超细镍粉
2017-06-06 17:49:58
超细镍粉采用化学还原的方法,以硫酸镍为主要原为,以联氨为还原剂,在碱性溶液中制备了超细金属镍粉.并采用透射电镜、扫描电镜及X射线进行了镍粉的粒度、形貌及成分等分析,结果显示,镍粉粒度大小约为0.2μm左右,粉体呈不规则的球状并且表面带用毛刺,表面抗氧化性较好.金属超细粉作为微波吸收剂在吸波材料中有很重要的应用.将制提的超细镍粉与碳化硅混合作为吸波填料,在不同的配比下,制备成吸波涂层材料,测试频率范围为2GHz-18GHz,在厚度均小于0.5mm的情况下,都获得了较好的吸波性能:对电磁波的吸收(绝对值)均大于20dB,即能够吸收大于99﹪的电磁波,最大能够达到29.5dB,使超细镍粉在吸波材料中获得了较好的应用.超细镍粉中频炉熔融雾化方法,利用镍网废角料生产高纯度(Ni含量≥99.8%)粒度达800目,且在800目以下可调。该技术解决了因镍网边角料网眼不容易形成磁场,造成炉温升温困难,达不到镍熔化温度,原材料因酸洗长期浸泡含有杂质,且有酸性化度不高,堵塞喷腔,出料不均匀,出粉率低等造成纯度不高,目数低等技术难题。超细镍粉主要用于生产多动电话、个人家用计算机、笔记本电脑、电动工具及其它电器设备中的多层陶瓷电容器和这些行业所需的镍氢电池。 据统计,国际市场对镍氢电池的需求年平均增长20%。为了满足市场快速增长的需求,美国、日本等国家不断投入巨资扩大镍粉的生产量。我国仅电池行业对镍产品的需求已由前几年的2000多吨上升到目前的4000吨左右,而国内的镍粉,尤其是超细镍粉的生产无论从产量或质量上都不能满足市场的需求。因此,许多生产企业目前主要采用进口超细镍粉为原料。我国的超细镍粉和相关镍的消费领域发生了根本的变化。1999年我国冶金行业用镍量约1.5 万吨,电池行业消费镍4000吨,催化剂行业耗镍5000吨,磁性材料用镍 500吨。冶金行业由于长期以来发展缓慢,镍消费增长滞后,而后起之秀的电池行业和催化剂行业的镍消费却以惊人的速度发展,新兴产业对镍产品多样化的需求呈上升趋势。国内镍生产企业应抓住这一机遇,加大技术力度,发展自己。
超细铜粉的制备技术及其应用
2019-02-18 10:47:01
摘要 总述了超细铜粉的各种制备技能,对各种制备办法的优缺陷进行了评述,并扼要介绍了超细铜粉在材料范畴的运用,终究针对现在国内外的研讨现状,对往后超细铜粉的制备研讨工作提出了几点主张。 超细材料是20 世纪80 时代中期开展起来的新兴学科,而金属超细材料是超细材料的一个分支。现在,在化学范畴对超细材料并没有一个严厉的界说,从几个纳米一直到几百个纳米的粉体,都可称之为超细材料。因为存在着小标准效应、表面界面效应、量子标准效应及量子地道效应等基本特征,使其具有许多与相同成分的惯例材料不同的性质,在力学、电学、磁学及化学等范畴有许多特异功能和极大的潜在运用价值[1]。 1 超细铜粉的运用 超细铜粉为浅玫瑰红粉末,在湿润空气中易氧化,能溶于热硫酸和硝酸。具有较高的表面活性和杰出的导电、导热功能,因而是重要工业质料,首要运用在粉末冶金、催化剂、光滑剂、导电涂料和电磁屏蔽材料等范畴。 1.1 粉末冶金[2~4] 跟着轿车和家电等产值的增加,粉末冶金零件在其间的运用越来越广泛,进而影响了制造粉末冶金零件用的各种铜粉的需求量。在粉末冶金零件方面,青铜粉首要用于制造含油轴承、过滤器、轴瓦等;电解铜粉首要用来出产主动光滑轴承,将铜粉与锡和石墨混合,或独自与锡混合,可取得具有互联孔隙的部件,这些孔隙能吸附高达30%的油,并构成一层接连光滑的油膜。电解铜粉与锌混合或与锌、镍混合出产黄铜和镍银,用于齿轮、凸轮、工业部件等多种用处中。它与各种非金属材料一同运用还可出产冲突部件,如刹车闸带、离合器圆盘等。 