高纯多晶硅
2017-06-06 17:50:13
高纯多晶硅是电子工业和太阳能光伏
产业
的基础原料,在未来的50年里,还不可能有其他材料能够替代硅材料而成为电子和光伏
产业
主要原材料。 随着信息技术和太阳能
产业
的飞速发展,全球对多晶硅的需求增长迅猛,
市场
供不应求。世界多晶硅的
产量
2005年为28750吨,其中半导体级为20250吨,太阳能级为8500吨。半导体级需求量约为19000吨,略有过剩;太阳能级的需求量为15600吨,供不应求。近年来,全球太阳能电池
产量
快速增加,直接拉动了多晶硅需求的迅猛增长。全球多晶硅由供过于求转向供不应求。受此影响,作为太阳能电池主要原料的多晶硅
价格
快速上涨。 中国多晶硅工业起步于20世纪50年代,60年代中期实现了
产业
化,到70年代,生产厂家曾经发展到20多家。但由于工艺技术落后,环境污染严重,消耗大,成本高等原因,绝大部分企业亏损而相继停产或转产。到目前为止,国内有多晶硅生产条件的单位有洛阳中硅高科技有限公司、峨嵋半导体材料厂(所)、四川新光硅业科技有限责任公司3家企业。 中国集成电路和太阳能电池对多晶硅的需求快速增长,2005年集成电路
产业
需要电子级多晶硅约1000吨,太阳能电池需要多晶硅约1400吨;到2010年,中国电子级多晶硅年需求量将达到约2000吨,光伏级多晶硅年需求量将达到约4200吨。而中国多晶硅的自主供货存在着严重的缺口,95%以上多晶硅材料需要进口,供应长期受制于人,再加上
价格
的暴涨,已经危及到多晶硅下游众多企业的发展,成为制约中国信息
产业
和光伏
产业产业
发展的瓶颈问题。 由于多晶硅需求量继续加大,在
市场
缺口加大、
价格
不断上扬的刺激下,国内涌现出一股搭上多晶硅项目的热潮。多晶硅项目的投资热潮,可以说是太阳能电池
市场
迅猛发展的必然结果,但中国硅材料
产业
一定要慎重发展,不能一哄而上;关键是要掌握核心技术,否则将难以摆脱受制于人的局面。 作为高科技
产业
,利用硅矿开发多晶硅,
产业
耗能大,电力需求高。目前电价已成为中国大多数硅矿企业亟待突破的瓶颈之一。因此中国大力发展多晶硅
产业
,亟需在条件成熟的地方制定电价优惠政策,降低成本。 由于需求增加快速,但供给成长有限,全世界多晶硅的年需求量将达到6.5万吨。在未来的3至5年间,也就是在中国的“十一五”期间,将是中国多晶硅
产业
快速发展的黄金时期。 我国是一个正在迅速崛起、经济快速增长的发展中大国,我国的电子工业和光伏
产业
也正处在飞速发展的关键时期,很难想象我国要依靠90%以上进口高纯多晶硅来维持我国电子产品出口世界第二、光伏制造世界第三的地位。也就是说,没有我国自己生产的充足的多晶硅原料供应,要保持我国电子信息
产业
和光伏
产业
的高速发展几乎是不可能的。
高纯金属硅
2017-06-06 17:49:51
高纯金属硅 ( 99.99%-99.9999%) 熔点. 1410 0C, 沸点. 2355 0C, 密度2.33 gm/cm3 蓝白色, 非常脆, 低导热导电系数. 成块状、锭状、板状和薄片状等. 用于半导体, 光电照相装置常用于制造多晶硅和高纯度二氧化硅。 工业上,通常是在电炉中由碳还原二氧化硅而制得。 化学反应方程式: SiO2 + 2C → Si + 2CO 这样制得的硅纯度为97~98%,叫做金属硅。再将它融化后重结晶,用酸除去杂质,得到纯度为99.7~99.8%的金属硅。如要将它做成半导体用硅,还要将其转化成易于提纯的液体或气体形式,再经蒸馏、分解过程得到多晶硅。如需得到高纯度的硅,则需要进行进一步的提纯处理。 中国是全球主要的金属硅产地,2007年中国金属硅总产量为95-100万吨,而2006年中国金属硅总产量为75-80万吨。2007年中国国内金属硅消费量达25万吨以上,而且近几年国内对金属硅的需求也在不断增加,国内消费量在总产量中的比重也在不断提高。2008年1-3月份中国金属硅生产量在200,000-250,000吨左右。除去出口量,中国国内消费量在35,000-85,000吨左右。 更多关于高纯度金属硅的资讯,请登录上海有色网查询。
高纯金属硅
2017-06-06 17:49:50
高纯金属硅 ( 99.99%-99.9999%) 熔点. 1410 0C, 沸点. 2355 0C, 密度2.33 gm/cm3 蓝白色, 非常脆, 低导热导电系数. 成块状、锭状、板状和薄片状等. 用于半导体, 光电照相装置常用于制造多晶硅和高纯度二氧化硅。 高纯金属硅提纯制备高纯多晶硅的方法,在高纯氩气的保护氛中,以石墨坩埚为正极、设于石墨坩埚中间的竖向石墨电极为负极,在所述石墨坩埚内壁与石墨电极外壁上上下错开设置水平格栅,加热石墨坩埚中的高纯金属硅至1650-1800℃产生硅蒸气,使硅蒸气上行经过格栅后冷却收集得到高纯多晶硅。本发明与传统提纯工艺相比,不仅大幅缩短了提纯工艺流程,而且工艺稳定、效率高,降低了太阳能电池的原料成本,得到的高纯多晶硅纯度稳定、一致性好;提纯设备的制造成本低,生产过程中也无排污,环保效益好。 金属硅又称结晶硅或工业硅,其主要用途是作为非铁基合金的添加剂。硅是非金属元素,呈灰色,有金属色泽,性硬且脆。硅的含量约占地壳质量的26%;原子量为28.80;密度为2.33g/m3;熔点为1410C;沸点为2355C;电阻率为2140Ω.m。金属硅的牌号:按照金属硅中铁、铝、钙的含量,可把金属硅分为553、441、411、421、331、3303、2202等不同的牌号。金属硅的附加产品:包括硅微粉,边皮硅,黑皮硅,硅渣等。 更多关于高纯金属硅的资讯,请登录上海有色网查询。
铁粉分类及应用
2019-01-03 09:36:51
铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉
纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。
铁粉的应用
粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。
高硅氧化锌矿浸出脱硅工艺技术
2019-01-07 07:51:26
前言
随着锌用途范围的扩大,世界各国锌产品消耗逐年增加。硫化锌矿日渐供应不足,氧化锌矿的开采利用逐渐引起人们的重视。氧化锌矿主要是含有硅酸锌矿Zn2SiO4,异极矿Zn4(Si2O7)(OH)2·H2O和菱锌矿Zn2CO3的含锌矿物,有些氧化锌矿含锌品位高达20%~30%,其特点是:
1、氧化矿很难通过选矿富集;
2、含可溶硅高,浸出矿浆很难实现固液分离。在未解决浸出矿浆难过滤问题之前,一般采用火法冶炼处理,但在能源日益紧张和环保要求日益严格情况下,氧化锌矿火法冶炼逐渐被湿法冶炼工艺取代。
湿法处理氧化锌矿的最大难点是浸出时生成难以过滤的胶质SiO2。几十年来人们围绕着如何获得易于过滤的矿浆,做了大量的工作,经过长期的研究,在应对矿浆中硅的危害方面取得了突破,已有一些处理硅酸锌矿的酸浸技术用于工业生产。
2004年笔者参加国外某氧化锌矿湿法冶炼半工业试验,对当地矿石的浸出脱硅工艺进行多方案探索,提出新的浸出脱硅工艺,并将新工艺在半工业试验厂实施。新工艺与原工艺对比,锌回收率提高9.4%,酸碱消耗降低50%。本文详细介绍了浸出脱硅流程的选择,半工业试验情况及取得的技术经济指标。
一、工艺流程选择
由于成矿条件不同,不同地区高硅氧化锌矿的性质差异较大。为适应原矿特性,世界上开发出了多种湿法处理工艺。本试验原料特性及较成熟的处理工艺简述如下。
(一)原料特性
