矿物中提取氧化铁
2019-02-25 10:50:24
现在国内外首要选用化学法出产a-氧化铁,产品用于永磁和软磁铁氧体材料。在化学法出产中,因为含铁质料的来历不同,其杂质品种和含量则不同,在同一出产工艺的条件下,不免呈现氧化铁质量的差异,然后影响铁氧体器材的出产。而天然矿藏赤铁矿的晶体结构安稳,在同一矿床中矿石的化学组分、含杂质品种根本相同,因而从赤铁矿矿石中提取6t一氧化铁,有较好的安稳性和共同性。
1氧化铁的制备工艺
1.1 a-Fe203粗精矿的提取
经过调研,选定安徽某矿山的赤铁矿作为矿源产地,其首要矿藏为赤铁矿和石英。它们之间比重差较大,可选用重选别离。此外,该矿石中,强磁性矿藏较少(磁铁矿约占1~2),选用磁选丢掉部分尾矿,再进行重选,可削减铁矿藏在重选中的丢失。依据原矿石细度实验和不同磁场强度实验,宜选用磨细度~200目6O,磁场强度6.366×106A/m的产品进行摇床重选,可获得较佳的粗精矿。
1.2 a-Fe203粗精矿的深加工
流程所提取的氧化铁在纯度、杂质含量等方面尚不契合要求,为进一步下降Si、Mg等有害杂质,仅靠物理分选已很难到达,深加工考虑了运用挑选性溶解,使杂质元素得到有用消除。经过实验,发现选用含氟溶剂时,能明显地下降Si02而不损创伤a-Fe2o3。与此同时,在屡次洗刷倾析时,稀释的水溶液中还带走了部分被胶凝吸附的杂质,以及细微的飘浮物,使其它杂质含量如钙、镁等随之下降。因而,对挑选性溶解进行了相关扩展实验,断定工艺条件:
1.3制品制备
经过深加工的口-Fe203精矿,其纯度、杂质含量根本合格,但粒度须进一步细磨,经过多计划的比较,挑选Co6—1型砂磨机进行湿磨5h,再经离心机脱水甩干、烘干、破坏、包装,即制得制品氧化铁。
2产品质量
2.1产品杂质元素含量
经过对赤铁矿的分选工艺处理和终究粗精矿的深加工处理,得到了口-Fez含量达99.68%的产品,经检测其杂质元素含量。该纯度和杂质含量根本契合出产铁氧体器材所需氧化铁的要求。
3结语
因为天然矿藏赤铁矿在自然界散布广泛,储量较大,在相同地质条件下的矿藏理化性质比较共同,就可以用同一工艺大量出产安稳性、共同性较好的优质氧化铁,为铁氧体器材供给较为抱负的原材料。
氧化铁皮的综合利用:可用于制取还原铁粉等
2019-02-26 11:04:26
轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。
(1)用于出产海绵铁或制取复原铁粉。
海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。
氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C
氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。
(2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。
氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。
别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。
(3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。
钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。
电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。
氧化铝的生产工艺
2018-12-25 13:45:29
因为中国铝土矿资本的80%以上为高铝、高硅,难溶出的一水硬铝石,对这种资本,不能沿袭国外普遍选用的惯例拜耳法出产氧化铝。中国氧化铝的出产工艺主要有如下几种:
1.烧结法:对于中国铝土矿难溶的特点的传统办法。当前,烧结法出产氧化铝仍占全国总产量的约40%,但出产工艺也在不断改进中。
2.混联法:即低铝硅比的矿石用于烧结法,高铝硅比的矿石用于拜耳法,在两个工艺流程中有物流的穿插。
3.选矿—拜耳法: 即是经过选矿的办法将铝土矿中的含铝矿藏与含硅矿藏有效地别离,从而进步含铝矿藏中铝硅A/S比(铝硅比)。使得高A/S比的含铝矿藏能够用拜耳法经济地处置。
这种选矿和拜耳法联合出产氧化铝的办法即是选矿--拜耳法,这将为往后中国氧化铝工业的发展起到严重效果。
某低品位弱磁性氧化铁矿选矿试验研究
2019-01-21 18:04:28
在我国已探明的铁矿资源中,弱磁性铁矿约占铁矿总储量的 65% ,其中鞍山式贫赤铁矿占弱磁性矿的一半以上。随着钢铁工业的发展,富矿日益枯竭,贫矿入选比例逐年增大。因此,该类型矿床的开发利用对我国钢铁工业的发展具有十分重要的意义。本文所研究的氧化铁矿原矿品位仅为28.34%,通过对全磁选流程以及磁选 —阶段磨矿—反浮选流程的探索性实验 ,最终取得了较为理想的选别指标。
一、矿石性质
该矿床类型为鞍山式沉积变质铁矿床,矿石类型以石英型镜铁矿、磁铁矿为主。
矿石中金属矿物主要有镜铁矿,磁铁矿、赤铁矿,其中TFe/FeO比值为6.23,属于氧化程度较深的贫铁矿石。脉石矿物主要为石英,呈条纹、带状构造为主,分布较均匀,仅局部夹杂少量云母闪石类矿物。矿石的多元素及铁物相分析见表 1、表 2。二、全磁选流程试验
(一)磨矿粒度试验
将原矿分别磨到-200目占80%、85%、90%,然后进行弱磁选、弱磁尾矿强磁选试验,弱磁选场强为0.2T,强磁选试验采用Slon-100周期式脉动高梯度磁选机,背景场强为0.5T。其试验结果见表3。从表3可以看出,当磨矿粒度为-200目80%~90%时,强磁精矿的品位为49.67%~54.28%,若将该精矿和弱磁精矿一起作为产品,将影响产品的最终品位。若进一步增加磨矿细度,不但会大幅度增加磨矿成本,还会造成磁铁矿的过磨,产品的最终回收率也得不到保证。综合考虑,确定磨矿粒度为-200目 85%。
(二)强磁尾矿扫选试验
根据以往经验,当磨矿粒度控制在-200目占85%左右时,有必要对强磁尾矿进行一次扫选以提高综合回收率。为此 ,进行了强磁尾矿扫选试验,其结果见表4。表4中,强磁精矿指强磁粗选和强磁扫选的混合矿样。(三)强磁精矿精选和再磨再选试验
将磨矿粒度为 -200目占 85%左右的强磁精矿(见表4)分别进行精选和再磨再选,其试验结果见表 5、表 6。注:强磁精矿再磨至-200目含量为95%。
从表5和表6可以看出,强磁精矿进行再选或再磨再选时,精矿品位虽有提高,但“跑尾 ”严重,尾矿品位偏高,金属损失量大,表明全磁选流程对该矿的选别有一定的局限性。
三、强磁精矿再磨-反浮选试验
(一)再磨粒度试验
参考国内处理“鞍山式”贫红铁矿石的经验 ,将强磁精矿进行再磨 —反浮选作业 ,其试验流程见图1,药剂制度为:MH850g/t、NaOH1250g/t,玉米淀粉1000g/ t、CaO500g/ t,矿浆温度 30℃。试验结果见表 7。从再磨粒度试验来看,随着磨矿细度的增加 ,浮选精矿的品位也有所提高,但回收率得不到保证;同时磨矿细度的增加 ,也会加大选矿成本。综合考虑这几方面的因素,磨矿粒度取-200目占95%较为合理。
(二)反浮选闭路试验
在再磨粒度为-200目占95%的条件下,对强磁精矿进行了反浮选闭路试验,其流程见图2,试验结果见表8。四、综合流程试验
对比考虑全磁选和强磁精矿再磨-反浮选流程的选别效果,确定采用弱磁-强磁-阶段磨矿-反浮选联合工艺对该低品位弱磁性氧化铁矿进行选别,其数质量流程如图3所示。五、结语
(一)品位为28. 34%的氧化铁矿,通过弱磁—强磁选作业,只能得到品位为51. 82%~58. 00%的铁精矿,回收率为60.15% ~73. 70%;该产品再通过强磁或再磨—强磁选作业后,精矿品位提高幅度不大,产品回收率不足60%,表明全磁选流程对该矿的选别不理想。
(二)对弱磁尾矿采用“强磁—再磨—反浮选”工艺,不但将反浮选的入选品位提高了 28个百分点,并且抛弃了大约85%的尾矿,降低了再磨作业的处理量,大幅度降低了磨矿成本。SLon立环脉动高梯度磁选机对贫弱磁性氧化铁矿反浮选前的预磁抛尾处理的功效又一次得到了验证。
(三)近些年来反浮选药剂不断涌现出新品种,选别的针对性也越来越强。本文在反浮选药剂的选择和用量上,都是借鉴前人的经验,如果在这两方面开展进一步研究,选矿指标有望进一步提高。
氧化铋生产工艺现状
2019-02-25 13:30:49
湿法的首要工艺流程:
1、精粹铋→熔化→水淬→硝酸溶解 溶液浓缩结晶→结晶煅烧→氧化铋
2、精粹铋→熔化→水淬→硝酸溶解 溶液加碱中和→氧化铋过滤洗刷→枯燥→氧化铋制品
火法的首要工艺流程:
精粹铋—→熔化—→雾化焚烧—→产品搜集—→产品分级。
目前国内的氧化铋出产厂商大都选用湿法硝酸系统出产氧化铋,因为出产过程中因硝酸介质的引进导致发生很多NXOY污染环境,产品中也不可防止残留NXOY;不论选用煅烧或枯燥,均难防止氧化铋粉末的聚会,影响产品粒度,粒度均在5μm~7μm以上,且粒度散布不均匀,对产品的使用也有较大的影响。国内选用火法出产氧化比铋产品粒度在3μm~5μm。日本和德国则多以熔体雾化–焚烧法出产氧化铋,产品粒度在1μm~2μm。中国是世界上氧化铋产值最大的国家之一。首要用硝酸法出产工艺,产品难以彻底满意该部分高端商场的需求
我国氧化铝生产工艺
2019-02-12 10:07:54
我国的氧化铝出产厂胡6家:2003年氧化铝产值山西铝厂141万t;河南铝业公司137万t;中州铝厂85万t;山东铝厂93万t;平果铝业公司69万t;贵州铝厂75万t。都是出产冶金级氧化铝。平果铝业公司选用纯拜耳法,其他厂都用混联法,混联法中的拜耳法和烧结法的产值根本持平,工艺流程如图1所示。
图1 我国混联出产氧化铝的根本工艺流程图
我国的铝土矿为一水硬铝石型,要求溶出温度高于240℃,是较尴尬溶出的矿石。我国的铝土矿的铝硅比较低(6~9),质料决议了我国的氧化铝出产的能耗比国外高,本钱高。我国氧化铝工业从烧结法发家,因为选用非饱和配方、低苛性比溶出、生料浆加煤脱硫、深度脱硅等一系列技能,使得烧结法有了新的开展,成绩斐然。但是,烧结法物料量大,工艺杂乱,特别是以高温烧成为主工序,能耗特别高,每吨氧化铝能耗达40GJ,动力费用占出产本钱的53%。明显烧结法在世界市场上缺少竞争能力。为此,我国长城铝业公司氧化铝厂在世界上首要选用了“拜耳-烧结”混联的联合出产氧化铝。通过30多年的尽力,这种办法日臻完善,氧化铝总回收率达92.2%,碱耗(按Na2CO3计)69kg/t,与山西铝厂烧结法比较,出产本钱低15%以上。这样一来,贵州铝厂从1989年改为混闻法出产氧化铝。山西铝厂于1992年改为混联法出产氧化铝。山东铝厂、中州铝厂也改为混联法。
使用LPCF法处理氧化铁型铜矿石的选矿工艺
2019-02-27 12:01:46
铜录山矿堆存多年的难以用直接硫化浮选法处理的氧化铁型铜矿石。矿样含铜2.03%,氧化率高达98%,结合率为26.70%。铜矿藏首要为假孔雀石、孔雀石,有少数黄铜矿。这些铜矿藏嵌布粒度极细,平均为10微米。结合状况的铜,首要呈铜铁类质同象产出。矿样含泥较高,矿藏组成除氧化铁外,还有石英、长石等。惯例硫化浮选闭路目标,精矿档次仅为15%,收回率35%。鉴于矿样含铜高达2%,而浮选收回率则很低(35%),故选用原矿直接由LPCF法处理。常温浸出,给矿粒度为-74微米占60%~65%,硫酸用量60公斤/吨原矿,拌和时刻30分钟,液固比1:1,铜的浸出率高于于83%。沉积剂硫化钙为30公斤吨。载体用该选厂出产的硫化铜精矿,用量为原矿量的4~5%。浮选捕收剂为丁基黄药与低碳(C79)脂脂酸,用量别离为390和60克/吨;起泡剂松醇油160克/吨。闭路实验。铜精矿(已扣除载体)档次24.94%,收回率1.21%,别离比惯例浮选法高8%和45%。金、银得到归纳收回。铜精矿含金9.8克/吨,收回率72%;含银131克/吨,收回率70%。实验标明,沉积作业中,先用碱(或碱式盐)中和过剩的游离酸,可削减沉积剂用量和生成量。运用苛性钠,反响进程快,若用方解石中和,需求将其磨细至-74微米占60%~70%,拌和4~6分,才干完结反响。沉积剂运用、硫化钙皆可。从下降药荆费用,便于尾矿水净化和操控生成量等方面考虑,运用碳酸钙巾和游离酸,用硫化钙沉积铜离子,比较适合。实验还证明,以档次高,浮游性强的铜精矿作为载体,实施载体浮选,可明显改进微细的硫化铜沉积物的浮选进程。在相同条件下,不必LPCF法进行浮选,精矿含铜13%~15%,收回率65%-68%,LPCF法处理的精矿(已扣除载体)含铜可达24.94%,收回率81.21%。各种类型氧化铜矿的实验结果标明,浸出-沉积-载体浮选法可到达比惯例浮选法为高的技术目标。同已有的其他选冶联合工艺比较,该法有若干长处。
