您所在的位置: 上海有色 > 有色金属产品库 > 过滤铁粉 > 过滤铁粉百科

过滤铁粉百科

过滤

2019-01-04 13:39:38

矿石、精矿或焙砂经过浸出后,便得到由液体溶液和末溶解的困体颗粒所组成的矿浆。为了便于提取金属,必须使固体和液体分开,亦即固液分离。固液分离的方法有几种,其中最常用的一种方法就是过滤。在冶金厂中,过虑使常用过滤机。过滤机分为好几种,如板框压滤机,转筒真空过滤机,密闭式圆盘过滤机。管式过滤器,离心过滤机等。这滤机中嵌有滤布(用棉、麻、亚麻布等制成),把矿浆放入过滤机中,让溶液通过滤布,而固体则不通过,这样就把溶液和固体分开了。为了加速过滤,需要在滤布两侧造成压差,形成这种压差可以使用两种方法:一种是给进料侧施于压力(即正压操作)这样的过滤机叫做压滤机;一种是在出液侧抽真空(即负压操作),这样的过滤机叫做真空过滤机。

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

钛液的过滤

2019-02-13 10:12:38

钛液的过滤又称操控过滤,通过沉积和别离硫酸亚铁后的钛液,在进入水解有的应该是非常纯洁的,不含任何不溶性杂质。但是在别离硫酸亚铁的粗滤进程中仍有少数极细的悬浮杂质穿滤而混入钛液中,别的由于经冷冻结晶、别离亚铁后的钛液温度和粘度进一步下降,又有部分肉眼看不到的细微胶体杂质沉分出来,有必要进一步过滤别离后才干运用。由于这些带电的细微胶体微粒比表面积很大,不只表面会吸附有害的重金属离子影响产品的化学纯度和外观白度,并且这些杂质粒子在水解时会构成不良的结晶中心,影响水解产品的粒子结构,构成晶格缺陷,使杂质离子混入晶格,导致钛的光学性质、颜料功能下降。这是硫酸法钛生产中由黑变白前的最终一道净化进程,应该特别留神,否则会构成无法弥补的结果。     工业生产中的操控过滤一般选用加压过滤,大多数运用板框式压滤机。在加压过滤中,过滤速率与过滤面积及过滤面积上的压强成正比,与滤液的粘度和滤饼的厚度成反比,一般情况下温度升高、粘度下降可进步过滤速率。     由于铁液归于淡薄的胶粘溶液,其间胶体杂质颗粒很细,在气温较低时乃至还有细微的硫酸亚铁晶体进一步分出,加上钛液在高温下不安稳的特性,不行能在过滤时把温度升得太高(一般不大于40℃)。假如加大过滤压力不只会有细微的颗粒从滤布缝隙中挤出,并且会因滤布的孔眼阻塞而使过滤速度减慢直至过滤进程中止。在这种情况下可以通过添加助滤剂,在过滤介质上构成一层助滤层,这种辅佐过滤颗粒可以添加孔隙率、削减滤饼紧缩率、防止滤孔阻塞、进步过滤功率、添加过滤流通量。助滤剂的挑选应契合下列准则。     a.过滤助滤剂应在溶液中不分化,不与被过滤的溶液发作化学反应;     b.过滤助剂的颗粒有必要在溶液中易涣散,具有较好的悬浮性,构成的滤层疏松、多孔、吸附功能好;     c.助滤剂的粒度均匀,并在必定的粒度散布范围内、颗粒较坚固、不行紧缩、在压滤时不破碎;     d.报价低廉、来历丰厚,运用后的助滤剂可与滤饼一起弃去。     过滤钛液时常用的助滤剂有:硅藻土、木炭粉、木粉、白土、稻壳灰、纸浆等。     硅藻土是一种古代单细胞硅藻微生物残骸的沉积物,其主要成分为SiO2、A12O3、Fe2O3、CaO、MgO等,其间SiO2含量80%~85%,相对密度2.1~2.5,耐酸功能好,色彩有多种呈土状不透明,以白色质量最好,硅藻土有天然品和加工品之分。钛液过滤用的硅藻土一般是通过酸洗、枯燥后的烧制品,经加工后的硅藻土SiO2含量较高(SiO288%、A12O32.0%、Fe2O31.3%),粒度在150目左右(筛余7%),用量0.5kg/m2左右,助滤层铺设厚度lmm左右。     木炭粉一般是用木材先烧成木炭,然后再破坏制得。木炭粉由于其颗粒近似球形、孔隙率大有利于过滤,并且质量较轻简单涣散,它的表面孔隙率很有利于吸附胶体颗粒;其灰分含量应<10%,细度80~120目,不含MnO和Fe2O3等防止下降钛液中的三价钛含量,用量一般1kg/m2,助滤层铺设厚度1~3mm。     稻壳灰由多孔硅酸物质组成,SiO2含量大于90%,有较好的吸附效果。     木粉和纸浆都归于纤维素类,不只具有多孔性,并且与快速活动的钛液相触摸能发生负电荷,然后可以捕集溶液中带正电荷的胶体粒子,常与硅藻土等联合运用,缺陷报价较贵。     钛液的过滤操作,一般是先把助滤剂用水(或小度水、淡废酸)打成浆泵入过滤机,使助滤剂在滤布上构成一层均匀的助滤层,直至循环液弄清时中止,然后再把待过滤的钛液泵入过滤机内循环过滤,查看滤液弄清度契合标准后,中止循环进行接连过滤。当过滤压力越来越高、滤液流量越来越少时,阐明滤布孔眼已被阻塞,此刻应中止过滤,拆机洗刷滤布,从头按上述过程操作,切忌使用进步过滤压力来强行过滤,防止细微颗粒穿滤构成弄清度不合格。在冬天由于钛液粘度较高,当室温低于冷冻结晶温度时,会有细微业铁结晶出来影响过滤操作正常进行,此刻可用热水把钛液加热到30~40℃,可进步过滤速率。     关于某些产品要求杂质含量很低,外观白度要求很高的产品如食物、医药、试剂和高白度、高亮度的颜料级钛,仅用上述过滤操作是不能满足需要的,有时还要进一步把一些微量的可溶性杂质设法除掉,防止在水解时这些杂质与钛液一起水解而沉积吸附在偏钛酸的粒子表面而混入产品中。     钛液中的可溶性杂质一般分一类是溶于钛液中的硫酸亚铁,由于硫酸亚铁在酸性溶液中不发作沉积,水解后仍存在于母液中,很简单通过水洗除掉;另一类是对产品质量损害较大的金属离子如Cu、Pb、Co、Cr、Mn等,可以通过参加硫酸铜、,让上述杂质生成硫化铜、硫化铅、硫化钴、硫化铬、硫化锰等金属硫化物沉积,这些硫化物在酸性介质下是不溶的,可以通过过滤把它们除掉。由于这些有害杂质数量很少(0.004%~0:01%),既使悉数转化为硫化物,由于数量少、颗粒细,在过滤时仍有或许穿滤曩昔,硫酸铜的效果是作为这些细微胶体颗粒的载体,使它们可以一起沉积下来。     国外有的工厂对钛液的净化度要求很高,钛液有时要通过三道过滤,即:沉积钛液结晶前过滤(热过滤)、结晶后板框压滤(操控过滤)、浓缩后趁热用管式过滤机再过滤1次(精细过滤),用这样过滤出来的钛液,生产出的钛白度很好。     查看过滤后钛液的质量有定量分析和定性分析2种。定量法是测定过滤后钛液中的悬浮固体物质的残留量,一般应     二氧化钛含盘/g/L    135~175      铁钛比         0.18~0.37      F值               1.8~2.1       安稳性/mL    ≥400     三价钛含量/g/L         1~5

还原铁粉让普通铁精粉身价倍增

2018-12-13 10:31:09

日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )         北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。    据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网

铝合金熔体过滤净化技术

2019-01-14 14:52:58

金属中的夹杂物、气体对材料的强度疲劳抗力、耐腐蚀性、应力腐蚀开裂性能等均有重大影响。有效地控制熔体的氧化夹杂物,以提高铸棒的质量是铝业熔铸共同追求的目标。目前,广泛采用过滤净化方法去除铝合金熔体中的夹杂物。  1.铝合金中夹杂物的形成  铝合金中的夹杂物一部分直接来自废料,而大部分则是在熔炼和浇注过程中所形成的,主要是氧化物夹杂。在铸造前的所有夹杂物称为一次氧化夹杂,根据尺寸大小可分为两类:一类是宏观组织中分布不均匀的大块夹杂物,它使合金组织不连续,降低铸件的致密性,成为腐蚀的根源和裂纹源,从而明显降低合金的强度和塑性;另一类是细小的弥散夹杂,这类夹杂物经过精炼也不能完全去除,它使熔体粘度增大,降低凝固时铝液的补缩能力。二次氧化夹杂物主要是在浇注过程中形成的,在浇注时,铝液和空气接触,氧与铝作用形成氧化夹杂物。铝合金在熔炼过程中与炉气中各种成分接触,生成AL2O3等化合物。铝液中的Al2O3会增加铝合金熔体的氢含量,所以,铝液中的AL2O3含量对铝铸件中气孔的形成有很大的影响。  2.过滤净化方法  泡沫陶瓷过滤技术出现于20世纪70年代,采用泡沫陶瓷过滤板是清除铝熔体中夹杂的较有效方法。至于金属过滤网、纤维布过滤,只能除去铝合金熔体中的大块夹杂物,但对微米级以下的夹杂物无法去除,而且金属滤网还会污染铝合金。采用泡沫陶瓷过滤板,能滤除细小夹杂物,显着提高铸件的力学性能和外观质量,是熔铸车间的首要选择。  3.过滤板的使用和选择  泡沫陶瓷过滤板安装在炉口与分流盘之间的过滤箱里,过滤箱由“中耐五号”耐火材料制成,它能经过于多次激冷激热而不开裂,有着强度高、保温性能好等优点,是目前制作过滤箱、流槽等较好的材料。过滤箱离分流盘越近越好,原因是这样能缩短铝液过滤后的流动距离而减少或避免氧化物的再次产生。铝液从炉口流出经过过滤箱,再通过流槽流入分流盘。过滤装置起动时,熔体过滤前后的落差约50mm,但随着过滤时间的延长,引起过滤板表面和孔壁上夹杂物增加、过滤流量减小、前后落差增加,至铸造结束时,落差增加至60—120mm。选择过滤板必须根据铝液流量而定;其次,应考虑熔体的清洁度、夹杂物较高含量和熔体总通过量。设计过滤装置时,应根据被选过滤板的规格,以及考虑炉口、分流盘的落差,必须保证过滤板在熔体铸造时浸没在铝液内。此外,还必须考虑到安装和拆卸很安全方便,在熔体铸造完后能把过滤箱内的铝液全部流完。过滤板表面实践证明,泡沫陶瓷过滤板是目前除去熔体中的氧化夹杂物的较有效工具。一般的纤维过滤只能除去大块夹杂物,而泡沫陶瓷过滤板可同时滤除大块夹杂物和细小夹杂物。  4.过滤原理  泡沫陶瓷过滤板具有多层网络、多维通孔,孔与孔之间连通。过滤时,铝液携带夹杂物沿曲折的通道和孔隙流动,与过滤板泡沫状骨架接触时受到直接拦截、吸附、沉积等作用。当熔体在孔洞中流动时,过滤板通道是弯曲的,流经通道的熔体改变流动方向,其中的夹杂物与孔壁砧撞而牢固的粘附在孔壁上。  过滤板的主要效果是它的的尺寸和孔隙度来保证,过滤板的孔隙越大,除渣效果越差,对于要求很严格的铝铸件,应选择孔隙小的过滤板。  泡沫陶瓷过滤板是目前除去熔体中氧化夹杂物的较有效工具。