本试验所用的氧化锌矿含有大量的碱性物质及大量碳酸根,浸出过程中产生大量二氧化碳且耗酸量大。小型试验表明,在低酸条件下,浸出时间30 min,终点pH 1.5时,锌浸出率高达95.3%,主要杂质Fe,Al和Si浸出率很低。其化学成分及物相组成分别见表1和表2。(二)工艺流程
目前工业上应用的3种较成熟的工艺是:V.M法;EZ法;Radina法。
1、老山工艺(Vieille-Montagne)
V.M工艺是比利时老山公司发明的,其特点是将浸出槽串联起来,在严格控制浸出温度7090T条件下,缓慢加酸,逐步提高酸度,经8-10h终点pH达到1.5后,继续搅拌2h使SiO2呈结晶形式沉淀。
2、EZ工艺
EZ法是澳大利亚电锌公司发明的,其特点是:先进行氧化锌矿酸性浸出,再进一步中和凝聚。浸出控制在自热(较低)温度40~45℃下进行,终点pH1.8~2.0,凝聚温度控制在6070 9C,加人Fe3+,A13+凝聚剂及中和剂,终点pH 5.2~5.4。全过程4-6 h,从而使胶质SiO2凝聚成易于过滤的沉淀物。
3、Radina法
Radina法是巴西工商公司研制的方法,该法的关键点在于浸出过程胶质SiO2浓度低,用已沉淀析出的SiO2作晶种,在硫酸铝凝聚剂存在下,使胶质SiO2结晶沉淀下来。其操作程序如下:
将硫酸铝、废电积液(10% H2SO4)加人浸出槽中,加热到90℃左右。用过量的氧化锌矿石中和至pH=4左右,再加人一批废电积液,其量与第一批相同,浸出0.5 h,然后用氧化锌矿中和槽中的废电积液,至少要加3次废电积液及相应量的矿石使浸出槽装满。
抽出三分之一已中和浸出好的矿浆送去过滤,再加人新电积液。因为浸出槽只有三分之一的体积是有效的,Radina法也被称为“三分之一”法。
以上3个方法均采用稀硫酸直接浸出氧化锌矿,使锌和硅分别以硫酸锌和硅酸形态进人溶液,但解决矿浆的过滤问题则分别采取不同措施。M.V法与Radina法都是在浸出过程中使二氧化硅形成结晶沉淀,EZ法则分为浸出和硅酸凝聚两段组成,SiO2在中和絮凝段聚合成颗粒紧密易于过滤的沉淀物。
M.V法与Radina法浸出结晶时间长达8~10 h使用原矿作中和剂,浸出中和渣含锌较高(Zn5.0%~9.0%),锌浸出率较低。
EZ法浸出絮凝时间较短(3. 5~6.0 h ),使用石灰作中和剂,浸出中和渣含锌较低(Zn 3.5%~5.0%),但浸出过程酸耗增加。
外方选择了生产能力相对较高的,用石灰中和的EZ法,工艺流程见图1。二、中和絮凝法(EZ)的基本原理
(一)氧化锌矿浸出过程中SiO2的行为
氧化锌矿的主要成分均易被稀硫酸溶解,在锌溶解的同时SiO2也进人溶液,其反应式如下:
硅酸锌 Zn2SiO4+2H2SO4→2ZnSO4+H4SiO4 (1)
异极矿 Zn4(Si2O7)(OH)2·H2O+4H2SO4→4ZnSO4+2H4SiO4+2H2O (2)
菱锌矿 ZnCO3+H2SO4→ZnSO4+CO2↑+H2O (3)
进人溶液的硅酸很不稳定,分子间将发生多次
聚合作用,形成多聚硅酸、硅溶胶、水凝胶。当溶液中SiO2浓度足够大时,在放置过程中就会自动进人胶凝过程而成为水凝胶,呈半固体状态失去流动性,使固液分离完全停顿。
硅酸是带电的,通常认为原硅酸的等电点在pH=2附近。
在pH>2时,部分原硅酸按下式离解::
H4SiO4 H3SiO4-+H+ (4)
原硅酸与带一个负电荷的H3SiO4-作用,生成带一个负电荷的硅酸的二聚体,此二聚体又可与原硅酸作用生成三聚体、四聚体等多硅酸,进而生成SiO2溶胶。
在pH
H4SiO4+H+ H5SiO4+ (5)
原硅酸与带正电荷的
H5SiO4+进行经联反应形成双硅酸,进而生成三硅酸、四硅酸等多硅酸,生成硅
溶胶。
因此,在pH>2的溶液中是原硅酸与一价阴离子的缩合作用;而在酸液内是原硅酸与一价阳离子的聚合作用。
(二)硅酸在溶液中的聚合形态
硅酸在溶液中由于其聚合程度不同,以α、β、γ三种形态存在。α形态接近于单分子状态(即原硅酸或简单的偏硅酸),不致影响溶液的澄清过滤,即pH=2左右的溶液,此时溶液最稳定。β形态的硅酸聚合程度略高,约大于α形态的350倍,这种胶凝物难于沉淀,即当pH>2或pH
因此,浸出溶液含二氧化硅较高时,会出现下列现象:
1、在pH=2左右时,以稳定的胶体溶液存在;
2、在较高pH时,聚集成一种巨大的疏松网状结构,即凝胶;
3、在迅速聚集的条件下(高温、高pH值、高离子强度、絮凝剂和相反电荷等)就絮凝成胶体颗粒紧密堆积的沉淀物。
通过控制特殊的工艺技术条件,保证生成二氧化硅沉淀而不发生胶凝,从而改善矿浆的澄清与过滤问题。
三、半工业试验
外方按小试方法选择了EZ法作为半工业试验方案,并设计了半工业试验厂。中方专家根据原矿性质及现场小试结果提出新工艺流程并修改试验厂设计。半工业试验采用两个试验流程完成浸出脱硅过程试验。
(一)工艺流程
1、原工艺流程
原工艺流程见图1。在控制Fe、A1、Si较低的浸出率条件下,常温加人石灰石、絮凝剂进行中和絮凝,使矿浆易于沉降。此工艺与E.Z法很相似,但在中和絮凝段未加温,未加人含Fe3+、A13+的絮凝剂。该工艺优点在于工艺流程简单,锌浸出率较高 (约94%);其缺点为:①浸出后液含酸高,溶液量大,中和溶液中残酸消耗大量的石灰石和可再利用的酸同时增大了中和渣量;② 中和渣量大,含锌较高(6.2%~8.5%),中和段锌损失率高。
2、新工艺流程
新工艺流程见图2。在分析原小试工艺流程优缺点后,结合矿石及原方案中和渣特性,对原工艺作如下修改:(1)用部分原矿代替石灰作中和剂;
(2)增加脱硅渣二次酸浸工序;
(3)二次酸浸液(含Fe3+、Al3+)返回二次酸浸,达到降低弃渣含Zn量,降低酸、碱消耗量,提高全流程经济效益的目的。
(二)试验过程
1、浸出工序
浸出工序两种工艺相同,设备为3个串联连续浸出槽。
球磨后矿浆底流进1#浸出槽,同时加入废电解液、二次酸浸浓密机溢流液、滤液及洗水在常温下浸出1h,1#、2#浸出槽加人浓硫酸控制浸出pH=1.5,3#浸出槽pH=1.8~2.0。浸出矿浆自流进中和脱硅槽。
2、中和脱硅工序
中和脱硅工序设备为3个串联连续中和槽及中和浓密机。
浸出矿浆进入1#中和脱硅槽,同时加人原矿矿浆控制中和pH=3.6~3.8,3#中和脱硅槽加人CaCO3矿浆控制中和pH=4.5~4.8。中和脱硅温度85~90℃,中和时间2.5~3h。中和后矿浆加人絮凝剂后流人中和浓密机。中和浓密机溢流液部分返回磨矿,其余去净液工序,底流进行二次酸浸。原工艺中和浓密机底流进过滤洗涤工序。
3、二次酸浸工序
二次酸浸工序设备为一个二次酸浸槽和酸浸浓密机。
中和浓密机底流泵人二次酸浸槽,加浓硫酸和二次洗水,常温下进行二次酸浸。二次酸浸时间:60min,液固比1.6:1,酸浸pH=1.0~1.5。经二次酸浸后矿浆泵人酸浸浓密机,酸浸浓密机溢流返回浸出工序,底流洗涤过滤后堆存。
4、过滤洗涤工序
过滤洗涤工序设备为真空吸滤盘及滤液、洗水贮槽。
二次酸浸后渣泵人吸滤盘过滤、洗涤。滤液及部分洗水进滤液贮槽,返浸出工序,一次洗水返二次酸浸工序,二次洗水返磨矿工序。
(三)试验结果
试验在国外某试验厂进行了3个月,共处理矿石30t。两种工艺同时进行,取得的指标见表3。从表3中看出,新方案锌实际回收率比原方案高近10个百分点。
四、结束语
在新工艺流程与原工艺流程都经过充分试验后,双方均认为:新方案利用当地高硅氧化锌矿石的特性,合理选用工艺流程,大幅度降低原辅材料消耗,提高锌回收率,是本半工业试验的最佳方案。其优点如下:
(一)用原矿取代石灰作中和剂,酸耗降低约50%,碱耗减少约75%;
