,并为炼铁业供给了丰厚的质料,拓荒了宽广的六合。 钢渣铁精粉的出产工艺 内容简介:本办法公开了一种钢渣铁精粉的出产工艺,将钢渣经转筒式烘干机烘干,使钢渣含水量小于1.5%,烘干后的钢渣送入电磁予磁器进行预先磁化,再送入予均化库进行均化、贮存,然后进行干式予粉磨,将3毫米以上的颗粒钢和小于3毫米的钢渣粉别离,然后将3毫米以下的钢渣粉选用选粉机进行风力选粉,使钢渣粉分为大于180目和小于180目两级颗粒,将大于180意图颗粒置入双筒干式永磁磁选机进行铁磁选,磁选后的钢渣粉选用电磁脱磁器对钢渣粉进行脱磁,以下降钢渣粉比磁化系数,解除磁聚会,再将脱磁后的钢渣粉送入球磨机进行细磨至180目以下,用选粉机将钢渣铁精粉和钢渣微粉别离。本办法具有出产工艺本钱低,不污染环境等长处。 用硫铁矿出产铁精粉的办法及其设备 内容简介:一种用硫铁矿出产铁精粉的办法及其设备,是在现有硫酸设备基础上,添加质料混配体系1。使用欢腾炉3排出的烧渣,掺入到硫铁矿中作为质料。烧渣经排渣管3-4,排出到矿渣输送机5上,送到增湿机6,再由排渣皮带7送到质料场,按核算份额掺入到硫铁矿中,与其充沛混组成入炉质料,然后经质料入炉设备2,入炉焙烧。所得产品除硫酸外,还可得到铁元素百分含量≥63%的铁精粉。选用简略而经济的办法取得巨大的经济效益,为硫铁矿的深度开发拓荒新途径,更大程度上使用硫铁矿资源,进步现有硫酸设备的经济效益。适于对现有硫酸设备的改善和进步。 根据从工业含铁尾矿中提取铁精粉的工艺 内容简介:本办法公开了一种根据从工业含铁尾矿中提取铁精粉的工艺,首要将工业含铁尾矿在水中浸泡、清洗,随后将所得到洁净的尾矿石送入研磨机破碎,其次将所得到的矿粉输送到频率为50HZ。  电压220V的高频筛进行挑选,再次将挑选过的矿粉送入到湿式永磁辊式旋选机内进行磁选,最终将初选合格的矿粉输送到提纯机内进行最终的提纯;选用该工艺可将工业尾矿中的铁资源,做到最大极限的使用,经济效益和社会效益非常显着。

氧化铝赤泥选铁工艺

2019-01-14 14:52:56

氧化铝赤泥选铁工艺,属于赤泥处理工艺,特点是包括下述工艺步骤:赤泥浆料加水预混,通过螺旋流槽分选出精矿浆料、中矿浆料和尾矿浆料;精矿浆料通过摇床分流出铁粉浆料,中矿浆料经球磨机球磨破碎后,也进入摇床随精矿浆料一起进行分流。可回收赤泥中6-8%的三氧化二铁与四氧化三铁铁粉,不仅解决了赤泥的闲置堆放问题,改善周边环境,而且实现了废物资源的循环利用,节约原材料。  工艺,其特征在于包括下述工艺步骤:赤泥浆料加水预混,进行稀释和降温,再进入螺旋流槽进行分选,分选出精矿浆料、中矿浆料和尾矿浆料;精矿浆料进入摇床,加水分流,摇床侧部分流出矿质浆料,端部分流出铁粉浆料,铁粉浆料进入产品槽;所述中矿浆料填入球磨机进行球磨破碎后,进入所述摇床随精矿浆料一起进行分流。