黄金选矿专用设备-专用过滤设备

2019-02-13 10:12:33

1.管式过滤器    管式过滤器是贵液净化设备,适于净化金、银等贵液。目前我国首要出产由中国有色院规划的20m2管式过滤器,首要出产供应商有辽重、内机、包矿、吉林探矿、烟矿及乳机。此外,烟矿和乳机还别离出产40m2和Φ600管式过滤器。     由中国有色院规划的20m2管式过滤器作业原理是:在压力效果下,溶液由管体下部旁边面进液管给入,经过滤布进入过滤管,滤渣留在滤布上,净液由滤管上部经聚流管排出,成为净化后贵液。     其特色如下:①结构紧凑,体积小,过滤面积大;②过滤效果好,比板框过滤器单位过滤面积处理才能有大幅度进步;③操作便利,能及时排渣。     20m2管式过滤器的首要技能参数列于表1,外形和装置尺度示于图1。    鑫海矿机除出产管式过滤器外,还出产相同起过滤、净化贵液效果的板框净化槽,其技能功能别离见表2、3。    2.板框净化槽    吉林探矿出产的板框净化槽是用于黄金化产金工艺中贵液脱氧前的贵液净化专用设备。其效果是铲除固液别离后贵液中含有的泥质等悬浮物固体杂质,得出纯净化液,是进步置换后的金泥档次,下降火法冶炼出产成本,为取得高档次的合格金发明有利条件。本设备结构简略,保护便利,简单操作,可在运行时进行轮换清洗,运用周期长。本设备的各滤片的集液管与脱氧塔直接相联,使用脱氧塔内真空可吸入净化后的贵液进行脱氧。此设备用浮漂组织操控高真空蝶阀开闭来调整液面凹凸方位。其首要技能参数见表4,结构简图示于图2。     图1  图2       表1  表2、3  表4

铋矿三氯化铁浸出-铁粉置换法

2019-01-31 11:06:17

流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图

含铁粉矿球团化制备工艺研究

2019-01-24 09:36:35

近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。 在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。 本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。 一、试验条件与方法 (一)原材料 1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。 2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程 每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。 (三)抗压力测试 试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。 (四)所用仪器与设备 加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析 (一)加热固化制度对球团抗压力的影响 所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。 试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。 从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。 (二)粘结剂加入量对抗压力的影响 在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。 (三)不同粉矿条件下的抗压力 为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。 按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。 通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。 三、结论 (一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。 (二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。 (三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。 参考文献 [1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64. [2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36. [3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98. [4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50. [5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20. [6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.

利用磁选机提取河沙铁粉的工艺介绍

2019-01-16 17:42:18

由于近几年我国钢铁原料----铁精粉价格的攀升,河沙选铁的利润大幅度提高,专用机械----河沙选铁船、磁选机等系列选矿设备得以在全国范围内大面积推广。 中科公司生产的河沙铁粉提取磁选机有实际的应用效果。 这些选矿设备大致的工作原理为:通过磁选机将河沙中的磁性铁选出来。下面就具有代表性的设备--挖沙选铁船的构造、原理以及操作规程简介如下: 挖沙选铁船由浮体、链斗挖沙系统、筛分系统、磁选系统、尾沙排除系统、动力系统组成。 首先,河道里有水,我们的选矿设备必须要浮在水面上工作,因此我们用3.5-4毫米的钢板做成了浮体,根据挖沙深度的不同,浮体的宽度和长度都有相应的尺寸要求,一般宽度在1.5-2米之间,长度在16-32米之间。 另外,我们为了增加船的稳定性,两个浮体之间间隔了一定的距离,一般为1.5米左右。顾名思义,这套选矿设备的上料系统是链斗式的挖沙系统,河沙由链斗提上来以后,因为有大小不一的石子,为了保护磁选机的安全,必须经过筛分系统。根据河道的环境不同,一般来说,石子比较少、直径比较小的河道用自震式比较好,维修方便,节省动力(约3KW)。而石子很多,直径又比较大的河道就要用滚筒式的筛子了。经过筛分后的石子一般直接流入河道,如果有经济价值也可由传送带输送到岸上出售;河沙转入磁选系统。磁选系统主要是磁选机和水洗精选系统。 磁选机的磁表强度一般要达到3800-4500高斯,规格为750*2200-2400,这样配套才能达到90%的净选率。水洗的作用是提高毛铁粉的品位,一般可在30-45之间自由调节。尾沙排除系统的作用是将选去铁粉的尾沙排到远离本机械的地方,以保证本机械能正常的工作。一般有自流式、传送带式、抽沙泵式三种形式当然这也是根据河道的具体环境来定的。

铜钼浮选分离及精矿浓缩过滤技术

2019-02-27 08:59:29

浮选选机通过多年的工艺改善和出产实践,结合老练的选矿工艺,在浮选铜钼方面,有着得天独厚的经济优势。碎矿体系选用三段一闭路的流程,给矿粒度为0-1000mm,产品粒度保持在14mm以下,较好地完成了多碎少磨的规划准则。磨矿流程为一段闭路磨矿,分级溢流细度在55%左右。浮选流程在多年的出产过程中逐渐优化,我国多家规划院曾对铜矿矿石做过屡次选矿实验,各种实验均标明选用部分混合优先浮选铜和钼,然后再选钴和进一步收回铜的流程较好,在出产实践中也得到证明。在浮选时,用石灰作按捺剂,首要按捺钴黄铁矿,用轻柴油作捕收剂,2#油做起泡剂,优先浮选得到铜钼混合粗精矿,铜钼混合粗精矿经再磨后进入精选,然后再进行铜钼别离,别离时抑铜浮钼,用作按捺剂。浮选铜钼后的尾矿用黄药作捕收剂选钴和另一部分铜,铜钴粗精矿经精选后进入钴再磨,然后用丁胺黑药做捕收剂进行铜钴别离。再出铜精矿兼并得到混合铜精矿。

水平带式过滤机在山铝运行

2019-01-11 09:43:26

近日,又一科技新项目———水平橡胶带式过渡机在中铝山东企业氧化铝厂成功投入运行。它的投运对进一步降低硅渣浆水分,减少铝氧回头,优化工艺指标,实现提产降耗都将发挥积极作用。  水平橡胶带式过滤机是山东铝氧化铝厂自行建设安装的大型设备。有效过滤面积为30平方米,产能接近折带式过滤机的2倍。具有自动化程度高、便于操作控制等特点。为确保该项目的如期投运,该厂打破常规,采取倒排工期的方式,精益求精保质量,全力以赴赶进度。在主体设备安装之前,他们对厂房内原有的设备进行了拆除、清理。担负施工安装任务的佳林公司克服现场狭窄、交叉作业、施工难度大等困难,科学组织,合理安排,在短短的15天就完成了2台水平橡胶带式过滤机的安装调试任务。进入试车阶段后,该厂科技人员密切监控设备的运行状况,合理调配工艺参数,采取边试车、边改进的方案,对项目的部分部件进行了革新改造,使设备性能更加趋于完善。

炼钢炉尘提取还原用铁粉重选技改实践

2019-01-21 18:04:35

一、前言 炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。 由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。 二、原因分析 (一)原料分析 铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。 炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。 另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。 (二)原工艺流程及存在的缺陷 1、原工艺流程  原工艺流程如图1所示。2、原工艺存在的缺陷 (1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。 (2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。 (3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。 (4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。 三、解决措施 针对现有生产工艺存在的问题,对现有工艺进行了优化。 (一)新工艺流程 经改造后的新工艺流程(略) (二)改造措施 1、将一段摇床改为螺旋溜槽。 2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。 3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。 4、在新增球磨机后增加一台磁选机。 四、改进效果 经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。 五、结论 (一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。 (二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。

泡沫过滤器在铝铸件生产中的应用

2019-01-15 09:51:27

摘 要 在有色金属制造业中, 生产出来的合金普遍容易氧化。目前, 采用有效的溶液清理和熔渣粒化及循环除气法等金属处理技术, 都可获得高品质的合金。    关键词 铸造 合金 泡沫过滤器 铝铸件  在铸造生产中, 当液态金属由保温炉注入型腔时, 仍有这样的问题, 即在这一阶段出现任何紊流都会产生薄的氧化皮。这些缺陷不仅不会再“治愈”, 还作为薄弱点保留在铸件中, 并常由于在两壁之间造成的漏隙而使压力试验失败。过滤器广泛应用于有色金属铸造业已有多年。但很明确, 过滤器须具有下述两个单独的特性:①能去除金属夹附的杂质;②确保金属流平稳、无涡流注入型腔。  当初, 当靠前股液态金属流一到达泡沫过滤器入口表面, 就会出现一个短暂的停留, 形成充足的背压。这一压力是由直浇口中的金属位差产生的, 一旦形成, 金属流又会恢复, 就好象过滤器根本不存在一样。  浇注系统中紊流多发生在直浇口和浇道棒的前端等部位。如果在浇道棒内横跨安置一个泡沫过滤器, 那么靠前股金属流会被阻挡住, 待注满直浇口后, 即为平稳的浇注, 这样就防止了氧化皮的形成。泡沫过滤器是具有这种性能的过滤器。  不采用过滤器浇注铸型时直浇口还未完全注满, 液态金属和空气的混合物就顺浇道而下。结果形成氧化膜, 并夹带空气进入型腔, 以致降低铸件机械性能并可能缺乏压力紧密性。  采用与上述同样规格的浇注系统进行浇注, 只是在浇注棒内添置了Sivex FC 泡沫过滤器。直浇口被迅速注满后, 金属非紊流会绵绵不断地沿着浇道流入型腔。  内置Sivex FC 过滤器后, 在过滤器入口表面,明显地可以看到形成的团状氧化物, 这表明在常出现紊流的现有浇注系统内, 使用这种过滤器, 能有效的阻挡住氧化物。实例分析  下述两项调查充分说明了有色金属铸造厂是如何利用流线形金属流来控制成本的。巴隆——克拉克铸造有限公司(Barran- ClarkL td)巴隆——克拉克铸造公司生产某些小型压模铸件。不过, 公司的多数产品都是采用铝合金在砂型里生产出来的。  泡沫过滤器有时可作为高柏奥尔(Kalpu r A l)装置用于各种砂型铸模。在铸造中, 它们不仅能减少铸件中非金属夹杂物的含量, 还能显著节省用砂量。比如在使用过滤器前, 浇道棒通常放在2 m 长的铝栏杆铸件的两端。现在只须简单地将它们穿过位于顶部的过滤器就行了。这明显地减少了长砂型的宽度, 从而减少了树脂粘结砂的需要量。另外, 提高了铸件的质量, 还减少了铸件清理量。  这同样适用于汽车部件。此处所示的油槽铸件是直接通过装有Sivex FC 非陶瓷过滤器的高柏奥尔(Kalpu r A l) 装置进行浇注的, 其好处有:①浇注重量可由11. 5 kg (无过滤器) 减至7. 5kg (带过滤器)②废品率减少3. 5%③降低型砂成本  这使每浇注6. 25 kg 的铸件, 能直接节约成本3. 62 英镑, 一年近4 300 英镑, 见表1。此外, 还有许多象能减少铸件清理量、提高产量和减少废砂掩埋这些无法估算的好处, 尤其是较后一点, 随着新填地税的实施, 效果将越来越明显。   沃尔卡斯特产品有限公司(V alcast P roduct sL td)沃尔卡斯特公司采用重力和低压模铸生产铝铸件。两种工艺都有其自身的优点, 可对个别的项目进行精细的评估。其广泛的客户包括有生产汽车部件、照明系统、工具和生活用品的制造商。  一种由沃尔卡斯特公司生产的、用于商务车辆的散热器顶部水箱, 为LM 6 硬模铸件。这种大小相当的薄壁零件一开始就遇到了问题, 每个铸件都必须送到专家那儿进行真空浸渍。直到在单直浇口处安装上约每厘米4 个孔的非陶瓷过滤器, 方才解决问题, 使这个3. 44 kg 的铸件成功浇注而无需浸渍。每一铸件, 加上过滤器的净成本, 可直接节约1. 76英镑, 每年则节约达3, 400 英镑。结论  泡沫过滤器不但为铸造业提供了去除金属流中所含杂质的能力, 而且能控制浇注量使浇注平稳。这种能力在直接浇注时, 不仅能提高铸造的质量标准,而且更重要的是它改变了铸件生产的方式。