选矿工艺进程较为简略,无固-液别离工序,不需求萃取剂、离子交换树脂、海绵铁之类的材料,浮选及其今后的工序,在中性或弱酸性介质中进行,防腐蚀问题较易处理,金,银等贵念属可随铜一同收回,其收回条件和目标可与铜相同得到改进;用自产的高档次铜精矿作为载体,实施载体浮选。可明显改进胶态硫化铜的浮游代,进步精矿档次和收回率,载体不需求别离和再生。用碳酸钙中和游离酸,以硫化钙作为铜离子的沉积剂,或许有利于下降药剂费用,改进尾矿水处理。当然,LPCF法也有缺陷,如酸及沉积剂的用量高级。还有若干问题,如沉积进程中怎么操控和防备的发生、硫酸钙是否会结垢等,都需求进一步处理。
钨铁生产工艺
2019-01-18 13:27:13
结块法
结块法采用可在轨道上移动、炉体上段可拆的敞口电炉,用碳作还原剂。精钨矿、沥青焦(或石油焦)和造渣剂(铝矾土)组成的混合炉料分批陆续加入炉中,炉内炼得的金属一般呈粘稠状,随着厚度增高,下部逐渐凝固。炉子积满后停炉,把炉体拉出,拆除上段炉体使结块冷凝。然后取出凝块,进行破碎和精整;挑出边缘、带渣和不合格的部分回炉重熔。产品含钨80%左右,含碳不大于1%。
取铁法
取铁法适用于冶炼熔点较低的含钨70%的钨铁。采用硅和碳作还原剂;分还原(又称炉渣贫化)、精炼、取铁三个阶段操作。还原阶段炉中存有上一炉取铁后留下的含WO3大于10%的炉渣,再陆续加进多批钨精矿炉料,然后加入含硅75%的硅铁和少量沥青焦(或石油焦)进行还原冶炼,待炉渣含WO3降到0.3%以下时放渣。随后转入精炼阶段,在此期内分批加入钨精矿、沥青焦混合料,用较高电压操作,在较高温度下脱除硅、锰等杂质。取样检验,确定成分合格后,开始取铁。过去用钢勺人工挖取铁块投入水池,60年代初吉林铁合金厂改用机械取铁装置,改善了劳动条件。取铁期内仍根据炉况,适当地加进钨精矿、沥青焦料。冶炼电耗约3000千瓦•时/吨,钨回收率约99%。
铝热法
近年来,为了利用废硬质合金粉末钨钴分离提钴后的再生碳化钨,研制出了铝热法钨铁工艺,用再生碳化钨与铁为原料,以铝作还原剂,利用碳化钨中自身的碳和铝燃烧的热能,使原料中的钨和铁转化为钨铁,可节约大量的电能,并降低成本。同时由于原料碳化钨中的杂质远远低于钨精矿的杂质,产品质量均高于以钨精矿为原料的钨铁。钨的回收率也高于以钨精矿为原料的工艺。
钨价昂贵,在生产过程中必须重视提高回收率,不合格产品、渣铁要收集回炉,电炉应有高效率炉气除尘设施,回收含钨粉尘。
钢铁生产工艺
2018-12-11 14:37:54
现代钢铁生产流程是将铁矿石在高炉中冶炼成生铁,将铁水注入转炉或电炉冶炼成钢,再将钢水铸成连铸坯或钢锭,经轧制等塑性变形方法加工成各种用途的钢材。 一个钢铁联合企业一般包括原料处理、炼铁、炼钢、轧钢、能源供应、交通运输等生产环节,是一个复杂而庞大的生产体系。我国的钢铁企业一般都是这样的全流程联合企业。
1、冶炼原料 原料是高炉冶炼的物质基础,精料是高炉操作稳定顺行,获得高产、优质、低耗及长寿的基本保证。 高炉冶炼用的原料主要有铁矿石(天然富矿和人造富矿)、燃料(焦炭与喷吹燃料)、熔剂(石灰石和白云石等)。冶炼一吨生铁大概需要品位为63%的铁矿石1.60~1.65吨,0.3~0.6吨焦炭,0.2~0.4吨熔剂。2、炼铁工艺 高炉炼铁是以焦炭为能源基础的传统炼铁方法。它与转炉炼钢相配合,是目前生产钢铁的主要方法。高炉炼铁的这种主导地位预计在相当长时期之内不会改变。高炉炼铁的本质是铁的还原过程,即焦炭做燃料和还原剂,在高温下将铁矿石或含铁原料的铁,从氧化物或矿物状态(如Fe2O3、Fe3O4、Fe2SiO4、Fe3O4·TiO2等)还原为液态生铁。 冶炼过程中,炉料(矿石、熔剂、焦炭)按照确定的比例通过装料设备分批地从炉顶装入炉内。从下部风口鼓入的高温热风与焦炭发生反应,产生的高温还原性煤气上升,并使炉料加热、还原、熔化、造渣,产生一系列的物理化学变化,最后生成液态渣、铁聚集于炉缸,周期地从高炉排出。上升过程中,煤气流温度不断降低,成分逐渐变化,最后形成高炉煤气从炉顶排出。3、炼钢
钢与生铁都是以铁元素为主,并含有少量碳、硅、锰、磷、硫等元素的铁碳合金,二者差别就是C元素的含量。 炼钢的主要任务包括以下几项:
1)脱碳;2)脱磷;3)脱硫;4)脱氧;5)脱氮、氢等;6)去除非金属夹杂物;7)合金化;8)升温;9)凝固成型。
炼钢工艺主要包括 1) 铁水预处理;2)转炉或电弧炉炼钢;3)炉外精炼(二次精炼);4)连铸。 炼钢过程是个氧化过程,其去除杂质的主要手段是向熔池吹入氧气并加入造渣剂形成熔渣出来。脱碳反应是炼钢过程的主要手段,硅、锰、磷、硫等元素也通过氧化反应去除。炼钢的原料有生铁、废钢、熔剂(石灰石等)、脱氧剂(硅铁、锰铁、铝等)、合金料等。4、连铸 连续铸钢是通过连铸机将钢液连续地铸成钢坯的工序。与模铸相比,连铸具有以下优越性: 1)简化工序、节能;2)铸坯切头率降低、金属收得率比模铸高7~12%;3)高效凝固;4)优化成型。
连铸工艺的流程为:钢液通过中间包注入结晶器内,迅速冷却成具有一定厚度的凝固壳而内部仍为液态的铸坯。铸坯下部与伸入结晶器底部的引锭杆衔接,浇注开始后,拉坯机通过引锭杆把结晶器内的铸坯以一定速度拉出。铸坯通过连铸二次冷却区时,进一步是受到喷水冷却直到完全凝固。完全凝固后的铸坯通过拉矫机矫直后,切割成规定长度,由输送辊道运出。5、轧钢 轧制过程是轧件与轧辊之间的摩擦力将轧件拉进不同旋转方向的轧辊之间使之产生塑性变形的过程。一般的轧钢工序可分为: 加热炉 粗轧 中轧 精轧 精整
冰铜生产工艺
2017-06-06 17:50:13
冰铜生产工艺技术,是衡量一个企业是否具有先进性,是否具备
市场
竞争力,是否能不断领先于竞争者的重要指标依据。随着我国冰铜
市场
的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外冰铜生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高
市场
竞争力十分关键。采用湿法冶金工艺从铅火法冶炼系统中产出的铅冰铜中回收铜,属
有色金属
湿法冶金领域。将铅冰铜块料磨至粒度小于40目以下;研磨后的铅冰铜用废电积液或稀酸溶液调浆后送入高压釜,液固比10∶1,并通入氧气,在氧分压0.2~1.0MPa,总压0.5~1.5MPa,浸出温度100~150℃,硫酸浓度50~150g/L,浸出时间2~6h的浸出条件下氧化浸出铜,而铅则以硫酸铅的形式留在渣中;浸出过程完成后,矿浆排出高压釜,进行液固分离,实现
金属
的初步分离;含铜的浸出液采用电沉积方法回收溶液中的铜,获得符合国标的阴极铜产品;浸出渣返回火法炼铅系统回收利用铅、银、单质硫有价元素。更多有关冰铜生产工艺的内容请查阅上海
有色
网
钼生产工艺
2018-12-10 09:44:08
3月21日消息:由于大部分钼矿石品位相对较低,因此需要采用高效率的采矿工艺,一般包括: 采 矿
大规模的露天开采;
地下矿块崩落开采,用这种方法可使大块巨石破碎,重量减小。 世界上许多钼矿的产能都很高,矿石的日运输能力最高可达50000吨。
选 矿 矿石经过一系列的破碎和研磨(球磨或棒磨)后粒径可减小至1微米(1/1000mm),这样就把辉钼矿从基质岩石中分离出来。用一些药剂(包括一些燃料和柴油)进行调浆,这些药剂附着在钼粒子表面,用作疏水剂。 浮选分离在通风槽中进行,钼粒子和悬浮在空气中的泡沫接触,精矿浮在泡沫表面进入流槽中。接着经再磨和再选环节除去其它杂质,钼精矿品位得以提高。最终的精矿含辉钼矿70 %~90%,如果需要的话,用酸浸法除去铜和铅等杂质。
焙 烧 钼精矿经过焙烧可转化为工业氧化钼,其化学反应式为: 2MoS2 + 7O2==>2MoO3+4SO2 MoS2+6MoO3==>7MoO2+2SO2 2MoO2+ O3==>2MoO3 钼精矿是在大型多膛炉或叫焙烧炉中进行焙烧,焙烧温度为600~700°C。钼精矿由搅拌耙搅动,使物料从炉床的中央向四周移动,从这里再落入下一层,然后再返回到炉床的中央,这样均匀的气流10小时内在12层或更多的炉层中不停地循环,最终产品-工业氧化钼一般含钼不小于57%,含硫小于0 .1%。 一些副产钼的铜矿中含有少量的铼(<0.10%),铼是一种金属元素,在催化剂领域铼用于生产无铅汽油,在高级超合金领域用于制造喷气式发动机的涡轮叶片。铼是在焙烧钼精矿过程中回收的一种重要的稀有金属资源。 (miki)
硅粉生产工艺
2017-06-06 17:50:01
硅粉生产工艺是投资者想知道的信息,因为了解它可以帮助操作。硅粉生产工艺是由纯净石英粉经先进的超细研磨工艺加工而成 是用途极为广泛的无机非金属材料。具有介电性能优异、热膨胀系数低、导热系数高、悬浮性能好等优点。因其具有优良的物理性能、极高的化学稳定性、独特的光学性质及合理、可控的粒度分布,从而被广泛应用于光学玻璃、电子封装、电气绝缘、高档陶瓷、油漆涂料、精密铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等生产领域。 硅微粉还是生产多晶硅的重要原料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在氢气中还原沉积成多晶硅。而多晶硅则是光伏产业太阳能电池的主要原材料。近年来,全球能源的持续紧张,使大力发展太阳能成为了世界各国能源战略的重点,随着光伏产业的风起云涌,太阳能电池原材料多晶硅价格暴涨,又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面,更使硅资源拥有者尽享惊人的暴利。 据调查,目前国内生产硅微粉的能力约25万吨,主要是普通硅微粉,而高纯超细硅微粉大量依靠进口。初步预测2005年我国对超细硅微粉的需求量将达6万吨以上。其中,橡胶行业是最大的用户,涂料行业是重要有巨大潜力的应用领域,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉原料全部依靠进口,仅普通球形硅微粉的价格2-3万元/吨,而高纯超细硅微粉的价格则高达几十万元/吨以上。 硅微粉是由纯净石英粉经先进的超细研磨工艺加工而成,是用途极为广泛的无机非金属材料。具有介电性能优异、热膨胀系数低、导热系数高、悬浮性能好等优点。因其具有优良的物理性能、极高的化学稳定性、独特的光学性质及合理、可控的粒度分布,从而被广泛应用于光学玻璃、电子封装、电气绝缘、高档陶瓷、油漆涂料、精密铸造、硅橡胶、医药、化装品、电子元器件以及超大规模集成电路、移动通讯、手提电脑、航空航天等生产领域。 硅微粉还是生产多晶硅的重要原料。硅微粉用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成三氯氢硅(SiHCl3),SiHCl3进一步提纯后在氢气中还原沉积成多晶硅。而多晶硅则是光伏产业太阳能电池的主要原材料。