您所在的位置: 上海有色 > 有色金属产品库 > 铁粉还原反应

铁粉还原反应

抱歉!您想要的信息未找到。

铁粉还原反应百科

更多

王水溶解金与还原反应

2019-02-21 10:13:28

金在通常情况下只能溶解于和碱金属溶液中,因而工业上发作的含金废液首要有含金废溶液和含金化废液两类。 1、含金废将含金固体废料溶于是最常用的将金转入溶液的办法。所得溶液酸度较大,常称为含金废,金在其间以+3价氧化态存在。从中收回金的根本原理是向这些游离状况或配位状况的金离子供给电子,使其转化为原子状况而得到金的单质。常用的向金离子供给电子的办法有两种:一是在废溶液中参加恰当的复原剂使金离子得到复原;二是经过电解办法向金离子供给电子,使金在阴极分出。 现在在工业上得到运用并可用于收回废中金的复原剂首要有硫酸亚铁、钠、生动过渡金属(如锌粉和铁粉等)、亚(NaHSO3)、草酸、和等。运用复原法收回金时有必要留意废的酸性和氧化性的强弱。通常情况下,废的酸性和氧化性很强,在参加复原剂之前有必要设法下降其酸性和氧化性。常用的办法是将含金废过滤除掉不溶性杂质,所得滤液置于瓷质或玻璃内衬的容器中加热煮沸,在此进程中以少数屡次的办法滴加必定量的,使废中的氮氧化物气体逸出。此操作俗称为赶硝。赶硝是否彻底的简略判别标准是从废中逸出的气体色彩有必要为无色。 硫酸亚铁是工业用处很广的廉价无机复原剂,它与废效果发作的氧化复原反响如下: 3FeSO4+HAuCl4HCI→FeCl3+Fe2(SO4)3+Au↓ 将经过过滤和赶硝的含金废趁热抽人高位槽,在拌和下滴加到过量的饱满硫酸亚铁溶液中,硫酸亚铁溶液能够恰当加热。当取少数0.1mol/LHAuCl4溶液滴加到少数硫酸亚铁的反响混合物中无显着反响时,能够以为反响混合物现已没有复原性。中止滴加废,持续拌和2h后,静置沉降。用倾桁法别离堆积下来的黑色金粉,用水洗净后铸锭得到粗金。所得滤液会集起来,用锌粉进一步处理。 因硫酸亚铁的复原才干较小,用硫酸亚铁处理含金废时除贵金属以外的其他金属很难被它复原,因而即便处理含贱金属较多的含金废液,其复原产出的金的档次也可达98%以上。但此法效果缓慢,结尾不易判别而且金不易被彻底复原,因而需求锌粉进一步处理尾液。 钠也是一种工业上常用的廉价复原剂,许多冶炼厂商在焙烧含硫矿藏或其他物料时,为了下降烟尘中的二氧化硫含量,通常将除尘后的烟气导入溶液中,所得溶液中钠的含量较高,能够用此溶液直接作为处理含金废的复原剂以到达以废治废和综合运用的意图。将经过除尘和净化的含二氧化硫的气体直接通入含金废中能够到达相同的效果。钠复原含金废的反响方程式如下: Na2SO3+2HCl→SO2+2NaCl+H2O 2SO2+2HAuCl4+6H2O→2Au↓+8HCl+3H2SO4 具体操作如下:将经过过滤和赶硝的含金废趁热抽入高位槽,在拌和下滴加到过量的饱满钠溶液中,复原时恰当加热溶液,有利于产出大颗粒黄色海绵金。参加少数聚乙烯醇(参加量约为0.3~30g/L)作凝聚剂以利于漂浮金粉沉降,充沛反响后静置。用倾析法别离堆积下来的黑色金粉,用水洗净后铸锭得到粗金。 锌粉是黄金精粹进程中常用的金属复原剂,其特点是复原容量大,置换金的速度快。缺陷是过量锌粉与置换所得金粉混在一同,有必要再用硝酸或将剩余的锌粉溶解掉才干得到较纯的金粉。将经过过滤和赶硝的含金废趁热抽入高位槽,调理溶液的pH=1~2,参加过量锌粉。充沛反响后离心别离,所得金锌混合物用去离子水重复清洗到没有氯离子中止。在拌和下用硝酸溶煮,所得金粉的色彩为正常的金黄色,聚会杰出,用水洗净后铸锭得到粗金。置换进程中操控pH=1~2的意图首要是为了避免锌盐水解,有利于产品澄清和过滤。置换产出的金属堆积物含有过量锌粉,可用硝酸或将其溶解。需求留意的是选用溶解时,堆积中不该含有硝酸根,除银、铅、外,其他贱金属都易被溶解。选用硝酸溶解时,硝酸简直能溶解夹杂在金粉中的一切普通金属杂质,但堆积中不该含氯离子,不然复原所得的金粉有或许再次被溶解掉。别的,还可选用硫酸来溶解锌及其他杂质,堆积金不易从头溶解,但钙、铅离子不能与堆积别离,产品易呈黑色。 对含金量很低且量大的废,赶硝处理时能源耗费太大,能够选用亚(NaHSO4)作为复原剂进行复原处理,用亚进行复原时不需求赶硝。具体操作是:将含金废过滤后,先用碱金属或碱土金属的氢氧化物(例如含质量25%~60%的NaOH或KOH)或碳酸盐的溶液调整含金废的pH值为2~4,并将其加热至50℃并坚持一段时间,参加少数硬脂酸丁酯作凝聚剂。在拌和下滴加NaHSO4饱满溶液堆积金。