黄金选矿专用过滤设备-Φ1m金泥洗槽

2019-02-12 10:08:06

辽重出产的Φ1m金泥洗槽(酸洗槽)用于选金工艺中来清洗金泥。     从置换机所置换出来的金泥,还含有一些杂质,冶炼之前必须将这些杂质铲除。在叶轮的拌和下,金泥中的杂质与发作化学反应,生成物溶解于溶液中,再经过滤设备,将杂质除去,然后得到精金粉。     Φ1m金泥洗槽的首要技能参数列于表1,结构和外形尺寸示于下图。    鑫海矿机出产的金泥酸洗槽技能功能列于表2。     表1  表2    图

氧化铁皮的综合利用:可用于制取还原铁粉等

2019-02-26 11:04:26

轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。 (1)用于出产海绵铁或制取复原铁粉。 海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。 氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C 氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。 (2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。 氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。 别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。 (3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。 钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。 电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。

江西理工大学铁粉表面包镀镍新方法获专利

2019-03-12 11:03:26

近来,由江西理工大学科研人员研制的一种铁粉表面包镀镍办法取得国家专利。       据介绍,这是一种采用水热氢复原技能在铁粉表面上包镀一层金属镍或纳米镍粉的办法,归于有色金属冶金和粉末冶金材料技能领域。本发明生产工艺办法简略,易于操作,包镀镍层可控。       这种新办法是将硫酸镍或硫酸镍水溶液、、硫酸铵按必定份额参加水中,配成混合溶液,参加少数蒽醌、添加剂,再将需要被镍包镀的铁粉参加到混合溶液中,然后将含有铁粉的混合溶液转入高压釜内,密封高压釜。在高压釜内经高温高压水溶液氢复原处理,溶液中的镍离子复原沉积在铁粉表面,构成细密的金属镍层或纳米镍粉包镀层。包镀反响完成后,将高压釜内的物料冷却,排出表面包镀了金属镍的铁粉和水溶液,经过滤、枯燥,取得表面被金属镍包镀的铁粉产品。

水平真空带式过滤机分离洗涤拟薄水铝石的开发与工业应用通过鉴定

2019-01-15 14:10:23

近日,中国有色金属工业协会在山西河津持召丌了“水平真空带式过滤机分离洗涤拟薄水铝石的开发与工业应用”成果鉴定会,与会专家认真听取项日组汇报,经过质疑和讨论,专家认为,项目首次将水平真空带式过滤机用于拟薄水铝石分离洗涤,优选出较为适合过滤拟薄水铝石的滤布,提高了设备的过滤强度。该成果确定了水平真空带式过滤机的较佳分离区和洗涤区,保证了滤饼附碱的合格率和降低了水耗。生产运行表明,设备运行稳定可靠,劳动强度低,该设备在拟薄水铝石的分离、洗涤方面的应用达到了国内先进水平,建议推广应用。

铋湿法冶金方法

2019-03-04 11:11:26

关于档次高、成分单一的铋矿,火法冶炼虽然还存在着SO2的污染问题,但现在仍是铋冶炼的首要办法。但对杂乱难选的低档次铋精矿、铋中矿,选用反射炉火法熔炼,不只收回率低,并且难以精粹产出优质精铋。20世纪60年代后期,我国开端致力于铋矿湿法冶金新工艺的研讨,用作浸出剂,在酸性氯盐系统中浸出铋矿,使矿藏中的铋以铋氯合作物的形状进入溶液,用铁粉置换产出海绵铋,经火法精粹出产精铋,并首先在云锡第三冶炼厂建成了湿法车间,处理锡铋混合精矿。 近年来,国内外的许多科研单位相继依据硫化铋矿的不同组成,环绕下降作业本钱,处理环境污染,的再生和溶液中有价金属浓度的富集问题,研讨了许多新的湿法冶金流程,浸出-铁粉置换法、浸出-隔阂电积法、浸出-水解沉铋法、选择性浸出法、亚硝酸法和中南大学的新氯化法。这些工艺流程大都巳进行丁扩展实验或半工业、工业实验。 一、浸出-铁粉置换法 流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。 此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合使用好,污染较小,为进步铋资源的综合使用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1  铋锡中矿浸出-铁粉置换提铋工艺流程图 二、浸出-隔阂电积法 为了简化流程,研讨用隔阂电积来替代图1流程中的铁粉置换和再生工序。其原理是在操控恰当电位的情况下,让铋在隔阂电解槽的阴极复原:阳极则发生铁的氧化反响:该流程的技能关键是电极电位的操控和溶液透过隔阂速度的操控。在阴极区,溶液中首要的阳离子是Bi3+、Fe2+和H+、在阳极区,溶液中首要的阳离子是Bi3+、Fe3+和H+,为使阳极区的三价铁不致在阴极放电而下降电流效率,应选用恰当的隔阂材料把阴、阳极分隔,阴极区液面应高于阳极区,并操控电解液的浸透速度,使流速与二价铁的氧化速度适当。 此工艺与-铁粉置换法比较,流程简略。但因为溶液中铁离子浓度较高,电积进程在电场力的作用下三价铁会不可避免地透过隔阂在阴扳复原,使电流效率下降(电流效率42%~50%),操作进程比较严厉。 三、浸出-水解沉铋法 此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉积物,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般操控在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋收回率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋收回率为60%~70%。 四、亚硝酸法 此法已在原苏联完成了半工业实验,用来处理哈萨克矿的难选含铋硫化矿精矿。根本原理是根据反响:此法耗费试剂品种多,除及氯化钠之外,需求、火油及过氧化氢等药剂。工艺流程见图2。技能经济指标(精矿耗费∕t):HCl 185kg、NaCl 260kg、NaNO3 3kg火油3kg、H2O2 6kg。图2  亚硝酸法处理铋精矿准则工艺流程图 五、选择性浸出法 此法选用操控电位的办法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。较之前面的几种办法,避免了很多的铁离子在流程中的循环和三价铁的再生问题,进步了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反响为:选择性浸出,铋的选择性较高,但耗费量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。 选择性浸出的工艺流程见图3。图3  选择性浸出铋准则工艺流程图 六、新氯化-水解沉铋法 唐谟堂等在多年研讨的基础上提出了一种新的处理铋精矿的湿法冶金办法-新氯化水解沉铋法。在36~378K的温度下,选用两段循环浸出,大大进步了铋的浸出收回率。该流程的特点是选用了一种含有金属氯化物的酸性水溶液(A#CA),它兼有和氯化剂的长处,处理了浸出剂的再生和溶液中铁的循环堆集问题,并使溶液中的铋浓度大大进步,后续工序的出产能力相应得以扩展。准则工艺流程见图4。图4  新氯化水解法准则工艺流程图 因为是在高温下浸出,杂质如As和S的氧化浸出率较高,一起副反响将导致氧气的耗费量增大。

