您所在的位置: 上海有色 > 有色金属产品库 > 精炼铁粉

精炼铁粉

抱歉!您想要的信息未找到。

精炼铁粉百科

更多

高炉炼铁

2019-03-06 10:10:51

现代炼铁的首要办法,钢铁出产中的重要环节。这种办法是由古代竖炉炼铁开展、改善而成的。虽然国际各国研讨开展了许多新的炼铁法,但由于高炉炼铁技能经济目标杰出,工艺简略,出产值大,劳动出产率高,能耗低,这种办法出产的铁仍占国际铁总产值的95%以上。 高炉出产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从坐落炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅佐燃料)中的碳同鼓入空气中的氧焚烧生成的和,在炉内上升过程中除掉铁矿石中的氧,然后复原得到铁。炼出的铁水从铁口放出。铁矿石中不复原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。发生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。前期高炉运用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改凉风为热风(见冶金史)。20世纪初高炉运用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速开展。20世纪初美国的大型高炉日发生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197米3高炉,日发生铁超越1万吨,燃料比低于500公斤/吨生铁。我国在清朝末年开端开展现代钢铁工业。1890年开端筹建汉阳铁厂,1号高炉(248米3,日产铁100吨)于1894年5月投产。1908年组成包含大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,我国高炉总容积约8万米3,其间1000米3以上的26座。1980年全国产铁3802万吨,居国际第四位。 70年代末全国际2000米3以上高炉已超越120座,其间日本占1/3,我国有四座。全国际4000米3以上高炉已超越20座,其间日本15座,我国有1座在建设中。 50年代以来,我国钢铁工业开展较快,高炉炼铁技能也有很大开展,首要表现在:①归纳选用精料、上下部调剂、高压炉顶、高风温、富氧鼓风、喷吹辅佐燃料(煤粉和重油等)等强化冶炼和节省能耗新技能,特别在喷吹煤粉上有独到之处。1980年我国重点厂商高炉均匀使用系数为1.56吨/(米3·日),焦比为539公斤/吨生铁;②归纳使用含钒钛的铁矿石取得了突破性发展,含稀土的铁矿石的使用也取得了较大的发展。 高炉冶炼首要技能经济目标 分述如下: 高炉使用系数每立方米高炉有用容积一昼夜出发生铁的吨数,是衡量高炉出产功率的目标。比方1000米3高炉,日产2000吨生铁,则使用系数为 2吨/(米3·日)。 焦比 每炼一吨生铁所耗费的焦炭量,用公斤/吨生铁表明。高炉焦比在 80年代初一般为450~550公斤/吨生铁,先进的为380~400公斤/吨生铁。焦炭报价昂贵,下降焦比可下降生铁本钱。 燃料比高炉选用喷吹煤粉、重油或天然气后,折合每炼一吨生铁所耗费的燃料总量。每吨生铁的喷煤量和喷油量别离称为煤比和油比。此刻燃料比等于焦比加煤比加油比。依据喷吹的煤和油置换比的不同,别离折组成焦炭(公斤),再和焦比相加称为归纳焦比。燃料比和归纳焦比是判别冶炼一吨生铁总燃料耗费量的一个重要目标。 冶炼强度 每昼夜高炉焚烧的焦炭量与高炉容积的比值,是表明高炉强化程度的目标,单位为吨/(米3·日)。 休风率 休风时刻占全年日历时刻的百分数。下降休风率是高炉增产的重要途径。一般高炉休风率低于2%。 生铁合格率 化学成分符合规定要求的生铁量占悉数生铁产值的百分数,是点评高炉优质出产的首要目标。 生铁本钱 是从经济方面衡量高炉作业的目标。