所得金粉经洗刷后能够熔铸成粗金,含量约为98%。 运用草酸、、抗坏血酸和等有机复原剂对含金废进行复原处理的最大优点是不会引进新的杂质,但本钱较高,从含金废中收回金粉时很少选用,在将电解金加工成特定粒度的金粉工业产品时用得较多。 各种复原剂收回金后的尾液中是否还含有金,即收回是否彻底,可选用以下办法进行判别:按尾液色彩判别,若尾液无色,则金已根本堆积提取彻底;用氯化亚锡酸性溶液查看,有金时因为生成胶体细粒金悬浮在溶液中,使溶液呈紫红色;不然阐明尾液中金已提取彻底。 2、含金化废液第二大类含金废液是含金化废液,首要包含电镀进程发作的镀金废液(一般酸性镀金废液含金4~12g/L,中等酸性镀金废液含金4g/L,碱性废液含金达20g/L)、化法提金发作的废水以及含金化产品(如化亚金钾等)出产进程中发作的废水。常用的含金化废水中金收回办法首要有电解法、置换法和吸附法等。依据含金化废水的品种和金含量的凹凸能够挑选单种办法处理,也能够采纳几种办法联合处理。 ①电解法将含金化废水置于一敞开式电解槽中,以不锈钢作为阳极,纯金薄片作为阴极,操控液温为70~90℃,通人直流电进行电解,槽电压约5~6V。在直流电的效果下,金离子迁移到阴极并在阴极上堆积分出。当槽中镀液经过守时取样分析且金含量降至规则浓度以下时完毕电解,再换上新的废镀液持续电解提金。当阴极分出金堆集到必定数量后取出阴极,洗刷后铸成金锭。 电解法处理含金化废水除选用上述开槽电解外,还能够用闭槽电解进行处理。即选用一关闭的电解槽进行电解作业,溶液在体系中循环,操控槽电压为2.5V进行电解。当废镀液含金量低于规则浓度时中止电解,然后出槽、洗净、铸锭。电解尾液经吸收槽处理合格后,抛弃排放。闭槽电解的自动化程度较高,对环境比较友爱,但一次性设备投入较大。 ②置换法含金化废水中的金通常以[Au(CN)2]-的方式存在。在含金化废水中参加恰当复原剂,即可将[Au(CN)2]-中的金复原出来。依据含金化废水的品种和含金量,复原剂能够选用无机复原剂(如锌粉、铁粉、硫酸亚铁等)或有机复原剂(如草酸、、抗坏血酸、甲醛等)。无机复原剂报价比有机复原剂低,但处理含金化废水今后,过量的无机复原剂有必要设法除掉。有机复原剂报价较高,但复原金合作物后的产品与金很简单别离。因为金在收回进程中首要得到粗金,后边提纯在所难免。因而,实际操作中一般选用无机复原剂(特别是锌粉和铁粉)进行复原,将金置换成黑金粉沉人槽底。锌粉复原的反响方程式如下: 2KAu(CN)2+Zn→K2Zn(CN)4+2Au↓ 具体操作进程为:将含金化废水取样分析,断定其间的含金量。将废液置于塑料容器中,参加约1.5倍理论量的锌粉,拌和。为加快置换进程,含金废镀液应恰当稀释和酸化,操控pH=1~2。在酸化废液时易放出HCN气体,所以有关作业应在通风橱中进行。置换产品过滤后,浸入硫酸以去除剩余的锌粉,再经洗刷、烘干、浇铸即得粗金。滤液经过分析含金量和游离含量,当含金量和游离含量低于规则值时能够排放;不然应进一步进行处理。 ③活性炭吸附法活性炭对金合作物具有较高的吸附才干,活性炭吸附的作业进程包含吸附、解吸、活性炭的返洗再生和从返洗液中提金等进程。 含金化废水经化验含金量后,置于塑料容器中。参加恰当粒度的活性炭,充沛拌和。将吸附混合物离心脱水,所得液体搜集后会集处理。将所得湿固体参加到由10%NaCN和1%NaOH组成的混合液中,加热至80℃,充沛拌和下进行解吸金。过滤或离心脱水,所得滤液即为含金返洗液,将活性炭参加到去离子水中,充沛拌和,脱水,重复三次。所得滤液并人含金返洗液中,活性炭经枯燥后能够从头运用。返洗液中金的含量现已大大提高。可用电解或复原的办法将返洗液中的金提取出来。 用活性炭处理含金化废水时,废液中[Au(CN)2]-被活性炭的吸附一般以为是物理吸附进程。活性炭孔隙度的巨细直接影响其活性的巨细,炭的活性愈强对金的吸附才干愈大。常用活性炭的粒度为10~20目和20~40目两种。活性炭对金吸附容量可达29.74g/kg,金的被吸附率达97%。南非专利以为,先用臭氧、空气或氧处理废化液,再用活性炭吸附可获得更好效果。此外,解吸剂可选用能溶于水的醇类及其水溶液,也可选用能溶于强碱的酮类及其水溶液。这类解吸剂的(体积百分数)组成为:H2O(0~60%),CH3OH或CH3CH2OH(40%~100%),NaOH(≥0.11g/L);或许CH3OH(75%~100%),水(0~25%),NaOH(20.1g/L)。 ④离子变换法因为含金化废水中金以[Au(CN)2]阴离子的方式存在,因而能够选用恰当的阴离子交流树脂从含金废液中离子交流金,再用恰当的溶液将[Au(CN)2]一阴离子从树脂上冼提下来。