金属铋制备方法研究现状及发展趋势

2019-02-18 15:19:33

铋是一种“绿色”金属,在地壳中的丰度和银的恰当。首要铋矿藏有辉铋矿(Bi2S3)、铋华(Bi2O3)和泡铋矿(nBi2O3 mH2O)。金属铋-般作为钨、钼、铅、铜、锡冶炼进程中的副产品收回。据美国矿业局1991年的资料,1990年国外铋的探明储量为8. 95万t,其他铋资源11.4万t,算计20. 35万t,首要散布在我国、日本、秘鲁、澳大利亚、墨西哥、美国、加拿大等,在环太平洋沿岸地区构成一个非接连性的大圈。国外铋资源散布状况见表1。 表1  国外铋资源散布    万t我国铋资源丰富,储量总计50~60万t,占国际总储量的70%,会集散布在湖南、广东、江西、云南4省。湖南柿竹园有色金属矿铋的储量占全国总储量的74%,并且档次高、易挖掘,是我国最重要的铋质料基地。近年来,国内许多科研机构依据铋矿的不同组成,环绕下降出产本钱、处理环境污染、FeCl3再生和溶液中有价金属的富集问题,展开了很多作业,开发了多种湿法冶金工艺流程,首要有:1)FeCl3浸出-铁粉置换法,2)FeCl3浸出-隔阂电极法,3)FeCl3-水解沉铋法,4)挑选性浸出法,5)-亚硝酸浸出法,6)新氯化水解法,7)矿浆电解法等。这些工艺流程大都已进行扩展实验或半工业、工业实验,其间矿浆电解法已用于工业出产。 一、国外铋矿的湿法冶金技能及工艺参数 国外用湿法技能处理铋矿石收回金属铋始见于1958年。Fester,等选用10%的HNO3从含铋钨精矿中浸出金属铋,浸出温度为80℃;选用10%H2SO4+NaNO3和H2SO4+KClO3作浸出剂,在较低的温度下浸出铋,也得到了较为满足的成果。表2是国外处理低档次铋矿的工艺参数。 表2  国外铋矿湿法处理技能及工艺参数二、国内湿法冶金技能及存在的问题 (一)FeCl3浸出-铁粉置换法 该办法可分为、浸出,铁粉置换,海绵铋熔炼3个首要进程,工艺流程见图1。图1  FeCl3浸出-铁粉置换法收回金属铋的工艺流程 1、+浸出。用与的混合液浸出硫化铋矿,矿石中的Bi2S3为FeCl3所溶解生成可溶性三氯化铋:一起,矿石中搀杂的少数天然铋也被溶解:矿石中的氧化铋则为所溶解:浸出剂中参加有助于避免BiCl3水解为不溶 性的BiOCl堆积。 2、铁粉置换。矿石中的铋经浸出后都转入到溶液中,加铁粉可置换出海绵铋:3、海绵铋的精粹。置换出的海绵铋需加热熔化铸成铋锭,但直接熔化会发作严峻的氧化反响,因而工业上是在熔融的(熔点318.4℃,密度2.13g/cm3)中进行熔化,这样既可避免铋的氧化,并且熔融的液铋(熔点271 0C,同温液体密度为10.064g∕cm3)也易于集合,一起铋的氧化物及其间某些杂质也能被NaOH吸收。基层集合的液铋经流铸构成必定巨细的铋锭,其间仍含有一些杂质,归于粗铋,须进一步精粹。 此法工艺比较老练,铋的浸出率高(94%~94.5%),环境污染小。其缺陷是材料耗费高,每 吨海绵铋耗费1.5~1.8t,0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中离子浓度较高,溶液粘度较大,渣的过滤和洗刷较为困难。 (二)FeCl3浸出-隔阂电极法 用隔阂电极法替代铁粉置换法,恰当操控电位,铋在阴极被复原:铁在阳极发作氧化:该办法的关键是电极电位的操控和溶液透过隔阂的速度操控。在阴极区,溶液中的首要阳离子是Bi3+、Fe2+和H+,在阳极区,溶液中的首要阳离子是Bi3+、Fe3+和H+。为使阳极区的三价铁离子不致在阴极放电而下降电流效率,选用恰当的隔阂材料把阴、阳南北极分隔,阴极区液面高于阳极区液面。操控电解液的浸透速度,使与二价铁的氧化速度恰当。 与浸出-铁粉置换法比较,此流程较短,但因为溶液中铁离子浓度高,电堆积进程中三价铁不可避免地透过隔阂在阴极复原,因而电流效率低(42%~50%),二价铁的电氧化率也不高。 (三)FeCl3-水解沉铋法 使用氯化铋易水解的特性,在弱酸性溶液中水解氯化铋,使生成氯氧化铋,制取氯氧铋精矿。 为使水解彻底,溶液pH值一般操控在1~2之间。溶液需稀释数倍,形成水和试剂耗量大、铋收回率低、废水排放量大。柿竹园选厂曾选用此法出产氯氧铋精矿,每吨精矿耗费工业800kg,铋的收回率仅为60%。 (四)挑选性浸出法 操控溶液电位,用挑选性浸出硫化铋矿,一起按捺杂质的浸出:此法消除了很多铁离子在流程中的循环和堆集问题,提高了产品质量,渣的过滤、洗刷功能也得以改进,铋的浸出率较高,但的耗费量大,部分单质硫会进一步氧化为硫酸根,的污染和腐蚀较为严峻,设备原料和密封要求较高。与浸出法比较没有显着的优越性。 (五)-亚硝酸浸出法 该法已进行半工业实验,处理的是难选含铋辉铋矿。根本化学反响为:该法耗费试剂品种多且量大,除和氯化钠外,还需硝酸纳、火油和等。 (六)氯化-水解法 中南大学多年来的研讨成果表明,选用高浓度氯离子溶液,在90~105℃下,二段循环浸出 硫化铋矿,铋浸出率超越94%,工艺流程如图2所示。氯化-水解法浸出硫化铋矿,处理了很多铁在溶液中的循环和浸出剂的氧化再生问题,并且浸出液中有价金属的浓度比较高。但浸出时所需温度较高,元素硫的氧化严峻,杂质元素如As的浸出率也较高,因而氧化剂的耗费量大,一起还存在设备腐蚀、废液排放量大等问题。图2  氯化-水解法提取金属铋的工艺流程 (七)矿浆电解法 矿浆电解法是北京矿冶研讨总院历经20余年的研讨成果,是一种新的湿法冶金工艺。在一个设备中一起完结铋矿石的氧化浸出和铋的电积复原,将传统的浸出、固液别离、溶液净化、电积等进程有机地结合起来,改变了铋矿浸出时耗氧,而电积时阳极氧化空耗能量的不合理状况,简化了湿法冶金流程,金属收回率较高,能耗下降,有利于保护环境。 矿浆电解法处理铋精矿是在中等温度(50~60℃)下和酸性氯盐体系中进行。浆化后的铋精矿参加到矿浆电解槽的阳极区直接电解,铋精矿在被氧化浸出的一起,金属铋在阴极被复原分出,完成了金属铋的一步提取。阳极区发作的铋精矿的浸出反响为:阴极区发作金属离子的复原反响:工艺流程如图3所示。图3  矿浆电解法处理铋精矿工艺流程 矿浆电解法不只保留了传统湿法冶金工艺的长处,并且还具有以下特色: 1、一步产出金属,元素硫、砷、铁及脉石矿藏进入浸出渣,进程简略,溶液中离子浓度低,浸出渣易于过滤和洗刷。 2、在常压和接近于常温下操作,设备可选用廉价的玻璃钢、聚等抗氧化腐蚀的材料。 3、矿粒-电解液-阳极-空气泡体系有十分强的去极化才能,电解时所需槽电压很低,因为充分使用了阴阳极的复原氧化性,电能耗费小。 4、试剂耗费少,整个进程根本上无试剂耗费。 5、作业方法灵敏,既适合于大规模接连作业, 完成机械化和自动化出产,也能以小规模和间歇式出产,乃至可在矿山进行“坑口冶炼”。 6、归纳收回作用好。除用于处理铋精矿外,还特别适合于处理低档次杂乱难选的铜、铅、锌、铋、银混合硫化矿。 三、结束语 虽然金属铋浸出工艺研讨比较深化和完善,但不论是惯例拌和浸出法仍是矿浆电解法,都需求较高温度或电能,出资大、本钱高,且易污染环境。现在,在常温下从低档次铋矿中浸出金属铋的研讨仍是一片空白,首要原因是铋矿档次低,组成杂乱,条件难于挑选。 别的,湿法冶金进程中发生很多废渣和废水,危害性极大,需归纳治理,因而,在往后的研讨中,要不断开发高效、无污染、低本钱、低能耗、归纳使用程度高的新工艺流程。

高锌或铅鼓风炉渣回收锌

2019-01-16 11:53:19

从含高锌或铅鼓风炉渣、炼锌的浸出渣、含锌的钢铁粉尘中回收锌、铅以及其他有用物质时,也有火法和湿法两种。1.渣烟化法锌渣(10-18%Zn)在鼓风炉型的炉中熔融,从风口一并吹入空气和微粉煤,还原挥发演中的锌,在气相中氧化,回收ZnO。最近有用电炉还原挥发锌渣,再冷凝回收锌。炼锌浸出残渣也有用作铅鼓风护的原料,提高渣中的锌量,可用烟化法回收。2.威尔兹法(Waelzprocess)在浸出残法或含锌的钢铁粉尘等当中加焦粉为还原剂,装在称为威尔兹炉的稍有倾斜的回转窑中。从一端用重油喷嘴加热,炉料在炉内旋转的同时向前移动,还原挥发的锌、镉、铅在中途氧化,在收尘装置中以粗氧化锌((65-70%Zn)形态回收,作为炼锌原料。3.电热法 在含锌原料中加焦粉和返矿进行制粒、烧结。此烧结矿(25%Zn, 30%Fe,4%Pb,+1Omm)55%加入同粒度的焦炭45%,装入电热蒸馏炉中使锌还原挥发,捕集回收为ZnO,矿渣含6%Zn,5.5% Pb,50%Fe, 1%Cu,经磁选,非磁性物返口,磁性物在电护还原熔融,分离回收铁和铅。 4.硫酸化培烧法在浸出残渣中加入等量的硫化铁精矿(FeS2),用沸腾焙烧炉在950K进行硫酸化焙烧,则铁酸锌分解为ZnSO4和Fe2O3浸出ZnSO4浸出液送往炼锌的主流程。 5.湿法处理浸出残渣用锌电解尾液在约363K(90℃)条件下浸出,锌、铁一起溶解。而且,在SO2的还原气氛下极易溶解。所得浸出残清中富集不溶性的铅和银。浸出液中含有大量的铁(30kg/m3左右)。因此,必须使铁形成过滤性良好的沉淀而除去。为此,可采用如下三种方法:(1)在363K(90℃)条件下加Na+,NH4+中和,生成过滤性良好的铁矾((Na/NH4)Fe3 (SO4)2 (OH)6)沉降除去。(2)添加ZnS(锌精矿)使Fe3+还原为Fe2+,同时通入空气进行中和,生成针铁矿(FeOOH)沉淀而除去。(3)用高压釜,在高压氧气下加热到470K,生成赤铁矿(Fe203)而除去

氧化铜矿处理几种理论研究(二)