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

非高炉炼铁

2019-01-04 17:20:15

非高炉炼铁法是指除高炉炼铁以外的其它还原铁矿石的方法。当前非高炉炼铁法可归纳为两大类:直接还原法和熔融还原法.都是炼铁冶金技术中的新工艺。 直接还原法是指在铁矿石熔化温度下把铁矿石还原成海绵铁的炼铁生产过程,产品叫直接还原铁或海绵铁。由于低温还原,得到的直接还原铁未能充分渗碳,因而含碳较低( 熔融还原法是指一切不用高炉冶炼液态生铁的方法。它是不用焦炭在一个容器中完成高炉炼铁过程的,基本上不改变目前传统钢铁生产的基本原理。 近年来,非高炉炼铁法发展比较快,其原因是: (1)不用焦炭炼铁。高炉冶炼需要高质量冶金焦,而焦煤从世界储量而言,只占煤总储量的5%,且日渐短缺,价格越来越高。非高炉炼铁可以使用非炼焦煤和其它能源作燃料与还原剂。近几十年来,大量开发了天然气、石油、水、电和原子能等新能源,为非高炉炼铁发展提供了条件。 (2)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好代用品。 (3)省去了炼焦设备,总的基建费用比高炉炼铁法少。虽然非高炉炼铁法的生产效率远赶不上高炉,但对于缺乏焦煤资源的国家和地区,用;r中小型企业生产,前途是光明的. 非高炉所得还原铁的用途可分为以下三类: (1)炼钢原料.主要是代替电炉废钢,但也可以用于转炉。应以还原度高、杂质少的为佳. (2)高炉原料。经过预还原的矿石可作为高炉炉料,以增加产量,降低焦比。 (3)铁粉。铁粉可用于粉末冶金或用作电焊条的原料等。 还原度越低,所得的还原铁越容易二次氧化,因此若要贮藏或远距离特别是海上运输,则必须进行钝化处理。常用的钝化处理方法有在控制气氛下形成氧化膜,用化学物质处理,或者进行压块。 非高炉炼铁的发展及特点    非高炉炼铁法在很早以前就为人们采用了。自20世纪初为了获得生产特殊钢的原料和充分利用当地资源而将非高炉炼铁法用于工业生产以来,特别是在瑞典,非高炉炼铁法得到了迅速的发展,诸如韦伯(Wiberg)法和霍冈勒斯(H6gan;s)法直至现在仍继续运用于生产中.二次大战前,大多数地方以煤和电为能源,战后改进的回转炉法及回转炉与电炉相结合的电炉炼铁法,开始投入实际工业生产。从1950—1960年,开始研制以天然气和石油作还原剂的直接炼铁法,到70年代,又进一步发展到工业规模上采用竖炉法和流比床法。 非高炉炼铁法,虽然很早就进行了研究,但工业化生产的规模很小。1972年世界粗钢产量为63000万吨,正在建造中的或者已签订合同的生产能力为年产1400万吨。若将计划中的生产能力也包括在内,可以预计,在不久的将来非高炉炼铁的生产能力将有相当大的增加。    非高炉炼铁与高炉炼铁相比,除了不用焦炭以外,工艺上的显著特点是温度和还原度的关系不同。 在高炉方式中,铁矿石A在高炉内升温、还原、熔化成为铁水B:因为铁水被过度地还原,含碳量达到饱和状态,所以必须在纯氧顶吹转炉内进行氧化、脱碳,使铁水中C变成处于状态E的钢液而出钢,最后经过脱氧去除多余的氧即成为成品钢液F。 在非高炉炼铁方式中,还原是按虚线所示的路线进行的。如在直接还原方式中,矿石A被升温、还原成海绵铁D。在此状态下,还原度和温度都较低,因此还须在电炉中熔化,还原其中未还原的部分,从而得到钢液E。 非高炉炼铁的方法及分类 非高炉炼铁法根据原料和产品用途分类的方法很多,已发表的方法就有百余种。各种分类方法是根据以下不同的观点来进行划分的: (1)按还原装置进行分类:有固定床法、回转炉法、竖炉法和流化床法等。 (2)按还原剂进行分类:有固体还原剂法、气体还原剂法等。 (3)按生产方式进行分类:有预还原法、直接炼钢法、熔融还原法、原子能炼铁法等。 直接还原法 如前所述,直接还原法种类很多。其产品主要是固态的海绵铁、粒铁及液态生铁。图6—2概括了生产固态海绵铁的各种直接还原法的工艺原理。这种海绵铁在下一步生产工序中用电炉熔炼成钢。 使用固体还原剂法 使用固体还原剂进行直接还原的主要设备是回转窑,利用回转窑还原铁矿石的主要产品是海绵铁。其工作原理是:将固体还原剂(煤)、铁矿石和熔剂(石灰石或白云石)混匀后,由回转窑生产。

什么是熔融还原炼铁

2019-03-07 09:03:45

COREX是现在仅有已投入实践运用的高炉以外的炼铁技能(南非伊斯科钢铁公司:日产1000t;韩国浦项钢铁公司和印度京德勒钢铁公司等,日产2000t),它运用的是普通煤。其工艺流程是先把普通煤装入熔融气化炉,然后吹入氧使煤焚烧、分化,将发作的煤气作为复原煤气导入复原竖炉,接着在复原竖炉内将块矿石和矿石颗粒复原到金消融率为95%左右。浦项公司在将日产从1000t进步到2000t的规划扩展阶段中,为安稳熔融气化炉的操作,除了运用粉煤外,还运用了大约10%的焦炭,别的为保证复原煤气量,发现煤的挥发份存在着最佳值等,它受煤档次的约束。现在因为对煤种的挑选和复原竖炉中金属化率的安稳化等采取了办法,焦炭的运用量能够削减到大约3%~5%。因为矿石几乎是在竖炉内完结复原,因而复原所需的煤气量大,熔融气化炉的煤单耗也高。成果用于体系外的能量也必定增大。印度京德勒钢铁公司Vijayanagar厂运用日产2000t的2座COREX设备发作的煤气来带动2台13MW的发电设备。         别的,在南非的Saldanha钢铁公司还一起设置了直接复原铁出产法(MIDREX),能日产大约2500t的直接复原铁(DRI)。为处理铁矿石粒度约束的问题,浦项公司开发了运用3段气泡流化床的FINEX来替代复原竖炉,现在日产2000t的COREX所发作的煤气以分流的方式用于日产150t规划实验流化床炉的实验。计划在2003年之前与COREX本体衔接,到达年产60万t规划,其后到2010年浦项公司的1号和2号高炉就要开端大修,到时除了将这两座高炉更换成FINEX外,还预备向海外推行这一技能。          我国钢铁工业的快速开展对焦炭需求日趋添加。我国焦炭资源有限,炼焦厂商出于环保要求又被约束开展,焦炭求过于供已成为必定趋势,非焦炼铁也将势在必行。熔融复原炼铁工艺是前沿炼铁技能,它运用非焦煤出产液态铁,流程短,本钱低,污染小,铁水质量好。熔融复原炼铁附产很多煤气,可运用化工进程将之转化为甲醇或清洁燃料。工艺概算标明,联合工艺可使动力运用功率进步一倍,产品能耗下降60%,吨钢本钱下降50%。关于传统的炼焦—钢铁联合厂商,运用很多剩下焦炉煤气作为质料出产化工产品亦是进步资源运用功率,减轻环境污染的可行途径。在新技能基础上构建新式钢铁—煤化工联合厂商或生态工业园区,对未来的冶金、化工环保和动力的开展具有重要意义。

