铁粉分类及应用
2019-01-03 09:36:51
铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉
纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。
铁粉的应用
粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。
粗铂矿处理
2019-03-04 16:12:50
粗铂矿溶解后进行铂族金属别离的进程。粗铂矿指富砂铂矿和砂铂精矿,有的还混有锇铱矿或砂金,首要产于哥伦比亚、俄罗斯、加拿大、埃塞俄比亚、美国、印尼、塞拉利昂、南非等地,成分(质量分数w/%)为:铂30~85,铑痕量~2.5,钯痕量~2.0,铱微量~10,锇、钌微量~28,很多铁及少数铜、镍。历史上砂铂矿曾是铂的首要原料之一,但现已挨近采竭,20世纪80年代哥伦比亚的年产值仅约300kg,俄罗斯远东阿尔丹等地年产也仅约3t,其他产值缺乏100kg。成分杂乱的粗铂矿处理工艺由溶解,铂、钯、金提取,铑、铱、锇、钌提取三个阶段组成。
溶解 通常用溶解粗铂矿中的铂、钯、金,而使铑、铱、锇、钌保存于渣中。20世纪70年代以来也用水溶化、加过氧化氢或加来溶解粗铂矿。
铂、钯、金提取 溶液用蒸腾浓缩赶去硝酸后,用FeSO4、FeCl2或SO2复原沉积出金。沉积金后的母液用NH。Cl将铂沉积为(NH4)2PtCl6,沉积铂后的母液用NH40H使钯生成合作物,继而以酸化得Pd(NH3)2C12。
铑、铱、锇、钌提取 不溶渣加铅熔炼成贵铅,贵金属进入贵铅熔体。用硝酸溶解贵铅中的铅。硝酸不溶物先加熔融,然后用水浸出,浸出液用亚沉积铑。熔融后的不溶物用熔融,然后用水浸出,浸出液进行蒸馏,所得锇、钌吸收液别离送锇精粹和钌精粹。最终的不溶物经或氯化溶解后送铱精粹。
20世纪70年代以来粗铂矿和铂精矿的溶解液常用溶剂萃取法来提纯(见铂族金属革取别离)。
还原铁粉让普通铁精粉身价倍增
2018-12-13 10:31:09
日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )
北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。 据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网
粗金、粗银及合质金锭的熔铸
2019-01-21 18:04:31
一些矿山或工厂生产的金、银产品,不是成品金和成品银,而是成色不高的粗金、粗银或未经分离金银的合质金。由于这些产品不在该单位进行提纯而直接销售,故需进行熔炼铸锭。
粗金、粗银和合质金的熔铸,都可参照上述成品金、银锭的熔铸方法进行。但由于这些半成品或中间产品含有较多的贱金属杂质,为了尽可能通过熔炼除去其中的大部分或一部分杂质,以提高金、银的含量,熔铸时应适当增加熔剂和氧化剂的加入量,熔炼时间也应适当延长,具体操作应视原料的不同成色增减。
粗金、合质金经氧化造渣并清除渣后,金属液面上一般不带燃烧木块除氧。它们冷凝时虽也有气体逸出,并可能在锭面上出现鼓泡,但不会因气体大量喷出而带走大量微细金属球,造成喷溅损失。浇铸时,为了隔离渣,也可在坩埚浇口处加一个小草把,以吸附液面余渣,并浇铸于经预热至100℃以上的水平铸铁模中。待锭冷凝后,将其倾于石棉板上,剔除飞边毛刺称量入库。由于粗金和合质金锭中还含有相当量的银及铜等贱金属,铸出的锭不必进行酸浸,以免影响外观。
粗银通常不含金或含金很低,浇铸前应向坩埚内金属液面上加入木块和草把,燃烧除去银液中溶解的部分氧,以免锭冷凝时大量气体逸出,造成银的喷溅损失。
火法粗炼金的原料
2019-03-05 12:01:05
从金的选矿可知,火法粗炼金的质料首要有以下五种: (1)化金泥:是用锌粉或锌丝从化法提金含金贵液中置换金得到的一种富含金银的泥状沉淀物。化金泥经火法冶炼得到粗金。 (2)载金炭灰:一些矿浆或废液虽含金但档次很低,用活性炭收回经济上不合算,所以用煤焦炭吸附金。将吸附金的煤焦炭燃烧而得到的炭灰即叫载金炭灰。 (3)膏:是用混提金法得到的一种金合金。膏中除含金(一般为30%~40%)、外、有时还搀杂一些矿砂。 (4)重砂:又名毛金,是用重选法得到的富含金的物料。重砂中除含金外,首要还含有黄铁矿、钛铁矿、锆英石、石英等。 (5)含金钢棉:是电积法在阴极上的产品,含有钢棉残留物、铜、锌等杂质。
硫酸浸煮法粗炼金
2019-01-08 09:52:41
硫酸浸煮法精炼金是用浓硫酸在高温下进行长时间浸煮,使粗金中的银及铜等贱金属形成硫酸盐而被除去,以达到提纯金的目的。此法要求粗金中金的含量不大于33%,铅的含量不大于0.25%并尽可能的低。如果含铅高,产出的金中将含有大量铅杂质等。 此法操作步骤与硝酸法相似,有以下几个步骤: (1)熔融:即将粗金熔融。 (2)泼珠:将熔融粗金缓缓倒入盛有冷水的容器内,制成星状、片状、雪花状的颗粒。 (3)酸浸:将泼出的珠放入带搅拌器的耐酸搪瓷反应罐或耐酸瓷槽中,按水:硝酸=5:1的配比缓慢加入硝酸进行酸浸。 (4)洗涤:酸浸完毕,将溶液冷却静置,沉渣(金渣)用70℃热水洗涤5~10次,溶液及洗液(合称浸液)合并一起去置换银。 (5)干燥:将金渣放在炉上烘干。 (6)铸锭:将烘干后的金渣配以10%碳酸钠、12%硼砂放入坩埚内熔炼铸锭。 (7)置换银:将浸液加入食盐生成氯化银,再加入锌或铁置换银。
铋矿三氯化铁浸出-铁粉置换法
2019-01-31 11:06:17
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
含铁粉矿球团化制备工艺研究
2019-01-24 09:36:35
近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。
在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。
本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。
一、试验条件与方法
(一)原材料
1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。
2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程
每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。
(三)抗压力测试
试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。
(四)所用仪器与设备
加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析
(一)加热固化制度对球团抗压力的影响
所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。
试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。
从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。
(二)粘结剂加入量对抗压力的影响
在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。
(三)不同粉矿条件下的抗压力
为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。
按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。
通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。
三、结论
(一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。
(二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。
(三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。
参考文献
[1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
[2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36.