(二)通过增加中凝聚渣的二次酸浸工序,提高锌回收率约9%。
日钢高铝渣低硅炼铁技术
2019-01-10 09:51:47
通过优化配料工艺、创新炉料结构,探索装料制度、成功应用多环布料,研究高铝渣的性能、掌握高铝矿冶炼技术,成功实施高风温、高顶压、高煤比、低硅冶炼等技术,在炉料品位降低,焦炭质量犬幅度降低的情况下,取得了较好的经济效益。
在选择经济矿冶炼的同时,必须面对经济矿带来的一些不利因素,其中矿石中的Al2O3高,就是一个突出问题。
一般认为炉渣中Al2O3在14%以内,属于低铝炉渣,适宜冶炼;14%~16%属于中铝炉渣,冶炼有一定难度;Al2O3超过16%,就可以称为高铝炉渣,冶炼就相当困难。许多企业甚至认为,高于17%以后,基本无法正常冶炼。
通过对高铝炉渣性能的深入研究,基本掌握了高铝渣的冶炼技术。日钢炉渣中的Al2O3含量较低也在15.5%以上,较高平均达到18%以上,属于高铝炉渣冶炼。
Al2O3超过16%以上,炉渣的熔化温度就会急剧上升到1500oC以上,炉渣的黏度会增加。炉渣黏度过大,炉渣黏稠,就会造成高炉滴落带内的阻损很大,致使炉料下降和煤气上升困难。在炉缸表现为渣铁难于分离,渣铁滞留量增大,炉缸堆积;在炉外表现为渣铁结壳,流动性能差,炉前组织困难;较后,高炉受风能力越来越差,导致高炉失常。
针对高铝炉渣黏度高、熔化温度高的问题,对高铝矿冶炼时的造渣制度和热制度作重新调整,确定造渣制度要以二元碱度为主要调节手段,三元碱度作为参考,四元碱度为中心的总方针,并且提出镁铝比(MgO/Al2O3,)的概念。通过酸碱料调节二元碱度,参考炉渣中Al2O3含量,通过调整烧结矿中的MgO,控制炉渣中MgO的含量,随Al2O3含量变化,控制镁铝比,较后使炉渣四无碱度控制在0.95~1.0左右。
热制度以控制铁水显热为依据,日常调剂以控制铁中含硅量为手段,保证铁水物理温度≥l480oC,较终达到提高炉渣热焓,降低炉渣黏度,提高炉渣流动性的日的,有效地改善了炉缸的工作状态,改善了高炉顺行,取得了较好效果。
低硅冶炼是一项综合技术。由于日钢的原、燃料条件逐步转差,低硅冶炼不能依靠改善焦炭质量,提高入炉品位等“精料”手段来实现。对于面临的困难,炼铁技术人员,进行了充分的分析研究,并由铁前部牵头组织,针对烧结、球团、炼铁三个系统每旬定期召开攻关会议,强调低硅冶炼对炼铁、炼钢的重要意义,同时强调降硅要从系统内部着手,要完全通过提高操作水平来保障低硅冶炼的实现。
烧结厂主要工作是:稳定成分、提高强度、改善粒级、降低亚铁等。
炼铁厂主要措施是:稳定操作、活跃炉缸、提高渣碱度、降低硅偏差等.通过改进操作,日钢高炉的平均硅含量降低到0.37%,实现了低硅冶炼。
低硅冶炼是多环布料技术、合理渣相选择,高顶压、高风温等技术成功应用后的一个具体体现,是炼铁系统进步后的必然。
还原铁粉让普通铁精粉身价倍增
2018-12-13 10:31:09
日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )
北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。 据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网
选择絮凝反浮选法高硅贫赤铁矿石
2019-02-27 12:01:46
挑选絮凝脱泥反浮选法适用于处理细粒和微细粒嵌布的高硅贫赤铁矿石。首先将矿石细磨,使铁矿藏与脉石单体解离。再在矿浆中参加涣散剂(水玻璃、、六偏磷酸钠等)涣散,矿浆pH值为9~10。然后参加絮凝剂(淀粉、腐殖酸钠、水解的聚酰胺等)对铁矿藏矿粒絮凝沉降,把上部悬浮的脉石矿泥脱掉,絮凝进程一般可进行几回。通过挑选絮凝后得到的铁粗精矿往往达不到质量要求,需进一步选用阳离子捕收剂或阴离子捕收剂反浮选法进行处理,最终得到合格精矿。
铋矿三氯化铁浸出-铁粉置换法
2019-01-31 11:06:17
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
含铁粉矿球团化制备工艺研究
2019-01-24 09:36:35
近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。
在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。
本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。
一、试验条件与方法
(一)原材料
1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。
2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程
每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。
(三)抗压力测试
试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。
(四)所用仪器与设备
加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析
(一)加热固化制度对球团抗压力的影响
所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。
试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。
从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。
(二)粘结剂加入量对抗压力的影响
在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。
(三)不同粉矿条件下的抗压力
为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。
按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。
通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。
三、结论
(一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。
(二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。
(三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。
参考文献
[1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
[2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36.
[3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98.
[4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50.
[5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20.
[6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.