高炉炼铁爆炸原因分析

2019-01-04 17:20:18

烧结工艺   ■ 人员若未遵守安全操规程、煤气检修安全规程、未穿戴好劳保用品,可能导致煤气中毒、煤气爆炸、灼烫、触电、机械伤害等事故。   ■ 煤气管道、阀门、脱水器应每班检查、维护,若阀门故障或发生泄漏。可能导致煤气中毒、煤气爆炸事故。   ■ 启动设备前必须确认烧结机内无人或其他杂物时,方可启动。否则可能导致煤气中毒、煤气爆炸、灼烫、触电、机械伤害等事故。   ■在燃烧器点火过程中,未进行爆破试验,因无快速切断阀、煤气压力低、泄漏煤气、煤气管道混有空气、点火前未对各阀门进行确认、现场无煤气泄漏监控系统或系统失效都有可能造成爆炸、火灾、中毒窒息。   ■在生产过程中,因停水、停电,导致煤气水封水不能保证供应或煤气水封系统故障致使水封无水,煤气管道泄漏、煤气压力过大等原因、煤气放散口高度过低都会导致现场有煤气聚集,当遇高温、明火后也会发生爆炸、火灾,同时也会造成中毒、窒息。   ■ 点火时要先送火种,后开煤气。否则可能导致煤气爆炸事故。 高炉炼铁工艺 炉顶设备系统   ■ 休风检修完毕,未经休风负责人同意,送风,有发生中毒窒息,煤气爆炸危险。   ■ 需要休风时,未先停止打水,并点燃炉顶煤气,有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。   ■ 炉顶压力不断增高又无法控制时,不及时减风,未打开炉顶放散阀,有发生爆炸危险。   ■停炉前,高炉与煤气系统未可靠地分隔开;采用打水法停炉时,未取下炉顶放散阀或放散管上的锥形帽;采用回收煤气空料打水法时,未减轻炉顶放散阀的配重;均有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。   ■冷风管未保持正压;除尘器、炉顶及煤气管道未通入蒸汽或氮气或未彻底驱除残余空气;送风后,高炉炉顶煤气压力低于标准,未作煤气爆发试验,确认不会产生爆炸,就接通煤气系统,都有发生煤气爆炸的危险。   ■ 长期休风(≥4小时)不进行炉顶点火、炉喉点火,有发生中毒窒息,煤气爆炸的危险。   ■ 休风前及休风期间,如有损坏未及时更换或采取有效措施,有漏水入炉,有发生炉体爆炸危险。 高炉本体   ■炉内各物料处于1150℃~1450℃的高温和还原性气氛中,在熔融的过程中进行还原反应。如操作不当、可能导致爆炸。高温熔体如遇炉套破裂漏水等情况,因剧烈汽化而可能发生爆炸。   ■ 铁水混入水冲渣系统可能引发爆炸。   ■ 在冶炼过程中,高炉长期使用,未及时检修,导致耐火层破坏,可能造成炉底烧穿铁水流出发生爆炸。   ■ 冷却壁不能保证冷却水供应,可能使炉底烧穿铁水流出发生爆炸   ■ 炉基、炉底、炉缸等部位水测试装置损坏,致使炉温测试不准,或炉温测试不及时,可能导致高炉烧穿铁水流出发生爆炸。   ■ 炉体炉壳开裂由于热膨胀超出极限出现纵向或径向裂缝,导致煤气泄漏与空气混合形成爆炸性混合物,泄漏的高温煤气本身具备点火能量,可发生爆炸。   ■ 炉基周围有积水,有发生铁水爆炸危险   ■冷却件有渗漏现象,有发生铁水爆炸危险。   ■大修高炉,放残铁之前,未设置作业平台,彻底清除炉基周围的积水,有发生残铁爆炸的危险。   ■高炉突然断风,未按紧急休风程序休风,有发生煤气泄漏,导致煤气中毒窒息、燃烧爆炸。   ■送水不分段、快速进行,可产生大量蒸汽而引起爆炸   ■停水事故处理,进水阀门通水时过快,致使冷却设备急冷或猛然产生大量蒸汽而炸裂。   ■高炉悬料时间长,炉内形成较大空间,且炉顶温度逐步升高超过规定,可能打水降温,而产生大量蒸汽。当料柱塌下时,炉顶瞬间产生负压,空气和混有煤气的冷料进入炉内,上密、下密不严,遇高温煤气后,可能发生炉顶爆炸。 热风炉除尘系统   ■热风炉煤气总管未按GB6222的要求设可靠隔断装置。煤气支管未装煤气自动切断阀,当燃烧器风机停止运转,或助燃空气切断阀关闭,或煤气压力过低时,该切断阀不能自动切断煤气,不发出警报。煤气管道未设煤气流量检测及调节装置。管道最高处和燃烧阀与煤气切断阀之间未设煤气放散管,有发生燃烧爆炸、中毒窒息的危险。   ■热风炉管道及各种阀门不严密。热风炉与鼓风机站之间、热风炉各部位之间,未设必要的安全联锁。突然停电时,阀门不向安全方向自动切换,有发生燃烧爆炸的危险。   ■在热风炉混风调节阀之前未设切断阀,一旦高炉风压小于0.05 MPa,不关闭混风切断阀,有发生燃烧爆炸的危险。   ■热风炉烧炉期间,火焰熄灭时,未及时关闭煤气闸板,重新点火,有爆炸危险。   ■热风炉及供气管网高炉需要煤气为燃料在加热炉燃烧加热,则高炉煤气供气及燃烧系统发生操作不当或煤气泄漏,有可能发生爆炸。   ■在生产及设备检修过程中,要按照有关安全操作要求执行,除尘器内的煤气可导致火灾、爆炸、中毒事故。   ■煤气净化布袋除尘系统,高炉顶温异常上升,超过管道膨胀补偿能力,引起管道破裂,煤气泄漏,导致火灾、爆炸、中毒事故。   ■高炉除尘系统维修需用氮气吹扫,若未设置氮气,吹扫不彻底可能导致中毒或火灾爆炸事故。 高炉煤气系统   ■煤气管道出现负压、煤气管道进入空气有爆炸危险。   ■煤气系统若未设置低压报警、快速切断、放散装置等安全装置,可能造成煤气泄漏,导致火灾爆炸或人员中毒窒息事故。   ■除尘器未设带旋塞的蒸汽或氮气管头,或其蒸汽管或氮气管未与炉台蒸汽包相联接,或堵塞或冻结,有发生燃烧爆炸、中毒窒息的危险。   炉前出铁场和炉台构筑物   ■开铁口、出铁、出渣、堵铁口过程中,因违规操作使用潮湿的工具,可能发生铁水爆炸。   ■铁水沟或平台上积水,一旦铁水外溢可能发生铁水爆炸。   ■撇渣器烧穿、损坏,铁口潮湿、渣中带铁等可能发生铁水爆炸。 渣、铁处理 铸铁机    ■铸铁机地坑内不应有积水。否则可能造成铁水爆炸事故