[3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98.
[4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50.
[5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20.
[6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.
钨粗精矿的精选
2019-01-25 10:19:06
自然界已发现的钨矿物约有20种,其中具有工业价值的为黑钨矿和白钨矿两种。钨矿石一般也分为黑钨矿类和白钨矿类。我国是世界上钨矿最丰富的国家,石英脉型钨矿占我国当前开采量的90%以上,钨矿物以黑钨矿为主,常含有白钨矿,另有锡石、辉钼矿、辉鉍矿、黄铜矿、黄铁矿、方铅矿、闪锌矿等金属矿物,非金属矿物以石英、长石、云母为主。 黑钨矿的主要选矿方法是重选,粗、中粒用跳汰机,细粒用摇床。在重选过程中,一些密度较高的矿物,如锡石、白钨矿和大多数的硫化矿,都伴随黑钨矿一道进入粗精矿中。因此,需要精选以提高钨精矿的品位,同时回收各种副产品。 黑钨矿属于弱磁性矿物,而锡石、白钨矿是非磁性矿物,因此,利用磁选法可将它们分开。下图是我国某钨矿精炼厂钨粗精矿磁选精选流程:分选前将物料用对辊机破碎到-3mm,筛分成0.83~3mm、0.2~0.83mm和0~0.2mm三级,分级磁选得到黑钨精矿。
某钨矿精炼厂钨粗精矿磁选精选流程
其中0.83~3mm的磁选尾矿,经对辊机破碎到1.17mm以下,使钨的连生体解离,再分级磁选,各粒级磁选作业的次数,视物料的性质而定。使用ø900mm单盘磁选机分选,磁场强度为955~1194kA/m。分选过程除可调整电流、电压、极距和给料粒度外,物料水分和铁污染的程度也会影响分选指标。磁选尾矿包含白钨矿、锡石和硫化矿,可用其他方法综合回收。 磁选分选结果见下表: 磁选分选结果产品名称产率品位/%回收率/%/%WO3SnSWO3Sn原矿10056.984.21 100100黑钨精矿70.270.930.130.4887.312.17中矿I2.3724.210.88 10.5中矿II1.934.23.88 1.141.75尾矿22.5220.82①17.469.028.2393.37破碎粉尘1.3244.872.4 1.040.75磁选粉尘0.6449.872.19 0.560.33风机粉尘0.7537.745.82 0.491.03铁屑0.1155.763.79 0.110.1片状钼矿0.1914.43② 0.05 注:①白钨矿的品位为18.41%WO3;②筛分得出,含35.21%Mo。
铋粗炼指标分析
2019-01-04 09:45:31
一、粗炼直收率与回收率以及冰铜含铋与渣含铋。
直收率和回收率,是衡量工厂技术水平和经济效果的重要指标,主要决定于冰铜与渣的产量和冰铜含铋与渣含铋。烟尘由于返炉重炼,所以对直收率和回收率影响不大。在铋的火法粗炼中冰铜产出量大,约为渣量的一倍,而且冰铜含铋,约为渣含铋的一倍,故冰铜所带走的铋约为渣带走的铋的四倍。所以,提高直收率与回收率的重要途径,是控制冰铜产出量与降低冰铜含铋量。但是冰铜产出量常由炉料含硫量及加入铁屑量所决定,难以减少。所以,采取有效措施,降低冰铜含铋,是提高粗炼直收率与回收率的关键。当冰铜含铋过高时,常常不得不返炉重炼。
影响冰铜含铋与渣含铋因素很多,主要决定于配料比、熔炼温度、沉淀时间、操作制度等方面。
二、燃料消耗。
包括反射炉煤耗与转炉油耗。熔炼每吨粗铋所消耗的燃料,与炉子处理量、炉料含铋品位、炉料熔化温度、炉型及炉膛抽力,热利用率及余热利用等因素有关。当炉况正常时,主要影响因素是处理量与炉料品位。加大炉子处理量,提高炉料品位,对降低燃料消耗有利。
三、单位生产率。
是衡量炉子生产强度的指标。与炉料性质、配料比、炉温、炉况、操作质量等因素有关。为了提高炉子单位生产率,宜选用含铋高、含难熔组分低的原料,掌握最佳配料比,适当选择添加剂,保持高而稳定的炉温,避免生成炉结,要及时处理炉结,要求操作工严守操作规程。