铁粉分类及应用
2019-01-03 09:36:51
铁粉,尺寸小于1mm的铁的颗粒集合体。颜色:黑色。是粉末冶金的主要原料。按粒度,习惯上分为粗粉、中等粉、细粉、微细粉和超细粉五个等级。粒度为150~500μm范围内的颗粒组成的铁粉为粗粉,粒度在44~150μm为中等粉,10~44μm的为细粉,0.5~10μm的为极细粉,小于0.5μm的为超细粉。一般将能通过325目标准筛即粒度小于44μm的粉末称为亚筛粉,若要进行更高精度的筛分则只能用气流分级设备,但对于一些易氧化的铁粉则只能用JZDF氮气保护分级机来做。铁粉主要包括还原铁粉和雾化铁粉,它们由于不同的生产方式而得名。铁粉
纯的金属铁是银白色的,铁粉是黑色的,这是个光学问题,因为铁粉的比表面积小,没有固定的几何形状,而铁块的晶体结构呈几何形状,因而铁块吸收一部分可见光,将另一部分可见光镜面反射了出来,显出白色;铁粉没吸收完的光却被漫反射,能够进入人眼的可见光少,所以是黑色的。
铁粉的应用
粉末冶金工业中一种最重要的金属粉末。铁粉在粉末冶金生产中用量最大,其耗用量约占金属粉末总消耗量的85%左右。铁粉的主要市场是制造机械零件,其所需铁粉量约占铁粉总产量的80%。
氧气顶吹自热熔炼
2019-03-04 16:12:50
该工艺至今有两家工厂选用,一是俄罗斯北镍公司的17.8m2炉子用以处理镍铜矿块矿。另一台是我国金川有色金属公司熔炼二次铜精矿的2.8m2炉子。如下图所示。
氧气顶吹自热熔炼炉示意图(俄、中)
氧气顶吹自热熔炼与顶吹淹没熔炼的底子差异在于运用工业氧气,此考虑是根据要处理的炉料的自热程度不行。运用工业氧气,能够在不加燃料或少加燃料条件下,顺畅地对低铁、硫物料(如二次铜精矿)进行熔炼。由此,导致了不能运用简略的用工艺气体冷却的埋入式喷,有必要有水冷却,故而成悬空喷吹;工业纯氧的运用减小了废热锅炉、烟气处理设备,还能出产“生铜”。这些终究导致粗铜出产成本下降。
氧气天然熔炼的操作目标见下表:
氧气顶吹天然炉的操作目标一览表序号项 目数 量序
号项 目数 量1
2
3 单位出产能力/t·(m2·d)-1
铜精矿成分Cu/%
Fe/%
S/%
水分/%
产出粗铜含量/% 48
68.5
4.0
21.5
8~10
91~924
5
6
7
8
9 渣含铜/%
烟尘率/%
烟气量(标态)/m3·h-1
烟气中二氧化硫质量分数/%
氧气单耗/kg·t-1(料)
煤单耗/kg·t-1(料) (未贫化)11.24
3.5
5000~7000
25~35
126.5
30
INCO氧气闪速熔炼
2019-01-07 07:51:19
氧气闪速熔炼炉构造示于图1。含水0.1%的干燥精矿和含氧95%的工业氧气从设于炉子两端的精矿喷嘴水平喷于炉内。精矿喷嘴为内衬陶瓷的水冷不锈钢管。生成的铜锍和炉渣在熔池分离。烟气自设于炉子中部的上升烟道排出并直接送烟气收尘系统。
图1 INCO氧气闪速炉及烧嘴简图
技术特点:
1、采用氧气鼓风、烟气量小、烟气处理设备小,建设投资低。
2、烟气含SO270%~80%,可以生产液体SO2元素硫或硫酸。
3、过程自热,熔炼的氧气消耗每吨铜800~1000m3,相当于0.15~0.18t标准煤/t铜。
4、炉渣含铜较低,弃去前可以不作处理。
INCO氧气闪速炉由于使用工业氧气,仅始于电价低廉的地区使用。同时其液体二氧化硫等产品要考虑销路问题。因此它的推广受到限制。至1991年,世界上仅有三个工厂采用氧气闪速炉;铜崖厂(加拿大,1952年投产)、赫尔利厂(美国,1984年投产)和海登厂(美国,1983年投产)。
INCO氧气闪速熔炼主要工艺指标实例列于表1。
表1 INCO氧气闪速熔炼工厂主要工艺指标实例项目单位铜崖厂海登厂赫尔利厂产铜能力Kt/a100~15017580~90精矿处理能力t/d1100~160023601300精矿成分:Cu%2926~2820S%3437Fe%3237炉子尺寸(内部)m5.5×22×55.5×22×55.5×22×5上升烟道宽度m2.533.5沉淀池以上高度m61010渣层厚度m0.60.4铜锍层厚度m0.60.8渣口数个111铜锍口数个242铜锍品位%45~485545~55铜锍量t/d900~1200800渣量t/d260~3601000渣Fe/SiO20.880.83渣含铜%0.630.50.7渣处理方法不处理电炉贫化不处理氧气用量t/d300380烟气量m3/h1300017000烟气SO2含量%70~8070
氧气顶吹熔融还原炼铁试验
2019-03-07 10:03:00
氧气顶吹熔融复原炼铁实验:介绍了氧气顶吹熔融复原技能的工艺、设备和氧在反响中最佳喷溅作用的模仿;此工艺选用浸入式水冷喷把富氧空气直接喷吹到渣层中来加强对熔池的拌和,强化传热传质.经过用昆钢供给的质料开始实验,得到了与传统高炉质量适当的优质铁水.该工艺能够运用传统高炉无法运用的高磷铁矿石作为炼铁质料,且能冶炼出含磷下降的铁水,脱磷也是这种工艺的特色之一。
氧气瓶用无缝钢管
2019-03-19 09:03:26
1 氧气瓶用无缝钢管范围 本标准规定了氧气瓶用无缝钢管的尺寸、外形、重量、技术要求、检验与试验、包装、标志和质量证明书。 2 氧气瓶用无缝钢管规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 228 金属材料 室温拉伸试验方法 GB/T 229 金属夏比缺口冲击试验方法 GB/T 4336 碳素钢和中低合金钢的光电发射光谱分析方法 GB/T 5777 无缝钢管超声波探伤检验方法 GB/T 7735 钢管涡流探伤检验方法 Q/BQB 203 管道、容器、设备结构用无缝钢管 3 氧气瓶用无缝钢管尺寸、外形和重量 3.1 钢管的外径和壁厚应符合Q/BQB 203中表1、表2的规定,其允许偏差按Q/BQB 203中表3、表4规定执行。 3.2 钢管的长度、外形和重量应符合Q/BQB 203的规定。 4 氧气瓶用无缝钢管技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。 4.1.2 钢管的成品化学成分允许偏差应符合GB/T 222的有关规定。 表1牌 号化 学 成 分 %CSiMnPSMoCrV其他37Mn0.34~0.400.10~0.301.35~1.65
≤0.025
≤0.020———Ni: ≤0.30 Cu≤0.2030CrMo0.26~0.340.17~0.370.40~0.70≤0.025≤0.0200.15~0.250.80~1.10—35CrMo0.32~0.400.17~0.370.40~0.70≤0.025≤0.0200.15~0.250.80~1.10—34Mn2V0.30~0.370.17~0.371.40~1.75≤0.025≤0.020——0.07~0.1234CrMo40.30~0.370.15~0.350.50~0.80≤0.025≤0.0200.15~0.250.90~1.20—4.2 冶炼方法 钢管所用的钢采用电炉或氧气转炉冶炼。 4.3 交货状态 钢管以热轧状态交货。 4.4 力学性能 4.4.1 钢管热处理毛坯制成的试样纵向力学性能应符合表2的规定。 4.4.2 力学性能试样推荐热处理制度按表3规定。 表2牌 号试样力学性能抗拉强度 Rm ,MPa
下屈服强度 ReL ,MPa
断后伸长率 A ,%冲击功 AkU2,J37Mn≥750≥630≥16≥5530CrMo≥930≥785≥12≥6335CrMo≥980≥835≥12≥6334Mn2V≥745≥530≥16≥5534CrMo4≥980≥835≥12≥63表3牌 号热 处 理 制 度种类淬火(正火)温度℃冷却方式回火温度 ℃冷却方式37Mn调质840±10油冷600±10空冷30CrMo
调质880±10油冷550±10油冷35CrMo
调质850±10油冷580±10油冷34Mn2V
正火870±10空冷(风吹)——34CrMo4
调质850±10油冷580±10油冷4.5 密实性 钢管应按GB/T 7735中A级逐根进行涡流探伤检验,以检验钢管的密实性。 4.6 无损检验 钢管应按GB/T 5777的规定逐根进行超声波探伤检验,指标由供需双方协商。 4.7 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除掉,但清理处的实际壁厚不得小于壁厚所允许的最小值。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。 5 氧气瓶用无缝钢管检验与试验 5.1 钢管的尺寸应用合适的量具逐根进行测量。 5.2 钢管的内、外表面需在照明下用肉眼逐根进行检查。 5.3 无缝钢管的的检验项目、取样数量及试验方法应符合表4的规定。 表4序号检验项目试验方法取样数量1化学成分GB/T 222,GB/T 4336每炉一个试样2拉伸试验GB/T 228每批一个试样3冲击试验GB/T 229每批在一根钢管上取三个试样4涡流探伤GB/T 7735逐根5超声波探伤GB/T 5777逐根5.4 组批规则 5.4.1 钢管按批进行检查、检验和验收。每批钢管应由同一规格、同一牌号、同一炉号的钢管组成。当需方事先未提出特殊要求时,碳素钢管可以不同炉号的同一规格、同一牌号的钢管组成一批。 5.4.2 钢管每批为200根,剩余钢管的根数不小于100根时,单独为一批;小于100根时,应并入相邻的一批中。 5.5 复验与判定原则 对于拉伸和冲击试验如有一项试验结果(包括该项试验所要求的任一指标)不合格,则应将该根钢管剔除,并从同一批钢管中重新取2根钢管复验不合格的项目,复验结果即使有一个指标不合格,则整批钢管不予验收。 6 包装、标志及质量证明书 钢管的包装、标志和质量证明书应符合GB/T 2102规定。
还原铁粉让普通铁精粉身价倍增
2018-12-13 10:31:09
日前,记者从辽宁北票盛隆粉末有限公司了解到,该公司用高科技把普通铁精粉加工成还原铁精粉,使普通铁精粉成为身价倍增的高附加值产品。目前,还原铁粉的国内市场价格为每吨4800元-18000元。(据2006年6月26日报道,国内部分地区铁精粉采购价格分别为承德580-590(含税)元/t、霍邱660-670(含税)元/t 、本溪510-520 (含税)元/t )
北票盛隆粉末冶金有限公司前身是生产普通铁精粉的北票铁矿。2000年,该公司依托当地丰富的铁矿资源和自己较强的采矿、选矿生产能力,引进和采用乌克兰先进技术,并积极与国内科研院所开展技术合作,实现了初级资源型企业向高新技术企业的转型,开发出了还原铁粉、铝镍合金粉等一系列附加值较高的冶金新产品。2002年,该公司开始生产还原铁粉,目前已达到9000吨的年生产能力,产品主要供给“珠三角”和“长三角”地区的零部件制造企业,同时出口日本等国家和地区。 据了解,还原铁粉是用高科技把含铁量66%以上的普通铁精粉,经过加工成海绵铁、粉碎、磁选、两次还原、筛分等工序提纯,使其变成含铁量达到99%以上的纯铁粉,粒度可达到100-500网目。还原铁粉可用于汽车零部件制造、家电零部件制造、金刚石工具、钢结硬质合金以及高端电子产品软磁性材料等领域;用还原铁粉制成的各种零部件,能够做到无机械切削加工或极小量机械切削加工的特点,使下游各类制造业节约能源和原材料,降低生产成本。 来源:世纪金山网
镍锍旋转转炉氧气顶吹吹炼
2019-03-04 16:12:50
往旋转转炉顶部鼓入工业氧气将镍锍或粗镍的镍锍吹炼办法。 氧气顶吹旋转转炉开端用于炼钢,1973年加拿大世界镍公司的铜崖冶炼厂用它将镍锍吹炼成含硫0.2%~4%的粗镍铜合金,作为法的质料。印度尼西亚的梭罗阿科冶炼厂又用于把低镍锍吹炼成高镍锍。 将镍锍吹炼成高镍的关键是要到达1455℃以上的高温文避免生成氧化镍。因为熔体中的硫在吹炼过程中不断氧化,因而要求进步熔体温度并使熔体中各成分混合均匀,避免呈现硫的部分贫化,避免液态金属镍从头氧化成氧化镍。选用旋转转炉氧气顶吹吹炼时,液相中各成分混合杰出,传质敏捷,有利于Ni3S2的分散。使用化学反响放出的很多热或向炉内补热以保持操作所要求的高温。镍锍氧气吹炼成粗镍的首要化学反响为: 2FeS+3O2=2FeO+2SO2 3FeS+5O2=Fe3O4+3SO2 2FeO+SiO2=2FeO.SiO2 Ni3S2+2O2=3Ni+2SO2 2Ni3S2+7O2=6NiO+4SO2 Ni3S2+4NiO=7Ni+2SO2 氧气顶吹旋转炉炉体为圆形钢壳,内衬镁砖或铬镁砖,炉子能够绕短轴歪斜180°,绕长轴接连旋转。炉子由支承轴支撑,作业时和水平面成必定的歪斜角。用水冷却的氧由炉口刺进炉内,供应吹炼所需的氧气。固定在移动小车上的水冷烟罩一端和烟道相通。另一端紧罩炉口,避免烟气外逸。炉子结构如图1。 吹炼开端开端时先将熔体锍倒入炉内,然后使炉子旋转,将氧进炉内送氧吹炼。在吹炼过程中,镍锍中的硫化亚铁氧化亚铁氧化成氧化铁各二氧化硫,氧化来铁和二氧化硅生成炉渣。炉渣造好后,抽去氧,移开烟罩,炉子绕短轴旋转,将炉渣倒入渣包,再参加新的镍锍,持续吹炼,直到炉内的高镍锍体积到达要求停止。如呆制取粗镍,则在吹成高镍锍后持续送氧吹炼,使Ni3S2转变成金属镍。加拿大世界镍公司的铜崖冶炼厂氧气顶吹旋转转炉的才能为每炉为50t,入炉镍锍成分(%)为:Ni 62,Cu 14,Fe 2,S 20;产出的粗镍铜合金成分(%)为:Ni65~70,Cu15,Fe1,S4~5。印尼的梭罗阿科冶炼厂的氧气顶吹旋转转炉才能为每炉150t,入炉镍锍成分(%)为:Ni 32,Fe 57,S 10;炉渣成分(%)为:Ni 2~3,Fe 50~56,SiO2 24;高镍锍成分(%)为:Ni79,Cu0.5,S19.5。用旋转转炉氧气顶吹吹炼镍锍时,炉子不断旋转,熔体受炉子滚动和氧气流搅动的效果,各组分间混合条件好,熔体内传质和传热效果均佳,反响速度快,出产效率高。但炉衬饱尝高温效果和熔体的剧烈冲刷,简略损坏,炉衬寿数较短。因而,在出产中要以常栓查炉衬的磨蚀情况,发防发作事端和断定合理的修炉时刻。用激光仪测定炉衬厚度,能够得到实践的炉衬磨损情况图形,对操控出产非常便利。 镍锍旋转转炉氧气顶工、吹炼的出产过程简略。劳动条件好工艺参数操控比较灵敏,对质料的适应性强,特别适于中、小型出产。选用纯氧吹炼,烟气带走的热量小,能充分使用炉内熔体的反尖热,热使用率比较高,能耗也较低。烟量少,烟气净化设备的出资也相应较低。但镍锍旋转炉顶吹为间歇性作业,烟气量波分理处大,不利于烟气余热和二氧化硫的收回使用。
铋矿三氯化铁浸出-铁粉置换法
2019-01-31 11:06:17
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合利用好,污染较小,为进步铋资源的综合利用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
含铁粉矿球团化制备工艺研究
2019-01-24 09:36:35
近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。
在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。
本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。
一、试验条件与方法
(一)原材料
1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。
2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程
每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。
(三)抗压力测试
试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。
(四)所用仪器与设备
加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析
(一)加热固化制度对球团抗压力的影响
所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。
试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。
从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。
(二)粘结剂加入量对抗压力的影响
在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。
(三)不同粉矿条件下的抗压力
为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。
按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。
通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。
三、结论
(一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。
(二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。
(三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。
参考文献
[1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
[2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36.