2019-02-14 10:39:39

(三)分支浮选在氧化铜矿浮选中的使用    据有关材料介绍,分支浮选对低档次矿石效果明显。铜矿峪矿石档次偏低,精矿产率小,契合选用分支浮选的条件,为了验证分支浮选工艺对这类矿石的适应性,实验采集了一批氧化率43.19%,原矿档次0.33%的矿石。    实验流程,加药地址与硫化矿相同,见下图。实验成果见下表。氧化矿低档次矿石分支再磨实验成果浮选工艺浮选目标%药剂用量  克/吨原矿档次精矿档次收回率混黄药乙酯油惯例浮选0.34721.49484.125009012分支浮选0.34123.49884.03275759单支精矿再磨0.34926.64884.13009012分支精矿再磨0.3326.0983.44275759     实验成果证明:分支浮选对氧化矿低档次矿石是有用的。精矿再磨进步精矿档次5%与硫化矿共同,阐明粗精矿再磨工艺对铜矿峪矿石是适用的。[next]    分支浮选工艺适合于铜矿峪低档次、精矿产率小的矿石,也适应于氧化矿。分支浮选工艺与粗精矿再磨工艺相结合,可以节约各种药剂10~15%,又能进步精矿档次4~5%。总的经济效果十分明显,是当时下降选矿本钱,进步经济效益的途径之一。                        (四)用铁粉从胆矾溶液中置换铜的机理研讨    在使铜从溶液里直接沉积的许多办法中(例如电解,用铁、铝或锌置换;用CO、H2、H2S或SO2沉积;以及用Ca(OH)2或CaCO3沉积),实践证明,只有用铁置换的办法对低浓度、多杂质的溶液才是经济上可行的。    我国江西铜业公司用萃取—电积法或石灰沉积法收回铜的矿山,现已改用铁粉置换法收回铜。铁粉置换法的经济效益已逐渐被知道,因而,经过理论分析和科学实验来进一步论述铁粉置换技能,仍具现实含义。北京矿冶研讨总院有人著文就铁粉置换技能,工艺要求,下降铁耗和取得高纯铜粉的办法进行了实验和评论。    1.铜离子被铁置换的行为    pH值与置换速度的联系   跟着溶液的pH值下降(游离酸添加),交流速度加速,溶液中无游离酸存在,则难以进行交流;跟着溶液中Cu2+含量下降,交流速度也随之减慢,最终到达溶解与沉积的平衡,交流率不再上升,这种平衡一向坚持到铁粉耗尽;胆矾和金属铁交流的适合pH值为2~2.5。    置换时刻与交流率的联系   跟着置换时刻添加,交流率上升,但速度减慢(因Cu2+浓度下降和pH值上升),当正反响和逆反响平衡时,交流率到达最高值,该值一向坚持到金属铁耗尽;金属铁被悉数溶解之后,溶液里过剩的游离酸使沉积铜被从头缓慢溶解,导致排出液含铜上升,交流率下降。因而,正确把握化学平衡极为重要。    铁粉用量与置换速度的联系   在相同的交流时刻里,复原铁粉用量越多,交流速度越快;当溶液的pH值超越4今后,交流率不再上升。溶液中有过量的金属铁存在时,可以避免溶液里Cu2+上升,但过多的铁粉用量将使沉积铜档次下降,酸耗添加。    溶液含铜量对交流的影响   溶液中Cu2+浓度越高,交流率越高,因而,在实践使用时应尽量进步进液浓度;采纳添加Cu2+和Fe°的碰撞频率及进步FeSO4分散速度之办法,以求加速交流速度和取得较高听交流率。    逆流交流实验  选用逆流交流法可以在挨近理论铁耗的状况下,一起取得高档次沉积铜和高听交流率;    实验条件为  进液每立升含铜5克,pH值为2,复原铁粉用量为理论铁耗的110%,交流时刻15分钟,实验成果核算于下表。产品批号排出液含铜克/升沉积铜档次Cu%交流率%10.199696.0720.00379599.9230.01994.799.6140.193.897.9350.8246.783.02[next]     溶液中氢离子浓度下降,交流速度减慢,导致排出液含铜量升高,交流率和沉积铜档次下降,因而,在交流进程中要严厉监控氢离子浓度的改动和当令的补加游离酸于交流液中;第一批交流液理论铁耗的5.5倍复原铁粉相遇,按化学反响原理它的交流率应当最高,但是恰恰相反,它的排出液含铜居然高达0.19克/升,这一“失常”现象极为重要,是逆流交流实验所赋予的很有含义的启迪。    Fe3+对置换的影响    在铜矿石的硫酸浸出液中,或多或少的存在必定数量的三价铁离子。在以铁粉置换铜时,溶液中的三价铁大部分按反响式Fe2(SO4)3+Fe→3FeSO4被复原成二价铁,然后添加了铁耗,所添加的铁耗量以彻底反响核算,是溶液中三价铁离子量的二分之一。依据实验所得到的数据,可以得出这样的定论:在用铁粉置换铜时,溶液傍边的Fe3+简直悉数被复原为Fe2+。因而,在交流进程中要避免Fe2+的氧化,Fe2+的氧化将使铁耗添加和加速Fe3+的水解,给置换作业带来损害。对处理Fe3+浓度很高的溶液,选用铁粉置换法是不适合的,在这种状况下,考虑预先将Fe3+复原是必要的。    2.铁粉置换法收回铜的实例    例1  武山铜矿石酸浸液铜的收回    武山归纳矿石酸浸液每立升含铜14.1克、含铁7.7克、含Fe3+0.25克,在交流时需求往每立升溶液中追加0.125克纯铁,做为将Fe3+复原成Fe2+之用。然后,再按每一克铜需求0.88克纯铁来核算理论铁耗。先用硫酸将溶液的pH值调至2,再在搅动的状况下参加铁粉置换15分钟。实验成果见下表。理论铁耗%沉积铜档次%交流率补白10096.7594.25溶液里尽管有多种离子,但重金属离子的含量很低,因而,在沉积铜中的共沉物很少。10595.499.4311090.45~10011590.5~10012084.6~100     例2  城市山铜锌矿石酸洗液铜的收回    江西城门山铜锌矿石中含有水溶铜和吸附铜,需将这部分铜用稀硫酸洗脱,再加以收回。酸洗液每立升含铜0.97克,因无其它离子的化学分析数据,故在核算铁耗时只能依据铜的含量核算,并以通用的工业铁耗标明。先钭酸洗液的pH值调至2左右,然后在搅动的状况下参加复原铁粉,交流15分钟,马上过滤,清洗。对所得成果列于下表。工业铁耗%沉积铜档次Cu%交流率%排出液pH10092.894.643.511088.798.143.512082.398.354     实验证明:用抱负溶液的参数实验成果,辅导天然含铜溶液的交流实践,是可行的。    3.胆矾溶液铁粉提铜原理    铁粉置换化学   铁粉置换进程发作的三个首要反响为:                             CuSO4+Fe→FeSO4+Cu          (1-1)                           Fe2(SO4)3+Fe→3FeSO4         (1-2)                            H2SO4+Fe→ FeSO4+H2           (1-3)[next]    在pH为2~2.5时,搅动的状况下式(1-1)为首要反响,而在停止的状况下式(1-2)则变得重要,当pH                      Cu+Fe2(SO4)3 → CuSO4+2FeSO4        (1-5)    Fe2+的氧化和Fe3+的水解:在浸出进程中含铁矿藏中铁的溶解以及硫化矿和某些其他矿藏氧化时,Fe3+的复原发作了适当数量的Fe2+,而Fe3+极易被氧化成Fe3+:                     4FeSO4+O2+2H2SO4→2Fe2(SO4)3+2H2O    (1-6)    当Fe2+氧化所构成的Fe3+超越了溶解度,或pH值有所添加时,三价铁就按(1-7)水解而到达新的平衡。                       Fe3++3H2O ←→Fe(OH)3+3H+         (1-7)    操控溶液pH值避免Fe(OH)3沉积分出   三价铁在浸进程是不可避免要发作的,而对沉积置换又是十分有害的,因而,避免Fe(OH)3沉积分出,对胆水提铜作业的胜败联系甚密。Fe(OH)3沉积的pH值与Fe3+离子浓度有关,当溶液pH超越3.7时,溶液傍边尽管Fe3+离子浓度很低(10-5M)也要被水解沉积分出,分出的Fe(OH)3固体进入沉积铜中则下降沉积铜档次,阻止铜离子被铁复原和下降置换速度。因而,当用铁复原铜时,溶液的pH值最佳操控规模开端为±2,停止为±3。    胆水铁粉提铜动力学    铁粉置换的反响发作在固—液界面,化学作用使界面和溶液内部的浓度发作差异,引起分散作用。但这种浓差只存在于紧贴固体表面的一层相对不动的液膜(分散层)内,而溶液内部是均匀的。在分散层内发作着溶液浓度的接连改动,反响物经过分散层向界面分散,产品则经过分散层脱离界面。    这样,在铁粉置换的反响中包含着分散和界面化学反响这两个环节。实验证明,相界面上的化学反响进行得很快,分散速度慢,成了阻止反响的环节,因而,进程的总速度就取决于分散速度。    胆水铁粉提铜整个反响速度V0等于:                                    D•A                             Vo = ———• △C              (1-8)                                   V•δ     式中V为溶液体积,△C标明分散层两头浓度的增量。    式(1-8)标明,固—液反响速度取决于分散系数D,相界面面积A和分散层厚度δ,凡能改动这些要素的办法,都能改动反响速度。    在铁粉置换操作中要注意以下几个问题:(1)复原铁粉的粒度,(2)温度,(3)拌和,(4)溶液酸度,(5)胆水浓度。    经过对抱负溶液和实践用水溶液的实验,以及对胆水铁粉提铜机理的评论,阐明,只需选用合理的工艺和对进程影响要素可以及时地检测和调整,就能以挨近理论值的低铁耗,取得高交流率和高档次沉积铜。

从定影液和洗水中回收银的简便方法-金属置换沉淀法

2019-02-19 09:09:04

金属置换沉积法是从定影液中收回银的简洁办法之一。该法能够运用铁、铜、锌、铝和镁等金属,一般运用最多的是金属铁。置换前,最好先向定影液中参加0.5%体积的浓硫酸。金属置换法的首要缺陷是置换金属溶解进入溶液中,使定影液不能回来运用。如铁的置换是在酸性定影液中参加铁片或铁屑、铁粉,银即被置换复原沉积: 3NaAgS2O3+Fe=3Ag↓+Na2Fe(S2O3)3 置换作业是在拌和下先向每升定影液中参加浓硫酸约5mL,至溶液转变为黄绿色停止。不行参加过量的硫酸。因为过量的硫酸会分化NaAgS2O3而使溶液呈乳白色混浊状,并使置换产出的银中含硫添加。但硫酸加得太少,沉积在铁上的银不易洗下。当定影液放置时刻过长,因吸收空气中的二氧化碳而酸化呈黄绿色时,则可少加或不加硫酸。 在静置条件下置换,一般运用薄铁片或铁屑。运用前,先经热水和稀浸洗,除掉铁表面的油污和氧化物,并用清水洗净再参加定影液中。置换初期,因为铁的溶解并生成硫化物而使溶液发黑,最终溶液呈无色通明。置换进程约需48h。 置换完成后,倾去上清液并加水洗下铁片上的银。洗下的产品含微粒银粉、炭、氧化铁和硫化银等,呈黑色。将其静置沉积后,倾去上清液、过滤并水洗1~2次。然后移入烧杯中,加约相同分量的铁片及适量浓煮沸15~20min,以复原硫化银并除掉可溶物。再加水倾析洗刷2次,过滤,并用蒸馏水洗至无Cl-。枯燥后取得的粗银粉,含银达98%以上。 据报道,将钢棉(或锌丝、铝屑或黄铜屑等)置于圆筒塑料置换槽下部设置的多孔板(假底)上,定影液从置换槽中心的供液管供入多孔假底板下面,溶液逆流上升经过多孔板与置换金属反响后,从槽上侧的溢流排液管排出,置换出的银粉落入槽底。在理论上每公斤铁可置换3.9kg银。当用于处理含银2.5g∕L的定影液时,4kg钢棉实践收回银3.42kg。当向定影液中参加乙烯系的碳氢化合物或叔胺基缓蚀剂后,能够阻挠溶液对铁的腐蚀,使每公斤钢棉置换的银由1.48kg提高到1.56kg。 使定影液经过两只装有粒度100~2000μm铸铁粉的置换柱,经约30h,可从溶液中收回90%以上的银。 向每升定影液中参加1~30g柠檬酸盐,使之与银生成络合物,然后用铝屑或铝丝(或汽车上的废黄铜散热片)置换,就可在约1min的时刻内将银置换出来。 取含银6~7g∕L、pH4.5的定影液320L,以135mL∕min的流速经过装有500g铝镁合金屑的置换槽,可收回1.95kg的银。