近年来,全球能源的持续紧张,使大力发展太阳能成为了世界各国能源战略的重点,随着光伏产业的风起云涌,太阳能电池原材料多晶硅价格暴涨,又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面,更使硅资源拥有者尽享惊人的暴利。 据调查,目前国内生产硅微粉的能力约50万吨,主要是普通硅微粉,而高纯超细硅微粉大量依靠进口。初步预测2008年我国对超细硅微粉的需求量将达10万吨以上。其中,橡胶行业是最大的用户,涂料行业是重要有巨大潜力的应用领域,电子塑封料、硅基板材料和电子电器浇注料对高纯超细硅微粉原料全部依靠进口,仅普通球形硅微粉的价格2-3万元/吨,而高纯超细硅微粉的价格则高达几十万元/吨以上。 超细硅微粉具有粒度小、比表面积大、化学纯度高、分散性能好等特点。以其优越的稳定性、补强性、增稠性和触变性而在橡胶、涂料、医药、造纸、日化等诸多领域得到广泛应用,并为其相关工业领域的发展提供了新材料的基础和技术保证,享有"工业味精""材料科学的原点"之美誉。自问世以来,已成为当今时间材料科学中最能适应时代要求和发展最快的品种之一,发达国家已经把高性能、高附加植的精细无机材料作为本世纪新材料的重点加以发展。 近年来,计算机市场、网络信息技术市场发展迅猛,CPU集程度愈来愈大,运算速度越来越快,家庭电脑和上网用户越来越多,对计算机技术和网络技术的要求也越来越高,作为技术依托的微电子工业也获得了飞速的发展,PⅢ 、PⅣ 处理器,宽带大容量传输网络,都离不开大规模、超大规模集成电路的硬件支持。 随着微电子工业的迅猛发展,大规模、超大规模集成电路对封装材料的要求也越来越高,不仅要求对其超细,而且要求其有高纯度、低放射性元素含量,特别是对于颗粒形状提出了球形化要求。高纯超细熔融球形石英粉(简称球形硅微粉)由于其有高介电、高耐热、高耐湿、高填充量、低膨胀、低应力、低杂质、低摩擦系数等优越性能,在大规模、超大规模集成电路的基板和封装料中,成了不可缺少的优质材料。 为什么要球形化?首先,球的表面流动性好,与树脂搅拌成膜均匀,树脂添加量小,并且流动性最好,粉的填充量可达到最高,重量比可达90.5%,因此,球形化意味着硅微粉填充率的增加,硅微粉的填充率越高,其热膨胀系数就越小,导热系数也越低,就越接近单晶硅的热膨胀系数,由此生产的电子元器件的使用性能也越好。其次,球形化制成的塑封料应力集中最小,强度最高,当角形粉的塑封料应力集中为1时,球形粉的应力仅为0.6,因此,球形粉塑封料封装集成电路芯片时,成品率高,并且运输、安装、使用过程中不易产生机械损伤。其三,球形粉摩擦系数小,对模具的磨损小,使模具的使用寿命长,与角形粉的相比,可以提高模具的使用寿命达一倍,塑封料的封装模具价格很高,有的还需要进口,这一点对封装厂降低成本,提高经济效益也很重要。 球形硅微粉,主要用于大规模和超大规模集成电路的封装上,根据集程度(每块集成电路标准元件的数量)确定是否球形硅微粉,当集程度为1M到4M时,已经部分使用球形粉,8M到16M集程度时,已经全部使用球形粉。250M集程度时,集成电路的线宽为0.25μm,当1G集程度时,集成电路的线宽已经小到0.18μm,目前计算机PⅣ 处理器的CPU芯片,就达到了这样的水平。这时所用的球形粉为更高档的,主要使用多晶硅的下脚料制成正硅酸乙脂与四氯化硅水解得到SiO2,也制成球形其颗粒度为 -(10~20)μm可调。这种用化学法合成的球形硅微粉比用天然的石英原料制成的球形粉要贵10倍,其原因是这种粉基本没有放射性α射线污染,可做到0.02PPb以下的铀含量。当集程度大时,由于超大规模集成电路间的导线间距非常小,封装料放射性大时集成电路工作时会产生源误差,会使超大规模集成电路工作时可靠性受到影响,因而必须对放射性提出严格要求。而天然石英原料达到(0.2~0.4) PPb就为好的原料。现在国内使用的球形粉主要是天然原料制成的球形粉,并且也是进口粉。 一般集成电路都是用光刻的方法将电路集中刻制在单晶硅片上,然后接好连接引线和管角,再用环氧塑封料封装而成。塑封料的热膨胀率与单晶硅的越接近,集成电路的工作热稳定性就越好。单晶硅的熔点为1415℃,膨胀系数为3.5PPM,熔融石英粉的为(0.3~0.5)PPM,环氧树脂的为(30~50)PPM,当熔融球形石英粉以高比例加入环氧树脂中制成塑封料时,其热膨胀系数可调到8PPM左右,加得越多就越接近单晶硅片的,也就越好。而结晶粉俗称生粉的热膨胀系数为60PPM,结晶石英的熔点为1996℃,不能取代熔融石英粉(即熔融硅微粉),所以中高档集成电路中不用球形粉时,也要用熔融的角形硅微粉。这也是高档球形粉想用结晶粉整形为近球形不能成功的原因所在。80年代日本也走过这条路,效果不行,走不通;10年前,包括现在我国还有人走这条路,从以上理论证明此种方法是不行的。即高档塑封料粉不能用结晶粉取代。 是用熔融石英(即高纯石英玻璃),还是用结晶石英,哪一种为原料生产高纯球形石英粉为好?根据试验,专家认为:这个题已经十分清楚,用天然石英SiO2,高温熔融喷射制球,可以制得完全熔融的球形石英粉。用天然结晶石英制成粉,然后分散后用等离子火焰制成的球就是熔融的球,用火焰烧粉制得的球,表面光华,体积也有收缩,更好用,日本提供的这种粉,用X射线光谱分析谱线完全是平的,也是全熔融球形石英粉,而国内电熔融的石英,如连云港的熔融石英光谱分析不定型含量为95%,谱线仍能看出有尖峰,仍有5%未熔融。由此可见,生产球形石英粉,只要纯度能达到要求,以天然结晶石英为原料最好,其生产成本最低,工艺路线更简捷 一) 硅微粉在橡胶制品中的应用 活性硅微粉(经偶联剂处理)填充于天然橡胶、顺丁橡胶等胶料中,粉体易于分散,混炼工艺性能好,压延和压出性良,并能提高硫化胶的硫化速度,对橡胶还有增进粘性的功效,尤其是超细级硅微粉,取代部分白炭黑填于胶料中,对于提高制品的物性指标和降低生产成本均有很好作用。-2um达60-70%的硅微粉用于出口级药用氯化丁基橡胶瓶塞和用于电工绝缘胶鞋中效果甚佳。 硅微粉在仿皮革制作中作为填充料,其制品的强度、伸长率、柔性等各项技术指标均优于轻质碳酸钙、活性碳酸钙、活性叶蜡石等无机材料作填充剂制作的产品。 硅微粉代替精制陶土、轻质碳酸征等粉体材料应用于蓄电池胶壳,填充我量可达65%左右,且工艺性能良好。所获胶壳制品,具有外表平整光滑,硬度大,耐酸蚀,耐电压,热变形和抗冲击等物理机械性能均达到或超过JB3076-82技术指标。 (二) 硅微粉在塑料制品中的应用 活性硅微粉是聚丙烯、聚氯乙烯、聚乙烯等制品理想的增强剂,不仅有较大的填充量,而且抗张强度好。制成母粒,用于聚氯乙烯地板砖中,可提高产品耐磨性。 硅微粉应用于烯烃树脂薄膜其粉体分散均匀,成膜性好,力学性能强,较用PCC做填充料生产的塑膜,阻隔红外线透过率降低10%以上,对农用
锌锭生产工艺
2017-06-06 17:49:55
锌锭生产工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。“大重量锌锭生产工艺研究”成功地解决了大重量锌锭浇铸过程中物表面质量难以控制的技术难题,化学成分稳定,锌主品位达到99.99%以上,物理尺寸为(mm):长1238--1276,宽489--514,高289--324。工业试验证明所研制的模具可行,锌锭表面洁净、光滑,无裂纹、缩孔,无飞边、毛刺,锌锭厚度对边差不大于20mm。目前,该项技术已申报专利。随着我国锌锭市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外锌锭生产工艺的核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。随着锌锭市场的成熟发展,国内的锌锭生产工艺也逐渐得到完善.与欧美相比,我们国家的锌锭生产工艺已经不处于下风,期待在未来会出现更多的新锌锭生产工艺.!
湿式高梯度强磁选回收微细粒氧化铁工艺技术
2019-01-30 10:26:21
满银沟铁矿选矿厂生产规模80万t/a,自投产以来,生产指标基本达到设计要求。但由于该铁矿石属赤铁矿,极易泥化,且磨矿流程是两段连续磨矿,磨矿产物经水力旋流器分级的溢流(即强磁磁选给矿)中-500目粒级达50%以上,品位40.00%。这部分矿石由于粒度太细,在选别过程中不能得到有效回收,造成铁回收率偏低,尾矿的铁品位,提高该铁矿石的回收率,就成为目前选矿厂迫切需要解决的问题。
一、矿石性质
满银沟矿区分为满银沟、杨家村、双水井3个中型赤铁矿矿段。该矿床属于中型沉积变质型赤铁矿床,矿体赋存于前震旦系利马河组变沙岩及绢云千枚岩中。铁矿物以赤铁矿为主,其次为褐铁矿、菱铁矿、假象赤铁矿,偶见磁铁矿、钛铁矿等;脉石矿物以石英为主,绢云母、白云石、方解石次之。矿石结构主要以磷片变晶结构、似文象结构、交代结构和胶结结构为主,构造主要以块状构造为主,其次为粉状,条带状。铁矿物粒径一般在0.0025~0.04mm,有时可见赤铁矿变斑晶,粒径可达0.15~1.4mm,脉石矿物石英粒径一般在0.0025~0.15mm,常被赤铁矿交代充填、溶蚀,矿石硬度小。铁矿石的多元素化学分析结果见表1,铁物相分析结果见表2。
表1 铁矿石的多元素分析结果元素TFeSPSiO2Al2O3CaOMgO含量47.920.0160.10320.945.280.460.48元素FeOMnNa2OK2OTiO2灼减碱比含量0.180.320.0301.340.2941.530.036
表2 铁矿石的铁物相分析结果铁物相赤、褐铁矿磁铁矿碳酸铁黄铁矿硅酸铁合计铁含量46.570.100.300.110.8447.92分配率97.180.210.630.231.75100.00
从表1、表2可知,矿石中的铁含量47.92%,其中赤铁矿、褐铁矿中的铁占97.18%。矿石中二氧化硅含量20.94%,三氧化二铝含量5.28%,硫含量0.016%,磷含量0.103%,属于低硫、磷,高硅、铝,酸性弱磁性铁矿石。
二、目前工艺流程存在的问题
该矿委托马钢集团设计研究院进行“满银沟矿业集团80万t/a选矿厂设计”。根据选矿试验结果及其推荐意见,确定选矿工艺流程为两段连续磨矿,湿式高梯度强磁选流程。一段磨矿细度-200目占55%,二段磨矿细度-200目占85%。二段磨矿产品经强磁粗选抛尾,粗选精矿再经过高梯度强磁选机精选获得铁品位在66.00%以上的高梯度强磁铁精矿;高梯度强磁精选的尾矿再经过一次高梯度强磁扫选,获得铁品位在50.00%以上的铁精矿。工艺流程如图1所示。图1 满银沟铁矿选矿数质量工艺流程
随着铁矿石资源的减少,开采量的增大,原矿品位降为40.00%左右,铁精矿品位58.00%左右,扫选铁精矿品位47.00%左右。在实际生产中,高梯度强磁选机都是江西赣州金环磁电设备有限公司生产的Slon型立环脉动高梯度强磁选机,磁价质是ф2mm棒介质,给入浓密箱矿浆(即精选和粗选尾矿)铁矿石品位为35.00%左右,浓度为16.00%左右,经浓缩后沉砂进入扫选。沉砂铁品位30.00%左右,浓度20%左右,扫选铁精矿47.00%左右。而浓密箱溢流粒度极细,几乎全部为-500目(-0.037mm),其中-20μm高达73.02%左右,其浓度很小,约6%~8%,产率是球磨给矿量的20%。这部分矿石品位与入磨品位接近,为40.00%以上,而且浓度箱溢流直接排入尾矿,这是造成尾矿偏高的主要原因。如何回收这部分微细粒级矿物,降低尾矿品位,提高扫选作业回收率是当前迫切需要解决的问题。
三、实验室磁介质试验
依据生产现场,对浓密箱给矿、沉砂和溢流不添加任何药剂,在高梯度磁选机相同电流强度400A、磁感应强度0.6T条件下,换用不同直径磁介质选别,所得结果如表3、表4和表5所示。
表3 浓密箱给矿高梯度磁选机试验结果试验条件样品名称品位/%产率/%回收率/%磁介质/mm磁感应强度/Tφ20.6精矿
尾矿
原矿47.38
28.27
34.5632.91
67.09
100.0045.12
54.88
100.00φ10.6精矿
尾矿
原矿51.35
27.33
34.5630.10
69.90
100.0044.72
55.28
100.00