悬浮炼铁新技术

2019-01-03 09:36:49

该方法可以简化冶炼过程,主要表现在∶ (1)直接使用氧化铁精矿,不需要球团和烧结过程; (2)不需要炼焦(如果用煤来产生热还原气体,可在现场燃烧各种煤粉); (3)因为没有颗粒粘结或熔化问题,可使用高温,该工艺可能是强度的; (4)生产固体颗粒或铁水的可能性; (5)低级耐火材料问题; (6)容易供给原材料(铜和镍硫化物精矿颗粒已供给闪速熔炼炉,50多年来没有出现诸如堵塞和粘结问题。氧化铁精矿应该更容易,因为它们接近气体比硫化物颗粒接近氧气更加稳定了; (7)在一套设备中直接炼钢的可能性。 根据这些理由,悬浮法作为高强度工艺是最好的选择,特别是从细过筛氧化铁精矿开始。 将这种悬浮法的生产能力作为一个例子,闪速熔化炉(比用于铁闪速还原的更小)每年(约0.6~0.8吨/分)生产铜为0.3~0.4x10^6吨。 物料和CO2还原 使用这个新技术所得到的三种燃料的输入和输出流和输入和输出量以及从传统高炉操作得到的三种燃料的输入和输出流和输入和输出量。特别的是为了这个新技术而大量还原产生的CO2,甚至使用的煤还原高炉中产生的CO2比较。由于淘汰了炼焦/燃烧、球团和烧结阶段,这个被建议的技术将具有其他环境效益。在USDOE报告中提供了当前高炉操作中产生的污染散发物的典型数量。