1.2 光滑剂和催化剂[5~8] 超细铜粉作为光滑油增加剂的研讨已有10 多年的前史,其以适宜的办法涣散于各种光滑油中构成一种安稳的悬浮液,这种光滑剂每升含有数百万个超细的金属微粒,它们与固体表面结合构成一个光滑的维护层,一起将微划痕填塞,可大起伏下降磨损和冲突,尤其在重载、低速和高温振荡情况下效果愈加显着,正因为如此,国外已有参加超细铜粉的光滑油供应。 将铜及其合金超细粉体用作催化剂,功率高、选择性强,可用于二氧化碳和氢组成甲醇等反响进程中的催化剂。超细铜粉还能够作为催化剂直接运用于化工行业(如聚合)。铜超微粒子因为在腈水化反响中有很高的催化活性和选择性而被用作反响的催化剂。[next] 1.3 导电涂料[9~10] 导电涂料最早运用于20 世纪初,铜系导电涂料是20 世纪80 时代后才开端进入实用化阶段,其开展速度也十分引进注视,但因为铜系导电涂猜中,超细铜粉颗粒表面很简略在空气中构成一层氧化膜而得不到低电阻的聚合物,导电性和安稳性都遭到影响,因而对超细铜粉导电涂料的运用开发特别注重。近年来,跟着抗氧化技能的进步,铜粉导电涂料的运用也逐步增多。现在,选用的抗氧化技能首要是用抗氧剂对超细铜粉进行表面改性处理或用不生动金属掩盖铜粉表面,然后进步超细铜粉的导电性、安稳性。 1.4 电磁屏蔽材料[11] 跟着高分子材料的不断开发和塑料成型技能的日益开展,工程塑料制件在电子工业中越来越遭到注重和运用。可是,因为塑料对电磁没有屏蔽效果,迫切需求处理塑料表面金属化的问题,铜粉导电涂料具有本钱较低,易于涂装,电磁屏蔽效果好,运用规模广等长处,特别适宜用于以工程塑料为壳体的电子产品的抗电磁波搅扰。选用铜粉导电涂料能够方便地喷涂或刷涂于各种形状的塑料制品表面,将其塑料表面金属化,构成电磁屏蔽导电层,然后使塑料到达屏蔽电磁波的意图。因而,铜粉导电涂料用于处理ABS、PPO、PS 等工程塑料及木材的电磁屏蔽和导电问题,有着广泛的运用和推行价值。 2 超细铜粉的制备技能 近年来,有关超细铜粉的制备研讨,国内外都有不少报导,如气相蒸气法、γ 射线法、等离子法、机械化学法、液相复原法等,总的来说可归结为物理法和化学法,现将对各种制备办法的制备进程及优缺陷进行评述。 2.1 物理法 2.1.1 气相蒸气法[12,13] 该办法是制备金属超微粉末最直接、最有用的办法,法国的Lair Liquid 公司选用感应加热法,用改进的气相蒸汽法制粉技能制备了铜超微粉末,产率为0.5kg/h。感应加热法是将盛放在陶瓷坩埚内的金属料在高频或中频电流感应下靠本身发热而蒸腾,这种加热办法具有激烈的诱导拌和效果,加热速度快、温度高。 在蒸腾进程中,惰性气体在温度梯度的效果下携带着粉末在粉末搜集器中对流。粉末弥散于搜集室内并堆积在搜集器内的各种表面上。粉末搜集器的结构和规格是决议粉末产率和产值的关键因素之一。经过工艺参数的操控能够制备出10nm~1μm 的金属超微粉末。Champion 等[14]选用气相蒸气法制备了均匀粒径为35nm 的超细铜粉,颗粒成球形。[next] 2.1.2 γ-射线法γ-射线辐射制备各类金属颗粒是近年来开展起来的一种新办法,其基本原理是金属盐在γ-射线下复原成金属粒子。γ-射线使溶液生成了溶剂化电子,不需求运用复原剂即可复原金属离子,下降其化合价,经成核成长构成金属颗粒。 与其它制备办法比较,γ-射线法工艺简略易行,可在常温常压下操作,易于扩展出产规模。特别是选用该办法制备金属粉时,颗粒的生成和粒径的维护能够一起进行,然后有用地避免颗粒的聚会,特别适于堆积在固体表面制备高活性的电化学电极,并有或许制备载有金属微粒的金属氧化物粉末。