表4 浓密箱沉砂高梯度磁选机试验结果试验条件样品名称品位/%产率/%回收率/%磁介质/mm磁感应强度/Tφ20.6精矿
尾矿
原矿39.79
21.04
27.7535.79
64.21
38.1951.31
48.69
100.00φ10.6精矿
尾矿
原矿44.48
21.36
27.7538.19
61.81
100.0061.22
100.00
100.00
表5 浓密箱溢流高梯度磁选机试验结果试验条件样品名称品位/%产率/%回收率/%磁介质/mm磁感应强度/Tφ20.6精矿
尾矿
原矿51.22
37.22
40.0920.50
79.50
100.0022.20
77.80
100.00φ10.6精矿
尾矿
原矿51.28
35.79
40.0927.76
62.24
100.0035.51
64.49
100.00
从表3、表4、表5可知,对于浓密箱给矿、沉砂和溢流,高梯度磁选机的棒介质直径大小对这3种试样是有影响的。在相同磁感应强度0.6T条件下,采用ф2mm棒介质的磁选精矿品位高3个百分点,而回收率和尾矿品位相差不大;对于浓密箱沉砂,采用ф2mm棒介质的磁选精矿低4个百分点左右,回收率低10个百分点左右;而浓密箱溢流采用ф1mm棒介质的磁选精矿品位与采用ф2mm棒介质的磁选精矿品位51.00%相差不大,回收率比用ф2mm棒介质高15个百分点左右。说明ф1mm棒介质能够有效回收一部分品位较高的微细粒级铁矿石。
四、ф1mm和ф2mm磁介质的工业试验
(一)试验条件
满银沟铁矿集团公司选矿厂扫选作业2台Slon-1750型高梯度磁选机采用ф2mm棒介质选别,对微细粒级赤铁矿的回收效果不佳。因此该选矿厂在实验室采用ф1mm棒介质试验的基础上,利用公司闲置的1台Slon-1250型高梯度磁选机,拆除其原有的ф4mm棒质质,安装由赣州金环公司提供的ф1mm棒介质,将该机配置在扫选作业的1台Slon-1750型高梯度磁选机旁,由1台给料箱同时分别为这两种不同型号高梯度磁选机供料,进行ф1mm和ф2mm棒介质对比性工业试验。
(二)试验结果
在相同给矿、相同磁感应强度条件下进行试验,其中扫给为扫选给矿,扫1-精为Slon-1250mm高梯度磁选机扫选精矿;扫1-尾为Slon-1750mm高梯度磁选机扫选尾矿;扫2-尾为Slon-1750mm高梯度磁选机扫选尾矿,所得试验结果见表6、表7、表8。不同磁感应强度条件下Slon型高梯度磁选机φ1mm和φ2mm磁介质的磁选精矿品位及回收率分别见图2、图3。
表6 磁感应强度0.7T下的试验结果样品编号样品名称品位/%产率/%回收率/%磁感应强度/T扫1-精扫选精矿51.9417.0528.590.7扫1-尾扫选尾矿26.66 扫2-精扫选精矿47.7317.9627.690.7扫2-尾扫选尾矿27.30 扫给扫选给矿30.97100.00100.00
表7 磁感应强度0.6T下的试验结果样品编号样品名称品位/%产率/%回收率/%磁感应强度/T扫1-精扫选精矿50.2125.0338.520.6扫1-尾扫选尾矿26.76 扫2-精扫选精矿48.9923.4435.190.6扫2-尾扫选尾矿27.62 扫给扫选给矿32.63100.00100.00
表8 磁感应强度0.5T下的试验结果样品编号样品名称品位/%产率/%回收率/%磁感应强度/T扫1-精扫选精矿53.209.6614.350.5扫1-尾扫选尾矿33.94 扫2-精扫选精矿52.9219.9629.510.5扫2-尾扫选尾矿31.53 扫给扫选给矿35.8100.00100.00
图2 不同磁感应强度条件下Slon型高梯度磁选机
φ1mm和φ2mm磁介质的磁选铁精矿品位分布
■一磁介质φ1mm;●一磁介质φ2mm图3 不同磁感应强度条件下Slon型高梯度磁选
机φ1mm和φ2mm磁介质的磁选铁精矿回收率分布
■一磁介质φ1mm; ●一磁介质φ2mm
从试验结果可知,在相同给矿条件,磁感应强度0.6T,采用φ1mm棒介质的SLon-1250型高梯度磁选机的磁选精矿比φ2mm棒介质的Slon-1750型高梯度磁选机的磁选精矿品位高2个百分点左右,回收率高3个百分点左右。尾矿比φ2mm棒介质的Slon-1750型高梯度磁选机的磁选尾矿品位低1个百分点左右。而随着磁感应强度的降低,采用不同直径棒介质高梯度磁选机的选别结果相差很小。
五、结论
(一)通过换用不同磁介质的试验结果可知,对于浓密箱给矿、沉砂和溢流,磁选机的棒介质直径大小对这3种试样是有影响的。在相同磁感应强度0.6T下,采用φ1mm棒介质,浓密箱给矿和溢流的磁选精矿品位都在51.00%左右,尾矿相差不大;溢流的回收率采用φ1mm棒介质比用φ2mm棒介质高15个百分点左右。浓密箱沉砂采用φ2mm棒介质比采用φ1mm棒介质的磁选精矿品位低4个百分点,尾矿品位相差不大,回收率低10个百分点。说明φ1mm棒介质能够有效回收一部分品位较高的微细粒级铁矿石。
(二)满银沟铁矿选矿厂扫选作业φ1mm棒介质和φ2mm棒介质的对比试验表明,在磁感应强度≥0.6T时,采用φ1mm棒介质比φ2mm棒介质选别效果好,其精矿品位可平均提高2个百分点,尾矿平均降低1个百分点,回收率平均提高3个百分点。说明选用φ1mm棒介质需要较大的磁感应强度。
铝锭生产工艺
2017-06-06 17:49:55
铝锭生产工艺是一种投资者较为关注的一个信息,那我们来看下其信息。技术工艺,是衡量一个企业是否具有先进性,是否具备市场竞争力,是否能不断领先于竞争者的重要指标依据。随着我国合金铝锭市场的迅猛发展,与之相关的核心生产技术应用与研发必将成为业内企业关注的焦点。了解国内外合金铝锭生产核心技术的研发动向、工艺设备、技术应用及趋势对于企业提升产品技术规格,提高市场竞争力十分关键。通过参考大量专利文献对合金铝锭的工艺技术进展做了系统介绍,通过详细的调查和权威技术资料及相关情报的收集,为客户提供了合金铝锭产品核心技术应用现状、技术研发、工艺设备配套、高端技术应用等多方面的信息,对于企业了解各类合金铝锭产品生产技术及其发展状况十分有益。商业应用前景部分从合金铝锭产品的应用领域、下游产品、国内外生产现状、国内潜在生产厂家、国外生产厂家及规模、国内外产量走势、市场状况及预测、供需状况分析及预测、国内需求厂家及联系方式等诸多方面对合金铝锭产品市场状况及发展方向做了详细论述,可作为合金铝锭产品深加工技术发展趋势导向的重要决策参考。1 双色铝型材的生产方式 所谓双色铝型材是指同一功能的铝型材的表面,在不同的面上处理成两种颜色。双色铝刑材的生产方式主要有两种,即组合式和贴膜式所谓组合式,就是同一功能的铝型材是由两个以上的断面组合而成,首先是铝型材单独生产,然后再进行插入装配,最后经锯切等处理方式加工成双色铝型材所谓贴膜式,是为了在同一功能的铝型材上加工成两种颜色,在喷漆时,必须采用贴膜遮盖一部分,喷涂另一部分,以便获得两种颜色。本文重点介绍喷漆贴膜铝型材的生产过程。 2 双色铝型材的特点 (1)可以根据不同的环境、不同的要求建筑特点和不同的审美观,选择不同的颜色。 (2)产品质量要求高,生产过程中各道工序要严格把关。 (3)双色铝型材,产品档次高,美观大方,深受消费者的青睐。 (4)双色铝型材,生产方便灵活,可以自由组合。 3.1 生产工艺流程 双色铝型材的生产千艺流程为:脱脂-铬化-烘干-上排-喷漆-固化-下排-检验-装框-贴膜-上排-喷漆-撕膜-固化-下排-检验-包装 3 2 生产过程中要注意的几个问题 (1)选样粘度适中的贴膜。在双色铝型材生产中,贴膜的合理选择是关键。贴膜的粘度过低则贴不住。贴膜容易脱落,给喷涂带来相当大的难度。贴膜的粘度过大,说明贴膜上的胶比较多,当贴膜撕掉后,容易将贴膜上的胶粘在型材上,影响型材的表面质量,另一方面,在选择贴膜时,尽可能选用胶的成分与涂漆成分一致或相接近,这样可减轻对漆膜色泽的影响。 (2)选择宽度、厚度适中的贴膜;由于铝型材断面形状复杂,外表向宽、窄悬殊较大,容易将飞边吹起,降低贴膜的遮盖能力,影响喷涂质量。贴膜过窄,则遮盖不住,显然不能喷涂。另一方面,在选择贴膜厚度时,只要能遮盖,具有弹性即可,不一定选择太厚的贴膜,因太厚的贴膜将增加铝型材生产成本,而且也没有必要。 (3)贴膜后及时喷涂。型材贴膜以后,应及时进行喷涂,停放时间越短越好。如果停放时间太长,由于贴膜上的胶干燥,失去粘度,特则是经风一吹,贴膜脱落,导致喷涂同难。因此,为了确保贴膜及喷涂质量,一般贴膜以后的停放时间不要超过16h. (4)确定颜色、分界面及分界线。铝型材在喷涂之前,一定要根据型材的使用功能以及客户的要求(合同要求),分清每个面所要喷徐的颜色,分界面是哪个面,分界线是哪条线,在什么位置:一般来说,内侧是浅色,外侧是深色在弄清了分界面、分界线及颜色的要求之后才能贴膜,要注意千万不能将膜的位置贴错。 (5)贴膜质量:贴膜是双色铝型材加工中的一道关键工序,贴膜质量的好坏,直接影响到铝型材的表面质量,主要包括以下几个方画:一是贴膜时尽可能不要使贴膜形成过大的张力,也就足说不能使贴膜发生变形,否则贴好后的贴膜容易收缩,使铝型材两端出现无贴膜现象;另一方面,铝型材两端贴膜断开时,要用刀片切开,而不能拉断,否则,拉断的贴膜仍然要收缩;二是贴膜宽度要与贴面宽度相吻合,一般情况下,贴膜宽度稍大于铝型材的贴面宽度,若是贴膜过宽,超出铝型材边缘过多,当喷涂时,容易被压缩空气吹起,若|来源|考试|大|是贴膜过窄,不能完全遮盖,显然是不行的;四是贴面分界线在沟槽边缘时,一定要将;贴膜的飞边压入沟槽内,否则,喷涂时气流容易将贴膜吹起,影响铝型材喷涂质量;五是贴膜时,一定将贴膜贴平,防止皱折、卷缩等现象;六是对于断面形状复杂的型材,如果一次贴膜困难时,可以分两次或多次贴膜,保证贴膜的覆盖质量;七是对一些壁厚较薄或悬臂较大等特殊断面的铝型材,贴膜时不能压得太紧,一定要注意不能使铝型材产生变形;八是第一次喷涂后,铝型材的停放时间不能过长,否则会使型材表而落上灰尘,导致贴膜困难,从而影响贴膜质量: (6)严格执行贴膜工艺。铝型材贴膜必须经过第一次喷涂后再贴,不允许型材铬化后直接贴膜,这是因为贴膜上有胶,如果直接将贴膜贴在铬化层上,胶就会粘在铬化层上,或者撕贴膜时,就会将铬化层,撕掉,这样就会大大降低漆膜的附着力,最终影响铝型材的喷涂质量,导致漆膜脱落,其后果不堪设想。 (7)撕膜时间。铝型材经贴膜、喷涂以后,要撕去贴膜,但不能喷涂后马上就撕去贴膜,要控制好撕膜。—般来说,喷涂后经过流平,漆膜基本凝固,这一过程不能少于10min.然后才能撕去贴膜撕膜。否则,漆膜未开,撕膜的过程中容易将贴膜落在铝型材上,影响漆膜质量。另一方面,撕膜的时候动作要快,以免影响撕膜质量。 (8)喷涂顺序 双色铝型材,需要涂上两种颜色,有两种颜色必然存在深色与浅色,喷涂必然有先有后,喷涂前必须要考虑哪种颜色先喷,哪种颜色后喷,要根据具体情况而定,若是先喷浅色、后喷深色,则先喷涂的浅色就要经过两次固化,即两次烘烤,容易将浅色烘烤变色,若是先喷深色、后喷浅色,则后喷浅色对前喷深色的覆盖性受到一定影响,要想覆盖深色就要增加漆膜厚度,但是漆膜厚到一 定的程度后,又容易产生脱膜现象。因此。在实际生产中,采用先浅后深的工艺较为可行。 (9)避免多次返工。在双色铝型材生产过程中,由于各种因素影响,返工是|来源|考试|大|不可避免的,但是每返工 一次就要增加一次固化。对漆膜来说。多次喷涂,漆膜厚度不断增加,再经多次固化,降低了漆膜附着力,容易造成漆膜脱落。因此,在双色铝型材的生产中尽可能避免多次返工。 (10)膜厚的合理控制、双色铝型材生产是要经过两次以上的喷涂,如果我们还像单喷那样操作,就会导致有的面漆膜较厚,有的面漆膜较薄,从而引起膜厚严重不均匀。因此在喷涂时就要进行合理控制,第一次喷徐时,只需对着面重点喷涂,而另一面可以不涂或少涂。第二次喷涂叫,闪样尽可能对需要的面重点喷,其他面不喷或少喷,同时还要根据第一次喷涂情况以及选用的涂漆颜色。合理地控制第二次喷涂厚度,但必须保证第二次喷涂对前一次喷涂的浚盖效果。如果你想更多的了解关于铝锭生产工艺的信息,你可以登陆上海有色网进行查询和关注。