奔驰“铝”巨人:颜值+实力的传奇一生

2019-01-09 09:34:13

奔驰的这位“铝”巨人,实力虽然彪悍,但身材却很“轻巧”。铝合金的比重低,相同的体积下重量只有普通钢材的三分之一,但是吸收冲击能力却完胜普通钢材。   凭借好身材与强悍的能力,“铝”巨人不但降低了油耗和碳排放,带来更好的操控与更短的刹车距离,也使车辆拥有完美的碰撞吸收能力,提升安全性能,保护车内人员安全。   和传统印象中巨人的原始外貌不同,奔驰“铝”巨人当属外貌班的优等生。铝合金在空气中会自动形成一层细致的氧化膜,无惧阳光的侵袭和雨水的腐蚀,时光流逝也带不走它的颜值。   血肉英雄总有解甲归田的一天,但我们的“铝”巨人却可以较大化地回收再利用,即使受伤或者达到退休年龄后,也可以迅速调整自己,经过改造浴火重生,继续在其他岗位奉献自己。   深藏如此超能力,那么有什么保证它的稳定性,避免“铝”巨人暴走呢?   维修时打磨出的铝合金粉末如果不加处理非常容易引发尘爆,所以维修铝合金时要有专用的独立维修工位,还要有防火帘、防爆灯具、烟尘过滤等防护措施。   我们的材料界巨星“铝”巨人天生害怕铁粉追,如果维修时遇到铁粉或铁锈,会产生氧化引发油漆起泡,到时就只能更换新的配件了,为了避免这个情况,必须准备专用的维修工具避免与维修钢制车身的工具相互污染。   “铝”巨人除了天赋异禀外,当然也离不开高科技的辅佐加持。   “铝”巨人不算是孤胆英雄,在他赫赫声名背后,还默默站着一组与他并肩战斗的队友,他们就是奔驰专属的铝合金维修技师。他们经过层层筛选,有着过硬的维修技能,才能与“铝”巨人一同组成较强联盟。尤其是针对车身安全结构的焊接,一定得是奔驰认证的专业铝焊技师才可以。   “铝”巨人对温度很敏感,在常温下延展性低,因此需要加热到特定的温度才能修复,温度低了会造成开裂,但温度太高又会造成脆化,所以维修时需要精准控制温度,才能完美修复。   正因为深知每一台梅赛德斯-奔驰每一种车身材料的“脾气”,所以即使面对强大的“铝”巨人,我们也能严格遵循奔驰统一的维修标准,以较正确的维修方式进行修复,让安全稳稳地握在每位车主手中。

由含钒铀矿提钒工艺实例

2019-02-19 12:00:26

美国科罗拉多的钒铀矿是美国钒的首要来历。前期以出产钒为主,铀是副产品。1943年后调整为以出产铀为主。矿石中的钒除钒钾铀矿(K2O·2UO3·V2O5·3H2O)外,还有钒云母[3(AIV)2O3·K2O·18SiO2·2H2O]及含钙钒酸盐。含U3O8约0.24%~1.23%,V2O5约0.07%~1.16%。矿石可不经焙烧,直接用碱液(Na2CO3、NaHCO3)浸取,可是浸取率低,原因在于钒云母中的钒不溶于碱溶液。为此需在氧化气氛下850℃加碱焙烧,然后再在高压釜中120℃,0.21MPa压力下浸取4~6h。钒、铀的浸取率别离可到达70%~80%、90%~95%。 美国阿特拉斯矿藏公司,选用新工艺处理米维达铀矿,工艺流程如图1所示。图1  阿特拉斯矿藏公司莫亚比铀厂工艺流程 矿石破碎至19mm,依据质料的不同,分酸浸、碱浸两条路线处理。 一、碱浸 参加Na2CO3 50~60g/L,溶液进湿球磨、水力旋流器分级,然后进稠密机。溢流回来,加碱,调理至Na2CO3 50~60g/L,再用于球磨。底流分两组,每组串联7个高压釜浸取,120℃、0.35MPa、6h。排出料浆与进料进行热交换,头两个高压釜用直接蒸汽加热。浸取后的矿浆用鼓式过滤机过滤,残渣送尾矿池。滤液进入4个串联的拌和槽,通蒸汽加热,增加NaOH,生成Na2U2O7沉积,经浓缩过滤,得铀产品。滤液通CO2气后,作为浸取液,送往提钒车间。 二、酸浸 将矿石与水在湿球磨及分级机中细磨,液固比5/1,进浮选槽回收得铜精矿。浮选后进入一段浸取槽。浸取后进入水力旋流器分级。溢流经弄清、过滤得清液。底流进2级浸取槽,用蒸汽加热,参加H2SO4,逗留21h。排料经耙式分级机,溢流用作一级浸取用液;底流过滤、洗刷后,残渣送尾矿池。1、2级的清液兼并送萃取工序。 三、萃取 萃取液加酸,调pH值至1.0~1.2。送4级混合弄清槽用叔胺先萃取铀。萃取有机相为: 成分     1号柴油     叔胺     异癸醇 %         92.5        5        2.5 萃取后有机相用碳酸钠碱液反萃得铀产品。萃取铀后的萃余水相,参加金属铁粉,使溶液的电动势降至150mV以下,使铁离子悉数还原为二价,部分钒也被还原为四价,以便进步钒的萃取率。加调停pH=2,在5个混合弄清槽中逆流萃取。有机相为 成分     1号柴油     二-2-乙基-乙基磷酸     异癸醇 %          91                 6                  3 萃钒后的萃余液排入尾矿池。含钒有机相用15%H2O4反萃。反萃液送沉积槽,通蒸汽加热,参加NH4Cl、NH4OH沉钒得钒酸铵。最终将钒酸铵枯燥、熔化成薄片出售。

简述光亮镀镍几种故障处理方法

2019-03-12 11:03:26

毛病现象:低电位漏镀或走位差或许原因纠正办法a)光亮剂过多a)将PH调低至3.0—3.5后电解耗费b)柔软剂缺乏b)添加适量柔软剂  毛病现象:低电位起雾整平度差或许原因纠正办法a)光亮剂缺乏a)恰当补加光亮剂b)有机分化物多b)活性炭处理c)PH位太高或太低c)调整至工艺规模  毛病现象:低电位发黑,发灰或许原因纠正办法a)镀液中有铜,锌等杂质等a)参加适量TPP除杂剂或低电流电解b)光亮剂过量b)将PH值调至3.0—3.5后电解耗费  毛病现象:镀层有针孔或许原因纠正办法a)短少潮湿剂a)补加EHS潮湿剂b)金属基体有缺点或前处理不良b)加强前处理c)含量及温度太低c)分析浓度,将镀液加温d)有机杂质过多d)用活性炭处理  毛病现象:镀层粗糙有毛刺或许原因纠正办法a)镀液中有悬浮微粒a)接连过滤b)镀液受阳极泥渣污染b)查看阳极袋有否破损,将镀液完全过滤c)铁离子在高PH下构成氢氧化物c)调整PH至5.5参加QF除铁粉,避免铁工件掉沉积附在镀层中入槽中  毛病现象:镀层发花或许原因纠正办法a)十二烷基硫酸钠缺乏或溶解不妥a)查看十二烷基硫酸纳质量,如质量没问题应正或自身质量有问题确溶解并恰当弥补b)缺乏,PH值太高b)弥补调整PH值c)分化产品多c)用活性炭处理d)前处理不良d)加强前处理  毛病现象:镀铬后发花或许原因纠正办法a)镀液中糖精量太多a)电解处理,停加糖精,弥补次级光亮剂b)镀镍后搁量时刻太长,镍层钝化b)缩短放置时刻或用10%的硫酸电解活化处理  毛病现象:镀层有条纹或许原因纠正办法a)镀液中锌杂质过量a)参加除杂剂b)镀液浓度太低b)进步硫酸镍含量c)PH值太低,DK太大c)调整到工艺规范d)有机杂质污染d)对症处理  毛病现象:镀层易烧焦或许原因纠正办法a)主盐浓度太低a)分析成份后弥补b)镀液温度太低b)进步温度至55—60度(摄氏)c)含量缺乏,PH高c)弥补调整PH值d)潮湿剂过量d)选用活性炭吸附  毛病现象:镀层脆性大或许原因纠正办法a)光亮剂过量a)调整PH值3.0—3.5电解耗费b)有机杂质污染b)用活性炭处理c)金属杂质过高c)参加除杂剂d)六价铬污染d)用保险粉处理  毛病现象:阴极电流效率低或许原因纠正办法a)主盐浓度缺乏a)进步主盐浓度b)PH值过低b)调整工艺规模c)阳极纯化阳极面积不行c)进步氯离子含量,添加阳极面积d)镀液被氧化剂污染d)对症处理。