但是γ-射线辐射法的产品处于离散胶体状况,因而颗粒的搜集十分困难,为此人们又将γ-射线辐射法与水热结晶技能结合起来,近年来被用于制备各种金属粉末。陈祖耀等[15]运用Co 源强γ-射线辐射法制备金属超微粒子,选用γ-射线辐射-水热结晶联合法取得了均匀粒径为50nm 的超细铜粉。 2.1.3 等离子体法该法是用等离子体将金属等粉末熔融、蒸腾变成气体,使之在气体状况下发作物理或化学反响,终究在冷却进程中凝集长大构成超纤细粉,是制备高纯、均匀、小粒径的金属系列和金属合金系列超纤细粒的最有用办法。等离子体法温度高、反响速度快,能够取得均匀、小颗粒的超细粉体,易于完结批量出产,简直能够制备任何超细材料。 等离子体法分为直流电弧等离子体法(DC)、高频等离子体法(RF)和混合等离子体法(HP)。DC法运用设备简略、易操作,出产速度快,简直可制备任何纯金属超细粉,但高温下电极易于熔化或蒸腾而污染产品;RF 法无电极污染、反响速度快、反响区大,广泛运用于出产超细粉,其缺陷是能量运用率低、安稳性差;混合等离子体法将DC 法和RF 法结合,既有较大的等离子体空间、较高的出产功率和纯度,也有较好的安稳性。孙维民等[16]选用直流电弧等离子体法制备了超微铜粉,铜粉粒径在50~100nm 之间,呈类球形。 作者在原材料中参加高熔点金属W、Mo 后,使得铜粉的产率有较大起伏的进步,而且制得的铜粉中简直不含有W 和Mo。 Dorda 等[17]用氮等离子体将硝酸铜溶液在高温下分化复原,成功制备出均匀粒度为70nm,粒度散布均匀、涣散性好的超细铜粉。[next] 2.1.4 水雾化法雾化法又称喷雾法,是用高速喷发的气体或高压水,将熔融状况的金属液流击碎,并冷凝成固体粉末颗粒。用气体作雾化介质的办法称为气雾化,气体介质一般为氮气,气雾化本钱略高。用水作雾化介质的办法称为水雾化,一般是用净化后的自来水或循环水。该工艺能耗低、不污染环境,且粉末具有杰出的流动性和涣散性,粒度也较易操控。但也存在成形性差,松装密度较高的缺陷,简略在混料和运送进程中发作比重偏聚。针对雾化铜粉的该项缺乏,许多新的低松装密度雾化铜粉出产工艺相继发作。该工艺出产的铜粉既具有电解铜粉低的松装密度,又具有水雾化铜粉杰出的流动性。 李占荣等[18]以电解铜为质料(其纯度不低于99.95%),选用水雾化工艺出产铜粉,然后将水雾化铜粉在必定温度、必定时间内进行氧化。经过氧化复原,使水雾化铜粉加以表面改性而取得的海绵状铜粉,其松装密度显着下降,流动性有进一步的进步。该办法制得的铜粉粒径较大,一般在10~200μm 之间。 曲选辉等[19]在原有雾化铜粉的基础上,选用氧化复原工艺对其进行处理,有用的改进了雾化铜粉的表面状况,使其成为海绵状多孔安排,而且在很大程度上坚持了原有铜粉的杰出涣散性和流动性。 2.2 化学法 2.2.1 机械化学法机械化学法是运用高能球磨法并发作化学反响的办法,其长处是产值高,工艺简略,能制备出惯例办法难以制备的高熔点金属、互不相溶系统的固溶体、超细金属(或金属间化合物)及超细金属陶瓷复合材料;缺陷是所制粉体粒径散布不均匀,且球磨进程中易引进杂质。Ding 等[20]运用机械化学法组成了超细铜粉。将和钠粉混合进行机械破坏,发作固态替代反响,生成铜和氯化钠的超细晶混合物,清洗去除研磨混合物中的氯化钠,得到超细铜粉。若仅以和钠为初始物机械破坏,混合物将发作焚烧。如在反响混合物中预先参加氯化钠可避免焚烧,且生成的铜粉较细,粒径为20~50nm 之间。 2.2.2 电解法电解法是用稀释的酸性硫酸铜溶液作电解液,以铸铜板作阳极,当电流从阳极经过阴极,在阴极上分出海绵状的铜,定时地刷下或摇抖到槽底。铜粉从电解液中取出后,要经过完全的清洗。然后烘干、复原、破坏、过筛即可得到铜粉。