I铝材氧化生产工艺规程
2019-01-15 09:51:37
①银白料及银白电泳料氧化:
上架——水洗——低温抛光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——封孔——水洗——水洗——下架——风干——检验
进入电泳工序
——包装
②磨砂料及磨砂电泳料氧化:
上架——除油——水洗——酸蚀——水洗——水洗——碱蚀——水洗——水洗——中和出光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——封孔——水洗——水洗——下架——风干——检验——包装
进入电泳工序
③着色料及着色电泳料氧化
上架——水洗——低温抛光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——着色——水洗——水洗——封孔——水洗——水洗
检验 进入电泳工序
——下架——风干——检验——包装
二、上料:
①型材上料前应将吊杆接触面打磨干净,并按标准支数上料,其计算公式:上料支数= 标准电流 标准电流密度×单支型材面积
②上架支数的考虑原则:
a、硅机容量利用率不大于95%;
b、电流密度取1.0—1.2A/dm;
c、型材形状和两支型材之间留必要的间隙;
③氧化时间的计算:氧化时间(t)= 膜厚 K·电流密度 K 为电解常数,取0.26—0.32,t单位为分钟;
④上排时必须按照《型材面积及上排支数表》规定的支数上架;
⑤为了便于排液和排气,上排捆扎时应倾斜,倾斜度5°为宜;
⑥两端可超出导电杆10—20mm,较多不得大于50mm。
三、低温抛光工艺
①低温抛光槽中低温抛光剂浓度控制为总酸25—30g/l,较低≥15 g/l;
②抛光槽温20-30℃不得低于20℃,抛光时间90—200s;
③提架倾斜,滴净残液后,迅速放入清水槽中漂洗,经两道水洗后迅速放入氧化槽氧化,在水槽中停留时间不应大于3分钟;
④低温抛光材料在抛光前不得进行其它方式的处理,也不能将其它槽液带入抛光槽中。
四、除油工艺;
①在室温酸液中进行,时间2—4分钟,H2SO4浓度140-160 g/l;
②提架倾斜滴净残液后,放入清水槽中清洗1-2分钟。
五、磨砂(酸蚀)工艺
①除油后在清水槽清洗再进入酸蚀槽;
②工艺参数:NH4HF4浓度30-35 g/l,温度35-40℃,PH值2.8-3.2,酸蚀时间3-5分钟;
③酸蚀结束后经两道水洗再进入碱蚀槽。
六、碱洗工艺
①工艺参数:游离NaOH 30-45 g/l,总碱50-60 g/l,碱蚀剂5-10 g/l,AL3+ 0-15 g/l,温度35-45℃,砂料碱蚀时间30-60秒;
②提架倾斜,滴净溶液后迅速放入清水槽中清洗干净;
③检查清洗后的表面质量,当无腐蚀斑纹,无杂物、凝附表面现象,即可进入出光工序。
七、出光工艺
①工艺参数:H2SO4浓度160-220 g/l,HNO3适量或50 g/l -100 g/l,温度室温,出光时间2-4分钟;
②提架倾斜滴净残液后迅速放入清水槽中1-2分钟,再放入第二清水槽1-2分钟;
③两次清洗完毕后,应钳紧扎架上的铝线,以保证氧化过程的良好接触。普通料钳紧扎架一端铝线,着色料、电泳料应钳紧扎架的两端铝线。
八、氧化工艺
①工艺参数:H2SO4 浓度160-175 g/l,AL3+≤20 g/l,电流密度1-1.5A/dm,电压12-16V, 氧化槽温度18-22℃,按计算公式求得通电时间。氧化膜规定:银白料3-4μm,白砂4-5μm,电泳7-9μm;
②阳极架应平稳放入导电座中,检查并确认型材与阴极板无接触时,可通电氧化;
③氧化结束将阳极杆吊离液面倾斜并滴净残液,转入清水池清洗2分钟;
④对不着色的型材可进入二级水槽待封孔处理。
九、着色工艺
①工艺参数:SnSO4 5-6g/l;NiSO4 16-18 g/l;着色剂9-12 g/l;游离酸17-20 g/l;PH值=0.8-1.2,槽温19-21℃,着色电压应低于氧化电压即14-16V;平时添加按如下比例进行: SnSO4:NiSO4=1:1;着色添加剂:SnSO4=1:1
②着色产品只能采用单排双线扎排的方式,产品之间间距≥相邻两产品的对应面宽度,一般用手指测时≥两支手指宽度,扎排必须扎紧,扎牢固,只能采用新线扎排;
③着色产品氧化时氧化槽温必须控制在18-22℃,保证膜厚均匀结构细密;
④着色产品每排氧化着色面积应基本一致;
⑤着色后提架倾斜,用色板对比,符合条件后,再入清水槽清洗,否则试下列情况而处理;
a、色彩浅,重新入着色槽,按补色开关着色,时间不得超过2分钟;
色泽深,应放入氧化槽相应的水槽中退色,或空中悬挂退色至理想为止;
b、氧化后产品必须经三道或以上水洗后方可进入着色槽,保证较后一道水洗槽PH≥5;
⑦着色产品在氧化后禁止在水槽中长久浸泡,一般浸泡时间应不大于3分钟;
⑧产品进入着色槽后,应先不通电,浸泡1分钟左右,再开始通电着色,着色过程开始后,约在30s内平稳地将着色电压升至14-18V,然后保持电压稳定不变直至着色完毕;
⑨尽可能避免不同品种产品、不同批次产品在同一架上进行着色;
⑩着色完毕后进行二次水洗后才能进行后处理,控制水洗PH,值靠前道PH≥2,第二道PH≥5。
十、封孔工艺
①将氧化型材入封孔池中,使其让多孔膜层封闭,达到提高氧化膜腐蚀能力;
②工艺参数:普通封孔温度:10-30℃ 时间3-10分钟,PH5.5-6.5,封孔剂5-8 g/l,镍离子0.8-1.3g/l, 氟离子0.35-0.8g/l;
③封孔结束后,将排架吊起倾斜,滴净封孔液后,转入清水池清洗二次,每次一分钟,然后吹干型材,卸下再风干检查、包装。
铋矿三氯化铁浸出-铁粉置换法
2019-01-31 11:06:17
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
铝氧化的生产工艺流程
2019-01-16 17:41:55
一、工艺流程:
①银白料及银白电泳料氧化:
上架——水洗——低温抛光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——封孔——水洗——水洗——下架——风干——检验进入电泳工序——包装
②磨砂料及磨砂电泳料氧化:
上架——除油——水洗——酸蚀——水洗——水洗——碱蚀——水洗——水洗——中和出光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——封孔——水洗——水洗——下架——风干——检验——包装进入电泳工序
③着色料及着色电泳料氧化
上架——水洗——低温抛光——水洗——水洗——钳料——氧化——水洗——水洗——水洗——着色——水洗——水洗——封孔——水洗——水洗检验进入电泳工序
——下架——风干——检验——包装
二、上料:
①型材上料前应将吊杆接触面打磨干净,并按标准支数上料,其计算公式:上料支数=标准电流标准电流密度×单支型材面积
②上架支数的考虑原则:
a、硅机容量利用率不大于95%;
b、电流密度取1.0—1.2A/dm;
c、型材形状和两支型材之间留必要的间隙;
③氧化时间的计算:氧化时间(t)=膜厚K·电流密度K为电解常数,取0.26—0.32,t单位为分钟;
④上排时必须按照《型材面积及上排支数表》规定的支数上架;
⑤为了便于排液和排气,上排捆扎时应倾斜,倾斜度5°为宜;
⑥两端可超出导电杆10—20mm,最多不得大于50mm。
三、低温抛光工艺
①低温抛光槽中低温抛光剂浓度控制为总酸25—30g/l,最低≥15 g/l;
②抛光槽温20-30℃不得低于20℃,抛光时间90—200s;
③提架倾斜,滴净残液后,迅速放入清水槽中漂洗,经两道水洗后迅速放入氧化槽氧化,在水槽中停留时间不应大于3分钟;
④低温抛光材料在抛光前不得进行其它方式的处理,也不能将其它槽液带入抛光槽中。
四、除油工艺;
①在室温酸液中进行,时间2—4分钟,H2SO4浓度140-160 g/l;
②提架倾斜滴净残液后,放入清水槽中清洗1-2分钟。
五、磨砂(酸蚀)工艺
①除油后在清水槽清洗再进入酸蚀槽;
②工艺参数:NH4HF4浓度30-35 g/l,温度35-40℃,PH值2.8-3.2,酸蚀时间3-5分钟;
③酸蚀结束后经两道水洗再进入碱蚀槽。
六、碱洗工艺
①工艺参数:游离NaOH 30-45 g/l,总碱50-60 g/l,碱蚀剂5-10 g/l,AL3+ 0-15 g/l,温度35-45℃,砂料碱蚀时间30-60秒;
②提架倾斜,滴净溶液后迅速放入清水槽中清洗干净;
③检查清洗后的表面质量,当无腐蚀斑纹,无杂物、凝附表面现象,即可进入出光工序。
七、出光工艺
①工艺参数:H2SO4浓度160-220 g/l,HNO3适量或50 g/l -100 g/l,温度室温,出光时间2-4分钟;
②提架倾斜滴净残液后迅速放入清水槽中1-2分钟,再放入第二清水槽1-2分钟;
③两次清洗完毕后,应钳紧扎架上的铝线,以保证氧化过程的良好接触。普通料钳紧扎架一端铝线,着色料、电泳料应钳紧扎架的两端铝线。
八、氧化工艺
①工艺参数:H2SO4浓度160-175 g/l,AL3+≤20 g/l,电流密度1-1.5A/dm,电压12-16V,氧化槽温度18-22℃,按计算公式求得通电时间。氧化膜规定:银白料3-4μm,白砂4-5μm,电泳7-9μm;
②阳极架应平稳放入导电座中,检查并确认型材与阴极板无接触时,可通电氧化;
③氧化结束将阳极杆吊离液面倾斜并滴净残液,转入清水池清洗2分钟;
④对不着色的型材可进入二级水槽待封孔处理。
九、着色工艺
①工艺参数:SnSO4 5-6g/l;NiSO4 16-18 g/l;着色剂9-12 g/l;游离酸17-20 g/l;PH值=0.8-1.2,槽温19-21℃,着色电压应低于氧化电压即14-16V;平时添加按如下比例进行: SnSO4:NiSO4=1:1;着色添加剂:SnSO4=1:1
②着色产品只能采用单排双线扎排的方式,产品之间间距≥相邻两产品的对应面宽度,一般用手指测时≥两支手指宽度,扎排必须扎紧,扎牢固,只能采用新线扎排;
③着色产品氧化时氧化槽温必须控制在18-22℃,保证膜厚均匀结构细密;
④着色产品每排氧化着色面积应基本一致;
⑤着色后提架倾斜,用色板对比,符合条件后,再入清水槽清洗,否则试下列情况而处理;a、色彩浅,重新入着色槽,按补色开关着色,时间不得超过2分钟;
色泽深,应放入氧化槽相应的水槽中退色,或空中悬挂退色至理想为止;
b、氧化后产品必须经三道或以上水洗后方可进入着色槽,保证最后一道水洗槽PH≥5。
⑦着色产品在氧化后禁止在水槽中长久浸泡,一般浸泡时间应不大于3分钟;
⑧产品进入着色槽后,应先不通电,浸泡1分钟左右,再开始通电着色,着色过程开始后,约在30s内平稳地将着色电压升至14-18V,然后保持电压稳定不变直至着色完毕;
⑨尽可能避免不同品种产品、不同批次产品在同一架上进行着色;
⑩着色完毕后进行二次水洗后才能进行后处理,控制水洗PH,值第一道PH≥2,第二道PH≥5。
十、封孔工艺
①将氧化型材入封孔池中,使其让多孔膜层封闭,达到提高氧化膜腐蚀能力;
②工艺参数:普通封孔温度:10-30℃时间3-10分钟,PH5.5-6.5,封孔剂5-8 g/l,镍离子0.8-1.3g/l,氟离子0.35-0.8g/l;
③封孔结束后,将排架吊起倾斜,滴净封孔液后,转入清水池清洗二次,每次一分钟,然后吹干型材,卸下再风干检查、包装。
氧化铝的生产工艺流程
2019-01-31 11:05:59
从矿石提取氧化铝有多种办法,例如:拜耳法、烧结法、拜耳-烧结联合法等。拜耳法一直是出产氧化铝的首要办法,其产值约占全世界氧化铝总产值的95%左右。70年代以来,对酸法的研讨已有较大发展,但尚未在工业上运用。拜耳法