[3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98.
[4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50.
[5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20.
[6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.
有色冶金中氧气底吹技术的研发
2019-12-12 11:13:19
氧气底吹技能开始使用于炼钢范畴。上世纪30年代起,相关研制作业相继展开,终究在60—70年代完结了工业使用。氧气底吹技能具有高效、节能、环保等显着优势,随制氧技能的前进,在国际钢铁范畴得到广泛使用,大幅提升了钢铁冶炼的全体技能水平。将氧气底吹技能使用于有色冶炼范畴的主意也随之发生。可是,氧气底吹技能在钢铁冶炼范畴的使用与在有色金属冶炼范畴的使用有很大差异:氧气底吹技能炼钢,意图在于脱除铁水中的硫、磷、硅等杂质,操控碳含量,能够一起参加废钢,熔化调质加工各种牌号的碳钢,亦可在钢水中参加其他金属或合金,加工各种牌号的合金钢。冶炼进程是接连作业,炉内气氛在氧化和复原之间周期性改变,冶炼渣率和烟尘率很低,产出物中,成品率超越95%。氧气底吹冶炼有色金属,进程多为接连作业。炉内气氛或为氧化或为复原,对安稳有较高要求。冶炼产品首要是炉渣,主金属产品难以超越50%,烟尘率视不同质料有所动摇。此外,有色金属质料常为多金属共生矿,难以完全分选,冶炼技术需考虑多金属归纳收回使用,所以相对于钢铁冶炼,有色冶炼的反响机理较为杂乱。也正因为此,氧气底吹炼钢的老练技能并不能简略移植到有色金属范畴,需求针对不同金属种类的不同特色进行逐个开发。1973年,2位美国教授提出将氧气底吹技能使用于铜冶炼范畴的想象,称之为“SL炼铜法”,进行小试后,申请了专利,但中试未获成功。1974年,德国鲁奇公司在SL炼铜法的启发下,申请了QSL氧气底吹一步炼铅专利,并于1984年进行了工业化演示实验。在我国,上世纪80年代,为筛选环境污染严峻的烧结—鼓风炉传统炼铅技术,职业对清洁技术的需求十分火急。当时,各国都在展开新的炼铅技术研讨,但其间多为一步或一炉炼铅,引入到国内会带来一些工程问题,且本钱相对较高。以进步我国有色冶炼技能自主立异性和技能适用性为任务,我国恩菲工程技能有限公司(以下简称“我国恩菲”)前身——北京有色冶金规划研讨总院提出了研制“氧气底吹冶炼—电热复原炼铅”新技术的想象。1983年,经国家科委同意,该课题被列入国家“六五”科技攻关方案,由我国恩菲和水口山矿务局(现湖南水口山有色金属集团有限公司前身,以下简称“水口山”)牵头、北京矿冶研讨总院、北京钢铁研讨总院、中南工业大学、中科院化冶所、西北矿冶研讨院等职业厂家院所参加,组成公关小组一起展开研讨,并于1985年末在水口山建成年产3000吨粗铅的底吹冶炼—电热复原炼铅成套半工业实验设备。至1987年末,先后进行17批次实验,共冶炼近900吨铅精矿,产出340多吨粗铅。实验标明,氧气底吹冶炼炉除了存在氧抢寿命短这一杰出问题,其他目标均较为抱负;电热复原体系受资金约束,所建造备粗陋,复原剂粉煤供应为暂时办法,难以满意实验要求,无法产出合格弃渣。1987年11月,实验告一段落。随后,为赶快处理铅冶炼的严峻污染问题,我国引入了德国鲁奇公司QSL一步炼铅技术,并在甘肃白银有色公司(现白银有色集团前身)建造了国际首个氧气底吹炼有色金属项目,并于1994年建成试产。可是,因部分技能不老练,加上经济原因,项目投产后不久即封闭至今。事实上,到上世纪末,无论是自主研制仍是引入消化,氧气底吹技能在我国有色冶炼范畴的使用均未取得成功,这无疑进一步证明,该技能在有色范畴的工业化使用具有适当难度。可是,恩菲人的攻关仍在继续。在对水口山氧气底吹实验及白银公司引入QSL氧气底吹一步炼铅的失利进行分析时,我国恩菲的专家团队发现,问题的要点在于复原阶段。烧结—鼓风炉炼铅技术的污染点首要在于,烧结进程中,二氧化硫的逸散与烧结块返粉破碎构成粉尘飞扬。而假如选用氧气底吹冶炼技能代替铅精矿烧结,将冶炼渣铸锭送鼓风炉复原,不光能有用处理炼铅环保问题、液态高铅渣复原两道技能难题,还能在改造项目中,保存铅厂原有鼓风炉复原设备并继续加以使用,然后大幅下降改造费用。这无疑为研制供给了新的思路。1997年,我国恩菲提出了氧气底吹冶炼-鼓风炉复原炼铅新技术。由我国恩菲牵头,安排河南豫光金铅冶炼厂、安徽池州冶炼厂、浙江温州冶炼厂等3家单位一起出资,使用水口山原有氧气底吹实验设备与1.5平方米小型鼓风炉,进行氧气底吹冶炼-鼓风炉复原炼铅新技术半工业实验,要点在于处理鼓风炉复原高铅渣铸块存在鼓风炉渣含铅高的问题,并一举成功。在此基础上,我国恩菲于2002年分别在安徽池州冶炼厂和河南豫光金铅冶炼厂建成年产3万吨和5万吨粗铅的演示加工线。然后,2条加工线操作安稳,产能很快就提升到年产5万吨和8万吨粗铅的水平。粗铅加工单位能耗比传统烧结—鼓风炉技术下降50%,硫收回率进步到96%以上,硫捕集率超越99%,革除了返粉破碎,有用处理了传统技术构成的二氧化硫低空污染及含铅粉尘飞扬问题。氧气底吹冶炼—鼓风炉复原炼铅新技术有用改进了铅冶炼的加工环境,进步了银的收回率,下降了出资本钱,遭到加工厂家的高度好评。该技术于2003年获我国有色金属工业科技前进一等奖,2004年获国家科技前进二等奖。在推行使用的进程中,被国家九部委发文指定为我国首选炼铅技术。恩菲人的脚步从未中止。在推行使用氧气底吹冶炼—鼓风炉复原炼铅新技术的进程中,新的需求又呈现了:将该技术使用在旧厂改造项目中,能够继续使用原有鼓风炉体系,所以节约出资本钱的优点比较显着。而在新建项目中,使用该技能不光会糟蹋熔体的物理热量,还会添加铸锭工序,加大厂区占地面积和出资额,并不是最优挑选。为此,恩菲人继续研制,推出氧气底吹冶炼—热渣直接复原技术,下降了能耗,省去了铸锭工序,还可选用更廉价的复原剂替代鼓风炉用的焦炭,大幅下降了加工本钱。2005年,我国恩菲申报高铅液态渣直接复原的研制课题并获科技部支撑,被列为国家严峻工业技能开发项目。现在,我国恩菲已研制3种技术,分别为侧吹炉供焦炉煤气加粒煤复原、底吹炉供天然气加粒煤或碎焦复原和竖炉电热焦炭复原。前二种已取得成功,并在济源金利建成投产20万吨/年国内最大氧气底吹冶炼—侧吹复原炼铅加工线,在河南岷山建成投产10万吨/年双底吹炼铅加工线。氧气底吹热渣直接复原炼铅构成的第二代炼铅新技术,与第一代氧气底吹冶炼—鼓风炉炼铅技术比较,能耗再降30%,吨铅本钱削减100多元。第二代炼铅新技术出资更省,还具有能耗低、环保好、操作便利灵敏、质料适应性强、加工本钱低一级许多优势,首要目标均到达国际领先水平。整体来看,氧气底吹炼铅技能已经在国内取得了广泛使用和推行。到2014年,包含老厂改造或新建项目在内,全国已有42条加工线选用氧气底吹炼铅技能。从氧气底吹炼铅技能的立项研制,到第一条加工线的成功工业化,这个进程耗费了19年时刻。而在这以后的12年里,技能得到继续推行和广泛使用,总产能到达400万吨/年,占全国铅冶炼总产能的87%,并已出口国外建厂成功投产。一项技能能如此迅速地推行使用,国际冶金史上都属稀有。以300万吨矿铅量计算,与传统流程比,氧气底吹炼铅技术可每年节约标煤近150万吨,年减排二氧化硫近20万吨,年增效约4亿元。氧气底吹技能在铅冶炼的开发使用,完全改变了我国铅冶炼的落后面貌,现在我国已占国际矿铅总产量的2/3,职业竞争力跃居国际第一。我国恩菲又在技能使用进程中,与加工厂家一起开发了许多具有职业开创性的使用技能:在河南万洋项目中,打破惯例,撤销复原炉后的电热前床,开发三连炉接连炼铅,使炼铅技术更简练、能耗更低、劳作加工率更高;在河南豫光金铅项目中,铅精矿调配处理铅蓄电池膏泥,不光节能作用更好,硫酸铅中的硫也得到愈加合理有用的收回,为二次铅的收回拓荒了新途径;在河南岷山项目中,铅精矿调配处理高炉炼铁及电炉炼钢含铅锌的烟尘,将含锌高达20%的复原炉渣送烟化炉再度收回锌,使资源得到充沛归纳使用,取得杰出经济效益;在山东恒邦项目中,铅精矿调配处理含金黄铁矿收回贵金属,大幅下降了炼金本钱,为黄金冶炼开辟了新途径。将氧气底吹技能使用于铜冶炼范畴的探究,始自1990年。当时,我国恩菲和水口山联合,使用水口山氧气底吹炼铅实验设备进行炼铜实验,以铜精矿调配处理水口山康家湾高砷含金黄铁矿,称之为“造锍捕金”。实验接连进行217天,发展十分顺畅,并于1991年正式完结,取得了抱负成果。1992年,我国恩菲取得“底吹熔池炼铜法及其设备”专利授权。1993年,“水口山炼铜法”获部级科技前进一等奖。随后,国内3家厂家要求选用此技术建厂。可是,因为实验的粗铜规划缺乏3千吨/年,我国也已明文规定,制止新建规划小于年产5万吨/年的铜冶炼厂——3千吨/年一步扩至5万吨/年,扩大比远超10:1的惯例答应值。一时,国内失去了该技术工业化使用的可能性。也正为此,越南生权大龙1万吨/年电铜冶炼厂成为国际首个氧气底吹炼铜工业加工项目。项目于2007年末顺畅投产,为国内后续建造5万吨/年以上规划的氧气底吹炼铜工厂供给了牢靠根据。从2007年至今,8年时刻里,国内先后10个氧气底吹铜冶炼项目投产运转。其间最大的,单系列处理精矿量达150万吨/年,适当于年产40万吨粗铜,是国际单系列最大的铜冶炼厂之一(图5),项目已于2015年12月中旬达产对标。正在规划和建造的氧气底吹炼铜项目还有多家,我国恩菲还为许多国外厂家进行了可行性或预可行性研讨规划。氧气底吹冶炼取得成功后,在吹炼工段,传统转炉技能的局限性便突显出来。转炉吹炼为接连作业,存在三大缺陷:(1)用包 ,子将铜锍倒运入转炉时存在严峻的二氧化硫低空污染问题;(2)转炉接连作业致使烟气量与烟气中的二氧化硫量动摇较大,不利于后续制酸;(3)接连作业炉衬热震频频、炉寿短。为处理上述问题,我国恩菲于2009年向科技部申报“氧气底吹接连炼铜清洁加工技术关键技能及配备研讨”,获准并被列为国家863研制课题。为此,团队与中南大学、北京科技大学、东北大学等高校,就氧抢结构、氧抢布局、吹炼渣型、反响机理、炉渣贫化等课题,环绕计算机模仿、水模型与基础理论有关的小型实验等方面,展开了很多厚实研讨作业。在此基础上,恩菲团队于2012年在豫光金铅完结了铜锍底吹接连吹炼冷态半工业实验,在山东东营方圆完结铜锍底吹热态接连吹炼工业实验,顺畅完结国家863方案课题,为技能的后续工业化使用打下了坚实基础。2014年,国际首条氧气底吹接连炼铜工业化演示加工线全线拉通,产出第一批合格阳极板。音讯传出,职业再度颤动。氧气底吹接连炼铜工业化演示加工线选用氧气底吹冶炼—铜锍底吹接连吹炼技术。氧气底吹冶炼产出的高品位铜锍热态流入氧气底吹接连吹炼炉,富氧空气从炉底的氧抢鼓入,使铜锍中的铁氧化造渣,炉内熔体构成粗铜层、白铜锍层和渣层,打眼放粗铜,溢放逐渣,吹炼的送风进程完结接连化,吹炼烟气接连化。总算,我国恩菲2006年申报专利中提出的技能想象得以完结。而愈加重要的是,在氧气底吹炼铜技能继续晋级的进程中,我国也已成为国际范围内炼铜、炼铅技术技能最全、规划能力最强、运营效益最高、环保作用最佳的国家,真实完结了从追赶到引领的严峻跨过。
