您所在的位置:
上海有色 >
有色金属产品库 >
水泥厂铁粉
水泥厂铁粉
铁粉分类及应用
2019-01-03 09:36:51
铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉
纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。
铁粉的应用
粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。
高铝水泥
2018-12-29 11:29:09
美国能源部下属的阿贡国家实验室与来自日本、芬兰、德国的科学家合作,用激光对液体高铝水泥(又称矾土水泥)进行处理,使其变成了能导电的半导体,或可被用来制造计算机芯片、触摸屏等。
高铝水泥是以铝矾土和石灰为原料,按一定比例配制,经煅烧、磨细所制得的一种以铝酸盐为主要矿物成分的水硬性胶凝材料,又称铝酸盐水泥。研究人员使用一种经过二氧化碳激光束加热的空气动力悬浮装置,在2000摄氏度的高温下将高铝水泥熔化;然后在不同的空气中对这种材料进行处理,以便控制得到的玻璃中氧原子的结合方式。
这种悬浮装置可以让热液体不接触任何容器表面并形成晶体,这就会使该液体冷却成能捕获电子的玻璃状,从而使其获得导电能力。
高铝水泥价格
2017-06-06 17:50:01
高铝水泥
价格
对于那些在建筑方面的工厂的关注度比较高。一般高铝水泥用于家庭建筑、大楼建筑的水泥比较多一些。高铝水泥铝又称酸盐水泥,也称耐火水泥。凡以铝酸钙为主,氧化铝含量约50%的熟料,磨制的水硬性胶凝材料,称为高铝水泥。 高铝水泥用于配制不定型耐火材料;配制膨胀水泥、自应力水泥、化学建材的添加料等;抢建、抢修、抗硫酸盐侵蚀和冬季施工等特殊需要的工程。接下来看一下最近一些厂家对于高铝水泥
价格
的报价。规格:高铝水泥1025#;报价:780元/吨;报价厂家:阳泉狮头特种水泥有限公司 ;规格:高铝水泥925#;报价:680元/吨;报价厂家:阳泉狮头特种水泥有限公司 ;规格:高铝水泥825#;报价:580元/吨;报价厂家:阳泉狮头特种水泥有限公司 ;规格:高铝水泥725#;报价:480元/吨;报价厂家:阳泉狮头特种水泥有限公司 ;规格:高铝水泥625#;报价:435元/吨;报价厂家:阳泉狮头特种水泥有限公司 ;规格:法国进口高铝水泥FONDU;报价:4850元/吨;报价厂家:上海天策贸易有限公司 ;规格:高铝水泥(耐火水泥)525#;报价:600元/吨;报价厂家:深圳市诚功贸易有限责任公司 ;规格:高铝水泥(耐火水泥)625#;报价:600元/吨;报价厂家:深圳市诚功贸易有限责任公司 ;规格:转窑水泥51.48Mpa;报价:385元/吨;报价厂家:雄牛远欧建材集团 ;规格:水泥51.48Mpa;报价:335元/吨;报价厂家:雄牛远欧建材集团 ;规格:高铝水泥;报价:1300元/吨;报价厂家:广州市天河区东昌建材云燕牌水泥经销中心 。高铝水泥用于土建工程上的注意事项:1.在施工过程中:一般不得与硅酸盐水泥、石灰等能析出氢氧化钙的胶凝物质混合,使用前拌和设备等必须冲洗干净。2.不得用于接触大碱性溶液的工程。3.高铝水泥水化热集中于早期释放,从硬化开始应立即浇水养护。一般不宜浇注大体积混凝土。4.高铝水泥混凝土后期强度下降较大,应按最低稳定设计。高铝水泥混凝土最低稳定强度值以试体脱模后放入50±2℃水中养护,取龄期为7天和14天强度值之低者来确定。采用标号525号以上的水泥、小于0.40的水灰比和400公斤/米3以上的水泥用量时,即可配出最低稳定强度200公斤/厘米3以上的混凝土。5.若用蒸汽养护加速混凝土硬化时,养护温度不高于50℃。6.用于钢筋混凝土时,钢筋保护层的厚度不得小3厘米。7.未经试验,不得加入任何外加物。8.不得与未硬化的硅酸盐水泥混凝土接触使用;可以与具有脱模强度的硅酸盐水泥混凝土接触使用,但接茬处不应长期处于潮湿状态。更多关于高铝水泥和高铝水泥
价格
的信息可以登陆上海
有色
网查询,并且,您可在商机平台找到自己想合作的高铝水泥
价格
的报价的公司企业。
水泥生产用煤要求
2019-01-07 07:51:16
①煤的发热量。发热量高低直接影响到窑内温度的高低,进而影响到C3S的生成,为保证窑内温度在1450℃,要求煤炭应有较高的发热量。
②煤的挥发分。当使用回转窑时,为保证煤粉的顺利着火和足够的燃烧强度,一般要求Vd=18~30%之间;当采用立窑生产水泥时,因挥发分的析出是在缺氧条件下进行的,因此为减少q3的热损失,需燃用低挥发分的煤,以Vd
③煤的灰分。灰分对水泥熟料锻烧的影响没有发热量和挥发分那么大,特别是立窑的锻烧过程,可把入窑前的生料还应视为一种高灰分的煤炭。这是因为水泥熟料与煤灰的化学成分基本相同,只是各种组分不一样。对回转窑,若灰分太高,一方面会降低煤的发热量,另一方面因煤粉燃烧后产生的煤灰飞落到熟料中会影响到熟料的质量。
④供煤粒度d
1250℃。
铝酸盐水泥特点
2018-12-20 09:35:41
铝酸盐水泥特点: 铝酸盐水泥凝结硬化速度快。1d强度可达最高强度的80%以上,主要用于工期紧急的工程,如国防、道路和特殊抢修工程等。 铝酸盐水泥水化热大,且放热量集中。1d内放出的水化热为总量的70%~80%,使混凝土内部温度上升较高,即使在-10℃下施工,铝酸盐水泥也能很快凝结硬化,可用于冬季施工的工程。 铝酸盐水泥在普通硬化条件下,由于水泥石中不含铝酸三钙和氢氧化钙,且密实度较大,因此具有很强的抗硫酸盐腐蚀作用。 铝酸盐水泥具有较高的耐热性。如采用耐火粗细骨料(如铬铁矿等)可制成使用温度达1300~1400℃的耐热混凝土。 但铝酸盐水泥的长期强度及其他性能有降低的趋势,长期强度约降低40%~50%左右,因此铝酸盐水泥不宜用于长期承重的结构及处在高温高湿环境的工程中,它只适用于紧急军事工程(筑路、桥)、抢修工程(堵漏等)、临时性工程,以及配制耐热混凝土等。 另外,铝酸盐水泥与硅酸盐水泥或石灰相混不但产生闪凝,而且由于生成高碱性的水化铝酸钙,使混凝土开裂,甚至破坏。因此施工时除不得与石灰或硅酸盐水泥混合外,也不得与未硬化的硅酸盐水泥接触使用。
铝酸盐水泥概述
2019-02-28 11:46:07