它的首要长处是:可制得许多一般办法不能制备或难以制得的高纯金属超微粒,尤其是电负性较大的金属粉末。只需稍加改动电解条件,就能够取得不同功能的粉末。产品纯度高,能够作为特殊用处的高纯铜粉。产品的颗粒形状为树枝状,成型性好,压坯强度高。粉末粒度和松装密度规模广,能够满意不同用处的需求。缺陷是:要耗费许多的电能,粉末活性大,需求复原处理,本钱较高,不易出产铜基合金粉末。[next] 何峰等[21,22]选用电解法,将制粉进程和表面包覆一次完结,然后取得了纯度高、均匀粒度为80nm、粒度散布均匀、表面包覆、高弥散、抗氧化的超细铜粉,一起该办法设备简略,本钱低,可方便地扩展并完结工业化出产。 普通电解法制备铜粉能够说是一种比较老练的办法,但是其制备进程一般是距离10~20min 才将堆积在阳极的金属粉刮掉,这样堆积的颗粒不能及时脱离阳极表面,就会敏捷长大,使其粒径很大;别的还需经过球磨、分筛等工艺方能得到终究粉末,王菊香等[23]选用超声电解法处理了普通电解中的刮粉问题,制得了100nm 以下的超细铜粉。 魏琦峰等[24]对普通电解法进行改进,在阴阳两个电极之间加上一层阴离子膜,离子交换膜电解的长处在于氧化反响和复原反响能够别离在各自的极室内进行,互相独立,使阴阳极一起产出产品成为或许。作者根据离子交换膜电解的这一长处,以酸性硫酸稀土为阳极液,在阳极室将氧化铈电解为铈;以酸性硫酸铜溶液为阴极液,在阴极制备铜粉。 2.2.3 液相化学复原法液相复原法是选用具有必定复原才能的复原剂,将溶液中的二价铜离子复原至零价态,经过操控各种工艺参数来得到不同粒径等级、描摹的粉末。复原剂的品种许多,常用的有、抗坏血酸、甲醛、次钠和KBH4等,下面别离进行叙说。 2.2.3.1 以为复原剂近年来用进行组成铜、银以及铁系金属粉的系列研讨工作,取得了一系列效果,而且证明:用这种办法制备的金属粉产品纯度高,结构成分愈加好操控,质料本钱低价,因而更具有工业化的远景。作为复原剂的最大长处是在碱性条件下复原才能强,它的氧化产品是洁净的N2,不会给产品引进杂质金属离子。 赵斌等[25]选用化学复原法,以作复原剂,明胶作为涣散剂,反响温度70¡æ的条件下制备出了50~500nm 不同粒径的铜粉;经过葡萄糖预复原法,改进了直接复原制备的超细级铜粉的粒度散布。Sano 等[26]用复原铜盐得到铜粉,参加高分子维护剂聚乙烯烷酮(PVP)有利于安稳晶粒、避免聚会。 Lisicecki 等[27]选用微乳液法,以为复原剂,制备出均匀粒径为50nm、单涣散性好的超细铜粉。高杨等[28]选用改进的溶胶-凝胶法,以为复原剂,由溶胶直接制备出了超细铜粉,粉末的均匀粒径约10nm。[next] 2.2.3.2 以抗坏血酸为复原剂抗坏血酸是一种中等强度的复原剂,它无毒且其氧化产品对人体亦无害,故遭到人们的遍及欢迎。 刘志杰等[29]选用液相化学复原法,以抗坏血酸为复原剂制备出了500nm~7μm 不同粒径规模的铜粉。选用葡萄糖预复原法显着改进了直接复原制得的铜粉末的粒度散布,得到较均匀、粒径为1μm的铜粉。 2.2.3.3 以甲醛为复原剂用甲醛法直接复原硫酸铜溶液制备超细铜粉,在很短时间内就能够将反响系统中生成的氢氧化铜和氧化铜微粒复原为铜超微粒子,没有呈现氧化亚铜中间体。因为粒子成核速度快,而且成长进程太短,导致发作的颗粒小但均匀性差,粒径在100nm 以下。 陈宏等[30]选用化学镀的办法,以甲醛为复原剂,用氯化钯作为反响催化剂,并增加聚乙二醇6000和十二烷基磺酸钠作为涣散剂,在反响温度45~50℃下制得了粒径为200~300nm 的超细铜粉。 为了改进甲醛法制备铜超微粒子的均匀性,刘志杰等[31]选用葡萄糖预复原法,即先用葡萄糖在强碱性介质中将二价铜离子复原为一价的氧化亚铜,再参加将氧化亚铜复原至金属铜粉,该法相当于延长了甲醛复原法中间体的成长进程,以氧化亚铜颗粒的巨细和散布来影响铜粉特性,然后改进了铜粉的均匀性。 