将阴离子交流树脂装柱,先用去离子水试验柱的流速,调理适宜后将经过过滤的含金废液经过离子交流柱,守时检测流出液含金量。当流出液的含金量超出规则标准时中止通入含金化废水。用溶液或溶液重复洗提金,使树脂再生。洗提液含金量大大提高,用电解或复原的办法将洗提液中的金提取出来。 ⑤溶剂萃取法其根本原理是运用含金化废水中的金合作物在某些有机溶剂中的溶解度大于在水相中的溶解度而将含金合作物萃取到有机相中进行富集,处理有机相得到粗金。试验标明,可用于萃取金的有机溶剂有许多,如、醚、二丁基卡必醇、甲基异丁基酮(MIBK)、磷酸三丁酯(TBP)、三正辛基氧化膦(TOPO)和三辛基甲基胺盐等都能够从含金溶液中萃取金。萃取作业时,含金废液的萃取道次一般操控在3~8次,如萃取剂挑选恰当,萃取收回率一般都能到达95%以上。 重法(CODCr) 概述 一、原理 在强酸性溶液中,必定量的重氧化水样中复原性物质,过量的重以试亚铁灵作指示剂、用硫酸亚铁铵溶液回滴。依据用量算出水样中复原性物质耗费的氧。 二、搅扰及其消除 酸性重氧化性很强,可氧化大部分有机物,参加硫酸银作催化剂时,直链脂肪族化合物可彻底被氧化,而芳香族有机物却不易被氧化,不被氧化,挥发性直链脂肪族化合物、等有机物存在于蒸气相,不能与氧化剂液体触摸,氧化不显着。氯离子能被重铬酸盐氧化,而且能与硫酸银效果发作堆积,影响测定成果,故在回流前向水样中参加硫酸,使成为络合物以消除搅扰。氯离子含量高于2000mg/L的样品应先作定量稀释、使含量下降至2000mg/L一下,再行测定。 三、访法的适用规模 用0.25mol/L浓度的重溶液可测定大于50mg/L的COD值。用0.25mol/L浓度的重溶液可测定5~50mg/L的COD值,但精确度较差。 仪器 1、回流设备:带250ml锥形瓶的全玻璃回流设备(如取样量在30ml以上,选用500ml锥形瓶的全玻璃回流设备)。 2、加热设备:电热板或变组电炉。 3、50ml酸式滴定剂。 试剂 1、重标准溶液(1/6=0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 2、试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。 3、硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边拌和便缓慢参加20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重标准溶液标定。 标定办法:精确西艘10.00ml重标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢参加30ml浓硫酸,混匀。冷却后,参加三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的色彩由黄色经蓝绿色至红褐色及为结尾。 式中,c—硫酸亚铁铵标准溶液的浓度(mol/L);V—硫酸亚铁铵标准滴定溶液的用量(ml)。 4、硫酸-硫酸银溶液:与2500ml浓硫酸中参加25g硫酸银。放置1~2d,不时摇摆使其溶解(如无2500ml容器,可在500ml浓硫酸中参加5g硫酸银)。 5、硫酸:结晶或粉末。 精密度和精确度 六个试验室分析COD为150mg/L的邻笨二氢钾一致分发标准溶液,试验室内相对标准偏差为4.3%;试验室间相对标准偏差为5.3%。 留意事项 1、运用0.4g硫酸络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸,是坚持硫酸:氯离子=10∶1(W/W)。如呈现少数堆积,并不影响测定。 2、水样去用体积可在10.00~50.00mL规模之间,但试剂用量及浓度按相应调整,也可得到满足成果。 3、关于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。 4、水样加热回流后,溶液中重剩余量应为参加少数的1/5~4/5为宜。 5、用邻笨二氢钾标准溶液检测试剂的质量和操作技能时,因为每克邻笨二氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。 6、CODCr的测定成果应保存三位有用数字。 7、每次试验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时特别留意其浓度的改变。