马钢铁鳞用于海绵铁生产的试验研究

2019-03-08 11:19:22

1 前语 马鞍山钢铁股份有限公司铁鳞资源总量约5万t/a。为合理运用资源,依据对商场供需情况的分析,公司于1992年立项建造年产万吨级铁粉出产线。 马钢铁粉工程系马钢股份有限公司与我国节能出资公司联合出资的国家重点项目。该项目由原机械工业部天津第五规划院规划。其规划结合了国内外铁粉出产供应商的先进工艺技术,规划的工艺特色为“3次磁选、2次复原”,方针是出产高质量的优质铁粉。 马钢铁粉一期工程主体设备有:隧道窑(长166m)1座;从德国克莱默公司引入出产能力为700kgh的CBR-700-95e铁粉复原炉(包含出产能力为80m3 h的ASP-80型分解器和出产能力为80m3h的DR-80型气体干燥器)1台;以及从德马克公司引入的细粉碎机2台。整个工程现已竣工投产。 马钢铁鳞数量虽不大,但品种多,成分杂乱,且有大量库存铁鳞。怎么从中选出合格铁鳞质料用于复原铁粉出产线,是铁粉工程投产首要处理的问题。为此,咱们对公司轧材厂一切的轧制点的铁鳞进行了取样分析,并进行了海绵铁半工业化出产实验,以找出契合优质铁粉出产工艺的铁鳞资源。 2 优质复原铁粉对质料铁鳞的质量要求 铁粉产品对Mn、Si、C、S、P及酸不溶物等有严厉的约束,因而出产海绵铁时对质料铁鳞应严厉把关。一般铁粉出产供应商对处理后的铁鳞成分有如下要求,见表1。 3 铁鳞取样分析及铁鳞处理工艺 3.1 铁鳞取样分析 依据文献[1]及同行的实践出产经历,海绵铁出产多选用热轧低碳欢腾钢铁鳞作质料,由于低碳欢腾钢中SiO2、Al2O3等含量较低,用它作质料制作的铁粉杂质少,性能好。为了选出优质铁鳞,咱们对本公司一切轧制点的铁鳞作了全面的取样分析。成果如表2所示。 3.2 铁鳞处理工艺及经处理铁鳞的技术目标 马钢铁鳞处理工艺流程:铁鳞搜集—堆积—过筛—水洗—烘干—磁选—球磨—筛分—混料—初复原经铁鳞处理工艺处理后的高线普碳、二轧型材和三轧(带钢、线材)铁鳞,各项技术目标均契合运用要求;中板、初轧(420方坯、连轧)铁鳞,经铁鳞处理工艺处理后,酸不溶物超支;棒材、H型材和初轧开坯铁鳞,经铁鳞处理工序后,Mn及酸不溶物超支。 4 马钢铁鳞用于海绵铁半工业化出产实验及分析 4.1 半工业化出产实验 从马钢铁粉项目建造以来,公司有关部门已搜集到高线普碳,二轧型材及三轧带钢、型材等3种根本可满意海绵铁出产需求的铁鳞及中板、初轧(连轧、420方坯)2种酸不溶物超支的铁鳞共约4万余吨,其中有库存期达2-4年的铁鳞,这部分铁鳞已深度氧化。本次进行的半工业化出产实验,目标为上述2类共10种铁鳞。关于中板、初轧铁鳞的实验,首要视其经复原成海绵铁并经磁选后的技术目标是否合格。至于经处理工艺后仍严峻超支的棒材、H型钢、初轧开坯等3种铁鳞,不作为实验目标。 工业化出产实验所选用的倒焰窑的根本尺度为:直径4.8m,容积20m3。