利用磁选机提取河沙铁粉的工艺介绍
2019-01-16 17:42:18
由于近几年我国钢铁原料----铁精粉价格的攀升,河沙选铁的利润大幅度提高,专用机械----河沙选铁船、磁选机等系列选矿设备得以在全国范围内大面积推广。
中科公司生产的河沙铁粉提取磁选机有实际的应用效果。 这些选矿设备大致的工作原理为:通过磁选机将河沙中的磁性铁选出来。下面就具有代表性的设备--挖沙选铁船的构造、原理以及操作规程简介如下: 挖沙选铁船由浮体、链斗挖沙系统、筛分系统、磁选系统、尾沙排除系统、动力系统组成。
首先,河道里有水,我们的选矿设备必须要浮在水面上工作,因此我们用3.5-4毫米的钢板做成了浮体,根据挖沙深度的不同,浮体的宽度和长度都有相应的尺寸要求,一般宽度在1.5-2米之间,长度在16-32米之间。
另外,我们为了增加船的稳定性,两个浮体之间间隔了一定的距离,一般为1.5米左右。顾名思义,这套选矿设备的上料系统是链斗式的挖沙系统,河沙由链斗提上来以后,因为有大小不一的石子,为了保护磁选机的安全,必须经过筛分系统。根据河道的环境不同,一般来说,石子比较少、直径比较小的河道用自震式比较好,维修方便,节省动力(约3KW)。而石子很多,直径又比较大的河道就要用滚筒式的筛子了。经过筛分后的石子一般直接流入河道,如果有经济价值也可由传送带输送到岸上出售;河沙转入磁选系统。磁选系统主要是磁选机和水洗精选系统。
磁选机的磁表强度一般要达到3800-4500高斯,规格为750*2200-2400,这样配套才能达到90%的净选率。水洗的作用是提高毛铁粉的品位,一般可在30-45之间自由调节。尾沙排除系统的作用是将选去铁粉的尾沙排到远离本机械的地方,以保证本机械能正常的工作。一般有自流式、传送带式、抽沙泵式三种形式当然这也是根据河道的具体环境来定的。
氧气瓶用无缝钢管标准
2019-03-15 09:13:19
氧气瓶是贮存和运输氧气的专用高压容器,由瓶体、瓶箍、瓶阀和瓶帽4部分组成。
氧气钢瓶指设计压力在 1-300kgf/cm2 容积不大于1m3。主体系由镇静钢、合金钢或优质碳素钢制造。气瓶的特点是内装压缩气体或液化气体,部分内容物为易燃、易爆性介质,可重复充气、移动式工作。因此,如果产品质量不合格或保管、使用不当易发生爆炸性事故,危及人员,设备和财产的安全。
氧气瓶用无缝钢管标准
以下是由宝山钢铁股份有限公司制定标准钢管的外径和壁厚应符合 Q/BQB 203 中表 1、表 2 的规定,其允许偏差按 Q/BQB 203 中表 3、表 4 规定执行。
钢管的长度、外形和重量应符合 Q/BQB 203 的规定。
技术要求
1 牌号和化学成分 1.1 钢的牌号和化学成分(熔炼分析)应符合表 1 的规定。 1.2 钢管的成品化学成分允许偏差应符合 GB/T 222 的有关规定。
表1
牌 号 C 37Mn 30CrMo 35CrMo 34Mn2V 34CrMo4 0.34~0.40 0.26~0.34 0.32~0.40 0.30~0.37 0.30~0.37 Si 0.10~0.30 0.17~0.37 0.17~0.37 0.17~0.37 0.15~0.35 Mn 1.35~1.65 0.40~0.70 0.40~0.70 1.40~1.75 0.50~0.80 化 学 P ≤0.025 ≤0.025 ≤0.025 ≤0.025 ≤0.025 成 S ≤0.020 ≤0.020 ≤0.020 ≤0.020 ≤0.020 分 Mo — 0.15~0.25 0.15~0.25 — 0.15~0.25 % Cr - 0.80~1.10 0.80~1.10 — 0.90~1.20 V — — — 0.07~ 0.12 — Ni: ≤0.30 Cu≤ 0.20 其他冶炼方法 钢管所用的钢采用电炉或氧气转炉冶炼。
钢管热处理毛坯制成的试样纵向力学性能应符合表 2 的规定。
力学性能试样推荐热处理制度按表 3 规定。
表2牌 号 抗拉强度 Rm ,MPa ≥750 ≥930 ≥980 ≥745 ≥980 试样力学性能 下屈服强度 断后伸长率 A ,% ReL ,MPa ≥630 ≥16 ≥785 ≥12 ≥835 ≥12 ≥530 ≥16 ≥835 ≥12 冲击功 AkU2,J ≥55 ≥63 ≥63 ≥55 ≥63
37Mn 30CrMo 35CrMo 34Mn2V 34CrMo4
表3
牌 号 37Mn 30CrMo 35CrMo 34Mn2V 34CrMo4 热 种类 调质 调质 调质 正火 调质 淬火(正火)温度℃ 840±10 880±10 850±10 870±10 850±10 处 理 制 度 冷却方式 油冷 油冷 油冷 空冷(风吹) 油冷 回火温度 ℃ 600±10 550±10 580±10 — 580±10 冷却方式 空冷 油冷 油冷 — 油冷
密实性 钢管应按 GB/T 7735 中 A 级逐根进行涡流探伤检验,以检验钢管的密实性。
无损检验 钢管应按 GB/T 5777 的规定逐根进行超声波探伤检验,指标由供需双方协商。
表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除掉,但清理处 的实际壁厚不得小于壁厚所允许的最小值。 允许存在由于制造方式所造成的轻微凸起、 凹陷或浅的辊痕, 但钢管的外径和壁厚必须在允 许的尺寸偏差之内,且不影响钢管的使用性能。
检验与试验 1 钢管的尺寸应用合适的量具逐根进行测量。 2 钢管的内、外表面需在照明下用肉眼逐根进行检查。 3 钢管的的检验项目、取样数量及试验方法应符合表 4 的规定。
表4
序号 1 2 3 4 5 检验项目 化学成分 拉伸试验 冲击试验 涡流探伤 超声波探伤 试验方法 GB/T 222,GB/T 4336 GB/T 228 GB/T 229 GB/T 7735 GB/T 5777 取样数量 每炉一个试样 每批一个试样 每批在一根钢管上取三个试样 逐根检验
组批规则 1 钢管按批进行检查、检验和验收。每批钢管应由同一规格、同一牌号、同一炉号的钢管组 成。当需方事先未提出特殊要求时,碳素钢管可以不同炉号的同一规格、同一牌号的钢管组成一 批。 2 钢管每批为 200 根,剩余钢管的根数不小于 100 根时,单独为一批;小于 100 根时,应并 入相邻的一批中。
复验与判定原则 对于拉伸和冲击试验如有一项试验结果(包括该项试验所要求的任一指标)不合格,则应将 该根钢管剔除, 并从同一批钢管中重新取 2 根钢管复验不合格的项目, 复验结果即使有一个指标 不合格,则整批钢管不予验收。
包装、标志及质量证明书 钢管的包装、标志和质量证明书应符合 GB/T 2102 规定。
倾斜式氧气顶吹旋转炉(卡尔多炉)
2019-03-04 16:12:50
卡尔多炉与前述顶吹式炉不同点在于:炉身以必定视点歪斜,并且能旋转,喷沿炉子中心轴线喷入工业纯氧在熔体面上。旋转着的炉身不断更新着液―气―固接触面,大大强化了传质传热进程。特别适合于对镍高的物料进行熔炼和吹炼。这种炉子灵活性大,可处理多种铜物料,除精矿外,残渣、烟尘和杂铜处理起来也很便利。
运用这种炉子处理二次铜精矿的操作数据与目标见表1。
表1 歪斜式氧气顶吹旋转炉操作数据项 目我国金川瑞典隆斯卡尔加拿大阿弗顿入炉料
铜精矿 Cu/%
Fe/%
S/%
水分/%
炉子参数
尺度/m
作业容积/m3
歪斜角/(°)
转速/r·min-1
溶化速度/kg·min-1
单炉耗时/t·h-1
烟气二氧化硫质量分数/%
铜锍档次/%
铜在炉渣/铜锍/烟尘中分配
炉寿(大修)/%
67
3~5
21~22
8~10
盛熔体8t
17~23
0~29
60
10/3
化料1.92
造渣13~16
粗铜98.15~99.02
7350炉
26.6
27.8
32.4
小于0.3
Ф3.6
11
25
5
400
135/12
45.0
98/1/1
6周
(杂乱矿)30
30
30
Ф4.27
1000
150
50
氧气底吹技术在有色冶金的研发与应用
2019-03-08 11:19:22
本文作者:蒋继穆,1939年生,教授级高工。全国工程勘测规划大师,享用国务院特殊津贴,曾任我国有色工程规划研讨总院副院长兼总工程师、技能委员会主任、我国有色金属学会常务理事、我国硫酸协会副理事长、我国钨业协会理事等职务。现任我国恩菲工程技能有限公司高级顾问专家。01、氧气底吹技能开始使用于炼钢范畴。上世纪30年代起,相关研制作业相继展开,终究在60—70年代完结了工业使用。氧气底吹技能具有高效、节能、环保等显着长处,随制氧技能的前进,在世界钢铁范畴得到广泛使用,大幅提高了钢铁冶炼的全体技能水平。
尔后,将氧气底吹技能使用于有色冶炼范畴的主意也随之发作。可是,氧气底吹技能在钢铁冶炼范畴的使用与在有色金属冶炼范畴的使用有很大差异:
氧气底吹技能炼钢,意图在于脱除铁水中的硫、磷、硅等杂质,操控碳含量,能够一起参加废钢,熔化调质出产各种牌号的碳钢,亦可在钢水中参加其他金属或合金,出产各种牌号的合金钢。冶炼进程是接连作业,炉内气氛在氧化和复原之间周期性改变,熔炼渣率和烟尘率很低,产出物中,成品率超越95%。
氧气底吹冶炼有色金属,进程多为接连作业。炉内气氛或为氧化或为复原,对安稳有较高要求。熔炼产品首要是炉渣,主金属产品难以超越50%,烟尘率视不同质料有所动摇。此外,有色金属质料常为多金属共生矿,难以彻底分选,熔炼工艺需考虑多金属归纳收回使用,所以相关于钢铁冶炼,有色冶炼的反响机理较为杂乱。
也正因为此,氧气底吹炼钢的老练技能并不能简略移植到有色金属范畴,需求针对不同金属种类的不同特色进行逐个开发。
02、1973年,2位美国教授提出将氧气底吹技能使用于铜冶炼范畴的想象,称之为“SL炼铜法”,进行小试后,申请了专利,但中试未获成功。
1974年,德国鲁奇公司在SL炼铜法的启发下,申请了QSL氧气底吹一步炼铅专利,并于1984年进行了工业化演示实验。
在我国,上世纪80年代,为筛选环境污染严峻的烧结—鼓风炉传统炼铅工艺,职业对清洁工艺的需求十分火急。当时,各国都在展开新的炼铅工艺研讨,但其间多为一步或一炉炼铅,引入到国内会带来一些工程问题,且本钱相对较高。
以进步我国有色冶炼技能自主立异性和技能适用性为任务,我国恩菲工程技能有限公司(以下简称“我国恩菲”)前身——北京有色冶金规划研讨总院提出了研制“氧气底吹熔炼—电热复原炼铅”新工艺的想象。
1983年,经国家科委同意,该课题被列入国家“六五”科技攻关方案,由我国恩菲和水口山矿务局(现湖南水口山有色金属集团有限公司前身,以下简称“水口山”)牵头、北京矿冶研讨总院、北京钢铁研讨总院、中南工业大学、中科院化冶所、西北矿冶研讨院等职业厂商院所参加,组成公关小组一起展开研讨,并于1985年末在水口山建成年产3000吨粗铅的底吹熔炼—电热复原炼铅成套半工业实验设备。至1987年末,先后进行17批次实验,共熔炼近900吨铅精矿,产出340多吨粗铅。实验标明,氧气底吹熔炼炉除了存在氧寿数短这一杰出问题,其他方针均较为抱负;电热复原体系受资金约束,所建造备粗陋,复原剂粉煤供应为暂时办法,难以满意实验要求,无法产出合格弃渣。1987年11月,实验告一段落。