还原铁粉让普通铁精粉身价倍增

2018-12-13 10:31:09

日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )         北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。    据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网

炼钢炉尘提取还原用铁粉重选技改实践

2019-01-21 18:04:35

一、前言 炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。 由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。 二、原因分析 (一)原料分析 铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。 炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。 另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。 (二)原工艺流程及存在的缺陷 1、原工艺流程  原工艺流程如图1所示。2、原工艺存在的缺陷 (1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。 (2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。 (3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。 (4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。 三、解决措施 针对现有生产工艺存在的问题,对现有工艺进行了优化。 (一)新工艺流程 经改造后的新工艺流程(略) (二)改造措施 1、将一段摇床改为螺旋溜槽。 2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。 3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。 4、在新增球磨机后增加一台磁选机。 四、改进效果 经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。 五、结论 (一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。 (二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。

铅精矿与富铅渣交互反应的还原熔炼技术

2019-01-07 17:38:09

传统烧结-鼓风炉熔炼工艺中,按硫化铅精矿中硫的质量分数为12%~24%计算,每冶炼1t粗铅有0.6~1.1t的SO2排空。     新的炼铅技术的共同特点是将焙烧与熔炼结合为一个过程,实现铅精矿直接处理,充分利用硫化铅氧化放出的大量热将炉料迅速熔化,产出液态铅和熔渣。直接炼铅仍需要将冶金过程分为氧化和还原两个阶段,在氧化段充分氧化获得低硫铅,在还原段充分还原产出低铅炉渣。本实验探讨熔池熔炼还原段,利用铅精矿和富铅渣之间的交互反应,考察还原段的终渣含铅量、铅回收率(按渣计)、烟气烟尘率、粗铅产率等各工艺指标的影响因素及条件。对其反应机理进行了初步的探讨。     一、试验理论基础     铅精矿和富铅渣之间的主要交互反应如下: PbS+2PbO→3Pb+SO2(1) PbS+PbSO4→2Pb+2SO2 (2)     这两个反应在一般高温1000℃时,△G已经很负了。随着温度的升高,△G越来越负,说明从热力学角度来说,交互反应很容易发生。渣中铅化合物的溶化温度低,其熔体的流动牲好,而且与SiO2结合的Pb0挥发性要比纯Pb0小。PbS溶化后流动性大;PbSO4在800℃便开始分解,至950℃以上分解进行的很快。反应式(1)在860℃时的平衡压力达101325Pa;反应式(2)在723℃时的平衡分压为98000Pa。即在较低温度下,两个反应可以剧烈的向右进行。从动力学角度看,熔渣的熔点一般为1200℃左右,试验温度只要能高于渣熔点,则在渣熔融状态下,各种化合物之间接触良好,反应能很好的进行。     二、试验原料及方法     (一)试验原料     本试验所用原料为某厂艾萨炉出来的富铅渣和铅精矿。铅精矿为黑色粉末,粒度小于1mm。