共进行了两窑实验。为了精确反映不同铁鳞对海绵铁质量的影响,将不同铁鳞装罐堆积在不同扇形区域(视为倒焰窑各扇形区的热工准则根本相同),每区域共堆积10组复原罐,每组共堆积4层罐,如图1所示。 实验工艺参数是在学习兄弟供应商比较老练的工艺目标的基础上,结合本公司质料的特色经实验优化后拟定的[2]。 榜首窑工艺参数:复原温度为1050-1150℃;复原时刻50h;质料配比:铁鳞∶焦碳=1∶0.55。复原后得到的海绵铁的铁含量示于表3。一起还对复原得较好的以高线、三轧、二轧铁鳞为质料出产的海绵铁中的碳含量及复原情况进行了分析,新轧制和库存铁鳞的碳含量及复原成果比较示于表4。 第二窑工艺参数:复原温度为1050-1150℃;复原时刻56h;质料配比:铁鳞∶焦碳=1∶0.55。复原得到的海绵铁的铁含量示于表5。相同,对复原得较好的高线、三轧、二轧铁鳞为质料出产的海绵铁中的碳含量及复原情况进行了分析,新轧制和库存铁鳞的碳含量及复原作用示于表6。 4.2 实验成果分析 本次实验首要对海绵铁中的铁含量进行分析。从表3、表4成果看,高线普碳、三轧线材、二轧中型材所产铁鳞在对应的工艺条件下能出产出合格的海绵铁;而库存铁鳞因深度氧化在该工艺条件下未能到达复原结尾而呈现夹生。从表5、表6成果看,高线普碳、三轧线材、二轧中型材所产库存铁鳞在改动后的工艺条件下能出产出合格的海绵铁,而相同工艺下新轧制铁鳞因复原温度进步、时刻延伸而过烧渗碳,导致海绵铁出格。此外实验成果还显现,中板、初轧铁鳞不能用作出产海绵铁的质料。 咱们还将本实验两窑次中合格海绵铁经精复原工序(破碎—磁选—精复原—解碎—磁选—分级合批)处理,其精复原铁粉的化学成分示于表7。从表7可知,选用马钢高线、三轧、二轧铁鳞可以出产出化学成分契合出产要求的复原铁粉。 4.3 马钢铁鳞挑选的准则 经过上述实验成果分析,咱们以为:为了确保马钢铁粉项目投产后的质量,对马钢铁鳞的挑选应遵从以下准则: (1)铁粉出产宜选用高线、三轧、二轧等热轧欢腾钢铁鳞为质料; (2)针对现在同种钢材轧制量削减的特色,要严厉留意钢种改变,不契合要求的铁鳞禁止搜集; (3)露天长时刻寄存的铁鳞易受污染,因而用于海绵铁出产的铁鳞应及时从轧制现场搜集至质料堆积棚; (4)关于部分库存铁鳞,应拟定相应的工艺准则独自处理,这样才可出产出合格的海绵铁。 5 定论 (1)经取样分析及铁鳞处理工艺处理后挑选出来的马钢高线普碳、二轧型材和三轧带钢、线材新轧制铁鳞,在质料配比铁鳞∶焦碳=1∶055、复原温度1050-1150℃,复原时刻50h的工艺条件下,可出产出合格的海绵铁; (2)关于铁鳞品种与(1)相同的库存铁鳞,在质料配比与(1)相同,复原温度为1100-1150℃,复原时刻56h的工艺条件下,亦可产出合格的海绵铁; (3)将二种工艺条件下取得的合格海绵铁粉进行精复原处理,所得复原铁粉化学成分契合出产要求。