高铝矿物(蓝晶石、红柱石、硅线石)的浮选药剂
2019-02-25 09:35:32
蓝晶石类矿藏的浮选药剂见表1。从表中可见,这三种矿藏的浮选捕收剂是通用的,可概括为三类:(1)羧酸类捕收剂如油酸(钠)、氧化白腊皂、癸脂、塔尔油等;(2)羟基磺酸盐和羟基硫酸盐如石油磺酸钠等;(3)烷基胺。表1 蓝晶石类矿藏的浮选药剂矿藏捕收剂pH值调整剂蓝晶石石油磺酸钠 癸脂 油酸钠 十二胺2.2~4.0 9.5 5.5~7.0 3~12HF、H2SO4 水玻璃、柠檬酸硅线石烷基磺酸钠+氧化白腊皂(1:2) 油酸 十二至十八烷基硫酸钠 十二烷基醋酸胺8~9 8~9 5.4 9.0~9.5Na2CO3 、六偏磷酸钠、水玻璃、CMC红柱石油酸钠 十二胺3~10 3~9 生产上常用的是前两类捕收剂,运用羧酸类捕收剂时,矿浆pH值常常为碱性,我国习惯上称碱法浮选;运用磺酸盐作捕收剂时,矿浆pH值要调至酸性,也称酸法浮选。共享到: -- 本网文章内容仅供参考,不构成出资主张。出资者据此操作,危险自担。
高铝矿物(蓝晶石、红柱石、硅线石)的浮选行为
2019-02-12 10:07:54
一、浮选行为
(一)蓝晶石。很多研讨标明,pH=3.0~8.5时,用阴离子捕收剂油酸钠浮选蓝晶石,可浮选性受pH值影响不大。在pH=3.0~12时,用阳离子捕收剂十二胺可很好地浮选蓝晶石,其可浮性受pH值改变影响很大。在碱性介质中浮游性较好,且此刻调整剂氟化物仅起弱活化效果。蓝晶石的浮选理论与实践标明:捕收剂品种、用量、介质pH值、拌和时刻、温度、物料粒度、矿浆可溶性盐类,对蓝晶石浮选均有影响。
国外有研讨报导,用或酸预处理,水洗后用油酸或用阳离子捕收剂(C12~C19胺)可从石英中一起浮选蓝晶石和长石。由于蓝晶石常与石英共生,所以最好选用阴离子捕收剂浮选蓝晶石;如选用油酸作捕收剂,增加碳酸钠,使pH=7.5,用柠檬酸按捺石英进行浮选。
前苏联阿列谢也夫提出,在pH=4.0~4.5时,用400g/t高分子烷基横酸盐作捕收剂浮选蓝晶石;他还使用烃类乳浊液(30%塔尔油、30%C10~C16组成羧酸40%中性油和10%烷基磺酸盐)作捕收剂,在pH=6.0~7.0时浮选蓝晶石。
(二)红柱石。研讨标明,阳离子和阴离子捕收剂均可很好地浮选红柱石。选用阴离子捕收剂,pH=3~10时,可浮性受pH值影响不大,但氟化物具有非常显着的按捺效果;选用阳离子捕收剂,在碱性值规模内浮选较有利,且氟离子可活化红柱石。
研讨还标明:pH=4~9时油酸可很好地浮选红柱石,pH值在此规模之外,其可浮性急剧下降。用稀酸处理红柱石,使零电点向弱酸值方向改变,在较低pH值规模内,用弱阳离子捕收剂十二胺乙酸盐可很好地收回红柱石。
(三)硅线石。国外研讨标明,用阳离子捕收剂和阴离子捕收剂浮选硅线石,比较好的成果为预选脱泥,在苏打介质中,用油酸浮选。补加能够按捺云母;如遇到物料中含有铁矿藏,可增加六偏磷酸钠或焦磷酸钠;可用水玻璃和钠按捺伴生矿藏石英,对某些矿石,钠比水玻璃选择性更好。
生产实践标明,用油酸浮选一种含硅线石20%,脉石矿藏为云母、石英黏土的混合物料,向进程参加磷酸盐或硅酸钠,当pH=9.5时硅线石可获得90%以上收回率。
高碳酸盐低硅含量磷矿石选矿技术
2019-01-21 09:41:24
该技术适用于高碳酸盐低硅含量磷矿石,是在弱酸性介质下抑制磷矿物,然后用选择性强的捕收剂浮出碳酸盐矿物。该工艺简单、碳酸盐分离效率高、实现了常温和低温浮选。
该工艺对碳酸盐的脱出率一般可达80%以上,可以将磷精矿的 MgO降到 1%以下。浮选精矿P2O5品位和原矿硅酸盐的含量有关,原矿中硅酸盐越低,精矿P2O5品位可以很高,反之精矿P2O5品位就不易提高,精矿P2O5回收率一般可达80%以上。 于1995年投产的国内最大的磷矿浮选厂一贵州省瓮福磷矿就是应用了连云港院开发的“单一碳酸盐浮选”工艺。
高纯铝锭
2017-06-06 17:49:59
高纯铝锭相关知识很多,让我们对它进行下介绍。高纯铝锭指的是Al含量≥99.999%(5N)的铝。高纯铝具有许多优良性能,用途广泛。它具有比原铝更好的导电性、延展性、反射性和抗腐蚀性,在电子工业及航空航天等领域有着广泛的用途。在电子工业中,用于制作高压电容器铝箔、高性能导线、集成电路用键合线;航空航天工业中,高纯铝用来开发制作等离子帆(推动航天器的最新动力);高速轨道交通中,高速轨道交高纯铝锭参数范围: 10±1Kg ,YS/T275-2000。铝及铝产品分类 1、电解铝的生产过程:铝土矿→氧化铝→电解铝。 2、按照铝锭的主成份含量可以分成三类:高级纯铝(铝的含量99.93%-99.999%)、工业高纯铝(铝的含量99.85%-99.90%)、工业纯铝(铝的含量98.0%-99.7%)。 3、按照铝锭的市场产品型态可以分成三类:一类是加工材,如板、带、箔、管、棒型、锻件、粉末等;一类是铸造铝合金、盘条线杆电缆等;一类是日常生活中的各类铝制品等。 铝锭分类铝锭按成分不同分重熔用铝锭、高纯铝锭和铝合金锭三种:按形状和尺寸又可分为条锭、圆锭、板锭、T形锭等几种,下面是几种常见的铝锭; 重熔用铝锭--15kg,20kg(≤99.80%Al): T形铝锭--500kg,1000kg(≤99.80%Al): 高纯铝锭--l0kg,15kg(99.90%~99.999%Al); 铝合金锭--10kg,15kg(Al--Si,Al--Cu,Al--Mg); 板锭--500~1000kg(制板用); 圆 锭--30~60kg(拉丝用)。在我们日常工业上的原料叫铝锭,按国家标准(GB/T 1196-2008)应叫“重熔用铝锭”,不过大家叫惯了“铝锭”。它是用氧化铝-冰晶石通过电解法生产出来的。铝锭进入工业应用之后有两大类:铸造铝合金和变形铝合金。铸造铝及铝合金是以铸造方法生产铝的铸件;变形铝及铝合金是以压力加工方法生产铝的加工产品:板、带、箔、管、棒、型、线和锻件。按照?重熔用铝锭?国家标准,“重熔用铝锭按化学成分分为6个牌号,分别是Al99.85、Al99.80、Al99.70、Al99.60、Al99.50、Al99.00”(注:Al之后的数字是铝含量)。目前,有人叫的“A00”铝,实际上是含铝为99.7%纯度的铝,在伦敦市场上叫“标准铝”。大家都知道,我国在五十年代技术标准都来自前苏联,“A00”是苏联国家标准中的俄文牌号,“A”是俄文字母,而不是英文“A”字,也不是汉语拼音字母的“A”。和国际接轨的话,称“标准铝”更为确切。标准铝就是含99.7%铝的铝锭,在伦敦市场上注册的就是它。通过了解高纯铝锭的知识,我们才可以掌握其真正的价值,你可以登陆上海有色网查找更多的信息。
利用磁选机提取河沙铁粉的工艺介绍
2019-01-16 17:42:18
由于近几年我国钢铁原料----铁精粉价格的攀升,河沙选铁的利润大幅度提高,专用机械----河沙选铁船、磁选机等系列选矿设备得以在全国范围内大面积推广。