随后,为赶快处理铅冶炼的严峻污染问题,我国引入了德国鲁奇公司QSL一步炼铅工艺,并在甘肃白银有色公司(现白银有色集团前身)建造了世界首个氧气底吹炼有色金属项目,并于1994年建成试产。可是,因部分技能不老练,加上经济原因,项目投产后不久即封闭至今。
现实标明,到上世纪末,无论是自主研制仍是引入消化,氧气底吹技能在我国有色冶炼范畴的使用均未取得成功,这无疑进一步证明,该技能在有色范畴的工业化使用具有适当难度。
03、可是,恩菲人的攻关仍在持续。
在对水口山氧气底吹实验及白银公司引入QSL氧气底吹一步炼铅的失利进行分析时,我国恩菲的专家团队发现,问题的要点在于复原阶段。
烧结—鼓风炉炼铅工艺的污染点首要在于,烧结进程中,二氧化硫的逸散与烧结块返粉破碎构成粉尘飞扬。而假如选用氧气底吹熔炼技能代替铅精矿烧结,将熔炼渣铸锭送鼓风炉复原,不光能有用处理炼铅环保问题、液态高铅渣复原两道技能难题,还能在改造项目中,保存铅厂原有鼓风炉复原设备并持续加以使用,然后大幅下降改造费用。这无疑为研制供给了新的思路。
1997年,我国恩菲提出了氧气底吹熔炼-鼓风炉复原炼铅新工艺。由我国恩菲牵头,安排河南豫光金铅冶炼厂、安徽池州冶炼厂、浙江温州冶炼厂等3家单位一起出资,使用水口山原有氧气底吹实验设备与1.5平方米小型鼓风炉,进行氧气底吹熔炼-鼓风炉复原炼铅新工艺半工业实验,要点在于处理鼓风炉复原高铅渣铸块存在鼓风炉渣含铅高的问题,并一举成功。
在此根底上,我国恩菲于2002年分别在安徽池州冶炼厂和河南豫光金铅冶炼厂建成年产3万吨和5万吨粗铅的演示出产线。然后,2条出产线操作安稳,产能很快就提高到年产5万吨和8万吨粗铅的水平。粗铅出产单位能耗比传统烧结—鼓风炉工艺下降50%,硫收回率进步到96%以上,硫捕集率超越99%,革除了返粉破碎,有用处理了传统工艺构成的二氧化硫低空污染及含铅粉尘飞扬问题。
氧气底吹熔炼—鼓风炉复原炼铅新工艺有用改进了铅冶炼的出产环境,进步了银的收回率,下降了出资本钱,遭到出产厂商的高度好评。该工艺于2003年获我国有色金属工业科技前进一等奖,2004年获国家科技前进二等奖。在推行使用的进程中,被国家九部委发文指定为我国首选炼铅工艺。
04、恩菲人的脚步从未中止。
在推行使用氧气底吹熔炼—鼓风炉复原炼铅新工艺的进程中,新的需求又呈现了:将该工艺使用在旧厂改造项目中,能够持续使用原有鼓风炉体系,所以节约出资本钱的优势比较显着。而在新建项目中,使用该技能不光会糟蹋熔体的物理热量,还会添加铸锭工序,加大厂区占地面积和出资额,并不是最优挑选。
为此,恩菲人持续研制,推出氧气底吹熔炼—热渣直接复原工艺,下降了能耗,省去了铸锭工序,还可选用更廉价的复原剂替代鼓风炉用的焦炭,大幅下降了出产本钱。
2005年,我国恩菲申报高铅液态渣直接复原的研制课题并获科技部支撑,被列为国家严峻工业技能开发项目。现在,我国恩菲已研制3种工艺,分别为侧吹炉供焦炉煤气加粒煤复原、底吹炉供天然气加粒煤或碎焦复原和竖炉电热焦炭复原。前二种已取得成功,并在济源金利建成投产20万吨/年国内最大氧气底吹熔炼—侧吹复原炼铅出产线,在河南岷山建成投产10万吨/年双底吹炼铅出产线。
氧气底吹热渣直接复原炼铅构成的第二代炼铅新工艺,与第一代氧气底吹熔炼—鼓风炉炼铅工艺比较,能耗再降30%,吨铅本钱削减100多元。第二代炼铅新工艺出资更省,还具有能耗低、环保好、操作便利灵敏、质料适应性强、出产本钱低一级许多长处,首要方针均到达世界领先水平。
全体来看,氧气底吹炼铅技能已经在国内取得了广泛使用和推行。到2014年,包含老厂改造或新建项目在内,全国已有42条出产线选用氧气底吹炼铅技能。
05、从氧气底吹炼铅技能的立项研制,到第一条出产线的成功工业化,这个进程耗费了19年时刻。而在这以后的12年里,技能得到持续推行和广泛使用,总产能到达400万吨/年,占全国铅冶炼总产能的87%,并已出口国外建厂成功投产。一项技能能如此敏捷地推行使用,世界冶金史上都属稀有。
以300万吨矿铅量计算,与传统流程比,氧气底吹炼铅工艺可每年节约标煤近150万吨,年减排二氧化硫近20万吨,年增效约4亿元。氧气底吹技能在铅冶炼的开发使用,彻底改变了我国铅冶炼的落后面貌,现在我国已占世界矿铅总产量的2/3,职业竞争力跃居世界第一。
尔后,我国恩菲又在技能使用进程中,与出产厂商一起开发了许多具有职业创始性的使用技能:在河南万洋项目中,打破惯例,撤销复原炉后的电热前床,开发三连炉接连炼铅,使炼铅工艺更简练、能耗更低、劳动出产率更高;在河南豫光金铅项目中,铅精矿调配处理铅蓄电池膏泥,不光节能作用更好,硫酸铅中的硫也得到愈加合理有用的收回,为二次铅的收回拓荒了新途径;在河南岷山项目中,铅精矿调配处理高炉炼铁及电炉炼钢含铅锌的烟尘,将含锌高达20%的复原炉渣送烟化炉再度收回锌,使资源得到充沛归纳使用,取得杰出经济效益;在山东恒邦项目中,铅精矿调配处理化渣或含金黄铁矿收回贵金属,大幅下降了炼金本钱,为黄金冶炼拓荒了新途径。
06、将氧气底吹技能使用于铜冶炼范畴的探究,始自1990年。当时,我国恩菲和水口山联合,使用水口山氧气底吹炼铅实验设备进行炼铜实验,以铜精矿调配处理水口山康家湾高砷含金黄铁矿,称之为“造锍捕金”。实验接连进行217天,展开十分顺畅,并于1991年正式完结,取得了抱负成果。1992年,我国恩菲取得“底吹熔池炼铜法及其设备”专利授权。1993年,“水口山炼铜法”获部级科技前进一等奖。随后,国内3家厂商要求选用此工艺建厂。可是,因为实验的粗铜规划缺乏3千吨/年,我国也已明文规定,制止新建规划小于年产5万吨/年的铜冶炼厂——3千吨/年一步扩至5万吨/年,扩大比远超10:1的惯例答应值。一时,国内失去了该工艺工业化使用的可能性。也正为此,越南生权大龙1万吨/年电铜冶炼厂成为世界首个氧气底吹炼铜工业出产项目。项目于2007年末顺畅投产,为国内后续建造5万吨/年以上规划的氧气底吹炼铜工厂供给了牢靠依据。
从2007年至今,8年时刻里,国内先后10个氧气底吹铜冶炼项目投产运转。其间最大的,单系列处理精矿量达150万吨/年,适当于年产40万吨粗铜,是世界单系列最大的铜冶炼厂之一(图5),项目已于2015年12月中旬达产对标。正在规划和建造的氧气底吹炼铜项目还有多家,我国恩菲还为许多国外厂商进行了可行性或预可行性研讨规划。
07、氧气底吹熔炼取得成功后,在吹炼工段,传统转炉技能的局限性便突显出来。转炉吹炼为接连作业,存在三大缺陷:(1)用将铜锍倒运入转炉时存在严峻的二氧化硫低空污染问题;(2)转炉接连作业致使烟气量与烟气中的二氧化硫量动摇较大,不利于后续制酸;(3)接连作业炉衬热震频频、炉寿短。
为处理上述问题,我国恩菲于2009年向科技部申报“氧气底吹接连炼铜清洁出产工艺要害技能及配备研讨”,获准并被列为国家863研制课题。为此,团队与中南大学、北京科技大学、东北大学等高校,就氧结构、氧布局、吹炼渣型、反响机理、炉渣贫化等课题,环绕计算机模仿、水模型与根底理论有关的小型实验等方面,展开了很多厚实研讨作业。在此根底上,恩菲团队于2012年在豫光金铅完结了铜锍底吹接连吹炼冷态半工业实验,在山东东营方圆完结铜锍底吹热态接连吹炼工业实验,顺畅完结国家863方案课题,为技能的后续工业化使用打下了坚实根底。2014年,世界首条氧气底吹接连炼铜工业化演示出产线全线拉通,产出第一批合格阳极板。音讯传出,职业再度颤动。
氧气底吹接连炼铜工业化演示出产线选用氧气底吹熔炼—铜锍底吹接连吹炼工艺。氧气底吹熔炼产出的高品位铜锍热态流入氧气底吹接连吹炼炉,富氧空气从炉底的氧鼓入,使铜锍中的铁氧化造渣,炉内熔体构成粗铜层、白铜锍层和渣层,打眼放粗铜,溢放逐渣,吹炼的送风进程完结接连化,吹炼烟气接连化。总算,我国恩菲2006年申报专利中提出的技能想象得以完结。而愈加重要的是,在氧气底吹炼铜技能持续晋级的进程中,我国也已成为世界规模内炼铜、炼铅工艺技能最全、规划能力最强、运营效益最高、环保作用最佳的国家,真实完结了从追赶到引领的严峻跨过。
08、为什么该技能成功开发后,能够得到如此敏捷的推行使用?作为技能开发的亲历者,我以为,氧气底吹炼铜技能比现有其他先进炼铜工艺更为优胜。首要体现在以下几点:
1. 能耗最低
与顶吹、诺兰达、特尼恩特、三菱法等炼铜工艺比较,氧气底吹技能的氧浓更高,烟气量更低,烟气带走热量更少;与闪速、瓦纽柯夫、金峰炉等氧浓较高的炼铜工艺比较,底吹炉因为无需很多水冷元件,故炉体散热丢失更少;氧气底吹熔炼的反响机理与其他一切工艺不同,可划分为5个区域。氧气从炉底参加铜锍反响,铜锍作为氧的载体作用于精矿,完结造渣反响。因此,氧气底吹熔炼的造渣反响氧势低,渣中的铁多为氧化亚铁,渣熔点低,相同温度下黏度低,不易构成泡沫渣,下降了跑炉事端发作概率;熔炼能够选用高铁渣型,配入的二氧化硅熔剂率也相应低于其他各种工艺,因此相同产能下,熔炼的物料量最少,能耗也就最少。
2.铜的收回率最高
如1所述,氧气底吹熔炼熔剂率最低,渣率最低,经渣选矿后弃渣量最低,弃渣带走的铜最少,铜的收回率天然最高。
3.流程短、熔炼强度高、出资省
如1所述能耗最低,因此氧气底吹熔炼是现在一切炼铜工艺中仅有无需枯燥精矿和外供燃料,即可直接入炉熔炼的炼铜工艺。与闪速、特尼恩特、三菱工艺比,省去了精矿枯燥工序、粉状熔剂制备体系及电热沉降别离炉。与艾萨和奥斯麦特顶吹工艺比,无需圆盘制粒、粉煤制备或供油体系以及电热沉降别离炉等设备,因此流程短,加上炉体为卧式,厂房配备低,又无水冷元件,全体出资省。
4.对质料适应性强
通过冶炼进程中气体自下而上的激烈拌和,铜精矿中搀杂的低沸点伴生元素,如砷、锑、铅、锌等的化合物更易蒸发进入烟尘而与主金属别离。关于高沸点贵金属,经铜锍自下而上重复冲刷,能很好地熔解并富集于铜锍中。实验标明:氧气底吹熔炼进程中,砷的脱除率达95%以上,金、银捕集率达99%。
5.环保条件好
湿精矿直接入炉,湿精矿倒运与给料进程无扬尘发作;炉体密封性好,负压操作,无烟气外泄;一切搜集的烟尘均选用空气密闭运送。
6.炉衬寿数长、作业率高
氧气底吹气体由下而上,炉内熔体自中心向两头缓慢翻动,不直接冲刷炉体,炉衬寿数一般都在3年以上,且氧寿数高达半年,作业率一般可达95%以上。
09、上述许多技能优势,无疑是氧气底吹炼铜技能得到敏捷推行的重要原因,而另一个不行忽视的必要条件,就是我国恩菲本身的技能实力。
自1953年建立至今,60多年来,我国恩菲积累了丰厚的工程经历,具有雄厚的技能实力和杰出的人才队伍,这无疑都为公司展开技能研制供给了重要的支撑和保证。在战略层面,我国恩菲依照上级单位要求,依据展开实践和对职业的前瞻研判,拟定了科技展开规划,清晰了方向和方针;在体系层面,我国恩菲设有以恩菲研讨院和技能展开部为统领的研制安排部门,依托建立在公司的院士专家作业站、2个博士后科研作业站等渠道,着力培养研制主干人才;在机制层面,我国恩菲清晰规定,将公司收入的3%以上投入科技开发作业,从资金上供给保证。此外,建立健全对发明创造、专利发明人员、研制作业有贡献人员的激励机制,进步职工科技立异积极性。