电解铝工艺的主要设备

2019-01-11 09:43:10

电解工艺的主要设备有:高位电解多功能天车、拖盘清理机、振动筛、破碎机、提升机、残极压脱机、磷铁环压脱机、铝导杆矫直机等。碳素工艺主要设备有:球磨机、破碎机、筛分机、预热螺旋机、连续混捏机、振动成型机、阳极焙烧炉用多功能机组等。   操作人员易于接近的各种可动零、部件都是机械的危险部位,机械加工设备的加工区也是危险部位。如果这些机械设备的转动部件外露或防护措施和必要的安全装置不完善,很容易造成人身伤害事故。这需要工作人员在工作时提高警惕,认真使用。

铁磁性金属粉末的磁场烧结

2019-02-18 10:47:01

通过操控晶界微观结构来改进合金功能的技能已日益受到重视,因而广泛研讨了热机械加工技能用来操控晶粒尺度(晶界密度)、晶界特性散布(GBCD)以及晶界衔接性等。别的,也选用了外加势能(例如磁场、电场,超声振荡和温度梯度)的技能。其间,外加磁场的使用愈加引起了材料加工界的重视,由于它可以愈加精确地操控显微结构。至今,现已发现外加磁场关于铁磁材料的再结晶、分出行为和相改变等冶金现象的影响都非常大。因而,日本东北大学的研讨者们在这方面从事了很多的研讨。此次,对铁粉和钴粉在外加磁场条件下研讨了它们的烧结行为,所用原始材料是99.9%纯粉和99.5%的纯羰基钴粉,它们的颗粒均匀粒径分别为2.3μm和0.8μm,铁粉的形状是球形的,钴粉是多面体形。这些金属粉末在研讨前均在氩气流中通过673K×3.6ks的脱氧处理,以铲除其表面所附着之氧化物。选用200MPa压力压成直径10mm×高3mm的压坯,在红外线烧结炉中烧结。在烧结过程中,沿平行于圆柱状试样轴线的方向施加外磁场,随后升温。外加直流磁场逐步增强至1.2MA/m(15kOe)。铁粉压块是在5×10-3Pa真空下于873至973K的铁磁温度规模进行磁场烧结,也在1123K顺磁温度下烧结5、20、50和100h;钴粉压块在1173K铁磁温度下烧结5、20、50h。  研讨结果证明,磁场烧结能有效地进步铁粉的细密化程度,促进晶粒长大。磁场越强,细密化程度越高,特别是在烧结的中间阶段效果最强。以为磁场有增强晶界搬迁驱动力的效果,所以在烧结时关于细密化起着重要效果。与铁粉压块比较,磁场关于钴粉压块的细密化却起着按捺的效果。

金属材料的处理方法和装置

2019-03-14 09:02:01

将氯系有机溶剂、水和表面活性剂液混合,并加热,使发生氯系有机溶剂蒸汽、水蒸气和表面活性剂蒸汽,将该混合气体充入已封装有金属材料的处理罐中,从金属材料的安排空地中溶出杂质,将由耐蚀性锈构成的钝化表膜构成在金属材料的表面上。在处理钢材或铁粉时,耐蚀性锈主要由四氧化三铁(Fe3O4)构成。处理铁粉等来制作磁性材料时,是将铁粉等整体变化成四氧化三铁(Fe3O4)或许三氧化二铁(γ-Fe2O3)。氯系有机溶剂是运用。