2.2.3.4 以次钠为复原剂张志梅等[32]选用液相复原法,以次钠为复原剂,将2560mL浓度为0.0715mol/L 的溶液和240mL 浓度为1.032mol/L 的NaH2PO2 溶液在反响温度为55~60℃和参加涣散剂的条件下进行复原反响,制得粒径为30~50nm、纯度较高、产率在90%以上的超细铜粉。 赵斌等[33]以次钠为复原剂制备了粒径约为50nm 的铜粉,并对其进行了改性研讨,磷化处理后铜粉末的表面构成了磷化膜,然后增强了铜粉的抗氧功能,它可在空气中安稳存在,其氧化温度高于220℃。 2.2.3.5 以KBH4 为复原剂Suryanara[34]选用液相复原法,在室温下用KBH4 复原CuCl2 溶液制备出100nm 以下的超细铜粉。黄钧声等[35]选用KBH4 在液相中复原CuSO4,并参加KOH 和络合剂EDTA(乙二胺四乙酸),制得了超细纯洁的铜粉,经过调整反响物的浓度,能够消除Cu2O 等杂质,但制备的超细铜粉还存在必定程度的聚会。 张虹等[36]选用KBH4 作复原剂,探究用化学复原法制备超细铜粉的可行性。结果标明:在CuCl2 溶液中增加适宜的络合物,可制备出粒径为40nm 的铜粉,微粉呈球形;在溶液中增加表面活性剂PVP(聚乙烯烷酮),可制造粒径为20nm 的铜粉。[next] 2.2.4 铵盐歧化法铵盐歧化法首要是运用一价铜离子在水溶液中的不安稳性,歧化分化为二价铜离子和单质铜。该办法又可分为加压歧化和常压歧化,常压铵盐歧化法与高压铵盐歧化法比较具有产品质量好、出产周期短、工艺简洁且设备出资少等长处,但不管是哪一种歧化,因为反响中只要50%的铜生成了单质铜,因而产率较低。 余仲兴等[37]选用常压铵盐歧化法制备了0.5~1.5μm 粒径规模的铜粉,铜粉颗粒描摹为类球形多面体,经强制氧化试验标明其抗氧化功能大大优于普通电解铜粉。在该工艺进程中,制取一价铜络离子溶液是关键步骤,因为它直接关系到工艺能否顺利进行以及技能经济指标的凹凸。铜系中的一价铜络离子是不安稳的,在空气中极易被氧化,然后大大下降产品的收率乃至使出产进程无法正常进行。 3 结语 总的来看,超细铜粉的制备技能大多还处于试验探究阶段,与工业化大规模出产运用还有较长的旅程,无论是那一种制备办法,都有其本身的长处,但也或多或少的存在问题。就物理法而言,气相蒸汽法设备杂乱、本钱高;γ-射线法产品难以搜集;等离子法能量运用率低;水雾化法制备的产品粒度大,且成形性差。就化学法来说,机械化学法制备的铜粉不均匀,粒径散布宽,易引进杂质;电解法能耗大,本钱高;铵盐歧化法产率过低;液相化学复原法尽管设备简略,易工业化出产,但现在所运用的复原剂要么有剧毒,要么本钱过高。正因为以上缺陷,使得这些制备办法的运用推行遭到了约束。因而,针对现有各种制备办法的缺乏,在往后的工作中应从几个方面进行:完善设备,改进流程,下降能耗,削减废物排放。一起,能够学习其他粉末的制备办法,提出新的出产工艺。因为纳米铜粉的粒径较小,表面活性较大,易于聚会,而且粉末表面易被氧化成Cu2O,因而怎么改进纳米铜粉的涣散性及怎样避免铜粉被氧化也是一个重要研讨方向。 参考文献 [1] 高濂,李蔚. 纳米陶瓷. 北京: 北京工业出版社, 2002. [2] 行业动态. 粉末冶金工业, 1998, 8(5): 16. [3] 杜桂酸,潘晓燕,王力. 北京市粉末冶金研讨所, 1984, 9: 23~26. [4] 王汝霖. 光滑剂冲突化学. 石化出版社, 1994, 3(11): 46~49. [5] 夏延秋,乔玉林. 沈阳工业大学学报. 