铝酸盐水泥是以铝矾土和石灰石为质料,经煅烧制得的以铝酸钙为首要成分、氧化铝含量约50%的熟料,再磨制成的水硬性胶凝材料。铝酸盐水泥常为黄或褐色,也有呈灰色的。铝酸盐水泥的首要矿藏成为铝酸一钙(CaO·Al2O3,简写CA)及其他的铝酸盐,以及少数的硅酸二钙(2CaO·SiO2)等。 依据国家标准(GB201—2000)的规则:铝酸盐水泥的密度和堆积密度与普通硅酸盐水泥附近。其细度为比表面积≥300m2/kg或45μm筛筛余≤20%。铝酸盐水泥分为CA-50、CA-60、CA-70、CA-80四个类型,各类型水泥的凝聚时刻和各龄期强度不得低于标准的规则。 铝酸盐水泥包含铝酸钙、铝酸、铝酸锆三种水泥。其间铝酸水泥具有快硬、高强度、耐火度高级特色。
还原铁粉让普通铁精粉身价倍增
2018-12-13 10:31:09
日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )
北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。 据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网
水泥制砂机混凝土的特点和优点介绍
2019-01-03 09:36:54
长期以来,没有合格的天然河砂,所有大于C30的混凝土都是用水泥制砂机制山砂浇筑,在使用过程中以前遇到的难度是石粉含量大,砂的颗粒级配难以控制,由于机械设备的改进,现在这样的难题已经消除。但是水泥制砂机的使用常遇到阻力,人们对机制砂的认识还停留在4年以前,现在阐述以前使用山砂过程中发现的优点和存在的缺点。1、对于低强度等级混凝土(C30及以下),能增加混凝土的和易性由于低强度等级混凝土水泥用量低,水泥浆不能够完全填充砂的空隙,导致混凝土和易性差,由于粉砂中小于0.16的粉尘含量增加,可以填充砂子的部分空隙,从而增加了混凝土的和易性。2、能增加混凝土的强度a、由于石粉具有填充空隙的作用,天然砂小于0.075的颗粒含量小于3%,水泥大于0.08的颗粒含量不大于10%,一般小于5%,对于天然中粗砂来说,在整个级配范围内缺少0.16~0.08的颗粒,所以机制山砂小于0.16的颗粒含量能补充天然砂在级配上的不足,从而增强混凝土的密实性,提高混凝土的强度。b、有的水泥厂用石粉当掺合料,但是普遍的水泥投掺石粉,所以石粉用于混凝土里相当增加少量的水泥,所以能提高强度。c、能降低水化热,减少热裂缝的发生。由于石粉在混凝土里是隋性体,在水化过程中能消减水化热的峰值,从而减少热裂缝的发生,在国外,高强混凝土有的是用石灰石粉作为掺合料。
铋矿三氯化铁浸出-铁粉置换法
2019-01-31 11:06:17
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
含铁粉矿球团化制备工艺研究
2019-01-24 09:36:35
近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。
在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。
本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。
一、试验条件与方法
(一)原材料
1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。
2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程
每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。
(三)抗压力测试
试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。
(四)所用仪器与设备
加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析
(一)加热固化制度对球团抗压力的影响
所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。
试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。
从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。
(二)粘结剂加入量对抗压力的影响
在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。
(三)不同粉矿条件下的抗压力
为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。
按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。
通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。
三、结论
(一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。
(二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。
(三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。
参考文献
[1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
[2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36.
[3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98.
[4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50.
[5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20.
[6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.