超级铁精矿精选技术--超级铁精矿的用途

2019-02-14 10:39:59

所谓超级铁精矿(HCM)是指含铁量高、脉石含量低的铁精矿。一般泛指SiO2含量小于2%、TFe含量挨近70%的铁精矿。现在这种高品位精矿没有列为产品矿石的标准之内,所以常称为超级精矿或超纯精矿。    超级铁精矿多用于直接复原出产海绵铁或金属化球团,来替代废钢进行电炉炼钢。跟着选矿工艺的展开,超级精矿的产品质量也在不断进步,现在除了用于直接复原一电炉炼钢外,已展开到海绵铁金属化球团直接轧制钢材;出产粉末冶金用金属铁粉,用于限制杂乱机械零件,如异型齿轮等;替代铁红出产磁性材料,用于无线电通讯、电话、扬声器、雷达、电视、磁选机等方面,还能够用于污水处理等。    一、直接复原-电炉炼钢    直接复原是从出产海绵铁替代废钢而展开起来的。直接复原用的铁矿都是超级铁精矿或富矿,能够用天然气或普通煤、石油等做热源及复原剂。这种技能在冶金焦少而煤、石油资源多的国家和区域得到了迅速展开,如委内瑞拉、墨西哥、伊朗等国。美国第一座运用进口高品位精矿的直接复原-电炉炼钢厂于1969年投产。    从经济上看,在相同产值下,直接复原的建厂出资与高炉根本相同。但海绵铁的出产本钱要比高炉铁水低得多。据英国1973年的报道,海绵铁的出产本钱为28.6美元/t,而高炉铁水(93%Fe)本钱为127美元/t.从能量耗费来看,海绵铁为16.16MJ/t,而高炉铁水为14.49MJ/t.因为焦炭报价比普通煤贵3倍,所以高炉铁水的本钱比海绵铁高。    直接复原-电炉炼钢对精矿质量的要求一般为SiO2含量在2%以下,出产出来的海绵铁金属化球团SiO2含量在3%以下. SiO2含量高不只会下降电炉的出产能力,并且电能耗费高。    二、海绵铁球团直接轧制钢材    用纯度高于99%的超级铁精矿进行直接复原得出海绵铁,然后可轧制钢材,为钢铁出产拓荒了新的途径。    据报道,英国斯旺西大学辛格教授将杂质含量低于1%即氧化铁含量大于99%的超级精矿粉,用有机粘结剂造球,在回转窑或竖炉中经气体复原出产出金属化海绵铁球团,然后用这种球团趁热轧制钢材。工艺流程见下图.    所轧制出的钢材的机械功能挨近低碳钢,可用于建筑及作低应力的结构件。    这种新工艺进程不必高炉、转炉;也不经铸锭作业,出产环节少,复原温度低,可很多节省能源。这种钢材的腐蚀实验标明,开端时(几分钟或几小时内)腐蚀速度较快,但逐步缓慢,最终与惯例产品差不多。焊接实验标明,精矿纯度在99.2~99.4%范围内,焊接功能毫无问题。英国海外展开部对此新工艺很感兴趣,现在正在印度和巴西展开球团轧制的研讨工作。在印度用此种质料轧制镀锌波纹板,纯度低于99%的产品延伸率较低,仅限于民用小五金。    这项新工艺尽管正处于研讨阶段,但据预算,单位出资额仅仅高炉、转炉联合厂商的25~30%.    在我国,东北工学院进行了实验室的研讨。将超级铁精矿复原成海绵铁球团,趁热将两个海绵铁球团放到容器顶用压力机冲压。从相图看,轧制的球团具有显着的金属安排,根本为铁素体,与普通的低碳钢类似,轧制后看不到球团间的缝隙,证明了高湿球粘结性好,能成为一体,满足轧钢的根本要求;其晶粒呈必定程度的板安排结构,这标明具有杰出的可塑性,杂质散布均匀。调理复原剂的成分还可轧出相当于高碳钢的钢材或轧制薄铁皮等。某单位用复原出的金属铁粉试轧出宽250~300mm的带钢,其表面光洁,耐性较好。[next]    三、用超级铁精矿出产铁粉    铁粉在国民经济建设中是不行短少的金属质料,广泛地使用于机械、电子和化工等工业。跟着国民经济的展开,其用量及用处会越来越大。    曩昔国内外出产铁粉首要以轧钢铁鳞(即氧化铁皮)为质料。近几年来,逐步研讨和展开用超级精矿做质料。据统计,现在世界几个首要区域和国家铁粉出产能力约为54.5万t/a,我国铁粉产值估量为1.4万t/a.