中科公司生产的河沙铁粉提取磁选机有实际的应用效果。 这些选矿设备大致的工作原理为:通过磁选机将河沙中的磁性铁选出来。下面就具有代表性的设备--挖沙选铁船的构造、原理以及操作规程简介如下: 挖沙选铁船由浮体、链斗挖沙系统、筛分系统、磁选系统、尾沙排除系统、动力系统组成。
首先,河道里有水,我们的选矿设备必须要浮在水面上工作,因此我们用3.5-4毫米的钢板做成了浮体,根据挖沙深度的不同,浮体的宽度和长度都有相应的尺寸要求,一般宽度在1.5-2米之间,长度在16-32米之间。
另外,我们为了增加船的稳定性,两个浮体之间间隔了一定的距离,一般为1.5米左右。顾名思义,这套选矿设备的上料系统是链斗式的挖沙系统,河沙由链斗提上来以后,因为有大小不一的石子,为了保护磁选机的安全,必须经过筛分系统。根据河道的环境不同,一般来说,石子比较少、直径比较小的河道用自震式比较好,维修方便,节省动力(约3KW)。而石子很多,直径又比较大的河道就要用滚筒式的筛子了。经过筛分后的石子一般直接流入河道,如果有经济价值也可由传送带输送到岸上出售;河沙转入磁选系统。磁选系统主要是磁选机和水洗精选系统。
磁选机的磁表强度一般要达到3800-4500高斯,规格为750*2200-2400,这样配套才能达到90%的净选率。水洗的作用是提高毛铁粉的品位,一般可在30-45之间自由调节。尾沙排除系统的作用是将选去铁粉的尾沙排到远离本机械的地方,以保证本机械能正常的工作。一般有自流式、传送带式、抽沙泵式三种形式当然这也是根据河道的具体环境来定的。
高铝矿物(蓝晶石、红柱石、硅线石)的生产实践
2019-01-29 10:09:51
一、矿石性质
某蓝晶石矿产自石榴石、蓝晶石、黑云母的斜长片麻岩中,属于区域变质型蓝晶石矿床。主要矿物有:蓝晶石、铁铝石榴石、石英、斜长石、黑云母、钾长石、赤褐铁矿等。
二、选矿工艺流程
根据矿石中矿物嵌有物性、磁性、密度和浮游性质差异经过研究对比,制定了以浮选、重选和磁选配合的选别流程进行分选,其选别工艺流程如图1所示。图1 某蓝晶石矿选别流程图
三、结果
原矿品位为含蓝晶石10%~15%、Al2O320.62%,精矿品位为含蓝晶石81.99%、Al2O355.38%,蓝晶石回收率可达55.87%。
矿石入选粒度是0.2mm,以浮选为主。磁选作业获得的磁性产品经摇床选别能获得纯度达80%的石榴石精矿,可综合利用。
四、红柱石的生产实践
(一)矿石性质
某红柱石矿为变斑晶柱状,颗粒大,一般在5~15mm,结晶完好,其中有一半红柱石含碳质包裹物(蓝晶石)。基质部分主要是绢云母、黑云母、斜长石和石英等,粒径一般在0.1~0.5mm,基质呈变余泥质结构,基质物多具磁性。矿石含红柱石8%~10%、Al2O320.77%
(二)选矿流程和结果
试验了磁(中场强)-强磁、磁-强磁-细磨浮选流程,比较结果后者为好。其选别工艺流程哪图2所示。
所得红柱石精矿为含红柱石99.32%、Al2O356.88%,红柱石回收率可达76.07%。图2 某红柱石矿选别流程图
五、硅线石的生产实践
(一)矿石性质
某硅线石矿矿石呈自形晶纤维状、柱状、变晶结构。其主要矿物有硅线石、磁铁矿、石英、镁铁尖晶石、黑云母、高岭石、绢云母等。矿石含硅线石31%左右,Al2O321.06%。
(二)选别流程与结果
选别流程为磨矿后用弱磁选分出铁矿物,再行浮选硅线石,如图3所示。浮选原则流程包括粗选、扫选和多次精选。
所得硅线石精矿含硅线石9.80%、Al2O356.56%,其回收率可达76.11%。图3 某硅线石选别工艺流程图
炼钢炉尘提取还原用铁粉重选技改实践
2019-01-21 18:04:35
一、前言
炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。
由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。
二、原因分析
(一)原料分析
铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。
炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。
另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。
(二)原工艺流程及存在的缺陷
1、原工艺流程
原工艺流程如图1所示。2、原工艺存在的缺陷
(1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。
(2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。
(3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。
(4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。
三、解决措施
针对现有生产工艺存在的问题,对现有工艺进行了优化。
(一)新工艺流程
经改造后的新工艺流程(略)
(二)改造措施
1、将一段摇床改为螺旋溜槽。
2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。
3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。
4、在新增球磨机后增加一台磁选机。
四、改进效果
经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。
五、结论
(一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。
(二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。
硫化矿酸浸--高尔峒流程-硫酸高铁法
2019-01-25 15:49:17