因为具有出资省、能耗低、环保好、收回率高、出产本钱低一级长处,氧气底吹技能深受职业表里的高度重视,特别得到出产厂商的广泛赞誉。我国恩菲开发的新技能、新工艺、新设备,在工业化使用中悉数一次投产成功,这不只给予用户极大使用决心,也给恩菲团队带来了持续打破的动力。
随同氧气底吹技能相关研讨的深化,我国恩菲的科研规划人员持续以先进牢靠为方针,环绕配套设备进行开发,完结了许多新的创始:比方,冶金炉规划组从氧气底吹炼铅到炼铜,再到铜锍底吹接连吹炼,从物料处理量5万吨/年到150万吨/年,开发了巨细十几种规格的底吹炉,悉数一次投产成功;热工专业为氧气底吹熔炼新工艺配套开发余热锅炉,现在已获20余项国家专利,其间12项发明专利,全体技能在我国处于领先水平;硫酸专业配套规划的制酸车间,集成使用了国表里制酸新技能,特别在中温低温位热能使用和污酸收回、尾气脱硫等方面,取得了重要展开,大幅下降了制酸能耗和本钱,有用改进了冶炼环境。
10、未来,为进一步完结资源使用最大化、环境影响最小化、能源消耗最低化和工艺配备智能化的方针,我国恩菲将持续展开技能研制与使用拓宽研讨,首要包含以下几个方面:
1.纵向和横向拓宽氧气底吹技能的使用范畴,在铜、铅杂乱和难收回资源收回,镍、锌、稀贵金属资源收回,冶炼固体废渣处理,重金属污染土壤环保处理、城市固废垃圾处理等方面展开使用研讨;
2. 在全面满意现在世界最先进环保影响前提下,进一步全体系优化,展开未来展开环境适应性研讨,以满意未来30年—50年世界对环境影响的更高标准要求;
3. 展开配备大型化和智能化研讨,使该工艺成为世界有色金属冶炼的首选技能。
氧气底吹技能,是我国恩菲联合职业厂商一起开发的自主技能,更是我国有色金属职业彻底自主开发的重要技能。我国恩菲和职业同仁,都肩负着提高技能使用水平、拓宽技能使用规模的崇高任务,上述研讨,也将为氧气底吹技能的使用拓荒更为宽广的六合,我国恩菲将充沛发挥本身有色冶金工程国家队的职责担任,使氧气底吹冶炼技能成为国家铜、铅、镍、锌等根底金属工业转型展开的要害支撑技能,成为提高国家有色金属工业世界竞争力的中心保证技能,成为世界产能与配备制作协作的引领技能,成为世界根本金属冶炼优先技能。
炼钢炉尘提取还原用铁粉重选技改实践
2019-01-21 18:04:35
一、前言
炼钢厂生产过程产生的含铁粉尘中含有15%~25%的金属铁粉,攀研院在“九五”攻关时,独立开发了一种新的生产工艺,采用球磨后重选将含铁粉尘中的金属铁粉与其它杂质分开,成功地生产出MFe达90%以上的还原用铁粉(后简称铁粉),主要用于钛白还原剂,成果于2001年就在冶炼厂很好的运行。
由于炼钢厂扩能和工艺优化,年污泥量增加1万多吨且污泥的品位大大降低,若按原生产工艺,达不到生产要求,因而根据现状对原工艺进行了技改。技改后,处理能力得到大大提高,各项指标均能达到产品质量要求。
二、原因分析
(一)原料分析
铁粉的生产原料是在转炉炼钢过程中用湿式除尘器收集而来的粉尘,是一种理化性质极不稳定的人造矿物,并且在冶炼过程中还被焦油等杂质污染,以上这些原因对产品的稳定性产生了一定的影响。
炉尘原料的物理性质随冶炼条件的变化而波动,其整体粒度细,其中-38um的粒级含量约占30%~35%,且粒度越细,金属铁品位越低。细粒级的存在由于其比表面积大,表面能高而容易吸湿结块。对-38um粒级的物料,由于其粒度太细,普通的选别设备无法对其进行有效选别,同时粒度太细也很容易被氧化。这样,大量的低品位细泥占用了选别设备的处理空间,使其处理能力降低,同时也会影响分选精度,降低选别指标。
另外,由于炼钢的吹氧工艺优化和造渣剂的增加都影响了污泥的粒度和品位,污泥的品位越来越低且越来越细, 对选别设备要求就更高,采用原工艺生产就达不到生产要求。
(二)原工艺流程及存在的缺陷
1、原工艺流程
原工艺流程如图1所示。2、原工艺存在的缺陷
(1)一次摇选处理能力不够大:摇床为粗选设备,对现一年增加1万吨的污泥要进行粗选,处理能力是不够的。
(2)管磨机对矿浆研磨不充分:管磨机的入料浓度较低,且管磨机中的钢球装球率不高,钢球种类少只有一种小钢球,对矿浆的磨剥力度不够,使氧化物与金属铁不能有效的分离。
(3)管磨机电耗高:管磨机电机功率为37KW,每天4台管磨机就工作20小时那么4台管磨机光电耗一项就要2960度。
(4)二次摇选入料品位低:从管磨出来的料浆浓度较稀,也没经过选别直接进入摇床进行二次精选,粗精矿品位不高,导致二段选别效果不好,使最终的成品质量不稳。
三、解决措施
针对现有生产工艺存在的问题,对现有工艺进行了优化。
(一)新工艺流程
经改造后的新工艺流程(略)
(二)改造措施
1、将一段摇床改为螺旋溜槽。
2、在一段摇床后增加了分级机,对一段粗精矿进行了浓缩。
3、将4台管磨机并联改为2台节能型球磨机串联,对球磨机钢球按要求进行配比。
4、在新增球磨机后增加一台磁选机。
四、改进效果
经过以上措施的改造,将一段摇床改为螺旋溜后,有效的增加了一段粗选的处理量,能将现有原料处理完,提高了铁粉的产量;在一段摇床后增加了分级机,对一段粗精矿进行浓缩,保证了二段球磨入料浓度,使二段磨矿更充分;将4台管磨机并联改为2台节能型球磨机串联,节约了电,同时增加了钢球配比,保证了矿浆得到有效的研磨,使氧化物与金属铁能有效的分离;在二段增加一台磁选机,对二段摇床的入料品位进一步提高,有效控制摇床的入料浓度和品位,使二段精矿品位较稳定且都符合要求;通过改造后,产品质量稳定,从而取得了很好的经济效益。
五、结论
(一)通过技改后,有效的提高了污泥的处理量,进一步的降低了能耗。
(二)通过技改后,提高了铁粉的产量,进一步增加了市场份额,达到了预想要求。
氧气底吹技术在有色冶金领域的研发与应用
2019-03-01 14:09:46
恩菲印迹 ·世界较早的氧气底吹炼铅项目 豫光金铅铅冶炼厂 ·世界较大氧气底吹铅熔炼炉 济源金利铅冶炼厂 ·世界较早的氧气底吹复原炼铅项目 安阳岷山铅冶炼厂 ·世界较早的氧气底吹炼铜项目 越南生权大龙冶炼厂 ·世界靠前条氧气底吹造锍捕金项目 山东恒邦杂乱金精矿归纳收回出产线 ·世界较大氧气底吹造锍捕金项目 华夏黄金冶炼厂收拾搬家晋级改造项目 氧气底吹技能较初使用于炼钢范畴。上世纪30年代起,相关研制作业相继展开,较终在60~70年代完结了工业使用。氧气底吹技能具有高效、节能、环保等显着长处,随制氧技能的前进,在世界钢铁范畴得到广泛使用,大幅提高了钢铁冶炼的全体技能水平。 尔后,将氧气底吹技能使用于有色冶炼范畴的主意也随之发作。可是,氧气底吹技能在钢铁冶炼范畴的使用与在有色金属冶炼范畴的使用有很大差异。 氧气底吹技能炼钢,意图在于脱除铁水中的硫、磷、硅等杂质,操控碳含量,能够一起参加废钢,熔化调质出产各种牌号的碳钢,亦可在钢水中参加其他金属或合金,出产各种牌号的合金钢。冶炼进程是接连作业,炉内气氛在氧化和复原之间周期性改变,熔炼渣率和烟尘率很低,产出物中,成品率超越95%。 氧气底吹冶炼有色金属,进程多为接连作业。炉内气氛或为氧化或为复原,对安稳有较高要求。熔炼产品首要是炉渣,主金属产品难以超越50%,烟尘率视不同质料有所动摇。此外,有色金属质料常为多金属共生矿,难以彻底分选,熔炼工艺需考虑多金属归纳收回使用,所以相关于钢铁冶炼,有色冶炼的反响机理较为杂乱。 也正因为此,氧气底吹炼钢的老练技能并不能简略移植到有色金属范畴,需求针对不同金属种类的不同特色进行逐个开发。 1973年,2位美国教授提出将氧气底吹技能使用于铜冶炼范畴的想象,称之为“SL炼铜法”,进行小试后,申请了专利,但中试未获成功。 1974年,德国鲁奇公司在SL炼铜法的启发下,申请了QSL氧气底吹一步炼铅专利,并于1984年进行了工业化演示实验。 在我国,上世纪80年代,为筛选环境污染严峻的烧结-鼓风炉传统炼铅工艺,职业对清洁工艺的需求十分火急。当时,各国都在展开新的炼铅工艺研讨,但其间多为一步或一炉炼铅,引入到国内会带来一些工程问题,且本钱相对较高。 以进步我国有色冶炼技能自主立异性和技能适用性为任务,我国恩菲工程技能有限公司(以下简称“我国恩菲”)前身——北京有色冶金规划研讨总院提出了研制“氧气底吹熔炼-电热复原炼铅”新工艺的想象。 1983年,经国家科委同意,该课题被列入国家“六五”科技攻关方案,由我国恩菲和水口山矿务局(现湖南水口山有色金属集团有限公司前身,以下简称“水口山”)牵头、北京矿冶研讨总院、北京钢铁研讨总院、中南工业大学、中科院化冶所、西北矿冶研讨院等职业厂商院所参加,组成公关小组一起展开研讨,并于1985年末在水口山建成年产3000吨粗铅的底吹熔炼-电热复原炼铅成套半工业实验设备。 至1987年末,先后进行17批次实验,共熔炼近900吨铅精矿,产出340多吨粗铅。实验标明,氧气底吹熔炼炉除了存在氧寿数短这一杰出问题,其他方针均较为抱负;电热复原体系受资金约束,所建造备粗陋,复原剂粉煤供应为暂时办法,难以满意实验要求,无法产出合格弃渣。1987年11月,实验告一段落。 随后,为赶快处理铅冶炼的严峻污染问题,我国引入了德国鲁奇公司QSL一步炼铅工艺,并在甘肃白银有色公司(现白银有色集团前身)建造了世界较早的氧气底吹炼有色金属项目,并于1994年建成试产。可是,因部分技能不老练,加上经济原因,项目投产后不久即封闭至今。 现实标明,到上世纪末,无论是自主研制仍是引入消化,氧气底吹技能在我国有色冶炼范畴的使用均未取得成功,这无疑进一步证明,该技能在有色范畴的工业化使用具有适当难度。 可是,恩菲人的攻关仍在持续。 在对水口山氧气底吹实验及白银公司引入QSL氧气底吹一步炼铅的失利进行分析时,我国恩菲的专家团队发现,问题的要点在于复原阶段。 烧结-鼓风炉炼铅工艺的污染点首要在于,烧结进程中,二氧化硫的逸散与烧结块返粉破碎构成粉尘飞扬。而假如选用氧气底吹熔炼技能代替铅精矿烧结,将熔炼渣铸锭送鼓风炉复原,不光能有用处理炼铅环保问题、液态高铅渣复原两道技能难题,还能在改造项目中,保存铅厂原有鼓风炉复原设备并持续加以使用,然后大幅下降改造费用。这无疑为研制供给了新的思路。 1997年,我国恩菲提出了氧气底吹熔炼-鼓风炉复原炼铅新工艺。由我国恩菲牵头,安排河南豫光金铅冶炼厂、安徽池州冶炼厂、浙江温州冶炼厂等3家单位一起出资,使用水口山原有氧气底吹实验设备与1.5平方米小型鼓风炉,进行氧气底吹熔炼-鼓风炉复原炼铅新工艺半工业实验,要点在于处理鼓风炉复原高铅渣铸块存在鼓风炉渣含铅高的问题,并一举成功。 在此根底上,我国恩菲于2002年分别在安徽池州冶炼厂和河南豫光金铅冶炼厂建成年产3万吨和5万吨粗铅的演示出产线。然后,2条出产线操作安稳,产能很快就提高到年产5万吨和8万吨粗铅的水平。粗铅出产单位能耗比传统烧结-鼓风炉工艺下降50%,硫收回率进步到96%以上,硫捕集率超越99%,革除了返粉破碎,有用处理了传统工艺构成的二氧化硫低空污染及含铅粉尘飞扬问题。 氧气底吹熔炼-鼓风炉复原炼铅新工艺有用改进了铅冶炼的出产环境,进步了银的收回率,下降了出资本钱,遭到出产厂商的高度好评。