因为选用高纯铁精矿粉出产的铁粉功能好、质量安稳、产值高、本钱低、能耗少,所以高纯铁精矿逐步替代了轧钢铁鳞。在这方面,世界先进工业国家展开很快,不只在使用上有所突破,并且充分使用了本国的矿产资源,产值也在逐年添加。据报道,以超级精矿为质料出产铁粉的产值为:瑞典16万t/a、美国8万t/a,日本4万t/a.我国以超级精矿为质料来出产铁粉还处在小规模阶段。如向阳的喀左铁矿,选用反浮选办法每年出产超纯铁精矿3000~5000t,供北京矿冶研讨总院制永磁材料。    瑞典的霍根纳斯公司用超级精矿粉出产的复原铁粉NC100.24,具有很好的归纳功能,在世界市场上享有盛誉。该公司是选用超级精矿进行固体碳化复原和雾化法出产铁粉的。美国、日本、苏联和德国在制取铁粉方面都有着成功的经历。并先后建立了从四氧化三铁直接复原成铁粉的粉末冶金厂。    我国铁粉的研发和出产是从本世纪60年代开端的,并先后建立了上海、晋江、成都、天津、武汉和鞍山、青岛粉末冶金厂等许多供应商。这些供应商出产铁粉的工艺都是选用二次复原法,以铁鳞为质料。本溪市有色金属研讨所于1983年5月开端着手用超级铁精矿制取铁粉的研讨工作,经过两年多的尽力,试制出TFe大于99%的铁粉,各项目标均契合国家标准,化学、物理功能安稳,用户满足,1985年12月经过辽宁省冶金厅的判定。用超级铁精矿出产的铁粉总本钱预算为1170元/t,市价格约为1700元/t(判定会时报价).    用超级精矿出产出的铁粉使用于制作粉末冶金机械部件(如异形齿轮,具有塑性的丝、片、带材等),能进步材料的使用率、下降制品加工进程中的能量耗费;使用于电焊条上,能使焊条的熔敷功率大大进步。除此之外,在火焰切开、电子工业,化工催化剂,静电复印机等范畴也有广泛地使用。    四、超级铁精矿用于出产铁氧体磁性材料    铁氧体在电子工业方面的使用很广并占重要的方位。它是电话、无线电、电视、雷达等通讯方面的根底材料,特别对制作电子计算机磁芯存储器更为重要。在其它工业及家电用品方面也占有相当大的比重。    电子工业对铁氧体的技能要求,随铁氧体类型而不同。特别是对硬质铁氧体,其Fe2O3含量有必要大于98%,SiO2含量不得超越0.6~0.8%,当然纯度愈高愈好。如:意大利一家硬质铁氧体工厂,正常情况下选用一种天然铁氧化物(含Fe2O298.6%,SiO20.6~0.8%)和组成氧化物的混合物作为磁性材料,作用很好。据资料证明,当SiO2含量低于0.6%时,所出产的铁氧体均出现均匀的结晶。而具有优异电磁特性的软质铁氧体只能用含SiO2比较低的(0.2%)物料制得。制得电子计算机磁芯存储器的软质铁氧体只能用更紧密性质的物料制得。抱负条件下应不含,SiO2、Na2O、K2O和CaO的铁氧化物。但工业产品容许含有某些杂质如:SiO20.03%,Na2O和(或)K2O0.05%、CaO0.03%,其它杂质痕量,杂质总含量为0.8%.    用这种材料能够制作出磁场强度为96kA/m的铁氧体磁条,以出产167-Cэ型圆筒式磁选机。依据汁算,选用磁能积3.5~3.7的铁氧体,能够处理制作磁场强度为111~119kA/m磁选机的问题。    我国用超级铁精矿粉已试制出铁氧体和铁氧体。鞍山市磁性材料厂用超级精矿为质料,出产出的磁性材料的磁能积一般在3以上,高的可达3.8.其功能相当于用铁红为质料所得到的目标,但报价可廉价50~60%.    五、超级铁精矿在其它方面的使用    纯度高的海绵铁,能够作为冶炼特种钢的质料。例如,本溪钢铁冶金研讨所已使用营口锅底山铁矿供应的超级铁精矿,炼出超低碳不锈钢,它抗腐蚀性强,可用于化工设备,国产报价与进口报价比较约低40%.    哈尔滨建筑工程学院曾用超级铁精矿处理污水,实验作用杰出。超级铁精矿也可用于制怍磁流体、磁介质、催化剂等。