系奥地利拜耳(K.J.Bayer)于 1888年创造。其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)别离后,下降温度,参加氢氧化铝作晶种,经长期拌和,铝酸钠分化分出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝制品。分出氢氧化铝后的溶液称为母液,蒸腾浓缩后循环运用。
拜耳法的扼要化学反响如下:由于三水铝石、一水软铝石和一水硬铝石的结晶结构不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要供给不同的溶出条件,首要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并增加石灰(3~7%)的条件下溶出。
现代拜耳法的首要发展在于:①设备的大型化和接连操作;②出产进程的自动化;③节约能量,例如高压强化溶出和流态化焙烧;④出产砂状氧化铝以满意铝电解和烟气干式净化的需求。拜耳法的工艺流程见图1。拜耳法的长处首要是流程简略、出资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。
拜耳法出产的经济效果决定于铝土矿的质量,首要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的分量比来表明。由于在拜耳法的溶出进程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),伴随赤泥排出。矿石中每公斤SiO2大约要构成1公斤Al2O3和0.8公斤NaOH的丢失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高档次三水铝石型铝土矿资源逐步削减,怎么使用其他类型的低档次铝矿资源和节能新工艺等问题,已是研讨、开发的重要方向。
烧结法
适用于处理高硅的铝土矿,将铝土矿、碳酸钠和石灰按必定份额混合配料,在反转窑内烧结成由铝酸钠(Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2)成的熟料。然后用稀碱溶液溶出熟猜中的铝酸钠。此刻铁酸钠水解得到的NaOH也进入溶液。假如溶出条件操控恰当,原硅酸钙就不会大量地与铝酸钠溶液发作反响,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液通过专门的脱硅进程,SiO2O构成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O沉积(其间x≈0.1),使溶液提纯。把CO2气体通入精制铝酸钠溶液,和参加晶种拌和,得到氢氧化铝沉积物和首要成分是碳酸钠的母液。氢氧化铝经煅烧成为氧化铝制品。水化石榴石中的Al2O3可以再用含Na2CO3母液提取收回。
烧结法的首要化学反响如下:
烧结:
Al2O3+Na2CO3─→Na2O·Al2O3+CO2
Fe2O3+Na2CO3─→Na2O·Fe2O3+CO2
SiO2+2CaCO3─→2CaO·SiO2+2CO2
TiO2+CaCO3─→CaO·TiO2+CO2
熟料溶出:
Na2O·Al2O3+4H2O─→2NaAl(OH)4(溶解)
Na2O·Fe2O3+2H2O─→Fe2O3·H2O↓+2NaOH(水解)
脱硅:
1.7 Na2SiO3+2NaAl(OH)4─→Na2O·Al2O3·1.7SiO2·nH2O↓+3.4NaOH
3 Ca(OH)2+2NaAl(OH)4+x Na2SiO3─→ 3CaO·Al2O3·x SiO2·(6-x)H2O↓+2(1+x)NaOH
分化:
2NaOH+CO2─→Na2CO3+H2O
NaAl(OH)4─→Al(OH)3↓+NaOH
我国烧结法出产氧化铝的首要技能成就是:在熟料烧成中选用低碱比配方,在熟料溶出工艺中选用二段磨料和低分子比溶液,以按捺溶出时的副反响丢失,使熟猜中Na2O和Al2O3的溶出率别离到达94~96%和92~94%。Al2O3的总收回率约90%,每吨氧化铝的Na2CO3的耗费量约95公斤。烧结法可以处理拜耳法不能经济地使用的低档次矿石,其铝硅比可低至3.5,质料的归纳使用较好,有其特征。
拜耳-烧结联合法
可充分发挥两法长处,扬长避短,使用铝硅比较低的铝土矿,求得更好的经济效果。联合法有多种形式,均以拜耳法为主,而辅以烧结法。按联合法的意图和流程衔接办法不同,又可分为串联法、并联法和混联法三种工艺流程。
① 串联法是用烧结法收回拜耳法赤泥中的Na2O和Al2O3,于处理拜耳法不能经济使用的三水铝石型铝土矿。扩展了质料资源,削减碱耗,用较廉价的纯碱替代烧碱,并且Al2O3的收回率也较高。
② 并联法是拜耳法与烧结法平行作业,别离处理铝土矿,但烧结法只占总出产能力的10~15%,用烧结法流程转化发生的NaOH弥补拜耳法流程中NaOH的耗费。
③ 混联法是前两种联合法的归纳。此法中的烧结法除了处理拜耳法赤泥外,还处理一部分低档次矿石。
我国依据本国的铝矿资源特征,发展出多种氧化铝出产办法。50年代初就已用烧结法处理铝硅比只要3.5的纯一水硬铝石型铝土矿,创始了具有特征的氧化铝出产系统。用我国的烧结法,可使Al2O3的总收回率到达90%;每吨氧化铝的碱耗(Na2CO3)约90公斤;氧化铝的SiO2含量下降到0.02~0.04%;并且在50年代现已从流程中归纳收回金属镓和使用赤泥出产水泥。60年代初建成了拜耳烧结混联法氧化铝厂,使Al2O3总收回率到达91%,每吨氧化铝的碱耗下降到60公斤,为高效率地处理较高档次的一水硬铝石型铝土矿创始了一条新路。我国在用单纯拜耳法处理高档次一水硬铝石型铝土矿方面也积累了不少经历。
依据物理特性的不同,电解用氧化铝可分为三类:砂状、粉状和中间状(表1)。
表1 不同类型工业氧化铝的物理性质现在铝工业正研发和选用砂状氧化铝,由于这种氧化铝具有较高的活性,简单在冰晶石溶液中溶解,且可以较好地吸收电解槽烟气中的氟化氢,有利于烟气净化。
炼铝用氧化铝的化学组成一般如下:
Al2O3 >98.35% Fe2O3 0.01~0.04%
SiO2 0.01~0.04% TiO2 <0.005%
ZnO 0.003~0.02% CaO 0.007~0.07%
Na2O 0.3~0.65% V2O5 <0.003%
P2O5 <0.003% Cr2O3 <0.002%
灼减 0.2~1.5%
氧化铝生产工艺技术(四)
2019-01-25 13:38:15
③混联法混联法是指拜耳法与烧结法联合在一起,既有串联的内容也有并联的内容;高品位矿石先经拜耳法处理,产出的残渣赤泥再经烧结法处理,同时在烧结配料时又加入低品位矿石与拜耳赤泥同时处理,最终的残渣赤泥由烧结法排出。 本法是中国的独创,解决了赤泥熟料烧成时的技术难题,但是带来了配料复杂、烧结法产能加大使产品成本加高等不利因素。中国目前的郑州铝厂、贵州铝厂及山西铝厂都是混联法工艺流程。 目前世界上只有凰夫洛达尔厂在采用联合法(串联法)生产,其实际生产主要指标如下。 a.入厂铝矿低品位三水铝石矿。组成如下: 组成 A12O3 Fe2O3 SiO2 CaO TiO2 A/S 含量/% 42 17.7 11.7 0.9 2.3 3.58 b.氧化铝总回收率87.87%;碱耗Na2CO3 100% 114.2kg/t; NaOH 100% 10.6kg/t;石灰石单耗:附水10%,1.42t/t;熟料单耗2.62t/t;电力单耗456 kW?h/t;蒸汽单耗12.9MJ/t;新水单耗3.9t/t;烧成煤耗464.4kg/t;产品比例:70%拜耳法,30%烧结法。
氧化铁红粉磨机细度最高可达到多少?
2019-01-03 09:37:11
氧化铁红粉磨机是科利瑞克专为磨氧化铁红,氧化铁红等用户设计研发而成的新型磨粉机,除了氧化铁红外,该粉磨机还可以加工包括重晶石、方解石、钾长石、滑石、大理石、石灰石、白云石、莹石、石灰、活性白土、活性炭、膨润土、高岭土、水泥、磷矿石、石膏等莫氏硬度不大于6.5级,湿度在6%以下的非易燃易爆的矿产、化工、建筑等行业多种物料的高细制粉加工。
磨氧化铁红的粉磨机的工作原理:工作时,将需要粉碎的物料从机罩壳侧面的进料斗加入机内,依靠悬挂在主机梅花架上的磨辊装置,绕着垂直轴线公转,同时本身自转,由于旋转时离心力的作用,磨辊向外摆动,紧压于磨环,使铲刀铲起物料送到磨辊与磨环之间,因磨辊的滚动碾压而达到粉碎物料的目的。
风选过程:物料研磨后,风机将风吹入主机壳内,吹起粉末,经置于研磨室上方的分析器进行分选,细度过粗的物料又落入研磨室重磨,细度合乎规格的随风流进入旋风收集器,收集后经出粉口排出,即为成品。风流由大旋风收集器上端的回风管回入风机,风路是循环的,并且在负压状态下流动,循环风路的风量增加部分经风机与主机中间的废气管道排出,进入小旋风收集器,进行净化处理。
氧化铁红粉磨机又叫氧化铁红粉磨机,是适应大中小矿山、化工、建材、冶金等行业的高效闭路循环的髙细制粉设备。磨粉机所磨制的各种粉子成品细度均匀性,能达到所需细度的95%通过,即为通筛可达95%,同时R型氧化铁红粉磨机整体为立式结构、成套性强,从快料至粉碎到成品粉子、包装,能独立自成一个生产体系。
氧化铁红粉磨机采用同类产品的先进结构,并在大型氧化铁红粉磨机的基础上更新改进设计而成。该设备比球粉磨机的机效高、电耗低、占地面积小,一次性投资少。磨辊在离心力的作用下紧紧的滚压在磨环上,因此当磨辊、磨环磨损到一定的厚度时也不影响成品的产量及细度。可见磨环、磨辊更换周期长,从而踢出了离心粉碎机易损件更换周期短的弊玻氧化铁红粉磨机的风速气流是在风机-磨壳-旋风分离器-风机内循环流动作业的,所以离心粉碎机尘少,操作车间清洁、环境无污染,完全可达国家粉尘排放的标准。
氧化铝生产工艺技术(一)
2019-02-15 14:21:10
1.氧化铝出产技能及出产状况 1995年全世界有68个氧化铝厂在出产,产出冶金级氧化铝4740万吨,产出特种氧化铝369万吨,算计5109万吨。1997年有“个氧化铝厂在出产,产值为5058万吨。 除我国和俄罗斯等国运用多种出产办法之外,其他各国都是选用拜耳法。出产办法的断定首要是取决于被处理质料的性质。 (1)国外氧化铝出产技能及出产状况。 (2)我国氧化铝出产技能及出产状况我国现有6个氧化铝厂,1999年实产氧化铝332万吨。 ①山东铝业公司氧化铝厂该厂是我国的第一个氧化铝厂,选用烧结法,规划为年产氧化铝50万吨。 ②郑州铝厂 1999年规划为年产氧化铝80万吨,1998年实产氧化铝73万吨。 混联法是我国首创的出产办法,在郑州铝厂初次实践,该法具有串联法的长处,又有出产组织上的灵活性,适于处理河南省的难溶低铁的铝土矿。 郑州铝厂在出产中运用着一项共同的技能——拜耳管道化溶出技能。 工艺流程:常压脱硅→高压隔膜泵→一级套管矿浆预热→2-9级二次蒸汽套管预热→套管熔盐加热→逗留管段→8级自蒸发器。石灰乳加在逗留管段。 首要设备有:12个缸卧式单效果隔膜泵,4管管式预热器,逗留管段Ф355mm,长915m。 首要技能指标:原矿浆处理量300m3/h;母液浓度180g/L Na2O;溶出温度270-280℃;溶出时刻40-45min;氧化铝溶出率>92%;设备工作率>80%;加热办法为熔盐加热,熔盐炉燃油;氧化铝产值16.5万吨/年。 ③贵州铝厂 规划为年产氧化铝40万吨,选用联合法(混联法)出产流程;1998年实产42万吨氧化铝。选用的出产技能及配备首要有循环流化床氧化铝焙烧炉、大型六效板式降膜蒸发器组、高压循环流化床锅炉、直接加热溶出罐溶出及高效沉降槽等。 ④山西铝厂 山西铝厂是我国现在最大的氧化铝厂,规划为年产氧化铝120万吨,处理山西省孝义中等档次铝土矿,选用完全分隔的拜耳一烧结联合法工艺流程。 ⑤中州铝厂 中州铝厂原规划终期规划为年产氧化铝120万吨,选用联合法(混联法)工艺流程。 ⑥平果铝业公司氧化铝厂 平果氧化铝厂是我国现在技能最先进的氧化铝厂,选用全新的拜耳法工艺流程,一期工程规划规划为年产氧化铝30万吨。[next] 2.各出产办法的机理、工艺流程及其特色 氧化铝是一个氧化物,能溶解于酸中也能溶解于苛性碱溶液中;据此,由矿石中提取氧化铝的办法分为酸法及碱法。 因为酸有腐蚀性,耐酸设备难以解决,因而酸法出产未能在大工业中得以使用。现在在工业上选用的办法是碱法出产。 氧化铝出产办法有:①拜耳法,处理优质铝土矿,A12O3/SiO2≥8(质量比),SiO2