该工艺于2003年获我国有色金属工业科技前进一等奖,2004年获国家科技前进二等奖。在推行使用的进程中,被国家九部委发文指定为我国优选炼铅工艺。 恩菲人的脚步从未中止。 在推行使用氧气底吹熔炼-鼓风炉复原炼铅新工艺的进程中,新的需求又呈现了:将该工艺使用在旧厂改造项目中,能够持续使用原有鼓风炉体系,所以节约出资本钱的优势比较显着。而在新建项目中,使用该技能不光会糟蹋熔体的物理热量,还会添加铸锭工序,加大厂区占地面积和出资额,并不是较优挑选。 为此,恩菲人持续研制,推出氧气底吹熔炼-热渣直接复原工艺,下降了能耗,省去了铸锭工序,还可选用更廉价的复原剂替代鼓风炉用的焦炭,大幅下降了出产本钱。 2005年,我国恩菲申报高铅液态渣直接复原的研制课题并获科技部支撑,被列为国家严峻工业技能开发项目。现在,我国恩菲已研制3种工艺,分别为侧吹炉供焦炉煤气加粒煤复原、底吹炉供天然气加粒煤或碎焦复原和竖炉电热焦炭复原。前二种已取得成功,并在济源金利建成投产20万吨/年国内较大氧气底吹熔炼-侧吹复原炼铅出产线,在河南岷山建成投产10万吨/年双底吹炼铅出产线。 氧气底吹热渣直接复原炼铅构成的第二代炼铅新工艺,与靠前代氧气底吹熔炼-鼓风炉炼铅工艺比较,能耗再降30%,吨铅本钱削减100多元。第二代炼铅新工艺出资更省,还具有能耗低、环保好、操作便利灵敏、质料适应性强、出产本钱低一级许多长处,首要方针均到达较有优势水平。 全体来看,氧气底吹炼铅技能已经在国内取得了广泛使用和推行。到2014年,包含老厂改造或新建项目在内,全国已有42条出产线选用氧气底吹炼铅技能。 从氧气底吹炼铅技能的立项研制,到靠前条出产线的成功工业化,这个进程耗费了19年时刻。而在这以后的12年里,技能得到持续推行和广泛使用,总产能到达400万吨/年,占全国铅冶炼总产能的87%,并已出口国外建厂成功投产。一项技能能如此敏捷地推行使用,世界冶金史上都属稀有。 以300万吨矿铅量计算,与传统流程比,氧气底吹炼铅工艺可每年节约标煤近150万吨,年减排二氧化硫近20万吨,年增效约4亿元。氧气底吹技能在铅冶炼的开发使用,彻底改变了我国铅冶炼的落后面貌,现在我国已占世界矿铅总产量的2/3,职业竞争力跃居世界靠前。 尔后,我国恩菲又在技能使用进程中,与出产厂商一起开发了许多具有职业创始性的使用技能:在河南万洋项目中,打破惯例,撤销复原炉后的电热前床,开发三连炉接连炼铅,使炼铅工艺更简练、能耗更低、劳动出产率更高;在河南豫光金铅项目中,铅精矿调配处理铅蓄电池膏泥,不光节能作用更好,硫酸铅中的硫也得到愈加合理有用的收回,为二次铅的收回拓荒了新途径;在河南岷山项目中,铅精矿调配处理高炉炼铁及电炉炼钢含铅锌的烟尘,将含锌高达20%的复原炉渣送烟化炉再度收回锌,使资源得到充沛归纳使用,取得杰出经济效益;在山东恒邦项目中,铅精矿调配处理化渣或含金黄铁矿收回贵金属,大幅下降了炼金本钱,为黄金冶炼拓荒了新途径。 将氧气底吹技能使用于铜冶炼范畴的探究,始自1990年。当时,我国恩菲和水口山联合,使用水口山氧气底吹炼铅实验设备进行炼铜实验,以铜精矿调配处理水口山康家湾高砷含金黄铁矿,称之为“造锍捕金”。实验接连进行217天,展开十分顺畅,并于1991年正式完结,取得了抱负成果。1992年,我国恩菲取得“底吹熔池炼铜法及其设备”专利授权。1993年,“水口山炼铜法”获部级科技前进一等奖。随后,国内3家厂商要求选用此工艺建厂。可是,因为实验的粗铜规划缺乏3千吨/年,我国也已明文规定,制止新建规划小于年产5万吨/年的铜冶炼厂——3000吨/年一步扩至5万吨/年,扩大比远超10:1的惯例答应值。一时,国内失去了该工艺工业化使用的可能性。也正为此,越南生权大龙1万吨/年电铜冶炼厂成为世界较早的氧气底吹炼铜工业出产项目。项目于2007年末顺畅投产,为国内后续建造5万吨/年以上规划的氧气底吹炼铜工厂供给了牢靠依据。 从2007年至今,8年时刻里,国内先后10个氧气底吹铜冶炼项目投产运转。其间较大的,单系列处理精矿量达150万吨/年,适当于年产40万吨粗铜,是世界单系列较大的铜冶炼厂之一(图5),项目已于2015年12月中旬达产对标。正在规划和建造的氧气底吹炼铜项目还有多家,我国恩菲还为许多国外厂商进行了可行性或预可行性研讨规划。 氧气底吹熔炼取得成功后,在吹炼工段,传统转炉技能的局限性便突显出来。转炉吹炼为接连作业,存在三大缺陷:(1)用将铜锍倒运入转炉时存在严峻的二氧化硫低空污染问题;(2)转炉接连作业致使烟气量与烟气中的二氧化硫量动摇较大,不利于后续制酸;(3)接连作业炉衬热震频频、炉寿短。 为处理上述问题,我国恩菲于2009年向科技部申报“氧气底吹接连炼铜清洁出产工艺要害技能及配备研讨”,获准并被列为国家863研制课题。为此,团队与中南大学、北京科技大学、东北大学等高校,就氧结构、氧布局、吹炼渣型、反响机理、炉渣贫化等课题,环绕计算机模仿、水模型与根底理论有关的小型实验等方面,展开了很多厚实研讨作业。在此根底上,恩菲团队于2012年在豫光金铅完结了铜锍底吹接连吹炼冷态半工业实验,在山东东营方圆完结铜锍底吹热态接连吹炼工业实验,顺畅完结国家863方案课题,为技能的后续工业化使用打下了坚实根底。2014年,世界首条氧气底吹接连炼铜工业化演示出产线全线拉通,产出第一批合格阳极板。音讯传出,职业再度颤动。 氧气底吹接连炼铜工业化演示出产线选用氧气底吹熔炼-铜锍底吹接连吹炼工艺。氧气底吹熔炼产出的高品位铜锍热态流入氧气底吹接连吹炼炉,富氧空气从炉底的氧鼓入,使铜锍中的铁氧化造渣,炉内熔体构成粗铜层、白铜锍层和渣层,打眼放粗铜,溢放逐渣,吹炼的送风进程完结接连化,吹炼烟气接连化。总算,我国恩菲2006年申报专利中提出的技能想象得以完结。而愈加重要的是,在氧气底吹炼铜技能持续晋级的进程中,我国也已成为世界规模内炼铜、炼铅工艺技能较全、规划能力较强、运营效益较高、环保作用较佳的国家,真实完结了从追赶到引领的严峻跨过。 为什么该技能成功开发后,能够得到如此敏捷的推行使用?作为技能开发的亲历者,我以为,氧气底吹炼铜技能比现有其他先进炼铜工艺更为优胜。首要体现在以下几点: 1.能耗较低 与顶吹、诺兰达、特尼恩特、三菱法等炼铜工艺比较,氧气底吹技能的氧浓更高,烟气量更低,烟气带走热量更少;与闪速、瓦纽柯夫、金峰炉等氧浓较高的炼铜工艺比较,底吹炉因为无需很多水冷元件,故炉体散热丢失更少;氧气底吹熔炼的反响机理与其他一切工艺不同,可划分为5个区域。氧气从炉底参加铜锍反响,铜锍作为氧的载体作用于精矿,完结造渣反响。因此,氧气底吹熔炼的造渣反响氧势低,渣中的铁多为氧化亚铁,渣熔点低,相同温度下黏度低,不易构成泡沫渣,下降了跑炉事端发作概率;熔炼能够选用高铁渣型,配入的二氧化硅熔剂率也相应低于其他各种工艺,因此相同产能下,熔炼的物料量较少,能耗也就较少。 2.铜的收回率较高 如1所述,氧气底吹熔炼熔剂率较低,渣率较低,经渣选矿后弃渣量较低,弃渣带走的铜较少,铜的收回率天然较高。 3.流程短、熔炼强度高、出资省 如1所述能耗较低,因此氧气底吹熔炼是现在一切炼铜工艺中无需枯燥精矿和外供燃料,即可直接入炉熔炼的炼铜工艺。与闪速、特尼恩特、三菱工艺比,省去了精矿枯燥工序、粉状熔剂制备体系及电热沉降别离炉。与艾萨和奥斯麦特顶吹工艺比,无需圆盘制粒、粉煤制备或供油体系以及电热沉降别离炉等设备,因此流程短,加上炉体为卧式,厂房配备低,又无水冷元件,全体出资省。 4.对质料适应性强 通过冶炼进程中气体自下而上的激烈拌和,铜精矿中搀杂的低沸点伴生元素,如砷、锑、铅、锌等的化合物更易蒸发进入烟尘而与主金属别离。关于高沸点贵金属,经铜锍自下而上重复冲刷,能很好地熔解并富集于铜锍中。实验标明:氧气底吹熔炼进程中,砷的脱除率达95%以上,金、银捕集率达99%。 5.环保条件好 湿精矿直接入炉,湿精矿倒运与给料进程无扬尘发作;炉体密封性好,负压操作,无烟气外泄;一切搜集的烟尘均选用空气密闭运送。 6.炉衬寿数长、作业率高 氧气底吹气体由下而上,炉内熔体自中心向两头缓慢翻动,不直接冲刷炉体,炉衬寿数一般都在3年以上,且氧寿数高达半年,作业率一般可达95%以上。 上述许多技能优势,无疑是氧气底吹炼铜技能得到敏捷推行的重要原因,而另一个不行忽视的必要条件,就是我国恩菲本身的技能实力。 自1953年建立至今,60多年来,我国恩菲积累了丰厚的工程经历,具有雄厚的技能实力和杰出的人才队伍,这无疑都为公司展开技能研制供给了重要的支撑和保证。在战略层面,我国恩菲依照上级单位要求,依据展开实践和对职业的前瞻研判,拟定了科技展开规划,清晰了方向和方针;在体系层面,我国恩菲设有以恩菲研讨院和技能展开部为统领的研制安排部门,依托建立在公司的院士专家作业站、2个博士后科研作业站等渠道,着力培养研制主干人才;在机制层面,我国恩菲清晰规定,将公司收入的3%以上投入科技开发作业,从资金上供给保证。此外,建立健全对发明创造、专利发明人员、研制作业有贡献人员的激励机制,进步职工科技立异积极性。 因为具有出资省、能耗低、环保好、收回率高、出产本钱低一级长处,氧气底吹技能深受职业表里的高度重视,特别得到出产厂商的广泛赞誉。我国恩菲开发的新技能、新工艺、新设备,在工业化使用中悉数一次投产成功,这不只给予用户极大使用决心,也给恩菲团队带来了持续打破的动力。 随同氧气底吹技能相关研讨的深化,我国恩菲的科研规划人员持续以先进牢靠为方针,环绕配套设备进行开发,完结了许多新的创始:比方,冶金炉规划组从氧气底吹炼铅到炼铜,再到铜锍底吹接连吹炼,从物料处理量5万吨/年到150万吨/年,开发了巨细十几种规格的底吹炉,悉数一次投产成功;热工专业为氧气底吹熔炼新工艺配套开发余热锅炉,现在已获20余项国家专利,其间12项发明专利,全体技能在我国处于领先水平;硫酸专业配套规划的制酸车间,集成使用了国表里制酸新技能,特别在中温低温位热能使用和污酸收回、尾气脱硫等方面,取得了重要展开,大幅下降了制酸能耗和本钱,有用改进了冶炼环境。 未来,为进一步完结资源使用较大化、环境影响较小化、能源消耗较低化和工艺配备智能化的方针,我国恩菲将持续展开技能研制与使用拓宽研讨,首要包含以下几个方面: 1.纵向和横向拓宽氧气底吹技能的使用范畴,在铜、铅杂乱和难收回资源收回,镍、锌、稀贵金属资源收回,冶炼固体废渣处理,重金属污染土壤环保处理、城市固废垃圾处理等方面展开使用研讨。 2.在全面满意现在世界较先进环保影响前提下,进一步全体系优化,展开未来展开环境适应性研讨,以满意未来30年~50年世界对环境影响的更高标准要求。 3.展开配备大型化和智能化研讨,使该工艺成为世界有色金属冶炼的优选技能。 氧气底吹技能,是我国恩菲联合职业厂商一起开发的自主技能,更是我国有色金属职业彻底自主开发的重要技能。我国恩菲和职业同仁,都肩负着提高技能使用水平、拓宽技能使用规模的崇高任务,上述研讨,也将为氧气底吹技能的使用拓荒更为宽广的六合,我国恩菲将充沛发挥本身有色冶金工程国家队的职责担任,使氧气底吹冶炼技能成为国家铜、铅、镍、锌等根底金属工业转型展开的要害支撑技能,成为提高国家有色金属工业世界竞争力的中心保证技能,成为世界产能与配备制作协作的引领技能,成为世界根本金属冶炼优先技能。