高尔峒山(Mt. Gordon)在澳大利亚东北部的昆士兰省的西北边,原来叫做冈拍德(Gunpowder),是一个老矿山。高尔峒山主要的铜矿物是辉铜矿、铜蓝及与黄铁矿紧密镶嵌的黄铜矿,浮选不能分开的两种矿物。脉石主要是硅化的粉砂岩。 高尔峒山所属依斯拍兰札(Esperanza)矿的辉铜矿平均铜品位高达8.4%,决定先开采这部分矿石。脉石主要是硅化的粉砂岩。经过比较,决定采用酸性硫酸铁溶液直接浸取原矿,纯氧作氧化剂。这样就可以在高压釜中低压、低温下进行浸取[1]。 矿石平均成分为:Cu 7.5%~8.5%、Fe 28%、S 37%、As 0.2%。铜的矿物组成:辉铜矿91%、斑铜矿1%、黄铜矿2%、铜蓝5%、硫砷铜矿1%。浸取液的成分(g/L) : Fe3+为10, Fe2+为35,H2S04为70,CuS04为10。维持氧化电位635~640mV。浸取温度80℃,总压力0.8MPa。 分析结果表明大约有2%~3%的黄铁矿与氧气直接作用而被氧化。同时也有少量的单质硫被氧化为硫酸,从而有利于减少酸的消耗。 工业流程 高尔峒的工业流程见下图。这是第一家用加压酸浸处理硫化铜矿的湿法冶金工厂。 每个高压釜的总容积是180m3,有效容积120m3。釜分为5个室,各有单独的搅拌桨,下面的桨是涡轮式桨叶,上部是轴向流的桨叶。由于浸取是放热反应,浸取时温度从77~80℃上升至85~90℃。为了控温,向第三室中喷入冷的萃余液。这个喷液装置是后来安装的。控制温度有利于氧气的有效利用,反而可以提高浸取速度。 投资和生产成本 工厂于1998年7月建成,首先用堆浸的矿石进行试车,直至1999年12月才正常运转。在后面的18个月生产十分平稳,达到原设计的45000t/a的指标。高尔峒厂设备、厂房直接投资4400万美元,加上间接投资(如开工费用、设计采购调试费用等)总计5370万美元。 高尔峒厂在2001年6至12月的半年期间内实际生产电解铜23933t,消耗铜品位8.85%的矿石31.4万t。相当年产47866t电解铜,消耗铜品位8.85%的矿石62.8万t,铜的总回收率86%(设计900k)。吨铜矿石成本682美元与运行成本504美元之和为1186美元。[next] 参考文献 1.Dreisinger D,Richmond G,et al.,ALTA Copper-7 Technical Proceedings,23 May 2002,Perth,Australia
高精黄铜
2017-06-06 17:50:01
高精黄铜就是指精度比较高的黄铜合金。随着黄铜合金在人们的日常的生活中和工业生产中的广泛应用,高精黄铜越来越受到人们的青睐。 高精黄铜用途: 由于具有较好的延展性、冲压、电镀、耐腐蚀性,多应用于各种复杂冷冲、深冲五金件、散热器、汽车连接器、端子、继电器、钮扣、工艺品、电池弹片等行业中。 不同牌号的高精黄铜特性及用途:高精黄铜C2720∶延展性,深冲性能好,用于浅冲加工。 高精黄铜C2620∶延展性,可焊性,深冲性,可镀性,耐蚀性均佳,用于各种复杂冷深冲件。 高精黄铜C2600∶延展性,深冲性优,可镀性好,用于汽车散热片。 高精黄铜C2200∶色泽美,延展性,深冲性,耐蚀性均佳 高精黄铜带厚度公差:±0.005--±0.01MM ,宽度公差:±0.05--±0.1MM 高精黄铜带产品状态:M、Y2、Y、T(O,H,EH,1/2H) 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 更多关于高精黄铜的资讯,请登录上海有色网查询。
高铝水泥
2018-12-29 11:29:09
美国能源部下属的阿贡国家实验室与来自日本、芬兰、德国的科学家合作,用激光对液体高铝水泥(又称矾土水泥)进行处理,使其变成了能导电的半导体,或可被用来制造计算机芯片、触摸屏等。
高铝水泥是以铝矾土和石灰为原料,按一定比例配制,经煅烧、磨细所制得的一种以铝酸盐为主要矿物成分的水硬性胶凝材料,又称铝酸盐水泥。研究人员使用一种经过二氧化碳激光束加热的空气动力悬浮装置,在2000摄氏度的高温下将高铝水泥熔化;然后在不同的空气中对这种材料进行处理,以便控制得到的玻璃中氧原子的结合方式。
这种悬浮装置可以让热液体不接触任何容器表面并形成晶体,这就会使该液体冷却成能捕获电子的玻璃状,从而使其获得导电能力。
钨铜块
2019-05-27 10:11:36
产地日本 牌子金宝牌号W70 特性钨铜是运用高纯钨粉优异的金属特性和高纯紫铜粉的可塑性、高导电性等优势,经静压成型、高温烧结、溶渗铜的技术精制而成的复合材料。断弧功能好,导电导热好,热胀大小,高温不软化,高强度,高密度,高硬度。 应用范围 1.电阻焊电极归纳了钨和铜的优势,耐高温、耐电弧烧蚀、强度高、比严重、导电、导热性好,易于切削制作,并具有发汗泠却等特性,因为具有钨的高硬度、高熔点、抗粘附的特色,常常用来做有必定耐磨性、抗高温的凸焊、对焊电极。 2.电火花电极针对钨钢、耐高温超硬合金制造的模具需电蚀时,普通电极损耗大,速度慢,而钨铜高的电腐蚀速度,低的损耗率,准确的电极形状,优秀的制作功能,能确保被制作件的准确度大大提高。 3.高压放电管电极高压真空放电管在作业时,触头材料会在零点几秒的时间内温度升高几千摄氏度,而钨铜的抗烧蚀功能、高韧性,杰出的导电、导热功能给放电管安稳的作业供给必要的条件。 4.电子封装材料既有钨的低胀大特性,又具有铜的高导热特性,其热胀大系数和导电导热性能够经过调整材料的成分而加以改动,然后给材料的运用供给了便当。 化学成份 钨W 70% 铜Cu 30%使用电阻焊电极,电火花电极,高压放电管电极,电子封装材料。 物理功能及机械功能 密度g/cm3 13.814 导电率%IACS 42 硬度 185HV 抗弯强度Mpa 700 软化温度℃ 900
高纯铝
2019-01-02 16:33:39
相对于传统的初级加工铝锭而言,高纯铝的生产有着较高的产品附加值及利润空间。高纯铝指的是Al含量≥99.999%(5N)的铝。高纯铝具有许多优良性能,用途广泛。它具有比原铝更好的导电性、延展性、反射性和抗腐蚀性,在电子工业及航空航天等领域有着广泛的用途。在电子工业中,用于制作高压电容器铝箔、高性能导线、集成电路用键合线;航空航天工业中,高纯铝用来开发制作等离子帆(推动航天器的最新动力);高速轨道交通中,高速轨道交通车辆除了需要用高纯铝配制高性能合金外,还由于高纯铝具有导磁率低、比重轻的特点,在磁悬浮体材料中得到大量应用;光学应用方面,汽车工业中的车灯反射罩,天文望远镜等大量使用铝反射器,国外也在研究用高纯铝作为大型天文望远镜的反光面。随着对高纯铝性能的进一步认识和开发,高纯铝的应用前景越来越广阔。
国际上成熟的提纯技术有三层液电解法和偏析法两种。三层液法现在应用比较广泛,但与偏析法比较起来,后者有着省电、低能耗、环保的优势,平均每吨能省电6000度。而且偏析法利用物理的方法,整个过程中不涉及其他的任何添加物质,不需要特别额外施加能源促进凝固和偏析过程,除了铝熔炼本身产生的气体和粉尘外,在生产过程中不产生任何有毒有害物质,符合环保生产的要求。
高铝砖
2018-12-28 11:21:28
高铝砖主要用于砌筑高炉、热风炉、电炉炉顶、鼓风炉、反射炉、回转窑内衬。此外高铝砖还广泛地用做平炉蓄热式格子砖、浇注系统用的塞头、水口砖等。但高铝砖价格要比粘土砖高,故用粘土砖能够满足要求的地方就不必使用高铝砖。
而高铝砖的耐火度比粘土砖和半硅砖的耐火度都要高,达1750~1790℃,属于高级耐火材料。因为高铝制品中Al2O3高,杂质量少,形成易熔的玻璃体少,所以荷重软化温度比粘土砖高,但因莫来石结晶未形成网状组织,故荷重软化温度仍没有硅砖高。所以抗碱性渣的能力比抗酸性渣的能力弱些。
高铍铜
2017-06-06 17:50:06
高铍铜就是高性能铍铜的简称。高性能铍青铜主要围绕
有色金属
低压、重力铸造模具使用的各种工况,通过深入研究铍青铜模具材料失效原因、成份和耐
金属