[next]
①办法原理拜耳法的根本原理分为溶解和分化。溶解是用苛性碱液溶出铝土矿中的氧化铝,反应为: A12O3·H2O+2NaOH====2NaA1O2+2H2O A12O2·3H2O+2NaOH====2NaA1O2+4H2O 一水铝石或三水铝石溶解构成铝酸钠进入碱液中,而其他杂质不进入溶液中,呈固相存在,称赤泥。 三水铝石(A12O3·3H2O)的溶解温度为105℃,一水硬铝石(α-A12O3·H2O)为220℃,一水软铝石(γ-A12O3·H2O)为190℃。 分化是使用NaAlO2溶液在下降温度、参加种子及拌和的条件下分出固相Al(OH)3。分化反应为: NaAlO2+2H2O====Al(OH)3↓+NaOH 种子即为Al(OH)3,参加量(以A12O3量计算)为溶液中A12O3含量的一倍以上;温度控制为从75℃降到55℃;拌和时刻为60h左右。所得Al(OH)3再经焙烧脱水变成Al2O3,并使Al2O3晶型改变,满意铝电解的要求,焙烧反应为:
铜管的生产工艺
2019-02-27 13:29:13
现在国内出产铜管的办法技能有三种,分别为上引法、连铸连轧法、揉捏法。三种工艺的差异及优缺陷如下:1.上引法:此出产法为电解铜经熔化后直接上引出铜管。 长处:出资本钱少、出产本钱低、成品率较高、报价便宜。 缺陷:管材安排疏松,不耐高压、只适合于出产小规格空调铜管。2.连铸连轧法:此出产法为电解铜熔化后直接铸造出空心铜坯,通过行星轧制出产出铜管。 长处:出产本钱低、出产效率高。 缺陷为:管材因安排疏松,不耐高压,只限于小规格空调铜管的出产。3.揉捏法:此出产法为电解铜熔化后铸造出铜锭,经二次加热后用大型揉捏机揉捏出铜管。 长处:质量最好、安排结构细密、密度大、耐高压、曲折变形量大,能适用于冷热交流频频、温差改变大的工作环境,可出产大规格铜管。 缺陷:成品率低、出产本钱高,报价高。揉捏铜管出产法是现在国内外铜管出产法中产品质量最安稳、最优的铜管出产办法,只要该工艺出产的铜管最适合应用于暖通范畴,是未来铜管业开展的方向。 钢管的出产工艺就给我们介绍到这儿,期望对我们有所协助。
钼粉生产工艺简介
2019-02-12 10:08:00
用氢、碳及含碳气体以及硅、铝等都可以将三氧化钼复原为钼。仅仅其他办法难取得纯度高的金属钼。氢复原所生成钼法纯度高,适于出产钼材或钼基合金。
氢复原高纯三氧化钼的化学反响式为:
MoO3+H2450~650℃MoO2+H2O↑ △H°298=-85kJ→
MoO3+H2→Mo+2H2O↑ △H°298=105kJ
反响条件下MoO3与MoO2还或许反响,生成中间氧化物(如Mo4O11等)。
氢复原三氧化钼的标准工艺分作三阶段:
(1)三氧化钼被复原成二氧化钼:
MoO3+H2←→MoO2+H2O
这是一个放热反响。在400~600℃时平衡条件为PH2O/PH2=5.0×107~1.7×106。盛有MoO3粉的镍舟在四管马弗炉内缓慢前移,炉温从400℃上升,在550℃前反响完毕,加温至650℃。排出MoO2粉。若550℃时反响未完毕,易熔中间氧化物会在550~600℃熔化,使炉料烧结,复原不充沛。
(2)二氧化钼被复原成钼粉:这是个吸热反响,盛MoO2的镍舟在13管炉内缓慢前移,炉温延炉管从650℃上升到950℃,反响MoO2+2H2←→Mo + 2H2O平衡中,PH2O/PH2 很小; 645℃为0.234,800℃为0.398,927℃为0.55。所以所通入要充沛枯燥、露点-40~50℃作复原剂。
(3)弥补复原:为下降第二段产出钼粉中含氧量。还要在1000~1100℃下对它弥补复原。此种温度,对榜首、二段所用镍铬管和加热器在空气中化学稳定性下降。第三段是在充溢,设密闭炉壳的管状炉中进行。至此,钼粉中氧含量仅0.25%~0.3%。
这三段工艺在出产施行中,又简化成:(1)没有第三段弥补氧化。(2)将榜首段、第二段在同1台十三管炉内进行。(3)将榜首段与仲钼酸铵分化合在一道工序完结,向仲钼酸铵分化转炉通入,此两反响温度挨近,经此工艺后,不是产出MoO3,而是直接产出MoO2。不管怎么改变,都离不了上述化学反响的几个阶段。
经过复原产出的钼粉,可经过粉冶成型,或电弧炉熔株、电子束熔炼等办法成型。
钛材生产工艺
2019-01-25 13:37:03
目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为:钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。 钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。 钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。 针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用乎生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)->筛分->混合->压制成形->烧结->辅助加工->钛制品。 钛材生产的原则流程 钛材除了纯钛外,目前世界上已经生产出近30种牌号的钛合金。使用最广泛的钛合金是Ti-6Al-4V,Ti-5Al—2.5Sn等
硅铁生产工艺
2017-06-06 17:50:00
硅铁生产工艺的步骤:它是在熔融硅铁中通入氯气和氧气,尽可能地除去熔融硅铁中的杂质。本发明提供所通入的氯气和氧气的比例为:Cl↓〔2〕∶O↓〔2〕=100∶3-200,每吨熔融硅铁通入氯气和氧气总量为10-65公斤,通气时间60-180分钟。本工艺生产出的微碳硅铁可用于冶炼高级无取向硅钢。是向台包内的熔融硅铁通入氯气和氧气,其特征在于通入的氯气和氧气的比例。硅铁冶炼硅铁是以焦炭、钢屑、石英(或硅石)为原料,用电炉冶炼制成的。钢铁英才网传统炼制硅铁时,是将硅从含有SIO2的硅石中还原出来。冶炼硅铁大多使用冶金焦作还原剂,钢屑是硅铁的调节剂。 生产一吨硅铁原料及电能消耗为: 硅石:1780-1850kg 焦炭:890-930kg 钢屑:220-230kg 电极糊: 45-55kg 电耗: 8400-9000kwh/t硅铁构成铁和硅组成的铁合金。 硅铁按硅及其杂质含量,分为十六个牌号,其化学成分如下表:(根据GB2277-87)牌号化学成分% SiAlCaMn<td val
铜矿生产工艺介绍
2019-02-22 15:05:31
在天然界中天然铜的含量很少,一般都以金属共生矿的形状存在。铜矿石中常伴生有多种重金属和稀有金属,如金、银、砷、锑、铋、硒、铅、钴、镍、钼等。依据化合物的性质,铜矿藏可分为天然铜、硫化矿和氧化矿三种类型,首要以硫化矿和氧化矿,特别是硫化矿散布最广,现在电解铜90%来自硫化矿。金、银等贵金属常和铜共生。铜矿石经采矿和选矿富集取得铜精矿,含铜13-30%。可直接供冶炼厂炼铜。
铜矿石分类
一、天然铜
首要成分:Cu(Fe、Ag、Au、);产地:⑴国际:美国密执安州的苏必利尔湖南岸(1857年这儿发现重达420吨的天然铜块)、俄罗斯的图林斯克和意大利的蒙特卡蒂尼等地;⑵我国:湖北、云南、甘肃、长江中下游等地铜矿床氧化带中。二、硫化矿
1.黄铜矿
首要成分:CuFeS2(Ag、Au、Tl、Se、Te);产地:⑴我国:长江中下游区域、川滇区域、山西南部中条山区域、甘肃的河西走廊以及西藏高原等。其间以江西 德兴、西藏玉龙等铜矿最著名;⑵国际:西班牙的里奥廷托,美国亚利桑那州的克拉马祖、犹他州的宾厄姆、蒙大那州的比尤特,墨西哥的卡纳内阿,智利的丘基卡马塔等。2.斑铜矿
首要成分Cu5FeS4(Pt 、Pd);产地:⑴我国:云南东川等铜矿床;⑵国际:美国蒙大那州的比尤特,墨西哥卡纳内阿和智利丘基卡马塔等。3.辉铜矿
首要成分:Cu2S;产地:⑴我国:云南东川铜矿;⑵国际:美国布里斯托、康涅狄格州、比尤特、蒙大拿、亚利桑那州、宾厄姆峡谷、犹他州、鸭城、田纳西州、英国康瓦耳、楚梅布、意大利托斯卡纳和西班牙的力拓矿区、美国的内华达州的Ely矿区、Arizone州的Morenci、Miami和Clifton矿区以及蒙大拿州的比尤特矿区等地。三、氧化矿
1.蓝铜矿
首要成分:Cu3(OH)2(CO3)2;产地:⑴我国:广东阳春、湖北大冶和赣西北;⑵国际:赞比亚、澳大利亚、、俄罗斯、扎伊尔、美国等区域。2.赤铜矿
首要成分:Cu2O;产地:⑴国际:法国、智利、玻利维亚、南澳大利亚、美国等地有国际首要矿区;⑵我国:云南东川铜矿和江西、甘肃等地铜矿区。3.孔雀石
首要成分:Cu2(OH)2CO3;产地:⑴国际:赞比亚、澳大利亚、、俄罗斯、扎伊尔、美国等区域;⑵我国:广东阳春、湖北大冶和赣西北铜矿的选矿、冶炼
铜矿的选矿工艺
铜矿的选矿工艺首要是破碎--球磨--分级--浮选--精选等,对含镍钴钼金等稀贵多金属矿,可将粗选铜精矿再别离浮选镍精矿、钴精矿、钼精矿、金精矿。
浸染状铜矿石的浮选
一般选用比较简单的流程,经一段磨矿,细度-200网目约占50%~70%,1次粗选,2~3次精选,1~2次扫选。如铜矿藏浸染粒度比较细,可考虑选用阶段磨选流程。处理斑铜矿的选矿厂,大多选用粗精矿再磨—精选的阶段磨选流程,其实质是混合—优先浮选流程。先经一段粗磨、粗选、扫选,再将粗精矿再磨再精选得到高档次铜精矿和硫精矿。粗磨细度-200网目约占45%~50%,再磨细度-200网目约占90%~95%。
细密铜矿石因为黄铜矿和黄铁矿细密共生,黄铁矿往往被次生铜矿藏活化,黄铁矿含量较高,难于按捺,分选困难。分选过程中要求一起得到铜精矿和硫精矿。一般选铜后的尾矿就是硫精矿。假如矿石中脉石含量超越20%~25%,为得到硫精矿还需再次分选。处理细密铜矿石,常选用两段磨矿或阶段磨矿,磨矿细度要求较细。药剂用量也较大,黄药用量100g/(t原矿)以上,石灰8~10kg(t原矿)以上。
铜矿的冶炼工艺
从铜矿中挖掘出来的铜矿石,经过选矿成为含铜档次较高的铜精矿或许说是铜矿砂,铜精矿需求经过冶炼提成才干成为精铜及铜制品,现在,国际上铜的冶炼工艺首要有两种:即火法冶炼与湿法冶炼(SX-EX)
1.火法冶炼选矿办法:
至今铜的冶炼仍以火法治炼为主,其产值约占国际铜总产值的85%。
经过熔融冶炼和电解精火炼生产出阴极铜,也即电解铜,一般适于高档次的硫化铜矿。
火法冶炼一般是先将含铜百分之几或千分之几的原矿石,经过选矿提高到20-30%,作为铜精矿,在密闭鼓风炉、反射炉、电炉或闪速炉进行造锍熔炼,产出的熔锍(冰铜)接着送入转炉进行吹炼成粗铜,再在另一种反射炉内经过氧化精粹脱杂,或铸成阳极板进行电解,取得档次高达99.9%的电解铜。该流程简略、适应性强,铜的收回率可达95%,但因矿石中的硫再造硫和吹炼两阶段作为二氧化硫废气排出,不易收回,易构成污染。近年来呈现如白银法、诺兰达法等熔池熔炼以及日本的三菱法等、火法冶炼逐步向接连化、自动化开展。
除了铜精矿之外废铜做为精粹铜的首要原料之一,包含旧废铜和新废铜,旧废铜来自旧设备和旧机器,抛弃的高楼和地下管道;新废铜来自加工厂弃掉的铜屑(铜材的产出比为50%左右)一般废铜直销较安稳,废铜可以分为:裸杂铜:档次在90%以上;黄杂铜(电线);含铜物料(旧马达、电路板);由废铜和其他相似材料生产出的铜,也称为再生铜。
2.湿法冶炼选矿办法:
现代湿法冶炼的技能正在逐步推广,湿法冶炼的推出使铜的冶炼本钱大大下降。一般适于低档次的氧化铜,生产出的精铜称为电积铜。现代湿法冶炼有硫酸化焙烧-浸出-电积,浸出-萃取-电积,细菌浸出等法,适于低档次杂乱矿、氧化铜矿、含铜废矿石的堆浸、槽浸选用或就地浸出。湿法冶炼技能正在逐步推广,估计本世纪末可达总产值的20%,湿法冶炼的推出使铜的冶炼本钱大大下降。