氧化铁皮的综合利用:可用于制取还原铁粉等
2019-02-26 11:04:26
轧钢厂在轧制进程中轧件表面所发生的氧化铁皮,含铁量很高。我国钢铁职业每年要抛弃很多的氧化铁皮,完成对这些氧化铁皮的综合使用无疑是一个很有含义的节能降耗作业。依据现在的研讨,可以在以下几个方面展开对氧化铁皮的综合使用。
(1)用于出产海绵铁或制取复原铁粉。
海绵铁可用作炼钢用废钢缺少的一种弥补,跟着电炉产钢量的不断上升,海绵铁越来越显得重要。用矿粉出产海绵铁因为设备出资大及工艺杂乱,现在在我国仍难以取得迅速发展。选用恰当的工艺流程,可以用煤粉复原氧化铁皮,出产出w(Fe高,含杂质量低且成分安稳的海绵铁,比用矿石出产的海绵铁(常含脉石杂质)更适合作优质废钢运用。
氧化铁皮也可用来制取复原铁粉。氧化铁皮制作复原铁粉的出产进程大体上分为粗复原与精复原。经粗复原进程将氧化铁皮在约1100℃下复原到w(Fe>95%,w(C
氧化铁皮可用来出产作为粉末冶金质料用的复原铁粉。氧化铁皮被复原成含w(Fe98%以上的海绵铁,经清渣、破碎、筛分磁选后,进行精复原,出产出合格的复原铁粉。然后进入球磨机细磨,经分级筛得到不同粒度的高纯度铁粉。粒度较细的铁粉用于制作设备的要害部件,只需压模,即可一次成型,取得强度高、耐磨、耐腐的部件,可用于国防工业、航空制作、交通运输、石油勘探等重要职业。粒度较粗的铁粉可用于出产电焊条。
(2)用作烧结辅佐含铁质料或炼钢助熔化渣剂。
氧化铁皮中FeO含量最高达50%以上,是较好的烧结出产辅佐含铁质料,理论核算结果标明,1kgFeO氧化成Fe2O3可放热1973焦耳。烧结混合猜中配加氧化铁皮后,因为温度高,烧结进程充沛,因而烧结出产率进步,固体燃料耗费下降。出产实践标明,8%的氧化铁皮即可增产2%左右。宝钢使用氧化铁皮作为辅佐材料,在混匀矿中配加氧化铁皮,一方面,因为氧化铁皮相对粒度较大然后改进了烧结料层的透气性;另一方面,氧化铁皮在烧结进程中放热然后下降了固体燃料耗费。
别的。使用氧化铁皮可作为助熔剂,用于矿石助熔,应用于转炉炼钢。氧化铁皮用作助熔化渣剂是一种高功率的冶炼助熔材料,可以进步炼钢功率,下降焦、煤的耗费,延伸转炉炉体的运用寿命。
(3)代替钢屑冶炼硅铁合金或代替废钢用于电炉炼钢。
钢屑是冶炼硅铁合金的重要原材料,我国每年用于冶炼铁合金的钢屑量在200万吨左右,而钢铁职业每年抛弃的氧化铁皮约1000万吨。现已开宣布用氧化铁皮代替钢屑冶炼硅铁合金的新工艺,并取得了杰出的经济效益。
电炉炼钢需求废钢作质料,对废钢铁料的要求较严,但这种废钢铁数量少,报价高,直销缺乏。以报价低廉且来历广泛的氧化铁皮、渣钢等废料作为主要质料,替代量少价高的废钢,具有明显的经济效益。
氧气瓶用无缝钢管标准Q/BQB 250-2003
2019-03-18 11:00:17
Q/BQB 250-2003 氧气瓶用无缝钢管
1 氧气瓶用无缝钢管标准范围 本氧气瓶用无缝钢管标准准适用于宝山钢铁股份有限公司生产的用于制造氧气瓶的热轧无缝钢管。2 氧气瓶用无缝钢管标准规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 222 钢的化学分析用试样取样方法及成品化学成分允许偏差 GB/T 228 金属材料 室温拉伸试验方法 GB/T 229 金属夏比缺口冲击试验方法 GB/T 4336 碳素钢和中低合金钢的光电发射光谱分析方法 GB/T 5777 无缝钢管超声波探伤检验方法 GB/T 7735 钢管涡流探伤检验方法 Q/BQB 203 管道、容器、设备结构用无缝钢管3 氧气瓶用无缝钢管尺寸、外形和重量 3.1 钢管的外径和壁厚应符合Q/BQB 203中表1、表2的规定,其允许偏差按Q/BQB 203中表3、表4规定执行。 3.2 钢管的长度、外形和重量应符合Q/BQB 203的规定。4 氧气瓶用无缝钢管技术要求 4.1 牌号和化学成分 4.1.1 钢的牌号和化学成分(熔炼分析)应符合表1的规定。 4.1.2 钢管的成品化学成分允许偏差应符合GB/T 222的有关规定。 表1 牌 号 化 学 成 分 % C Si Mn P S Mo Cr V 其他 37Mn 0.34~0.40 0.10~0.30 1.35~1.65 ≤0.025 ≤0.020 — — — Ni: ≤0.30 Cu≤0.20 30CrMo 0.26~0.34 0.17~0.37 0.40~0.70 ≤0.025 ≤0.020 0.15~0.25 0.80~1.10 — 35CrMo 0.32~0.40 0.17~0.37 0.40~0.70 ≤0.025 ≤0.020 0.15~0.25 0.80~1.10 — 34Mn2V 0.30~0.37 0.17~0.37 1.40~1.75 ≤0.025 ≤0.020 — — 0.07~0.12 34CrMo4 0.30~0.37 0.15~0.35 0.50~0.80 ≤0.025 ≤0.020 0.15~0.25 0.90~1.20 —
4.2 冶炼方法 钢管所用的钢采用电炉或氧气转炉冶炼。 4.3 交货状态 钢管以热轧状态交货。 4.4 力学性能 4.4.1 钢管热处理毛坯制成的试样纵向力学性能应符合表2的规定。 4.4.2 力学性能试样推荐热处理制度按表3规定。 表2 牌 号 试样力学性能 抗拉强度 Rm ,MPa 下屈服强度 ReL ,MPa 断后伸长率 A ,% 冲击功 AkU2,J 37Mn ≥750 ≥630 ≥16 ≥55 30CrMo ≥930 ≥785 ≥12 ≥63 35CrMo ≥980 ≥835 ≥12 ≥63 34Mn2V ≥745 ≥530 ≥16 ≥55 34CrMo4 ≥980 ≥835 ≥12 ≥63
表3 牌 号 热 处 理 制 度 种类 淬火(正火)温度℃ 冷却方式 回火温度 ℃ 冷却方式 37Mn 调质 840±10 油冷 600±10 空冷 30CrMo 调质 880±10 油冷 550±10 油冷 35CrMo 调质 850±10 油冷 580±10 油冷 34Mn2V 正火 870±10 空冷(风吹) — — 34CrMo4 调质 850±10 油冷 580±10 油冷
4.5 密实性 钢管应按GB/T 7735中A级逐根进行涡流探伤检验,以检验钢管的密实性。 4.6 无损检验 钢管应按GB/T 5777的规定逐根进行超声波探伤检验,指标由供需双方协商。 4.7 表面质量 钢管的内外表面不得有裂缝、折叠、轧折、离层和结疤,这些缺陷应完全清除掉,但清理处的实际壁厚不得小于壁厚所允许的最小值。 允许存在由于制造方式所造成的轻微凸起、凹陷或浅的辊痕,但钢管的外径和壁厚必须在允许的尺寸偏差之内,且不影响钢管的使用性能。5 检验与试验 5.1 钢管的尺寸应用合适的量具逐根进行测量。 5.2 钢管的内、外表面需在照明下用肉眼逐根进行检查。 5.3 钢管的的检验项目、取样数量及试验方法应符合表4的规定。表4序号 检验项目 试验方法 取样数量 1 化学成分 GB/T 222,GB/T 4336 每炉一个试样 2 拉伸试验 GB/T 228 每批一个试样 3 冲击试验 GB/T 229 每批在一根钢管上取三个试样 4 涡流探伤 GB/T 7735 逐根 5 超声波探伤 GB/T 5777 逐根 5.4 组批规则 5.4.1 钢管按批进行检查、检验和验收。每批钢管应由同一规格、同一牌号、同一炉号的钢管组成。当需方事先未提出特殊要求时,碳素钢管可以不同炉号的同一规格、同一牌号的钢管组成一批。 5.4.2 钢管每批为200根,剩余钢管的根数不小于100根时,单独为一批;小于100根时,应并入相邻的一批中。 5.5 复验与判定原则 对于拉伸和冲击试验如有一项试验结果(包括该项试验所要求的任一指标)不合格,则应将该根钢管剔除,并从同一批钢管中重新取2根钢管复验不合格的项目,复验结果即使有一个指标不合格,则整批钢管不予验收。6 包装、标志及质量证明书 钢管的包装、标志和质量证明书应符合GB/T 2102规定。
附加说明: 本标准代替BZJ 250-1999。 本标准与BZJ 250-1999相比主要变化如下: ――增加牌号37Mn、30CrMo; ――取消35CrMo硬度要求; ――增加探伤检验要求。
江西理工大学铁粉表面包镀镍新方法获专利
2019-03-12 11:03:26
近来,由江西理工大学科研人员研制的一种铁粉表面包镀镍办法取得国家专利。 据介绍,这是一种采用水热氢复原技能在铁粉表面上包镀一层金属镍或纳米镍粉的办法,归于有色金属冶金和粉末冶金材料技能领域。本发明生产工艺办法简略,易于操作,包镀镍层可控。 这种新办法是将硫酸镍或硫酸镍水溶液、、硫酸铵按必定份额参加水中,配成混合溶液,参加少数蒽醌、添加剂,再将需要被镍包镀的铁粉参加到混合溶液中,然后将含有铁粉的混合溶液转入高压釜内,密封高压釜。在高压釜内经高温高压水溶液氢复原处理,溶液中的镍离子复原沉积在铁粉表面,构成细密的金属镍层或纳米镍粉包镀层。包镀反响完成后,将高压釜内的物料冷却,排出表面包镀了金属镍的铁粉和水溶液,经过滤、枯燥,取得表面被金属镍包镀的铁粉产品。
铜,银,汞分别在什么条件下与空气中的氧气反应
2019-03-13 11:30:39
在加热时都能反响铜在500℃,在300℃会沸(305℃反响)或260℃长期加热(有毒,蒸气更毒)银在1500℃能生成黑色的(它们其实都能在常温下反响,但反响的很慢)
参考资料:德克斯特(化工手册)
氧气底吹无炭炼铜实现冶炼技术产业化应用获得成功
2018-12-11 09:57:52
中国企业自主研发的氧气底吹无炭炼铜技术,产业化开发应用获得成功。这项技术实现铜、金等主金属回收率达98.5%以上,具有原料适应性强、运营成本低等特点。
中国企业自主研发的氧气底吹无炭炼铜技术,在山东方圆有色金属集团产业化开发应用获得成功。业内人士认为,这一技术是一次冶炼技术上的飞跃。
目前,世界熔池熔炼炼铜技术均采用氧气顶吹或侧吹技术,并加入煤炭、油等辅助燃料,以保证熔炼炉在高温状况下正常运转。中国自主研发的炼铜新工艺首次采用氧气底吹技术,不用添加任何辅助燃料。这家山东炼铜企业经过365天的产业化运营,实现了年处理矿料50万吨,年产精铜13万吨的生产目标。
中国有色金属工业协会组织国内专家对这项技术进行了评审。专家认为,这项技术具有原料适应性强,无需添加煤炭,熔炼强度高,有效实现多金属捕集,设备简单易操作,运营成本低,冶炼规模可大可小等特点。
科技部高新技术司主持制定的《国家科技支撑计划项目可行性论证意见》认为,这项技术开发突破多金属综合提取技术难题,形成具有自主知识产权的多金属复杂矿节能减排冶炼新工艺,建成年处理50万吨多金属复杂矿的冶炼工程,实现铜、金等主金属回收率达98.5%以上,对中国有效利用国内外多金属资源,实现资源高效开发利用,具有重要意义。
氧气底吹无炭炼铜技术由中国有色工程设计研究总院研制,山东方圆有色金属集团与该研究院联合开发。
钢铁生锈的原因是什么?怎么除锈?