化学成分(%):Pb 45.44、Zn 6.46、Fe 8.82、SiO25.34、CaO 1.57、MgO 0.48、Al2O3 1.00、S 17.86、Cu 2.43、Ag 0.266。定性物相分析结果表明:铅精矿主要含PbS、ZnS、FeS、SiO2、FeS2、PbSO4。     富铅渣为浅粉色块状,化学成分(%):Pb53.97、Zn 6.46、Fe 8.64、SiO2 8.31、CaO 3.07、MgO 0.75、Al203 1.78、S 0.17、Cu 0.73、Ag0.0197,堆密度3.05 g/cm3。XRD分析表明:铅物相以PbZnSiO4、PbO、Pb存在。其中PbZnSi04在高温下发生如下反应分解成PbO: PbZnSiO4→PbO+ZnO+SiO2     故本试验可将富铅渣中的Pb看做以Pb0形式存在,并以此进行配料计算,确定各种料的加入量。     试验所用熔剂为:石灰石(CaO 51.2%,MgO3.17%);石英砂(SiO2 93.83%)。     (二)试验方法     根据可能发生的交互反应方程式,先计算出富铅渣和铅精矿所需的理论量,再以富铅渣与铅精矿中FeO成分含量的总和为渣型选择的计算基础,然后根据选定的渣型计算所需各溶剂的质量。将富铅渣、铅精矿、石灰石、石英砂分别先经破碎,磨细后,再充分混合均匀,加水湿润后制团,最后烘干12h以上。每次称2kg左右的混合料加人高15cm,内径14 cm的碳化硅坩埚中,从电炉底部进料。用一个Pt/Pt-13%Rh型热电偶检测炉内试验样料的温度,通人高纯氩气排除炉内空气并起轻微的搅拌作用;通过调节电炉的程序参数,设定好每次试验反应温度和时间;反应结束后,观察形成的铅渣表面现象,判断是否产生了泡沫渣,再称量铅渣和粗铅,并分析各主要成分含量。由于试验条件有限,未能检测SO2浓度和烟尘率,本试验将烟气烟尘率看做一个技术指标,计算式为:     烟气烟尘率=(加入坩埚的炉料总量-反应后粗铅和铅渣的量)÷加入坩埚的炉料总量     三、试验结果及讨论     (一)渣型对终渣含铅量和烟尘率的影响     炼铅炉渣是个非常复杂的高温熔体体系,它由SiO2、FeO、CaO、MgO、Al2O3、ZnO等多种氧化物组成,并且它们之间可相互结合形成化合物、固熔体、共晶混合物。为了讨论渣型与结晶相的关系,将多元系简化为三元系:FeO-CaO-SiO2。将渣中该三相的成分换算为100%,再查看FeO-CaO-SiO2三元系相图,根据图中渣温度1 100~1 300℃区域,选择试验3个成分含量。A Perillo提供了维斯麦港基夫赛特法炼铅厂的投产与生产指标,炉渣的化学成分:FeO39%,SiO2 38%,CaO 23%。     试验条件:固定温度1250℃,时间5h,配料比1.0。试验编号分别为(1)-FeO 40%,SiO2 35%,CaO 25%;(2)-FeO 37.5%,SiO2 37.5%,CaO25%;(3)-FeO 35%,SiO2 40%,CaO 25%;(4)-FeO 35%,SiO2 37.5%,CaO 27.5%;(5)-FeO35%,SiO2 35%,CaO 30%。     试验结果表明CaO含量保持为25%,相应的SiO2含量减小时,试验(1),(2),(3)的渣含铅分别为3.48%,4.76%,5.87%;烟气烟尘率分别为36.9%,32.6%,28.1%。FeO含量固定为35%时,相应的SiO2含量减小时,试验(3),(4),(5)的渣含铅分别为5.87%,1.41%,3. 86%;烟气烟尘率分别为28.1%,42.25%,35.6%。     根据熔渣结构的离子理论,适当增加碱性氧化物有利降低炉渣黏度。但碱性氧化物过高时可能生成各种高熔点化合物,使炉渣难熔,渣黏度升高。对于FeO-CaO-SiO2三元系炉渣,但CaO含量超过30%时,黏度将随CaO含量的增加而迅速加大。SiO2/Fe过大,黏度高,排放困难,提高Ca0/SiO2,可降低渣的黏度。从试验结果数据可看出:当炉渣组成为FeO 35%、SiO2 37. 5%、CaO 27. 5%时,烟气烟尘率为42.25%,渣含铅1.41%为最低。     (二)配料比对终渣含铅量和烟尘率的影响     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间定为3h,温度为1250℃的条件下。以100 g富铅渣为计算基础,理论需要消耗铅精矿71.297g,试验中铅精矿用量分别为理论量的0.9、0.95、1.0、1.05、1.1、1.15和1.2倍。     