非高炉炼铁工艺—Hlsmelt熔融还原炼铁工艺

2019-03-07 11:06:31

由澳大利亚的力拓矿业集团开发的HIsmelt熔融复原炼铁工艺,选用了铁矿粉及钢厂废料和非炼焦煤直接熔融的复原技能出产高质量的铁产品,可直接用于炼钢或铸成生铁。还能够循环运用热能,以到达下降本钱和削减污染的意图。从不断优化高炉炼铁和开发新式非高炉炼铁工艺考虑,可对炼铁出产完结节能减排和保护环境起到活跃的效果。HIsmelt熔融复原炼铁工艺作为习惯钢铁工业开展的需求而开发的熔融复原炼铁的出产工艺,可为炼铁出产供给了一种新的挑选。钢铁出产工艺包含传统的高炉—氧气顶吹转炉的长流程和依据电弧炉的短流程。近年来,受环保等方面要素的影响,短流程工艺遭到越来越多的重视。1996年以来,国际规划内有很多短流程优质扁平材出产厂投产。这些短流程钢厂仅承当较低的折旧费用,还能运用废钢来削减出产本钱。因而,短流程钢厂的热轧出产本钱要比钢铁联合厂商的低。推进这种趋势开展的首要原因有以下几个方面:高炉出产对质料的规格要求较严厉,质料预加工(焦化、球团和烧结厂)使高炉出产成为环境污染的首要排放源,新建或改造高炉的出资额巨大,国际规划内的焦炉遍及呈老化状况,也需求很多出资。正常状况下,为了取得规划经济效益,钢铁联合厂商的缔造规划都很大,因而,温室气体排放和环境污染的问题比较严重。电炉炼钢厂的状况则有所不同,与钢铁联合厂商比较,其竞争力相对较强。关于电炉炼钢厂来说,优质、安稳的铁直销可显着进步电炉炼钢的出产率,下降出产本钱。因而,在炉猜中调配铁水就具有较高的运用价值。在此条件下,开发具有动力运用率高、质料及炉料习惯性强、出资本钱低、操作灵敏等特色的炼铁工艺,已成为钢铁联合厂商重视的课题之一。 首要,HIsmelt工艺将金属熔池作为根本的反响前言,炉料直接注入到金属中,熔炼进程首要经过熔解碳进行。而其他熔融复原炼铁的出产工艺一般都选用顶装矿石和煤炭工艺,经过渣层中的碳化物(及少数金属)进行熔炼。与渣中的碳比较,金属中的熔解碳作为复原剂的反响功率更高,其原因首要是因为渣中的碳需求转换为气相复原介质。也就是说,HIsmelt工艺是经过运用更具活性的碳(溶解碳)取得了更快的熔炼速率。其次,HIsmelt工艺中熔体的混合度与其他工艺不同。在HIsmelt工艺中,将炉料直接注人到金属中,发生很多的“深层”气体,这会构成一个微弱的上浮气流,导致熔液快速翻转。核算标明,翻转的流量到达每秒数吨的等级。在这种条件下,在液相中构成实质性温度梯度(大于20~30℃)的可能性很小,体系实质上以等温熔体的方式作业。此外,熔体的快速翻转促进了从炉顶空间到熔池的热传递,一起杜绝了单一液滴显着过热的现象。这关于渣区的炉膛耐火材料的保护含义严重,因为熔体的杰出混合可使耐火砖仅露出于低FeO含量及温度较低的介质中。 在熔炼中,经过运用大规划的煤种、矿石和典型的钢厂废料(回炉料),HIsmelt工艺的适用性得到了充沛证明。试用煤种的规划广泛,使其对工艺性能的影响能够被量化。因为汽化和蒸发割裂解效果导致的热能丢失,高蒸发分(最高达38%)煤对HIsmelt炼铁工艺具有负面影响。煤中氧、水分和灰分的含量对出产也有潜在影响。实验标明,该工艺中间实验用的一切煤种均可用于实践出产,在煤种的挑选上,仅需从经济方面的考虑。对选用各种矿石炉料复原水平的产能进行评价,包含赤铁矿、赤铁矿/针铁矿、针铁矿和直接复原铁。对矿粉/直接复原铁混合料进行了预复原的中间实验。此外,运用热风氧富集(最高含氧量达30%)成功地进步了熔炉的作业功率。收回料包含高炉和氧气转炉的粉尘、泥渣、铁鳞等。因为收回猜中的碳得到充沛的运用,可使全体煤耗量大幅下降。此外,因为炉猜中铁的预复原水平较高,出产功率得到进步。与铁矿石冶炼比较,收回料无须额定进行处理和加工。表1示出了对高炉和HIsmelt炼铁体系的出资进行比照的研究结果。从表1可看出,HIsmelt工艺的吨钢出产本钱为180~310美元,而钢铁联合厂商的典型吨钢出产本钱为320~450美元。此外,HIsmelt工艺还具有以下特色:质料要求的预处理量很小,熔炼前无须选矿;具有较高灵敏性,能够依据钢厂的出产进行大幅度的调整;可出产质量优异且安稳的铁水;炉料的反响时刻以毫秒核算,温度操控优于高炉;具有高度集成的在线工艺操控体系,设备运转和操作简略,全体设备保护量小;具有显着的环保优势。与高炉炼铁工艺比较,一座装备了矿石加热体系的HIsmelt炼铁厂有望将每吨铁水的二氧化碳排放量削减约20%,并能够有用地操控二口恶英的生成。因为在HIsmelt工艺中能够撤销焦化和烧结工序,因而较为环保。此外,很多运用钢厂废料的潜力可进一步稳固HIsmelt工艺的环保优势。 表1典型的Hismelt和高炉工艺的出资和出产本钱项目产值,万吨出产本钱,美元/吨出资,百万美元高炉1109326355高炉2236373880高炉3109356388高炉42434481088Hlsmelt 1(冷矿)50310155Hlsmelt 2(冷矿及废料)58259150Hlsmelt 3(预加热)63286180Hlsmelt 4(预复原)150191286Hlsmelt 5(预加热)110181200表2 不同工艺出产铁水的化学成分比较表项目高炉HIsmeltCorexC, %4.54.3±0.24.5~4.7Si, %0.5±0.300.6±0.2P, %0.09±0.020.0±0.0<0.10S, %0.04±0.020.1±0.10.01±0.02温度,℃1430~15001480±151490~15203 Hlsmelt工艺的铁水质量除出产本钱外,对不同工艺出产铁水的化学成分进行了比较。表2列出了高炉、HIsmelt以及Corex工艺出产铁水的化学成分。各种铁水的化学成分首要存在3方面差异。(1)硅(Si)含量。炼钢厂能够运用HIsmelt出产的铁水不含硅这一特色进行低硅铁水操作,可削减造渣量,并下降造渣剂的消耗量。事实上,为了进步氧气转炉的出产率,下些钢厂一般需求对高炉出产的铁水进行脱硅处理。(2)磷(P)含量。在HIsmelt工艺中,能够运用高磷铁矿粉(磷含量0.12%)进行出产。铁矿中的磷大部分被氧化转变成炉渣,使铁水中的磷含量低于0.04%。