液侵蚀性内在关系,开发了高导电(热)性、高强度、耐磨性、耐高温性、高韧性、耐
金属
液侵蚀相结合的高性能铍青铜模具材料,解决了国内
有色金属
低压、重力铸造模具易裂、易磨损等难题,显著提高了模具寿命和铸件强度;克服了
金属
液渣粘附和侵蚀模具;改善了铸件表面质量;降低了生产成本;使模具寿命接近进口水平。铍铜经过淬火调质后,具有高的强度,弹性,耐磨性,耐疲劳性和耐热性,同时铍铜还具有很高的导电性,导热性,耐寒性和无磁性,碰击时无火花,易于焊接和钎焊,在大气,淡水和海水中耐腐蚀性极好。铍铜合金在海水中耐蚀速度:(1.1-1.4)×10-2mm/年。腐蚀深度:(10.9-13.8)×10-3mm/年。腐蚀后,强度、延伸率均无变化,故在还水中可保持40年以上,是海底电缆中继器构造体不可替代的材料。在硫酸介质中:在小于80%浓度的硫酸中(室温)年腐蚀深度为0.0012-0.1175mm,浓度大于80%则腐蚀稍加快。铍铜是力学,物理,化学综合性能良好的一种合金, 铍青铜材料经过淬火调质后,具有高的强度,弹性,耐磨性,耐疲劳性和耐热性,同时铍青铜还具有很高的导电性,导热性,耐寒性和无磁性,铍铜材料碰击时无火花, 铍青铜易于焊接和钎焊,在大气,淡水和海水中耐腐蚀性极好,铍铜合金是一种不可多得的合金。铍青铜是一种含铍铜基合金(Be0.2~2.75%wt%),在所有的铍合金中是用途最广的一种,其用量在当今世界已超过铍消费总量的70%。铍青铜是沉淀硬化型合金,固溶时效处理后具有很高强度、硬度、弹性极限和疲劳极限,弹性滞后小,并具有耐蚀、耐磨、耐低温、无磁性、高的导电性、冲击无火花等特点。同时还具有较好的流动性和重现精细花纹的能力。由于铍铜合金的诸多优越性能,使其在制造业获得了广泛的应用。想要了解更多高铍铜的相关资讯,请浏览上海
有色
网(
www.smm.cn
)铜频道。
高铜合金
2017-06-06 17:50:05
高强高导合金是指具有优良导电、导热性能,同时强度远高于纯铜的一类合金,其主攻方向是在不剧烈损失导电率的原则下,使用合金化方法提高强度,这类合金在国民经济和国防建设中具有重要的应用价值,其中电真空器件和集成电路框架材料需求最为迫切。电真空器件中前相波放大器、行波管、空调管、磁控管等需要大量无氧铜材,要求铜材在具有高强高导性能的同时,又具有抗软化性能,能够经历920℃、20min氢气退火,又不改变尺寸与形状。为此铜合金具有的强度应大于500MPa,导电率大于90%IACS的高强高导合金成为主要攻关目标。 固溶强化与析出强化是铜合金重要强化方法,Zr、Ag、Cd、Ti、Si、Mg、Te等,它们在铜中的溶解度随温度下降而急骤下降,这些元素于固态下,以单质或
金属
化合物质点析出,从而产生固溶强化和析出强化,由于合金元素从固溶体中析出,减少了晶格畸变,降低了应力场的强度,从而使合金的导电率也明显提高。从而诞生许多优秀的高强高导合金,在国外又称为高铜合金,它们的特点是加入的合金元素重量比很少,一般不超过3.0%,经过时效和热处理后,强度可为纯铜的2~3倍,导电和导热性能降低不多,一般仅降低10~30%IACS,除此之外,有些合金还具有优良的弹性(铍铜合金)、良好的切削性能(碲铜)等;高强高导合金广泛的应用于国民经济各部门,重要的应用方向有:电机整流子、电阻焊电极、连续铸钢用结晶器、电气化铁路架空接触线、电子通讯导电元件、集成电路引线框架等。 高效电机端子,通常使用含Ag 0.03%的拉制异型铜材;连续铸铜铜结晶器大量使用银铜、磷铜、铬铜、锆铬铜、结晶器为带有锥度和弧度的矩形或方型铜管,一般使用挤压管坯经成型冷拉而成;电极合金几乎全部是Cu-Cr-Zr合金,加工材的形状有棒、片、圆盘件,加工方法多为锻造、挤压、拉伸,直径φ8~φ12毫米,内孔φ0.8~φ1.2毫米小眼管材也正在试制中;随着电气化铁路和高速列车的发展,对供暖电接触线提出高强高导电的要求,过去 的纯铜导线已不能满足要求,由于列车速度的提高,要求接触线具有高的强度,车速与接触的线的抗张里平方根成正比,因此,多选用银铜和铜铬合金来制造导线,接触线的断面形状为双沟形状,断面积为100、110、120mm2,导线长度要求大于1000m,通常使用卧式和上引方法铸造大长度卷坯,然后经过盘拉法生产,盘拉一般为五模速拉;精密导电器件由于形状复杂,加工精度要求高,纯铜的切削性能不好,重要器件多选用含碲0.5%的碲铜合金,该合金可以使用常规方法生产,上述应用的合金性能列入表1.3.1。 常用高铜合金性能 TP2 TAg0.1 QCr0.5 QCr0.5-0.2-0.05 TTe0.5 性能名称 0.015%P 0.1%Ag 0.5%Cr 0.5%Crm0.2%Zr,0.05%Mg 0.5%Te0.015%P 熔点℃ 1083 1083 1080 1078 1080 比重g/cm3 8.9 8.9 8.9 8.89 8.89 传热系数Cal/cm.sec.℃ 0.8 0.81 0.8 0.8 0.88 导电率%IACS 85 90 85 80-85 90-95 强度Mpa 265-343 265-343 300-480 370-450 250-320 硬度HB 75-95 75-95 110-140 125-150 75-110 抗软化温度℃ 200 250 300 450 250 热加工温度℃ 750-850 800-850 850-900 850-950 800-850
高纯钨条
2017-06-06 17:50:03
高纯钨条要求纯度在99.98%以上。钨金原名钨
金属
条,简称钨金、钨条。 钨金是世界上少有的一种
有色
矿产品,年
产量
很低,用途非常广泛,主要用于铸造配料用原料。钨金来源于一种白色砂型矿体,矿线特别微小,经过采掘、研磨、水重选、提炼等多道工艺,得到品位达到95%以上的钨矿粉,再经过高温电炉提炼成型生产出的成品才是钨金。钨金的熔点:3500℃。目前钨矿主要分布在中国和俄罗斯,中国现在是世界上最大的钨金出口国。钨的应用非常广,最常见的是以碳化钨(WC)的形式使用在硬质合金。这样的硬质合金用在
金属
加工、采矿、采油和建筑工业中作为耐用
金属
。此外在电灯泡和真空管中钨丝的应用也很广。钨还常用作电极。钨可以被拉成很细的丝,而且熔点非常高。其它应用包括:由于钨的熔点非常高,常用于航天和高温应用,比如电子、加热、焊接,比如钨极气体保护电弧焊。钨非常坚硬,非常紧密,因此制作重
金属
合金非常理想,这样的合金用在装甲、散热片和高密度应用如压重、平衡重物、船和飞机的压重等。由于钨非常紧密,飞镖往往含80%至97%的钨。高速钢含钨,有时含18%的钨。制造涡轮机片、耐用部分和保护层的高温合金含钨(哈氏合金、钨铬钴合金等)。子弹中使用钨来取代铅。钨的化合物被用作催化剂、无机颜色。二硫化钨是高温润滑剂,它在500 °C依然稳定。由于钨的热胀性与硅酸硼玻璃类似,它被用来做玻璃/
金属