云锡三冶盐酸-FeCl3浸出流程工艺方案实例

2019-03-08 12:00:43

云锡三冶的工艺流程见下图,其操作及目标如下:图 云锡公司焊锡阳极泥酸浸湿法归纳收回工艺流程 一FeCl3浸出: (1)湿磨筛分:阳极泥在球磨机内浆化磨细。矿浆浓度达50%,磨至粒度—80目。 (2)浸出:在拌和浸出槽中进行。槽为¢8m×1.7m钢壳,内衬橡胶与瓷砖,蒸汽直接加热。浸出液成分(g/L)为:170~180HC1,20~40FeC13;液固比4:1;温度85~90℃;拌和时刻4h;中止拌和后加少数凝聚剂,弄清冷却4h。 (3)浸出产品的处理:含锡、锑、铋的上清液抽至高位槽;铅、银沉积物经浆化、洗刷、过滤后送脱铅工序,其成分为:4.5%~5%Ag,29%~41%Pb。 热水浸出: (1)热水浸出(开始脱铅):液固比30:1,pH>3 ,蒸汽直接加热至95℃,煮沸2h。 (2)趁热抽出含PbCl2的上清液,同槽洗渣两次。 (3)水煮渣成分:银进步至15%~18%,铅降至5%~7%,其他为3%~5%Sn,0.5%As,2%Sb,0.5%Bi。金银入渣率96%~98%。 置换-浮选: (1)水煮后渣在珐琅反响锅中加铁粉将AgCl置换成海绵银粉,以便于浮选出银。 (2)浮选别离铅银:用丁基胺黑药或戊基黄药捕收银、金,产出35%~45%Ag的银精矿。操控尾矿含银低于0.25%,银的选矿收回率96%~97%。以六聚偏磷酸钠或甲羧基纤维素按捺铅,使铅入尾矿,产出含45%~50%Pb的氯化铅精矿,铅的选矿收回率高于97%。 收回银: (1)银精矿成分(%)为:Ag35~45,Au35~45g/t,Pb8~12,Snl~2,As0.5~1,Sbl~2,Bi0.5~1,CI-3~4。其间Cl-主要为PbCl2带入。 (2)铁粉置换脱氯:在拌和浸出槽中进行。先将银精矿浆化,再以硫酸调pH至1~2,温度高于90℃,参加铁粉置换出PbC12中的C1-成为FeC12进入溶液。 (3)硝酸浸银:脱氯后的银精矿加于4~4.5mo1/LHNO3溶液中,拌和,银变为AgNO3溶于水中。生成的Pb(NO3)2与精矿中剩余的硫酸根反响生成PbSO4进入浸出渣。渣中尚含银3%~6%,金250~320g/t,是提金质料。银浸出率97%~98%。作业中发生的NO2通过文氏管水洗,所得淋洗液回来浸出。 (4)沉银:加于溶液中,沉积出高纯度的AgCl。沉银率高于99%。母液处理后排放。 (5)复原银:(N2H4·H2O)是强复原剂,在碱性榕掖中能将AgCl复原为银粉,其反响为: 4AgCI+N2H4+4NH4OH=4Ag↓+N2↓+4NH4Cl+4H2O 此作业在拌和浸出槽中进行。先加少数水于槽中,以蒸汽直接加热至50~60℃,再加20%至液固比为3:1。加少数调整溶液至pH=9~10;再开拌和,缓慢(少数屡次)参加预定量的AgCl。从槽中取上清液参加反响,至无沉积,即为复原结尾。此反响速度快,复原率高达99%。母液含Ag低于0.00lg/L。lkg银粉耗20%1~1.5kg,40%0.45kg。 产出白色海绵状银粉,成分(%)为:99.983Ag,,0.002Pb,0.0006Cu,0.004Sb,0.0025Bi,0.0075Fe。 (6)海绵银熔铸:海绵银烘干后,装入120号石墨坩埚,放进¢0.5m×0.8m柴油坩埚炉或中频感应电炉中熔化。升温至1200℃,天然氧化精粹。银粉中锑、铋等杂质高时,可适当通入氧气吹炼,以保证精银含Ag高于99.95%。银精粹实收率高于99%。由银精矿至精银的直收率为95%。 收回金: (1)硝酸浸银后的渣富集着金,成分(%)为:Ag3~6,Au250~320g/t,Pb3~7,Sn5~6,Bil~2,Sb6~8,As2~3,Sel。从此渣中收回金的办法,可用浸出-铁置换法或水溶化-草酸复原法。均在拌和槽中进行。 (2)浸出-铁置换法:溶液含(CS(NH2)2)30g/L,液固比10:1,用硫酸调整pH至1.5。在40℃温度下搅浸3h,银浸出率80%~85%,金浸出率95%~96%。用铁粉置换,置换渣含金可达3%。 (3)水溶化-草酸复原法:将渣浆化,再通氯化,或以次(NaClO3 +NaCl)浸出金,使金成为AuC13或AuOCI进入溶液。金浸出率98%以上。操控渣含Au低于2g/t,Ag低于2%。溶液用草酸复原出金粉,操控金粉含Au高于99.9%。 收回锡: (1)阳极泥用和浸出的上清液成分(g/L)为:20~25Sn,0.1~0.15Ag,2~2.5Pb,10~13As,18~20Sb,8~12Bi,3~5Cu,1.5~2.2H+。此液用铁屑置换法脱除As、Sb、Bi、Cu后,用石灰中和法产出锡精矿,或许用电积法产出金属锡。 (2)铁粉置换脱As,、Sb、Bi、Cu:作业在¢1.8×1.7m的密封槽中进行,须有杰出的抽风设备坚持槽内为负压。以蒸汽直接加热溶液至45~50℃,用压缩空气拌和,操控在4h内完结作业。置换率:砷高于85%,锑高于90%,铋高于95%,而锡低于3%。溶液中仍保留着绝大部分呈SnCl2形状的锡。 (3)中和法沉锡:用石灰乳中和SnCl2溶液至PH=4~4.5,可产出含锡高于40%的锡精矿,锡收回率高于90%。此精矿成分为Sn(OH)2·xH2O,经枯燥煅烧,再熔炼成金属。 (4)电积法提锡:以SnCl2溶液作电解液,用铁板作阳极,精锡片作阴极,在塑料电解槽中进行电积。操控电流密度80~100A/m2,槽电压0.5~0.6V。产出的阴极锡含75%~85%Sn,3%~50%Pb,1%~3%Bi,0.2%~0.4%Sb。锡收回率可达94%,电流效率75%~80%。电耗为225kW ·h/t阴极锡。 收回砷锑: (1)收回锡时的置换渣成分(%)为:11~17As,21~27Sb,12~25Bi,1~2Sn,0.2~0.3Pb,0.15Ag,6Fe。此渣应薄层堆存,使之天然氧化,让砷、锑转变为氧化物。每年定时处理此渣,其作法为:先用溶液浸出已氧化的渣,使砷、锑转变为硫代盐和硫代锑酸盐进入溶液;再用硫酸中和使砷、锑成为硫化物从溶液中沉积出来;然后用干馏法使硫化砷蒸发而留下硫化锑渣。 (2)浸, 出砷锑:浸出, 液为Na2S+NaOH。其反响为 (Sb,As)2O3十6Na2S+3H2O=2Na3 (Sb,As)S3+6NaOH As2O3+6NaOH=2Na3AsO3+3H2O 置换渣枯燥后磨至—80目,与按1:1分量比参加拌和浸出槽中。液固比8:1,蒸汽加热至96~98℃,拌和2h。锑浸出率可达82~85%,砷浸出率>96%。铋、铜留于浸出渣中。 (3)硫酸中和沉出砷锑:其反响为 3Na3 (As,Sb)S3+3H2SO4=(As,Sb)2S3+3Na2SO4+3H2S 常温下中和,操控pH=2~2.5。锑沉积率98%,砷沉积率95%。锑砷渣成分(%)为:35~40Sb,6~8As,进行中和作业的拌和浸出槽上须设抽气设备,以避免H2S气体外逸。抽出的气体通过文氏管,以NaOH溶液循环淋洗,收回Na2S回来浸出。 (4)硫化锑砷渣干馏脱砷与砷锑的收回:锑砷渣用低温干馏法脱砷并以白砷形状收回砷,其反响为: △ (Sb,As)S(固)→SbS(固) +AsS(气)2AsS(气) + 7/2O2(气) →As2O3 +2SO2 干馏作业在电热不锈钢回转窑中进行,操控温度330℃。蒸宣布的AsS气体,经冷凝室与布袋收尘室被氧化为白砷(As2O3),档次达70%~80%。再通过一次精馏后,As2O3含量高于98%,即为制品。 干馏剩余的硫化锑渣,含锑高于50%,是出产精锑的质料。 收回铋铜: (1)Na2S浸出渣为As、Sb、Bi、Cu渣,含有(%):18~21Bi,2~3Cu,0.7~1.0As,6~8Sb,0.25~0.3Ag。此渣经天然氧化后,用浸出铜铋,使之成为氯化物进入溶液,再用铁粉置换出铜铋成为海绵金属,通过加硫脱铜得粗铋,而硫化铜渣则可作为铜质料。 (2)浸出铜铋:天然氧化后的渣中铜、铋易被溶解成为BiC13,CuCl2,而AgCl及砷锑等则大部分留在浸出渣中。铋含量高时可用HCI+FeC13浸出,或许在浸出液中参加少数硝石作氧化剂以进步铋的浸出率。浸出作业操控液固比7:1,溶液含HC165~70g/L,常温搅浸6h。铋浸出率高于95%。浸出渣含Ag0.6%~1.2%,回来阳极泥浸出以收回Ag,,Au。 (3)铁粉置换铋铜:含铋铜的浸出液在有抽风设备的密封槽中,用蒸汽加热至50~70℃,加铁粉置换得海绵金属,其成分(%)为:Bi>70,Cu3~7,Sb2~3,Snl~2,As0.2~0.3。 (4)海绵金属加硫除铜与铋铜的收回:先将海绵金属在精粹锅中加碱熔化,700℃熔化后吹风氧化脱砷锑,降温至550℃捞去砷锑渣,降温至320℃加硫除铜。作业在拌和状态下进行,缓慢均匀地参加,结尾时渣为黑色粉状,再降至280℃捞渣。此硫化铜渣含13%~15%Cu,8%~9%S,可作为出产硫酸铜的质料。 脱铜后的金属为粗铋,含97%~98%Bi,0.5%~0.7%Sb,0.1%~0.3%Cu,0.05%~0.06%Ag,由砷锑铋铜渣至产出粗铋,铋的实收率可达90%~91%。粗铋通过加锌脱银、通脱铅锌后产出含Bi高于99.99%的精铋产品。 收回铅: 浮选别离银铅时产出的PbCl2尾矿含铅40%~50%,Ag2000~2500g/t。此尾矿在搅浸槽中浆化,加调pH至2,加热至95℃再参加铁粉拌和置换2h,产出海绵铅,含Pb高于75%。铅置换率可达97%。 海绵铅粉杂质含量高,而且堆存时易氧化,故须熔化成高锡锑粗铅,送电解精粹。

氧化铝赤泥选铁工艺

2019-01-14 14:52:56

氧化铝赤泥选铁工艺,属于赤泥处理工艺,特点是包括下述工艺步骤:赤泥浆料加水预混,通过螺旋流槽分选出精矿浆料、中矿浆料和尾矿浆料;精矿浆料通过摇床分流出铁粉浆料,中矿浆料经球磨机球磨破碎后,也进入摇床随精矿浆料一起进行分流。可回收赤泥中6-8%的三氧化二铁与四氧化三铁铁粉,不仅解决了赤泥的闲置堆放问题,改善周边环境,而且实现了废物资源的循环利用,节约原材料。  工艺,其特征在于包括下述工艺步骤:赤泥浆料加水预混,进行稀释和降温,再进入螺旋流槽进行分选,分选出精矿浆料、中矿浆料和尾矿浆料;精矿浆料进入摇床,加水分流,摇床侧部分流出矿质浆料,端部分流出铁粉浆料,铁粉浆料进入产品槽;所述中矿浆料填入球磨机进行球磨破碎后,进入所述摇床随精矿浆料一起进行分流。