与此构成鲜明比照的是,高炉和Corex工艺中,铁矿石中的磷含量均彻底进入到铁水中,给后续的炼钢出产带来不必要的费事。因而,高磷矿一般不适用于高炉和Corex工艺。(3)硫(S)含量。HIsmelt工艺出产铁水的硫含量高于高炉和Corex工艺。但现有的铁水脱硫技能能有用地处理HIsmelt工艺出产的铁水,且不会发生剩余的费用。4 Hlsmelt工艺的含义 1)关于短流程钢厂的含义。电炉炼钢厂运用的炉猜中可增加30%~50%的铁水。HIsmelt工艺出产的铁水能够作为生铁、直接复原铁和高档次废钢的优质替代品,在炉猜中供给很高的运用价值。其长处首要包含:进步出产率,缩短炼钢周期,削减吨钢能耗;下降制品钢中的剩余搀杂含量,产品质量愈加安稳;有用削减造渣剂的消耗量和吨钢耐火材料的消耗量。此外,HIsmelt工艺的开炉、停炉、停产等操作均十分简略易行,这关于电炉炼钢厂来说是至关重要的。HIsmelt工艺能够使炼铁和炼钢工序有用地结合起来,无须为保存和处理剩余铁水而额定建造贵重、且运用率较低的配套设备。(2)关于钢铁联合厂商的含义。关于钢铁联合厂商来说,HIsmelt工艺的首要价值在于不需求焦化厂和烧结厂所带来的流程缩短。HIsmelt工艺能运用低档次铁矿粉,无须预处理,大大增加了钢厂质料直销的灵敏性,使钢铁产品的本钱更具竞争力。别的,与运用优质炼焦煤比较,运用气煤也能大幅下降出产本钱。Hismelt炼铁厂的设备大多与高炉相同,因而,HIsmelt工艺的设备也极易融人到钢铁联合厂商的全体布局中。HIsmelt工艺可随时调整操作参数(如热风速率及氧富集水相等)和质料挑选,能够高效地习惯后续炼钢工艺改变带来的灵敏性要求。此外,HIsmelt工艺可轻易地开炉、停炉或停产,为钢铁联合厂商的出产操作供给了极大的挑选空间。即便产能较低的HIsmelt设备也可发生经济效益,因而钢角联合厂商可选用多座HIsmelt炉。这样做能够大幅下降停产检修或出产调整所带来的负面影响。此外,HIsmelt工艺出产的铁水可直接与高炉铁水混合运用,为氧气转炉供给精确硅含量的铁水。在日本,“无渣炼钢”工艺被广泛选用。高炉铁水在进入氧气转炉之前必须先进行脱硅、脱磷和脱硫处理,而运用Hismelt工艺出产的铁水能够革除脱硅处理,有用下降了处理本钱。Hismelt工艺还具有以下特色:削减复吹,削减造渣剂的消耗量,削减耐火材料的消耗量;削减铁合金的消耗量,进步铁水收率;吹炼时刻削减,出产率进步,可出产优质的高档(低磷)钢号,也可出产超洁净钢。 相关链接: ★1982~1984年期间: (1)HIsmelt工艺最早能够追溯到开端由德国KlocknerWerke公司在其Maxhütte工厂开发的底吹氧气转炉工艺(OBM)和随后不断开展的顶底复合吹炼工艺。 (2)1981年,CRA公司(现为力拓集团,RioTinto)认识到,Klöckner的转炉技能能够用于冶炼铁矿石,而不仅仅是废钢。因而,CRA公司与KlöcknerWerke公司组建了合资公司,一起开发炼钢和熔融复原技能。运用60吨的OBM转炉进行的测验证明了熔融复原工艺根本原理的合理性和可行性。 ★1984~1990年期间: (1)熔融复原工艺概念测验成功后,在KlöcknerWerke公司的Maxhütte钢厂建造了一座小型实验工厂(SSPP)。该厂规划能力年产1.2万吨,选用卧式可旋转的复原炉方式(SRV)。煤、溶剂和铁矿石均经过炉底喷喷入炉内。(2)SSPP工厂的实验出产从1984年持续到1990年,期间证明了该技能的工艺可行性。但出产规划问题依然没有得到解决。(3)在此期间,协作出资方发生了改变。1987年,Klöckner公司撤出了该项目,两年后CRA公司与Midrex公司按照50:50的份额组成了合资公司,持续一起开发该技能。(4)实验工厂取得成功后,协作两边认为有必要在更大的出产规划上对该工艺进行测验。(5)两边经洽谈后决议,在西澳大利亚奎那那区域建造HIsmelt工艺研制的工厂设备(HRDF)。 ★1991年期间: (1)年产能10万吨的HIsmelt研制工厂设备在奎那那建成。(2)建造HRDF研制工厂设备的意图是进一步证明规划扩展后该工艺的可行性,一起为终究的商业化出产供给操作数据。(3)奎那那工厂最早规划的复原炉方式是直接把SSPP小型实验厂的炉型扩展,即按照可按90度角旋转的卧式炉炉型进行建造。 ★1993~1996年期间: (1)奎那那工厂卧式炉的出产从1993年10月持续到1996年8月。(2)尽管工艺规划的扩展得到了成功验证,可是卧式炉规划杂乱, 对进一步商业化造成了困难。为战胜卧式炉的缺乏,合资公司开发出了水冷管结构的立式炉。(3)立式熔融复原炉(SRV)的工程规划于1996年完结。首要的改善包含固定的立式炉体,设置在上部的炉料喷,简略的热风喷,用于接连出铁的外置出铁炉,以及用以战胜耐材腐蚀的水冷管结构。(4)1994年,Midrex公司撤出合资项目,CRA公司进入单独开发阶段。 ★1997~1999年期间:(1)1997年上半年对HRDF立式炉进行了调试,随后的出产一向持续到1999年5月份。与卧式炉比较,立式炉在耐材损耗、可靠性、作业率、产值和规划简化等方面都有很大的改善。(2)HRDF立式炉的出产指标成功证明了熔融复原炼铁技能的可行性、工程概念的合理性以及工厂技能的简化。(3)立式炉出产状况证明,该工艺能够进一步扩展规划,建成商业化工厂。 ★2002年期间:(1)2002年,由力拓集团(出资份额60%)、纽柯公司(出资份额25%)、三菱公司(出资份额10%)和首钢集团(出资份额5%)一起出资,成立了不合法人性质的合营公司——HIsmelt公司。其意图是建造并实验年产能80万吨的HIsmelt工厂。该工厂坐落西澳大利亚的奎那那工业区,出发生铁的设备是一座炉缸内径为6米的熔融复原炉。 ★2003~2004年期间: (1)HIsmelt工厂于2003年1月开端建造,并于2004年下半年开端调试。 ★2005~2006年期间: (1)HIsmelt奎那那工厂的铁水热调试作业于2005年第二季度开端。(2)榜首船由HIsmelt奎那那合资工厂出产的生铁产品(约4万吨)于2006年6月外运。(3)HIsmelt公司仍在持续优化该技能,以期为商场供给产能更大、灵敏性更强且出产功率更高的HIsmelt工艺技能。