从图1可看出,在其他条件不变的情况下,随配料比增加,渣含铅呈先减小后增大的趋势,在配料比为1.0有最小值;烟气烟尘率呈先增大后减小的趋势,与渣含铅趋势相反,即渣含铅低时则烟气烟尘率高。鉴于两者的矛盾关系,折中取定试验条件,故此后试验定配料比为 1.1,此条件下渣含铅2.61%,烟气烟尘率33.63%,能基本满足工业上对工艺指标的要求。图1  配料比对终渣含铅和烟尘率的影响     (三)反应温度对终渣含铅和烟尘率的影响     为减少烟尘量,必须严格控制炉内温度。如果能抑制铅及化合物的挥发,烟尘中氧化锌含量就会提高,就可以进入氧化锌系统进行处理。从沸点和平衡蒸气压分析,锌的挥发要比铅容易得多。如果试验中还原温度真正控制在1150~1200℃,Pb和PbO的蒸气压都只有1.3~6.7kPa,铅的挥发率不会如此高。     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,保温时间5h,配料比1.1。试验结果见图2。图2  反应温度对降低终渣含铅量,烟气烟尘率的影响     从图2可看出,其它试验条件不变时,渣含铅随温度的升高而降低,在1250℃有最小值,1300℃时反而渣含铅比其高。观察1300℃的试验现象,渣孔(从粗铅到渣表面)多,推测温度较高于渣熔点时,渣熔体流动性大,反应产生的气体更容易从渣孔隙跑出液面,同时使得渣中的铅及其化合物未能很好的沉降分离,所以渣含铅偏高;烟气烟尘率随温度升高而逐渐增大,1300℃时,烟气烟尘率高达48.82%。烟气烟尘率太高,对后续的收尘系统是个负担,会导致生产成本增加,严重时,会造成烟尘积压。综合考虑后选定温度为1250℃。     (四)反应时间对终渣含铅量和烟尘率的影响     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。试验结果见图3。图3  反应时间对终渣含铅量和烟尘率的影响     从图3可以看出,随着反应时间的延长,交互反应进行得越彻底,渣、铅分离沉降时间长,分离效果更好,则渣含铅逐渐减少;而烟气烟尘率逐渐增加。反应时间短,能缩短排渣周期时间,能提高床能率。试验时间为3h条件下,渣含铅2.61%,烟气烟尘率33.63%。     (五)反应温度对粗铅产率和渣产率的影响     渣型FeO 35%,SiO2 37.5%,CaO 27.5%,时间3h,配料比1.1。试验结果见图4。图4  反应温度对粗铅产率和渣产率的影响     从图4可看出,随反应温度的升高,各种化合物和金属的挥发量增多,粗铅产率从27.23%降至14.62%,产渣率也逐渐减小。故反应温度不易过高,折中选择1250℃为较好,此条件下,粗铅产率22.76%,产渣率43.61%。     (六)反应时间对粗铅产率和渣产率的影响     固定渣型FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,配料比1.1。反应时间对粗铅产率(占点炉料)和渣产率的影响结果见图5。图5  反应时间对粗铅产率和渣产率的影响     从图5可以看出:(1)随着反应时间的增加,粗铅产率从19.23%升至25.83%。时间长有利于渣铅沉降分离,同时能让其它各种金属化合物有足够时间发生还原反应,再以金属状态进入粗铅;(2)渣产率逐渐减少。时间长,渣中易挥发的化合物及被产出的气体气泡带走的物质则更多的进入烟气烟尘中,增加了收尘负荷。时间为3h时,粗铅产率22.76%,渣产率43.61%。     (七)其它反应效果的比较及分析     不同试验条件下,反应后,其它各成分含量变化不大。粗铅中的铅含量95.01%~96.12%;Ag含量0.28%~0.36%;S含量0.11%~0.19%;铜含量0.31%~0.56%。铅渣其它成分含量:S含量1.89%~2.37%;Zn含量2.47%~6.33%。且呈现渣含铅低,则含Zn亦低的试验现象。推测在相同工艺条件下,原料中铅化合物和锌化合物与其它物质之间发生的反应机理相似,故两者在铅渣和烟尘中呈正比例含量关系。随着反应时间的延长和反应温度的提高,各种化合物逐渐分解,易挥发物更多的进人烟尘,渣中较难挥发物SiO2、FeO、CaO的含量都有稍微增加的趋势。在渣含铅     四、结论     在熔池熔炼还原段采用铅精矿和富铅渣的交互反应可满足工业实践的各项经济技术指标。最优工艺条件:渣型三主要组成含量折算为FeO 35%,SiO2 37.5%,CaO 27.5%,温度1250℃,时间3h,配料比1.1。在此条件下可得到渣含铅2.61%,铅的回收率(以渣计98.21%,脱硫率91.5%,烟气烟尘率33.63%,粗铅产率22.76%,渣产率43.61%。