湿法冶炼选矿工艺原理为:Fe+CuSO4=FeSO4+Cu,不一定用铁,金属活动性比铜强就行。也不一定用硫酸铜,可溶性的铜盐就可以。湿法炼铜就是电解饱满硫酸铜溶液。在电解池中,用铁作阳极,用铜作阴极,饱满硫酸铜溶液作电解液。通电今后阳极上的铁因为失电子构成亚铁离子,铜离子在阴极上得电子而变成铜原子。这样可以得到一个比较纯洁的铜单质。
电化学方程式:
阳极:Fe=Fe2+ + 2e-(电子)
阴极:Cu2+ +2e-=Cu
总的方程式:Fe+CuSO4->Cu+FeSO4
强化烧结法氧化铝生产工艺
2019-03-11 11:09:41
强化烧结法氧化铝出产工艺是由我国铝业中州分公司和中南大合研制开发的一项严重科技成果。该专利技术经过实验室研讨和工业实践,开发了新式的烧结法出产工艺,摒弃了传统烧成理论中溶铝和脱硅偏重的做法,形成了特有的高碱低钙、高A/S、高熟料氧化铝含量“三高一低”配方,提高了铝酸钠溶液的硅量指数,处理了由高铝硅比熟料烧结所带来的一些出产工艺技术难题,形成了高铝熟料烧结、高浓度铝酸钠溶液赤泥别离、高浓度铝酸钠溶液脱硅、高浓度铝酸钠溶液分化及高浓度碳分母液结晶蒸发为核心技术内容的一整套全新的出产工艺技术。施行后,中州分公司氧化铝产量完成了“六年六大步”,从1998年的20.06万吨、1999年31.36万吨、2000年44.12万吨到2003年的95万吨,年均增加10万吨以上,均匀年增产量近7亿多,出资收益率达到了66.4%,同比核算(95万吨氧化铝/年),年增效益2亿多元。强化烧结法氧化铝出产工艺是由我国铝业中州分公司和中南大合研制开发的一项严重科技成果。该专利技术经过实验室研讨和工业实践,开发了新式的烧结法出产工艺,摒弃了传统烧成理论中溶铝和脱硅偏重的做法,形成了特有的高碱低钙、高A/S、高熟料氧化铝含量“三高一低”配方,提高了铝酸钠溶液的硅量指数,处理了由高铝硅比熟料烧结所带来的一些出产工艺技术难题,形成了高铝熟料烧结、高浓度铝酸钠溶液赤泥别离、高浓度铝酸钠溶液脱硅、高浓度铝酸钠溶液分化及高浓度碳分母液结晶蒸发为核心技术内容的一整套全新的出产工艺技术。施行后,中州分公司氧化铝产量完成了“六年六大步”,从1998年的20.06万吨、1999年31.36万吨、2000年44.12万吨到2003年的95万吨,年均增加10万吨以上,均匀年增产量近7亿多,出资收益率达到了66.4%,同比核算(95万吨氧化铝/年),年增效益2亿多元。
氧化铝生产工艺技术(二)
2019-01-25 13:38:15
②主要生产工艺过程 拜耳法的生产工艺主要由溶出、分解和熔烧三个阶段组成。全流程主要加工工序为:矿石的破碎及湿磨、高温高压溶出、赤泥分离洗涤、种子分解、母液蒸发及氢氧化铝熔烧。 铝矿石进厂后经破碎、均化、贮存,碎矿石送下一工序湿磨。本工序的目的是使铝矿石破碎至≤15mm粒度,并且使化学成分均匀地向湿磨供料,控制指标是:每七天的供矿量加权平均值A/S(铝硅比)波动在±0.5范围内。 湿磨是使铝矿石进一步磨细并进行三组分(铝矿石、石灰、循环碱液)配料,使得到的产品一原矿浆满足高压溶出的要求。工序控制的技术条件是:石灰加入量为干铝矿量的7%;循环碱液配入量为控制溶出液的αk(苛性化系数)为1.55;磨矿细度为+170#筛<15%,+100#筛 烧结法的基本原理如下。 ①熟料烧成 配料时,使熟料的成分满足如下要求(摩尔比):[next] Al2O3+Na2CO3→2NaAlO2+CO2 Fe2O3+Na2CO3→2NaFeO2+CO2 SiO2+Na2CO3→Na2SiO3+CO2 2Na2SiO3+2Al2O3→Na2O·Al2O3·2SiO2+2NaAlO2 Na2O·Al2O3·2SiO2+4CaO→2NaAlO2+2(2CaO·SiO2) 熟料中的主要成分是NaAlO2、NaFeO2、2CaO·SiO2。 ②熟料溶出 用热水溶出熟料,反应如下。 NaAlO2溶于水中,当溶出条件不利时要发生水解: NaAlO2+2H2O====NaOH+Al(OH)3↓ NaFeO2溶于水中,水解程度更激烈: NaFeO2+2H2O====NaOH+Fe(OH)3↓ 2CaO·SiO2的水合作用: 2CaO·SiO2+2H2O====CaO·SiO2·H2O↓+Ca(OH)2↓ 与Na2CO3作用: 2CaO·SiO2+2Na2CO3+H2O====2CaCO3+Na2SiO3+2NaOH 与NaAlO2也发生反应: 3(2CaO·SiO2)+6NaAlO2+15H2O==== 3Na2SiO3+2Al(OH)3+2(3CaO·A12O3·6H2O)[next] Na2SiO3在NaA1O2溶液中是溶解的,溶解度与Al2O3的浓度有关: 2Na2SiO3+2NaAlO2+4H2O====Na2O·Al2O3·2SiO2·2H2O↓+4NaOH CaO·A12O3的水合作用: 3(CaO·Al2O3)+12H2O====3CaO·Al2O3·6H2O+4Al(OH)3↓ 与Na2CO3作用: CaO·Al2O3+Na2CO3====2NaAlO2+CaCO3↓ 综上所述,溶出液中含有NaAlO2、NaOH、Na2SiO3;固相沉淀中含有CaCO3, 2CaO·SiO2、Fe(OH)3、Al(OH)3、Na2O·Al2O3·2SiO2·2H2O。 ③中压脱硅 熟料溶出后得到的溶液称为粗液,因为其中含有呈Na2SiO3状态存在的SiO2成分,如不除去SiO2,则产品氧化铝的质量不纯,故要对粗液进行净化处理,即中压脱硅。 中压脱硅的原理是:当溶液进行加热时,生成不溶性的固态化合物,进而把它分离出去。 2Na2SiO3+2NaA1O2+4H2O Na2O·A12O3·2SiO2·2H2O↓+4NaOH 当加入石灰(CaO)时,有如下反应: 2Na2SiO3+2NaA1O2+Ca(OH)2+4H2O=====CaO·A12O3·2SiO2·2H2O↓+6NaOH 中压脱硅控制的条件是:温度170℃,脱硅时间2h,溶液的浓度A12O3<120g/L。 ④碳酸化分解目的是向铝酸钠精液中通入CO2气体,使精液分解,精液中的A12O3尽量多的沉淀出来。作用原理如下。 第一步:中和精液中游离的NaOH,使溶液的ak下降。 2NaOH+CO2====Na2CO3+H2O 第二步:由于ak值的降低使溶液处在介稳状态,溶液开始水解。 NaAlO2+2H2O====Al(OH)3↓+NaOH 连续通入CO2,连续水解,不断析出Al(OH)3。
氧化铝生产工艺技术(三)
2019-01-25 13:38:15
主要生产过程简述如下。 ①原料准备系统 为熟料烧成准备原料——生料浆,要满足水分、配比及细度的要求。 由矿山来的铝矿石先经破碎、均化及贮存达到粒度小于15mm及化学成分稳定的要求,然后送入管磨机中进行生料浆磨制,同时加入磨机中的物料还有5种:工业碱粉(补充生产过程中碱的损耗)、脱硫用煤(在烧成窑中脱硫)、石灰(与SiO2反应用)、蒸发母液(循环碱液)及硅渣(生产过程中间产物)。本工序控制的主要技术指标是:料浆水分38%;细度120#筛残留
90%,Na2O>93%。 ④调整液配制 虽然熟料中的有用成分能溶解于热水中,但为了溶出泥浆的稳定性避免二次反应损失,要保持溶出液有一定的Na2O浓度及苛性比值,这就要靠调整液来完成。配制调整液就是把四种溶液按比例掺配,以满足对调整液的要求。这四种溶液是氢氧化铝洗液、种子分解母液、赤泥洗液及碳酸分解母液。配制所用的设备是贮槽及泵。 ⑤赤泥分离及洗涤 将固(熟料溶出后的残渣——赤泥)液(溶出后的溶液——铝酸钠溶液)混合物进行分离并将赤泥进行洗涤的过程称赤泥分离及洗涤。分离得到的溶液称粗液,送中压脱硅工序处理;洗涤后的残渣——赤泥送堆场或水泥厂,赤泥可做水泥制造的一种原料。对这一过程的要求是“快速”,尽力缩短固液接触的时间,以防固液之间发生二次反应,使溶液中的氧化铝再返回固相中。这一过程通常用的设备是沉降槽、真空过滤机。本工序控制的主要技术指标是:分离沉降槽底流固体含量百分数30%-40%;过程温度95℃;弃赤泥附液中碱含量Na2O≤5kg/t干泥。[next] ⑥溶液脱硅 这是对溶液进行净化的一种手段。根据对净化后溶液的质量要求不同,可采取一段脱硅(中压脱硅)及二段脱硅两种方法。中压脱硅即将粗液(加入硅渣种子及部分种分母液)加热到170℃并保持1.5-2h,使溶液中的组分发生化学反应产生固相硅渣,进而将硅渣分离出去返回配料,将溶液进行控制过滤分离出细小的固体悬浮物后即得精制液,送往分解工序处理。中压脱硅使用的主要设备是脱硅机、分离沉降槽及叶滤机。 二段脱硅系将中压脱硅所得的分离沉降槽溢流,加入石灰乳在常压下再搅拌反应2h,使溶液中的SiO2进一步以固相析出,得到更纯净的溶液,此时溶液中A12O3/SiO2(质量比)可达1500,然后再分离固相及液相。一般情况下都使用一段中压脱硅,当对氧化铝产品有特殊要求时才采用二段脱硅。 ⑦种子分解 烧结法中采用种子分解的目的是获取苛性溶液(种分母液),以返回使用保证溶液的安定性,同时获得固态氢氧化铝是其副产品。种子分解的分解率低(小于50%)、分解时间长(55h以上)、占用设备多是其不足。种子分解所用设备及工艺流程与拜耳法的相同。 ⑧碳酸分解 与种子分解相比,碳酸分解的分解率高(大于90%)、分解时间短(2-3h)、所用设备少。但是,分解后所得的溶液(碳分母液)是Na2CO3水溶液,只能经过蒸发浓缩后,再经原料磨配料后在烧成窑中与矿石中的成分起反应。碳酸分解所使用的主要设备是碳分槽,可间断分解也可连续分解。分解所使用的CO2气体来自经净化后的石灰炉烟气,其浓度为CO2>38%(体积百分数)。 当前在运行的处理铝土矿的烧结法厂有3个,联合法厂有7个,处理霞石矿的有3个厂。 烧结法存在的问题主要是能耗高,工艺综合能耗为46.05MJ/t氧化铝。主要技术经济指标为:氧化铝总回收率87%;铝土矿单耗2t/t;石灰石单耗1.8t/t;苏打单耗108kg/t;焦炭单耗95kg/t;烧成煤单耗770kg/t;生料加煤量100kg/t;焙烧耗油量78kg/t;电力消耗450kW.h/t;蒸汽单耗4.2t/t;压缩空气消耗980m3/t;新水消耗18t/t。[next] (3)联合法联合法是将拜耳法与烧结法联合使用生产氧化铝的方法,方法的最大特点是可用烧结法系统所得的铝酸钠溶液,来补充拜耳法系统中的碱损失。方法适于大规模生产和用于处理A12O3/SiO2=5-7的原料。 联合法有三种形式,即并联法、串联法及混联法。世界上只有美国、前苏联和中国采用联合法,美国曾用过串联法,中国开发了混联法。 ①并联法 并联法是指拜耳法与烧结法平行地进行,各自处理高品位及低品位的矿石,各自排出自己的废渣——赤泥。拜耳法与烧结法互为利用的方面是:拜耳法析出的碱不设苛化来处理,而是送烧结法配料;拜耳法的碱耗用烧结法的铝酸钠精液来补充;拜耳法与烧结法生产出来的氢氧化铝合并洗涤而焙烧。 使用并联法时,工厂必须要有高品位矿及低品位矿的供应,高品位矿供拜耳法处理,低品位矿供烧结法处理。 ②串联法串联法是指拜耳法与烧结法的串联,矿石先经拜耳法处理,产出的残渣—赤泥再经烧结法处理,最终的残渣由烧结法排出。 该生产方法与纯拜耳法及纯烧结法的不同点是: a.拜耳法的赤泥不外排而是送烧结法配料,再经烧结法处理,配料时不加矿石; b.拜耳法生产过程中循环积累起来的碱(Na2CO3)析出后,不设苛化处理而是送烧结法配料,简化了拜耳法工艺流程; c.烧结法产出的铝酸钠精液不设碳酸化分解处理,而是送往拜耳法种子分解工序,简化了烧结法工艺流程又补充了拜耳法的碱耗。 串联法的优点是:矿石经二道处理,矿石中氧化铝的回收率高;拜耳法部分的能力大,烧结法部分的能力小,故使工厂投资较小、产品成本较低。 目前,在世界上只有惟一的一个串联法生产厂—哈萨克斯坦的巴夫洛达尔氧化铝厂。该厂也是经过了多年研究、改进,终获成功。该厂的工艺流程如图3。[next]