精炼

2019-01-04 13:39:38

凡是除去杂质得到纯金属的过程都叫金属提纯。精炼就是粗金属除杂质的提纯过程。冶炼获得的粗金属都含有一些杂质,例如:粗铜一般纯度为98.5%~99.5%,其中主要杂质为铅、锌、砷、锑、铋、金、银等;粗铟纯度一般为96%~99.5%,其中主要杂质为镉、铅、铝、锌、锡、铜、铁等。杂质的存在严重影响了金属的机械物理性能和化学性质,不适宜工业用途,特别是高端料学技术的发展,要求高纯度的金属,故必须加以精炼将杂质除去。另外许多粗金属中含有贵金属及稀有元素,粗金属精炼,不仅可以得到纯金属,而且能综合回收这些贵金属和稀有元素。精炼的方法很多,不同的精炼方法获得不同纯度的金属。根据杂质和金属的不同特性,以及工业上对金属纯度的要求,有火法精炼、电解精炼、热电离法,萃取法离子交换法等。

火法精炼

2019-03-07 09:03:45

火法精粹是指在高温熔化金属的条件下,用各种办法除掉粗金属中杂质的精粹进程。依据金属和杂质的不同特性,火法精粹有下列一些办法,如加剂法,熔析法、精馏等。火法精粹首要用于重有色金属和某些轻有色金属的精粹。加剂精粹就是在熔融的粗金属中参加一种或几种附加物质,使杂质和附加物质生成不溶于金属中的安稳化合物,并上浮成渣而除掉杂质的进程。依据参加物质不同,加剂精粹又可分为:鼓入空气和氧化精粹,参加元素硫或硫物质的硫化精粹;参加氯化物或的氯化精粹,或参加其它附加物的精粹(如粗铅加锌除银)等。熔析精粹是将粗金属在加热熔化后,在冷却其熔体的进程中,操控温度,因为杂质与金属彼此溶解度和密度不平等,发作分层而到达别离杂质的意图。例如粗锌熔析除铅和铁。