铋湿法冶金方法

2019-03-04 11:11:26

关于档次高、成分单一的铋矿,火法冶炼虽然还存在着SO2的污染问题,但现在仍是铋冶炼的首要办法。但对杂乱难选的低档次铋精矿、铋中矿,选用反射炉火法熔炼,不只收回率低,并且难以精粹产出优质精铋。20世纪60年代后期,我国开端致力于铋矿湿法冶金新工艺的研讨,用作浸出剂,在酸性氯盐系统中浸出铋矿,使矿藏中的铋以铋氯合作物的形状进入溶液,用铁粉置换产出海绵铋,经火法精粹出产精铋,并首先在云锡第三冶炼厂建成了湿法车间,处理锡铋混合精矿。 近年来,国内外的许多科研单位相继依据硫化铋矿的不同组成,环绕下降作业本钱,处理环境污染,的再生和溶液中有价金属浓度的富集问题,研讨了许多新的湿法冶金流程,浸出-铁粉置换法、浸出-隔阂电积法、浸出-水解沉铋法、选择性浸出法、亚硝酸法和中南大学的新氯化法。这些工艺流程大都巳进行丁扩展实验或半工业、工业实验。 一、浸出-铁粉置换法 流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合使用好,污染较小,为进步铋资源的综合使用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图 二、浸出-隔阂电积法 为了简化流程,研讨用隔阂电积来替代图1流程中的铁粉置换和再生工序。其原理是在操控恰当电位的情况下,让铋在隔阂电解槽的阴极复原:阳极则发生铁的氧化反响:该流程的技能关键是电极电位的操控和溶液透过隔阂速度的操控。在阴极区,溶液中首要的阳离子是Bi3+、Fe2+和H+、在阳极区,溶液中首要的阳离子是Bi3+、Fe3+和H+,为使阳极区的三价铁不致在阴极放电而下降电流效率,应选用恰当的隔阂材料把阴、阳极分隔,阴极区液面应高于阳极区,并操控电解液的浸透速度,使流速与二价铁的氧化速度适当。 此工艺与-铁粉置换法比较,流程简略。但因为溶液中铁离子浓度较高,电积进程在电场力的作用下三价铁会不可避免地透过隔阂在阴扳复原,使电流效率下降(电流效率42%~50%),操作进程比较严厉。 三、浸出-水解沉铋法 此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉积物,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般操控在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋收回率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋收回率为60%~70%。 四、亚硝酸法 此法已在原苏联完成了半工业实验,用来处理哈萨克矿的难选含铋硫化矿精矿。根本原理是根据反响:此法耗费试剂品种多,除及氯化钠之外,需求、火油及过氧化氢等药剂。工艺流程见图2。技能经济指标(精矿耗费∕t):HCl 185kg、NaCl 260kg、NaNO3 3kg火油3kg、H2O2 6kg。图2  亚硝酸法处理铋精矿准则工艺流程图 五、选择性浸出法 此法选用操控电位的办法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。较之前面的几种办法,避免了很多的铁离子在流程中的循环和三价铁的再生问题,进步了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反响为:选择性浸出,铋的选择性较高,但耗费量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。 选择性浸出的工艺流程见图3。图3  选择性浸出铋准则工艺流程图 六、新氯化-水解沉铋法 唐谟堂等在多年研讨的基础上提出了一种新的处理铋精矿的湿法冶金办法-新氯化水解沉铋法。在36~378K的温度下,选用两段循环浸出,大大进步了铋的浸出收回率。该流程的特点是选用了一种含有金属氯化物的酸性水溶液(A#CA),它兼有和氯化剂的长处,处理了浸出剂的再生和溶液中铁的循环堆集问题,并使溶液中的铋浓度大大进步,后续工序的出产能力相应得以扩展。准则工艺流程见图4。图4  新氯化水解法准则工艺流程图 因为是在高温下浸出,杂质如As和S的氧化浸出率较高,一起副反响将导致氧气的耗费量增大。

铁合金定义及分类

2019-03-14 10:38:21

1 .   铁合金的界说和用处。    铁合金是铁与一种或几种金属或非金属元素组成的合金。铁合金是炼钢和机械铸造业的主要原料之一,在炼钢和铸造时用作脱氧剂、脱硫剂和合金添加剂。 2 .   铁合金的分类。   铁合金的种类许多,一般依照其所含元素分类,例如:         (1) 硅铁:工业硅铁含硅 95% 、 75% 、 45% 等硅铁   贫硅铁(含硅 12% )   硅铝合金   合金 (2) 锰铁:高碳锰铁(含碳为 7% )   中碳锰铁(含碳 1.0~1.5% )   低碳锰铁(含碳 0.5% )   金属锰   硅锰合金 (3) 铬铁:高碳铬铁(含碳为 4~8% )   中碳铬铁(含碳为 0.5~4% )   低碳铬铁(含碳 0.15~0.50% )   微碳铬铁(含碳为 0.06% )   超微碳铬铁(含碳小于 0.03% )   金属铬   硅铬合金 (4) 其它铁合金。除了以上几类铁合金外,还有钨铁、钼铁、钛铁、钒铁、磷铁、硼铁、镍铁、铌铁、锆铁、稀土合金等。