氧化铁皮的综合利用:可用于制取还原铁粉等

2019-02-26 11:04:26

轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。 (1)用于出产海绵铁或制取复原铁粉。 海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。 氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C 氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。 (2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。 氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。 别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。 (3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。 钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。 电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。

铁粉分类及应用

2019-01-03 09:36:51

铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉 纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。 铁粉的应用 粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。

硅热还原法制取稀土硅铁合金的反应机理

2019-02-20 09:02:00

硅热复原法制取稀土硅铁合金进程,因为稀土金属及其化合物的热力学数据缺少,含稀土炉渣熔体和RE-Si-Fe系合金熔体中有关元素的活度数据缺少,然后造就了运用热力学数据核算实践冶炼进程的困难。但能够运用冶金热力学的基本原理,结合生产实践,对冶炼进程可能发作的化学反响进行揣度,然后进一步加深对反响机理的知道。  炉料熔化期的化学反响     熔化期是指从开端参加稀土质料和石灰到加硅铁之前的冶炼阶段,其使命是熔化炉料构成渣相。运用稀土富渣或稀土精矿渣作质料 [其矿藏组成有铈钙硅石、晶石、萤石和硫化钙等,稀土元素存在于铈钙硅石矿藏(3CaO·Ce2O3·SiO2)中],当冶炼温度到达1100~1200℃时,熔化的炉渣和石灰发作化学反响,并促进了石灰的熔化,这时有下列反响发作。     ①铈钙硅石分化:                   3CaO·Ce2O3·2CiO2+CaO====Ce2O3+2(2CaO·SiO2)        (1)     ②晶石分化:                              3CaO·CaF2·2SiO2+CaO====CaF2+2(2CaO·SiO2)          (2)     ③在有足够的CaO条件下:                             2CaO·SiO2+CaO====3CaO·SiO2                       (3)  复原期的化学反响     复原期为参加硅铁到合金出炉的冶炼阶段。跟着硅铁的熔化,在炉内呈现了两相,即熔融的渣相和合金相。此刻的化学反响由以下三部分组成:两相界面上进行的复原反响、渣相中的造渣反响和合金相中的合金化反响。     (1)硅复原稀土氧化物  因为溶渣中有很多的游离RE2O3呈现,硅铁中有很多的游离硅存在,在两相界面上RE2O3被硅复原[反响式(-1)]。     物相分析结果表明[13],合金中的稀土以硅化物的形状存在,渣中SiO2以硅酸盐形状存在。然后证明,被复原出来的稀土金属和硅发作合金化反响构成稀土硅化物存在于合金相中:                     [RE]+[Si]====[RESi]                     (4)                      [RESi]+[Si]====[RESi2]                   (5)     复原生成的SiO2与渣中CaO反响生成硅酸钙存在于渣中:                  (CaO)+(SiO2)====(CaO·SiO2)                (6)                  2(CaO)+(SiO2)====(2CaO·SiO2)                (7)                   3(CaO)+(SiO2)====(3CaO·SiO2)             (8)     稀土硅化物和硅酸钙的生成,大大降低了合金中稀土的活度和渣中SiO2的活度,使反响式与下式能够顺利进行。  2(RE2O3)+[Si]====4[RE]+(SiO2) 33       (2)复原稀土氧化物  为了进一步探究稀土氧化物的复原机理,研讨工作者按硅热法制取稀土硅铁合金的实践条件,配制成不含稀土的组成渣,其组成见表1。组成渣熔融后,用75硅铁复原,冶炼进程中合金含钙量和含硅量随时刻的改变如表2所示。 表1  组成渣的组成组成CaOSiO2CaF2Al2O3S含量/%48.9714.5328.143.200.82   表2  合金中钙和硅的含量改变时刻/min02.55101530405075120合金含钙量/%0.3915.93 21.5321.1522.3321.8721.3019.0515.20合金含硅量/%75.7067.5059.10 56.1056.10 55.7055.8057.00        从表1可见,用硅铁复原不含稀土的组成渣,能够获得含钙量22.33%的合金,但在相同的条件下用硅铁复原稀土炉渣,终究稀土硅铁合金的含钙量不大于5%。在冶炼稀土硅铁合金进程中,取样分析改变状况,证明被复原出来的钙或参加了稀土氧化物的复原,有下列反响存在:             (RE2O3)+[CaSi] === 2[RE]+(CaO·SiO2)                  (9)                        [RE]+[Si] === [RESi]                           (10)     因而,渣中CaO被硅复原,对稀土氧化物的复原是有利的。 辅佐反响     在冶炼稀土硅铁合金进程中,电弧炉有很多的烟气逸出,跟着温度的升高,还会发生熔体的欢腾现象,这是因为电弧炉选用碳素炉衬和石墨电极,其间的碳也能够参加复原反响,例如:                                               (FeO)+C === [Fe]+CO↑                     (11)                                            (MnO+C)=== [Mn]+CO↑                     (12)                                                 (SiO2)+C === SiO↑+CO↑                     (13)     炉渣中有很多子的CaF2存在,并与SiO2效果:                                  2(CaF2)+2(SiO2) === (2CaO·SiO2)+SiF↑          (14)     炉渣中SiO2与合金中Si反响:                        (SiO2)+[Si] === 2SiO↑                      (15)     上述反响发生的气体使熔体欢腾,起到了拌和效果,使熔融渣相和合金相的触摸条件得到改进,也有利于反响物的分散,改进了复原反响的动力学条件。     总归,依据多年的实验和生产实践,能够揣度硅热复原法制取稀土硅铁合金的反响,是在很多石灰参加反响的条件下,硅首先将石灰复原成钙构成合金,再将稀土氧化物复原成稀土金属,也不扫除硅直接将稀土氧化物复原成稀土金属的可能性。稀土金属进一步与硅合金化,以硅化物相存在于合金中。这是一个适当杂乱的氧化复原反响进程,因而,经过操控冶炼工艺条件,如炉料配比、复原温度和时刻等能够有用操控合金组成。    参 考 文 献    13、董一诚等,钢铁,1983、18(12):43

铜和什么反应,变黑?