粗铅精炼

2019-03-05 09:04:34

熔炼产出的粗铅纯度在96%-99%规模,其他1%-4%为贵金属金银、硒、碲等稀有金属以及铜、镍、硒、锑和铋等杂质。粗铅中的贵金属的价值有时要超越铅的价值,有必要提取出来,而杂质成分对铅的展性和抗蚀性发作有害影响,有必要除掉。因而要对粗铅进行精粹。    粗铅精粹有火法精粹和电解精粹两种。我国和日本的炼铅厂一般选用电解精粹,国际其他国家均选用火法精粹法。火法精粹设备与工艺简略,建造费用较低,能耗低,出产周期短。其缺陷是进程冗杂,中间产品种类多,均需独自处理,金属收回率较低;电解精粹出产率高,金属直收率高,易于机械化和自动化,可一次产出高纯度精铅。但建造出资大,出产周期较长。      (一)粗铅火法精粹    该法一般由熔析和加硫除铜一氧化精粹除砷锑一加锌提银一氧化或真空除锌一加钙镁除铋等工序组成。我国西北铅锌冶炼厂等厂选用此法。    1.粗铅熔析和加硫除铜    粗铅含铜一般为1.2%-2.0%,选用熔析法下降铅中含铜。熔析法的基本原理是,粗铅中的铜能与砷、锑生成安稳的难熔的化合物—砷化铜和锑化铜,这些化合物不溶于铅而以固态进入浮渣与铅别离。熔析法可将粗铅中铜降至0.1%以下。    熔析法所用设备有反射炉和熔析锅,大型炼铅厂多用熔析锅。熔析锅用铸钢制成,容量30-370t,以重油作燃料。熔析温度500-600℃,熔析渣浮出铅液面用捞渣器捞出。    为进一步脱铜,熔析处理的铅再进行加硫处理。该办法是使用铜对硫的亲和力大于铅对硫的亲和力,生成密度比铅小的Cu2S ,且在320-340℃作业温度下Cu2S不溶于铅的特性,在熔铅中参加硫黄将铜进一步除到0.001%-0.002%。    2.粗铅氧化精粹    此办法的意图是从除过铜的粗铅中进一步除掉锡、砷、锑等杂质。精粹在反射炉中进行,炉温控制在800-900℃,开着炉门靠流入空气自然通风氧化杂质,使锡、砷、锑与铅生成铅盐浮渣,然后用入工捞出。    3.粗铅加锌除银与随后除锌    向熔铅中参加锌,即可与铅中的金和银生成锌金化合物和锌银化合物。此生成物性质安稳、熔点高、密度比铅小,不溶于为锌饱满的铅,因而以固体形状浮于铅液表面构成银锌壳,使贵金属与铅别离。    加锌提银在加锌锅中进行,加锌量为铅重的1.5%-2%,作业温度分450-480℃、330-340℃和420-430℃三段进行。捞出银锌壳,铅液含银低于2g/t。[next]    除银后铅中常含有0.6%-0.7%的锌需求除掉。一般选用氧化除锌法,该法使用锌氧化成的ZnO不溶于铅并浮出铅水而除掉。进程在750-900℃进行,氧化剂可所以空气、水蒸气或氧,经此氧化铅含锌能够降至0.0025%。    4.粗铅除铋    该法选用加钙镁熔炼以除掉铅中的铋,熔炼时钙、镁与铅中铋生成的不溶于铅和密度小于铅的Bi3Ca和Bi3Mg2浮渣壳。出产中钙以Pb-Ca合金方式参加,操作温度380-390℃。通过两次除铋作业,可将粗铅中铋从0.5%-1.0%降到0.005%以下。除铋后粗铅还要通过一次精粹除钙镁,办法有吹风氧化、吹及碱性精粹法,其间以碱性精粹法效果最好。    (二)粗铅电解精粹    电解时以铅和为电介质,在直流电效果下,将粗铅电解成精铅。我国铅电解精粹工艺流程由火法除铜精粹和电解两段作业组成。    1.粗铅接连脱铜    这是我国沈阳冶炼厂开发的粗铅除铜技能,同上述分批除铜法比较,本工艺燃料耗费低,中间产品少,处理简略,出产效率高。接连脱铜在一设有隔墙的反射炉中进行,炉内分为加料区(熔池深1.2m)、熔炼区(熔池深2m)和储存区。熔炼炉产出的铅水直接参加熔炼区,加硫熔析,使铅中铜生成铜锍,并加碱(Na2CO3)下降锍中含铅量一起使砷、锑与碱效果生成盐进入炉渣。储存区与熔炼区间隔墙下开有通道,精粹脱铜铅经由通道进入储存区,再由虹吸口放出,铸成阳极,送电解工序。    2.电解    电解时,以电解铅片作阴极,脱铜后的铅作阳极,在和铅水溶液中进行电解。在直流电效果下,阳极氧化成铅离子进入溶液,阴极上溶液中铅离子复原分出:    阳极                   Pb→Pb2++2e    阴极                   Pb2++2e→Pb    电解进程中,标准电极电位较铅负的金属,如铁、锌、锡、镍、钻等与铅一道电化溶解进入溶液,而电极电位较铅正的金属,如银、金、铜、砷、蹄等不溶解而构成阳极泥沉于电解槽底。通过必定周期,残阳极回来精粹炉熔炼,阴极分出铅通过熔化除微量锡、砷、锑杂质后,铸成精铅锭。阳极泥用于收回贵金属。    电解在内衬耐腐蚀材料的钢筋混凝土制成的电解槽内进行。铅电解的首要技能条件为:电解液总酸量120-160 g/L,含铅90-125 g/L,电解温度32-45℃,电流密度120-200A/m2,同极矩95mm,精铅含铅99.98%-99.99%。