密封钨与镍、铁和钴的合金被用来制作重合金,这样的重合金用在动能弹中取代贫铀。在集成电路中钨是前路之间的连接物。在二氧化硅绝缘体中侵蚀接触孔,注入钨,磨平来连接三极管。典型的接触孔可以小到65纳米。碳化钨是最硬的物质之一,被用在机器工具和磨料中。碳化钨是磨具和转具中最常见的材料,往往也是最好的材料。在放射性医学中钨被用作屏蔽物质。运输氟脱氧葡萄糖一般用钨容器,由于氟脱氧葡萄糖中的高能氟-18铅容器无法使用。氧化钨被用在陶瓷釉中,钙或镁钨常用在荧光粉中。在核物理和核医学中钨晶体被用作闪烁探测器。钨被用作X射线目标和在电子炉中作为加热器。含钨的盐被永在化学和皮革工业中。青铜色的氧化钨被用在绘画中。由于它的低敏感性碳化钨被用作首饰,此外由于它非常硬它不会像其它擦光的
金属
被划痕。有些乐器的铉使用钨丝。高纯钨条外观呈灰色或暗灰色
金属
光泽,主要用于铸造配料用原料;加工用车刀刀头及各种导热体;炼钢的配料及添加剂,制造高级汽车的曲轴、缸筒的配料及电极,广泛用於枪支、火炮、火箭、卫星、飞机、舰船的制造。
高铝矾土
2017-06-06 17:49:59
高铝矾土就是指铝矾土,只是其中含铝量比较高。铝矾土又称矾土或铝土矿,主要成分是氧化铝,系含有杂质的水合氧化铝,是一种土状矿物。白色或灰白色,因含铁而呈褐黄或浅红色。密度3.9~4g/cm3,硬度1~3,不透明,质脆。极难熔化。不溶于水,能溶于硫酸、氢氧化钠溶液。主要用于炼铝,制耐火材料。 高铝矾土的用途: (1)炼铝工业。用于国防、航空、汽车、电器、化工、日常生活用品等。 (2)精密铸造。矾土熟料加工成细粉做成铸模后精铸。用于军工、航天、通讯、仪表、机械及医疗器械部门。 (3)用于耐火制品。高铝矾土熟料耐火度高达1780℃,化学稳定性强、物理性能良好。 (4)硅酸铝耐火纤维。具有重量轻,耐高温,热稳定性好,导热率低,热容小和耐机械震动等优点。用于钢铁、有色冶金、电子、石油、化工、宇航、原子能、国防等多种工业。它是把高铝熟料放进融化温度约为2000~2200℃的高温电弧炉中,经高温熔化、高压高速空气或蒸汽喷吹、冷却,就成了洁白的“棉花”——硅酸铝耐火纤维。它可压成纤维毯、板或织成布代替冶炼、化工、玻璃等工业高温窑炉内衬的耐火砖。消防人员可用耐火纤维布做成衣服。 (5)以镁砂和矾土熟料为原料,加入适当结合剂,用于浇注盛钢桶整体桶衬效果甚佳。 (6)制造矾土水泥,研磨材料,陶瓷工业以及化学工业可制铝的各种化合物。 目前,已知赋存高铝矾土的国家有49个。我国有丰富的高铝矾土资源,约37亿吨,居世界前列,与几内亚、澳大利亚、巴西同属世界高铝矾土资源大国。但生产供耐火材料用的高铝矾土的国家只有圭亚那和我国,其他国家的铝矾土含铁量高,多用于炼铝和研磨材料。 我国高铝矾土矿资源比较丰富,在全国18个省、自治区、直辖市已查明高铝矾土矿产地205处,其中大型产地72处(不包括台湾)。主要分布在山西、山东、河北、河南、贵州、四川、广西、辽宁、湖南等地。 更多关于高铝矾土的资讯,请登录上海有色网查询。
金属硅工业硅
2017-06-06 17:49:50
金属硅工业硅生产和对外贸易及硅业的发展。 2004年以来,国家针对高耗能,高排放的资源性产品行业相继出台了一系列宏观调控政策措施。工业硅行业和钢铁、电解铝和铁合金等行业一样,都是被重点调控的行业之一。在国家不断加强宏观调控力度下,应该说工业硅项目低水平重复建设的势头已受到一定遏制,落后生产能力开始被淘汰,整个行业节能和环保意识有新增强。但不能不看到,在取得这些初步成效的同时,长期盲目扩张积累的问题仍很突出,仍有某些地区和企业还在盲目上新项目。整个行业要遏制盲目扩张势头,消除无序竞争,还有很多工作要做。 2008年一开始,从2008年1月1日起,国家就对我国出口的工业硅征收10%的关税,这是继取消出口工业硅13%的出口退税之后又一项十分明确又很有力度的对工业行业的宏观调控措施。对我国工业硅行业2008年和以后的发展都将产生重要影响。既为工业硅企业的健康发展提供了新的机遇,也是十分严峻的挑战。2008年上半年相继发生的历史上罕见的低温、雨雪、冰冻灾害和千年不遇的特大地震,对我国若干省区的工业硅企业发展也造成了重大损失和困难。 在这种新形势下,我国2008年1~5月份共出口工业硅29.304万t,而2007年1~5月份的出口量是24.39万t。2008年上半年月均出口量为5.966万t,而2007年上半年月均出口量是5.013万t。实际情况表明,宏观调控的加强和自然灾害的影响只使我国工业硅生产和出口快速增长的势头受到消弱,但出口量仍在增长,并没有降下来。 更多关于金属硅工业硅的资讯,请登录上海有色网查询。
有机硅 多晶硅
2017-06-06 17:50:13
有机硅 多晶硅的区别?由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性,广泛应用于航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等
行业
,其中有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。 多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。 多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。 在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的
市场
,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
高铝矿物(蓝晶石、红柱石、硅线石)的选矿工艺流程
2019-01-29 10:09:51
对于非常普遍的细粒嵌布或粗细不均匀嵌布矿石来说,通用的选矿工艺流程是这样的:破碎→磨矿→反浮选→正浮选→磁选→精矿。反浮选的对象有两类:(1)石墨、云母等易浮矿物;(2)黄铁矿、金红石或钛铁矿等金属矿物。磁选有干式磁选和湿式磁选之分。磨矿之前有洗矿,反浮选或浮选之前脱泥也是很常见的。
对于粗粒嵌布的矿石而言,重介质选矿是经济有效的。南非和法国的红柱石矿就是采用重介质选矿磁选的工艺流程组织生产的。
大量的研究工作和生产实践表明,蓝晶石类矿物典型的选矿工艺流程如图1所示。图1a是美国蓝晶石矿业公司在弗吉尼亚洲东岭选矿厂的工艺流程。浮选精矿先经湿式强磁选除铁,再经干式强磁选才能得到最终精矿。干式强磁选前,蓝晶石经过沸腾炉干燥和回转窑煅烧,具有除去矿物表面药剂覆盖层的作用,这一覆层在磁选时会引起颗粒间互相凝结而影响除铁效果。图1 蓝晶石类矿物的选矿工艺流程图
图1b是印度含云母的蓝晶石石英岩的选矿流程。捕收剂石油磺酸盐的平均分子量为500。据称该流程有三大特点:浮选前不脱泥;湿式强磁选除铁;适应性强。处理印度不同产地,蓝晶石含量为20%~57%的矿石时,都可获得合格精矿。
图1c是南非处理粗粒红柱石矿的重介质选矿-磁选流程。分选介质平均密度2.55,分离点密度2.96。法国红柱石矿的选矿流程与此相似。