2002, 24(4): 279~282. [6] 夏延秋,金寿日,孙维明等. 光滑与密封, 1999, 3: 33~34.[next] [7] 王彦妮,张志琨,崔作林等. 催化学报, 1995, 16(4): 304~307. [8] H Hirai, H Wakabayashi, M Komiyamal. Chem. Lett., 1983, 139(7): 1047~1050. [9] 赵勇. 粘合剂, 1989, 1(2): 39~40. [10] 赵斌,蔡梦军. 涂料技能, 1998, 3: 39~42. [11] 柯伟. 高分子材料, 1994, 1(1):2 5~29. [12] 严红革,陈振华,黄培云. 材料导报, 1997, 11(2): 16~18. [13] 黄钧声. 材料科学工程, 2001, 19(2): 76~79. [14] Y Champion, J Bigot. Mater. Sci. & Eng., 1996, A217/218: 58~63. [15] 陈祖耀. 金属学报,1992,28(4):34. [16] 孙维民,金寿日. 运用科学学报, 2000, 18(2): 164~166. [17] Dorda, Feliks A. RUP: 2064369C, 1996. [18] 李占荣,汪礼敏,万新梁. 粉末冶金工业, 2003, 13(1): 5~7. [19] 曲选辉,黄伯云,雷长明等. 中南工业大学学报, 1995, 26(6):781~784. [20] J Ding. J. Alloys & Compd., 1996, 234: L1~L3. [21] 何峰,张正义,肖耀福等. 金属学报, 2000, 36(6): 659~661. [22] D Liaffa, T Dragos. Rev. Chim., 2000, 51(8): 600~606. [23] 王菊香,赵恂,潘进等. 材料科学与工程, 2000, 18(4): 70~74. [24] 魏琦峰,张启修. 有色冶炼, 2003, 3, 10~13 [25] 赵斌, 蔡梦军, 刘志杰. 华东理工大学学报, 1997, 23(3): 372~376. [26]S Kazushi, E Atsushi. JP: 240904A, 2001. [27] I Lisicecki, F Billoudet, M Pilemi. J. Mol. Liq., 1997, 72(1): 251~261. [28] 高杨,栾春晖,薛永强. 太原理工大学学报, 2000, 31(3): 271~273. [29] 刘志杰,赵斌,张宗涛. 华东理工大学学报, 1996, 22(5): 548~553. [30] 陈宏,旷亚非,周海晖等. 电镀与精饰, 2002, 24(3): 1~4. [31] 刘志杰,赵斌,张宗涛. 化学通报, 1996, (11): 25~26. [32] 张志梅,韩喜江,孙淼鑫等. 精细化工, 2000, 17(2): 69~71. [33] Z Bin, L Zhijie, Z Zongtao. J. Solid Chem., 1997, 30(1): 157~160. [34] R Suryanara, C A Frey. J. Mater. Res., 1996, 11(2): 439~448. [35] 黄均声,任山,谢成文等. 材料科学与工程学报, 2003, 21(1): 57~59. [36] 张虹,白书欣,赵询等. 机械工程材料, 1998, 22(3): 33~37. [37] 余仲兴,周邦娜,孙驰等. 上海有色金属, 2000, 21(3): 105~111.