2018-12-13 10:31:09

铜和氧气反应,变黑方程式:2Cu+O2===2CuO不是点燃是加热放火上烧一烧旧行了别用硝酸,浓的稀的都不行,会把铜溶解

电镀的反应机理

2018-12-19 09:49:46

A、电极电位 当金属电极浸入含有该金属离子的溶液中时,存在如下的平衡,即金属失电子而溶解于溶液的反应和金属离子得电子而析出金属的逆反应应同时存在:Mn++ne = M 平衡电位与金属的本性和溶液的温度,浓度有关。为了精确比较物质本性对平衡电位的影响,人们规定当溶液温度为250℃,金属离子的浓度为1mol/L时,测得的电位叫标准电极电位。标准电极电位负值较大的金属都易失掉电子被氧化,而标准电极电位正值较大的金属都易得到电子被还原。 B、极化 所谓极化就是指有电流通过电极时,电极电位偏离平衡电极电位的现象。所以,又把电流-电位曲线称为极化曲线。产生极化作用的原因主要是电化学极化和浓差极化。 1、电化学极化 由于阴极上电化学反应速度小于外电源供给电子的速度,从而使电极电位向负的方向移动而引起的极化作用。 2、浓差极化 由于邻近电极表液层的浓度与溶液主体的浓度发生差异而产生的极化称浓差极化,这是由于溶液中离子扩散速度小于电子运动造成的。 电镀过程是镀液中的金属离子在外电场的作用下,经电极反应还原成金属原子并在阴极上进行金属沉积的过程。 电镀原理简单而言,就是在含有欲镀金属的盐类溶液中,以被镀基体金属为阴极,通过电解作用,使镀液中欲镀金属的阳离子在基体金属表面沉积出来,形成镀层。 电镀的要素: 1.阴极:被镀物,指各种接插件端子。 2.阳极:若是可溶性阳极,则为欲镀金属。若是不可溶性阳极,大部分为贵金属(白金,氧化铱)。 3.电镀药水:含有欲镀金属离子的电镀药水。 4.电镀槽:可承受,储存电镀药水的槽体,一般考虑强度,耐蚀,耐温等因素。 5.整流器:提供直流电源的设备。 (磨光→抛光)→上挂→脱脂除油→水洗→(电解抛光或化学抛光)→酸洗活化→(预浸)→电镀→水洗→(后处理)→水洗→干燥→下挂→检验包装 电镀工作条件是指电镀时的操作变化因素,包括:电流密度、温度、搅拌和电源的波形等。

金属镁还原炉———传统还原炉

2019-01-07 07:51:16

金属镁还原炉是镁生产的核心设备,国内外普遍采用的是外加热卧式还原罐还原炉。目前,国内应用的金属镁还原炉的炉型较多,根据所用燃料的不同,大体上可分为两类:用煤气或重油加热的还原炉与以煤为燃料的还原炉。   用煤气或者重油为燃料的还原炉用煤气或者重油作为燃料的还原炉,通常是16个横罐的还原炉,其规格为10.54×3.59×2.94(m)。这种还原炉为矩形炉膛,还原罐间中心距约为600mm,罐呈单面单排排列,炉子背面一般分布有多支低压烧嘴。火焰从燃烧室进入炉膛空间,绕过还原罐周边,靠烟囱抽力将燃烧后的烟气抽入炉底部支烟道,经烟道与烟道闸门后进入烟囱。二次风由二次风管再通过炉底第二层二次风道送入炉内。   还原炉底部两个还原罐中间设有燃烧室或烟室。还原炉既是一个倒焰炉又是一个贮热炉。炉膛内一般装有16支镍铬合金钢制的还原罐。16个还原罐分成四组,即4个还原罐组成一组,与一个真空机组相连接(真空机组由滑阀泵和罗茨泵组成),每台还原炉还设有一个备用真空机组,因此一台还原炉一般有5个真空机组,每台还原炉设有一个水环泵作为预抽泵。   以煤为燃料的还原炉在我国,金属镁还原炉以燃煤为主,随着镁冶炼工艺的不断发展与进步,出现过多种燃煤还原炉,典型的有下面几种。   1.单火室单面单排罐还原炉该炉型与燃煤气、重油还原炉炉型相似,单面单排布置还原罐。燃烧室设置在后面,炉内装有14~16支还原罐,在两支还原罐中间设置一过火孔。该炉型由于只有单排罐,又是单面布置,故操作十分方便,车间布置便于机械化,但其产量和热效率都低。该炉型属于矩形倒焰窑,火焰从燃烧室通过挡火板反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经过火孔,支烟道至主烟道排出。   2.双火室双面双排还原罐该炉型也是矩形倒焰窑,装有10支还原罐,在长度方向分两端各装5支上、下排列。炉型设置了四个对称分布在两侧面的燃烧室(每面两个),燃烧室内有倾斜15°的梁式炉栅,火焰从窑两侧燃烧室翻过挡火墙,流向炉膛中心窑顶,然后火焰倒流向炉底吸火孔、支烟道再由一端的主烟道排入烟囱。该炉的优点是炉子结构简单,罐子排列较紧凑,炉膛空间利用率较高,其缺点在于炉子四面均为操作面,加煤烧火与还原出镁、扒渣、装料互有干扰,操作条件差,车间布置困难。该炉型也有炉膛空间扩大而布置14~22支罐的。   3.单火室双面双排罐还原炉该炉型是两端面双排布罐,单火室烧火的还原炉。在两个端面各分上、下排装6支罐,共布罐12支,在一个侧面设多个燃烧室,这样燃煤操作比较方便,空间利用率也较高,但还原罐数量有限,产量小。   4.国内应用最为广泛的单火室单面双排罐还原炉该炉型也属于外加热火焰反射炉(俗称倒焰炉)。炉内还原罐上下错开上牌布置,空间利用率较高;炉长方向没有限制,故可以布置较多的还原罐,一般有30~40支;还原罐单面开口,与真空机组的连接较方便;燃烧室设置在炉膛后面,由挡火墙隔开,火焰从燃烧室通过挡火墙反射至炉顶,受烟囱抽力火焰向下,使还原罐受热,再经炉底过火孔、支烟道至主烟道排出。相对于上述其他炉型,该炉型产量大、空间利用率较高、能源消耗较低、经济性好,因此在国内得到了广泛的应用。