金铑银铂钯贵金属分离技术

2019-02-25 14:01:58

三元催化剂经700度焙烧后,破坏,按催化剂:氧化铅:碳酸钠:硼砂:铁粉:银(以氯化银办法参加)=1:0.3:1.2:0.6:0.4:0.05(分量比)配比,置于石墨坩埚中在柴油氧炉中熔炼于1050度一小时。80号柴油炉升温需50分钟,然后冶炼一小时,经历升温耗费耗油3.5公斤,耗氧五分之一瓶;冶炼耗费柴油4.5公斤,氧耗6元,若用焦炭(冶金焦)则需用60公斤。一坩埚熔炼混合料35公斤左右。催化剂只炼13公斤左右。炉温升起后,每小时一锅继续下去;燃料的耗费是炉子升温段的耗费加冶炼耗费。榜首锅今后的耗费主要是冶炼耗费。将炼好(完全炼透炼稀)的料浆抬出倒出上层渣液,基层铅及贵金属合金液倒入升温至200度的鐏锅中,一起敲击鐏锅使料液中合金遵从比重规则沉积凝集于底部构成贵金属铅扣,待冷却倒出敲下铅扣。鐏锅一般用5只轮换运用。将贵金属铅扣置于灰吹炉中的灰底窝(灰底是用5-7份600号干水泥和1份氧化镁混匀拍实、刮平,居中按铅扣体积挖出一个半球状窝)上,盖上炉灶,插上燃管,焚烧灰吹冶炼,当炼到呈现镜面是停火、冷却,敲去渣、取下的银钯铂铑贵金属合金进入贵金属彼此别离及精粹程序。按50公斤贵金属铅扣计,吹炼费用在200元左右。将吹炼后的贵金属合金在坩埚中熔开在1200度下渐渐倒入旋转的水中水碎,将水碎的合金粒用稀(1份硝酸:3水)硝酸浸出银,浸出液(液),溶解到新加稀硝酸不反响时过滤,滤液用食盐水沉积出氯化银,食盐用量是银的1.2倍,氯化银回来用。,硝酸耗量是银的1.25倍。滤渣(不熔渣)是钯铂铑混合渣。将不熔渣置于反响器顶用加热溶解,用量是1公斤渣需6500毫升,溶到新加无反响后吸出冷却过滤,滤渣为92%铑粉,将滤液用无水乙醇赶硝,进如萃取钯,萃残液萃取铂,萃残液锌粉置换,置换渣并入铑渣进入铝熔活化后,用1:1浸出铝,滤渣是活性很高的粗铑粉,粗铑粉用溶解,溶解液过滤,滤液进入铑萃取精粹。滤渣(几乎没有)并入下次活化。 至于含20%金的沙金矿假如来历于矿山精选料引荐用铅捕收冶炼,配料上同,费用上同。假如来历于工业二次料引荐用,费用是:每克金0.08元提炼费用.两种来历都不引荐镍锍富集办法。柴油氧炉4000元,灰吹炉3000元,放液锅300元。20L反响器带四级吸收(2.4万元)串联,洗手液用20%的烧碱溶液,20L四级萃取器三台(铂、钯、铑各一台),每台四万元,萃取油钯专用(S201)300元/公斤,配30公斤(长时间重复运用),铂专用(N235)100元/公斤配30公斤(长时间重复运用),铑专用(TRPO)800元/公斤配10公斤(长时间重复运用),萃取精粹1克钯费用在0.15元,1克铂0.18元,1克铑0.51元,该设备一次精粹钯900克,铂850克,铑2600克。整个萃取过称两小时完结。以上具体技能在设备装置时会在现场演示。

马钢铁鳞用于海绵铁生产的试验研究

2019-03-08 11:19:22

1 前语 马鞍山钢铁股份有限公司铁鳞资源总量约5万t/a。为合理运用资源,依据对商场供需情况的分析,公司于1992年立项建造年产万吨级铁粉出产线。 马钢铁粉工程系马钢股份有限公司与我国节能出资公司联合出资的国家重点项目。该项目由原机械工业部天津第五规划院规划。其规划结合了国内外铁粉出产供应商的先进工艺技术,规划的工艺特色为“3次磁选、2次复原”,方针是出产高质量的优质铁粉。 马钢铁粉一期工程主体设备有:隧道窑(长166m)1座;从德国克莱默公司引入出产能力为700kgh的CBR-700-95e铁粉复原炉(包含出产能力为80m3 h的ASP-80型分解器和出产能力为80m3h的DR-80型气体干燥器)1台;以及从德马克公司引入的细粉碎机2台。整个工程现已竣工投产。 马钢铁鳞数量虽不大,但品种多,成分杂乱,且有大量库存铁鳞。怎么从中选出合格铁鳞质料用于复原铁粉出产线,是铁粉工程投产首要处理的问题。为此,咱们对公司轧材厂一切的轧制点的铁鳞进行了取样分析,并进行了海绵铁半工业化出产实验,以找出契合优质铁粉出产工艺的铁鳞资源。 2 优质复原铁粉对质料铁鳞的质量要求 铁粉产品对Mn、Si、C、S、P及酸不溶物等有严厉的约束,因而出产海绵铁时对质料铁鳞应严厉把关。一般铁粉出产供应商对处理后的铁鳞成分有如下要求,见表1。 3 铁鳞取样分析及铁鳞处理工艺 3.1 铁鳞取样分析 依据文献[1]及同行的实践出产经历,海绵铁出产多选用热轧低碳欢腾钢铁鳞作质料,由于低碳欢腾钢中SiO2、Al2O3等含量较低,用它作质料制作的铁粉杂质少,性能好。为了选出优质铁鳞,咱们对本公司一切轧制点的铁鳞作了全面的取样分析。成果如表2所示。 3.2 铁鳞处理工艺及经处理铁鳞的技术目标 马钢铁鳞处理工艺流程:铁鳞搜集—堆积—过筛—水洗—烘干—磁选—球磨—筛分—混料—初复原经铁鳞处理工艺处理后的高线普碳、二轧型材和三轧(带钢、线材)铁鳞,各项技术目标均契合运用要求;中板、初轧(420方坯、连轧)铁鳞,经铁鳞处理工艺处理后,酸不溶物超支;棒材、H型材和初轧开坯铁鳞,经铁鳞处理工序后,Mn及酸不溶物超支。 4 马钢铁鳞用于海绵铁半工业化出产实验及分析 4.1 半工业化出产实验 从马钢铁粉项目建造以来,公司有关部门已搜集到高线普碳,二轧型材及三轧带钢、型材等3种根本可满意海绵铁出产需求的铁鳞及中板、初轧(连轧、420方坯)2种酸不溶物超支的铁鳞共约4万余吨,其中有库存期达2-4年的铁鳞,这部分铁鳞已深度氧化。本次进行的半工业化出产实验,目标为上述2类共10种铁鳞。关于中板、初轧铁鳞的实验,首要视其经复原成海绵铁并经磁选后的技术目标是否合格。至于经处理工艺后仍严峻超支的棒材、H型钢、初轧开坯等3种铁鳞,不作为实验目标。 工业化出产实验所选用的倒焰窑的根本尺度为:直径4.8m,容积20m3。共进行了两窑实验。为了精确反映不同铁鳞对海绵铁质量的影响,将不同铁鳞装罐堆积在不同扇形区域(视为倒焰窑各扇形区的热工准则根本相同),每区域共堆积10组复原罐,每组共堆积4层罐,如图1所示。 实验工艺参数是在学习兄弟供应商比较老练的工艺目标的基础上,结合本公司质料的特色经实验优化后拟定的[2]。 榜首窑工艺参数:复原温度为1050-1150℃;复原时刻50h;质料配比:铁鳞∶焦碳=1∶0.55。复原后得到的海绵铁的铁含量示于表3。一起还对复原得较好的以高线、三轧、二轧铁鳞为质料出产的海绵铁中的碳含量及复原情况进行了分析,新轧制和库存铁鳞的碳含量及复原成果比较示于表4。 第二窑工艺参数:复原温度为1050-1150℃;复原时刻56h;质料配比:铁鳞∶焦碳=1∶0.55。复原得到的海绵铁的铁含量示于表5。相同,对复原得较好的高线、三轧、二轧铁鳞为质料出产的海绵铁中的碳含量及复原情况进行了分析,新轧制和库存铁鳞的碳含量及复原作用示于表6。 4.2 实验成果分析 本次实验首要对海绵铁中的铁含量进行分析。从表3、表4成果看,高线普碳、三轧线材、二轧中型材所产铁鳞在对应的工艺条件下能出产出合格的海绵铁;而库存铁鳞因深度氧化在该工艺条件下未能到达复原结尾而呈现夹生。从表5、表6成果看,高线普碳、三轧线材、二轧中型材所产库存铁鳞在改动后的工艺条件下能出产出合格的海绵铁,而相同工艺下新轧制铁鳞因复原温度进步、时刻延伸而过烧渗碳,导致海绵铁出格。此外实验成果还显现,中板、初轧铁鳞不能用作出产海绵铁的质料。 咱们还将本实验两窑次中合格海绵铁经精复原工序(破碎—磁选—精复原—解碎—磁选—分级合批)处理,其精复原铁粉的化学成分示于表7。从表7可知,选用马钢高线、三轧、二轧铁鳞可以出产出化学成分契合出产要求的复原铁粉。 4.3 马钢铁鳞挑选的准则 经过上述实验成果分析,咱们以为:为了确保马钢铁粉项目投产后的质量,对马钢铁鳞的挑选应遵从以下准则: (1)铁粉出产宜选用高线、三轧、二轧等热轧欢腾钢铁鳞为质料; (2)针对现在同种钢材轧制量削减的特色,要严厉留意钢种改变,不契合要求的铁鳞禁止搜集; (3)露天长时刻寄存的铁鳞易受污染,因而用于海绵铁出产的铁鳞应及时从轧制现场搜集至质料堆积棚; (4)关于部分库存铁鳞,应拟定相应的工艺准则独自处理,这样才可出产出合格的海绵铁。 5 定论 (1)经取样分析及铁鳞处理工艺处理后挑选出来的马钢高线普碳、二轧型材和三轧带钢、线材新轧制铁鳞,在质料配比铁鳞∶焦碳=1∶055、复原温度1050-1150℃,复原时刻50h的工艺条件下,可出产出合格的海绵铁; (2)关于铁鳞品种与(1)相同的库存铁鳞,在质料配比与(1)相同,复原温度为1100-1150℃,复原时刻56h的工艺条件下,亦可产出合格的海绵铁; (3)将二种工艺条件下取得的合格海绵铁粉进行精复原处理,所得复原铁粉化学成分契合出产要求。

铁磁性金属粉末的磁场烧结

2019-02-18 10:47:01

通过操控晶界微观结构来改进合金功能的技能已日益受到重视,因而广泛研讨了热机械加工技能用来操控晶粒尺度(晶界密度)、晶界特性散布(GBCD)以及晶界衔接性等。别的,也选用了外加势能(例如磁场、电场,超声振荡和温度梯度)的技能。其间,外加磁场的使用愈加引起了材料加工界的重视,由于它可以愈加精确地操控显微结构。至今,现已发现外加磁场关于铁磁材料的再结晶、分出行为和相改变等冶金现象的影响都非常大。因而,日本东北大学的研讨者们在这方面从事了很多的研讨。此次,对铁粉和钴粉在外加磁场条件下研讨了它们的烧结行为,所用原始材料是99.9%纯粉和99.5%的纯羰基钴粉,它们的颗粒均匀粒径分别为2.3μm和0.8μm,铁粉的形状是球形的,钴粉是多面体形。这些金属粉末在研讨前均在氩气流中通过673K×3.6ks的脱氧处理,以铲除其表面所附着之氧化物。选用200MPa压力压成直径10mm×高3mm的压坯,在红外线烧结炉中烧结。在烧结过程中,沿平行于圆柱状试样轴线的方向施加外磁场,随后升温。外加直流磁场逐步增强至1.2MA/m(15kOe)。铁粉压块是在5×10-3Pa真空下于873至973K的铁磁温度规模进行磁场烧结,也在1123K顺磁温度下烧结5、20、50和100h;钴粉压块在1173K铁磁温度下烧结5、20、50h。  研讨结果证明,磁场烧结能有效地进步铁粉的细密化程度,促进晶粒长大。磁场越强,细密化程度越高,特别是在烧结的中间阶段效果最强。以为磁场有增强晶界搬迁驱动力的效果,所以在烧结时关于细密化起着重要效果。与铁粉压块比较,磁场关于钴粉压块的细密化却起着按捺的效果。