2018-08-28 10:21:07
我们日常的生产和生活离不开钢铁材料,但是世界上每年因锈蚀而损失的钢铁数量十分巨大。因此,如何保护钢铁防止其锈蚀意义重大。钢铁制品的腐蚀过程,是一个复杂的化学反应过程。铁锈通常为红棕色,不同情况下会生成不同形式的铁锈,铁锈主要由氧化铁的水合物(Fe2O3·nH2O)和氢氧化铁[Fe(OH)3]组成。钢铁表面的铁锈结构疏松,不能阻碍内部的铁与氧气、水蒸气等接触,最终导致铁全部生锈。你知道应如何除去铁表面的锈迹吗?常用的除铁锈方法可以分为物理方法和化学方法两类。物理方法主要是利用打磨的方式除去铁锈,例如用砂纸、砂轮、钢丝刷、钢丝球等进行打磨。化学方法主要是利用酸与铁锈发生化学反应,从而达到除锈的目的。其实,只需要将钢铁制品与水和氧气隔绝,就可以阻止钢铁锈蚀。因此,防止铁生锈最简单的方法是保持钢铁制品表面光洁干燥。防止钢铁生锈还可在其表面形成保护层,如涂油、喷漆、烧制搪瓷、喷塑等。在日常生活中,人们经常会对车厢、水桶等采取涂油漆的措施,而机器需要涂矿物性油。除此之外,还可以在钢铁表面采用电镀、热镀等方法镀上一层不易生锈的金属,如锌、锡、铬、镍等。这些金属表面能够形成一层致密的氧化物薄膜,从而防止铁制品和水、空气等物质接触而生锈。另外,还可以将钢铁组成合金,以改变其内部的组织结构,例如在铬、镍等金属中加入普通钢里制成不锈钢,有效地增加了钢铁制品的抗生锈能力。生活中常见的除锈剂主要成分为yan酸、稀硫酸,它们能与氧化铁反应,反应原理为:Fe2O3+6HCl=2FeCl3+3H2O、 Fe2O3+ 3H2SO4=Fe2(SO4)3+3H2O。除锈剂沿着锈层和杂质层的裂痕渗透至钢铁制品表面,对锈层和杂质层产生溶解、剥落作用,从而使锈层、杂质和氧化皮从钢铁制品表面脱落。但是酸具有一定的腐蚀性,因此,在除锈时需要身穿防护服。另外,酸与铁会产生氢qi,遇明火会发生爆炸,所以,除锈操作时需要禁止烟火。yan酸、稀硫酸都能与氧化铁反应,选择哪种酸进行工业除锈更好呢?在选择时主要考虑四个因素:除锈效果、酸的生产成本、酸的运输储存、使用安全环保。yan酸、硫酸哪一个除锈能力强?我们将带锈的铁钉分别放置于等体积、等氢离子浓度的yan酸和硫酸中,最后发现yan酸的除锈效果更好。通过实验也可说明当其它条件相同时,稀硫酸与金属氧化物的反应速率比yan酸慢。那么从生产、运输以及安全使用方面比较,yan酸、硫酸哪一个更占优势?yan酸的工业制备是通过电解饱和食盐水先得到氢qi和氯qi,两种气体反应后生成氯化氢qi体,经过水吸收形成了yan酸,氯化氢qi体并不能无限制地溶解在水中,因此浓yan酸的溶质质量分数最多在37%左右。而硫酸是通过高温煅烧硫铁矿先制得二氧化硫,二氧化硫与氧气反应后生成三氧化硫,三氧化硫被浓硫酸吸收成为焦硫酸,焦硫酸加水转成硫酸。因此,从原料、制备过程以及对环境的影响上,yan酸优于硫酸。浓yan酸需要密封储存在玻璃瓶或塑料桶中,运输则需要内部衬有橡胶的特制钢罐车。浓硫酸的质量分数最高可以达到98%,它的储存与运输都可以用钢制或铝制的容器。在这方面,硫酸强于yan酸。溶质质量分数较大的yan酸具有挥发性,挥发出的氯化氢qi体对人体有强烈的刺激和腐蚀作用,而溶质质量分数低的yan酸却相对比较稳定。浓硫酸在使用前需要进行稀释,稀释会产生大量的热,容易造成烫伤,并且浓硫酸的腐蚀性要远强于浓yan酸。由此可以看出yan酸的使用较为安全。根据以上信息,显然yan酸的除锈效果更好,成本更低,使用更加安全。另外,在化学实验室中我们还可以自制相对比较环保的除锈剂。第一步,先将柠檬酸18g、糊精0.8g、钼酸钠3g、磷酸1.1g和水60g放入混合罐内,室温下匀速搅拌30 min。第二步,在混合溶液中加入甘油8g,室温下匀速搅拌10 min,搅拌转速为25 r/min。第三步,在混合溶液中加入添加剂碘化na0.06g,室温下匀速搅拌30min,搅拌转速为25r/min。用柠檬酸代替yan酸、稀硫酸可以解决目前除锈剂污染环境的弊端,甘油可以加强除锈剂在金属表面的附着性能。而且这种除锈剂除了除锈功能外,还具有防锈功能。当然钢铁锈蚀会损失金属资源,但是钢铁锈蚀的原理也有有利的一面。例如糕点包装中常使用脱氧剂,其主要成分包含铁粉。脱氧剂利用铁粉生锈的原理消耗氧气,从而防止食品变质。同时,铁生锈是放热反应,人们利用该作用生产了“自热帖”。“自热帖”的主要成分是铁粉、蛭石、活性炭、无机盐(例如食盐)、水等。在自然条件下,铁进行氧化反应的速度缓慢,为了加快该反应的速度,需采用表面积大的铁粉末。活性炭的作用是形成原电池促进反应;同时利用活性炭的强吸附性,在其疏松的结构中储存水。无机盐的作用是和活性炭形成原电池促进反应。蛭石是一种铁镁质铝硅酸盐矿物,可以起到储热的作用。在化学实验室中我们也可以自制“自热帖”,按照5:2:2:2的质量比称量铁粉、活性炭、食盐、蛭石。将称量好的铁粉、活性炭、食盐、蛭石(蛭石也可以不加)倒入烧杯中,加几滴水,用玻璃棒充分搅匀后,装入无纺布袋中,放入自封袋密封(或者使用塑封机密封),使用时取出即可。另外,铁粉和活性炭颗粒越细(铁粉以100目为宜,活性炭为150目为宜)反应越快,升温越明显。
铋湿法冶金方法
2019-03-04 11:11:26
关于档次高、成分单一的铋矿,火法冶炼虽然还存在着SO2的污染问题,但现在仍是铋冶炼的首要办法。但对杂乱难选的低档次铋精矿、铋中矿,选用反射炉火法熔炼,不只收回率低,并且难以精粹产出优质精铋。20世纪60年代后期,我国开端致力于铋矿湿法冶金新工艺的研讨,用作浸出剂,在酸性氯盐系统中浸出铋矿,使矿藏中的铋以铋氯合作物的形状进入溶液,用铁粉置换产出海绵铋,经火法精粹出产精铋,并首先在云锡第三冶炼厂建成了湿法车间,处理锡铋混合精矿。
近年来,国内外的许多科研单位相继依据硫化铋矿的不同组成,环绕下降作业本钱,处理环境污染,的再生和溶液中有价金属浓度的富集问题,研讨了许多新的湿法冶金流程,浸出-铁粉置换法、浸出-隔阂电积法、浸出-水解沉铋法、选择性浸出法、亚硝酸法和中南大学的新氯化法。这些工艺流程大都巳进行丁扩展实验或半工业、工业实验。
一、浸出-铁粉置换法
流程由6道工序组成:铋矿的浸出与复原;铁粉置换沉积海绵铋;氧化再生;海绵铋熔铸粗铋;粗铋火法精练;铋浸出渣中有价金属的选矿收回。浸出进程的首要反响如下:浸出液经加铋矿复原,使溶液中残存的三价铁复原为二价。加铁粉,沉积出海绵铋,经过氧化,再生三价铁。
此法在工艺上比较老练,铋的浸出率高(渣计98%~98.5%),综合使用好,污染较小,为进步铋资源的综合使用供给了一种有用的途径。但此工艺材料耗费比较高,1t海绵铋耗用工业1.5~1.8t,氧气0.4~0.5t,铁粉0.5~0.6t。因为选用铁粉置换和再生技能,铁和氯离子在溶液中的堆集不容忽视,废液排放量大,浸出液中因为离子浓度相对较高,黏度较大,渣的过滤和洗刷较为困难。工艺流程见图1。图1 铋锡中矿浸出-铁粉置换提铋工艺流程图
二、浸出-隔阂电积法
为了简化流程,研讨用隔阂电积来替代图1流程中的铁粉置换和再生工序。其原理是在操控恰当电位的情况下,让铋在隔阂电解槽的阴极复原:阳极则发生铁的氧化反响:该流程的技能关键是电极电位的操控和溶液透过隔阂速度的操控。在阴极区,溶液中首要的阳离子是Bi3+、Fe2+和H+、在阳极区,溶液中首要的阳离子是Bi3+、Fe3+和H+,为使阳极区的三价铁不致在阴极放电而下降电流效率,应选用恰当的隔阂材料把阴、阳极分隔,阴极区液面应高于阳极区,并操控电解液的浸透速度,使流速与二价铁的氧化速度适当。
此工艺与-铁粉置换法比较,流程简略。但因为溶液中铁离子浓度较高,电积进程在电场力的作用下三价铁会不可避免地透过隔阂在阴扳复原,使电流效率下降(电流效率42%~50%),操作进程比较严厉。
三、浸出-水解沉铋法
此法实质上是使用氯氧铋的水解性,在弱酸性溶液中水解铋氧络合物,生成氯氧铋白色沉积物,制取氯氧铋精矿。
为使水解彻底,溶液pH值一般操控在2,这就要求很多的水稀释溶液,形成酸耗高、水耗大、试剂耗量大、铋收回率低、废水排放量大的缺陷。某小型铋冶炼厂曾选用此法出产氯氧铋精矿,但作用不抱负,其技能经济指标为:吨精矿耗工业800kg,铋收回率为60%~70%。
四、亚硝酸法
此法已在原苏联完成了半工业实验,用来处理哈萨克矿的难选含铋硫化矿精矿。根本原理是根据反响:此法耗费试剂品种多,除及氯化钠之外,需求、火油及过氧化氢等药剂。工艺流程见图2。技能经济指标(精矿耗费∕t):HCl 185kg、NaCl 260kg、NaNO3 3kg火油3kg、H2O2 6kg。图2 亚硝酸法处理铋精矿准则工艺流程图
五、选择性浸出法
此法选用操控电位的办法,用选择性浸出硫化铋矿,一起抵抗杂质的浸出。较之前面的几种办法,避免了很多的铁离子在流程中的循环和三价铁的再生问题,进步了产品质量,渣的过滤、洗刷功能也得以改进。浸出进程根本反响为:选择性浸出,铋的选择性较高,但耗费量比较大,一部分单质硫会被氧化生成硫酸根,的污染和腐蚀问题也比较严重,设备需求密封。从经济上分析,比用浸出没有显着的优越性。
选择性浸出的工艺流程见图3。图3 选择性浸出铋准则工艺流程图
六、新氯化-水解沉铋法
唐谟堂等在多年研讨的基础上提出了一种新的处理铋精矿的湿法冶金办法-新氯化水解沉铋法。在36~378K的温度下,选用两段循环浸出,大大进步了铋的浸出收回率。该流程的特点是选用了一种含有金属氯化物的酸性水溶液(A#CA),它兼有和氯化剂的长处,处理了浸出剂的再生和溶液中铁的循环堆集问题,并使溶液中的铋浓度大大进步,后续工序的出产能力相应得以扩展。准则工艺流程见图4。图4 新氯化水解法准则工艺流程图
因为是在高温下浸出,杂质如As和S的氧化浸出率较高,一起副反响将导致氧气的耗费量增大。
硫酸法钛白粉的生产--酸解、浸取、还原(四)
2019-02-15 14:21:24
3.防止四价钛的过量复原 钛的出产进程中,为了按捺钛液的二价铁氧化成三价铁,必须用铁屑或铁粉将悉数三价铁复原为二价铁,而且还要将少数四价钛复原为三价钛。其复原反响式如下: 一般常压水解的钛液要求含有三价钛1-3g/L,加压水解钛液含有三价钛为2-5g/L.超越这个量就归于复原过量。依据核算,每复原过量2g/L,则1吨钛就要多耗费硫酸16. 4kg,多糟蹋钛13. 4kg.原因是这些多耗费的硫酸是无效酸,这些复原过量的三价钛在水解时不能水解为偏钛酸沉积,而随废酸排放掉了。不过有些供应商在水解前用三价钛很低的钛液来分配,使之得以拯救。 4.防止氧化过量 在酸解时将熟化好的热料冷却,需求鼓人空气将其吹冷;在浸取时为了加快固相物的溶解,需求鼓人空气进行拌和;在加铁屑或铁粉复原时,相同需求鼓人空气进行拌和,直到放料前才中止拌和。鼓入空气的进程,也是空气中的氧气氧化钛液中的二价铁成三价铁或将三价钛氧化成四价钛的进程。这个氧化进程也需求耗费一定量的硫酸。其氧化反响式如下: 依据这个氧化反响的核算,每鼓人空气1L,就要耗费硫酸1. 84g,这种酸归于无效酸。一起被氧化成的三价铁终究又要用铁屑或铁粉将其复原为二价铁,这个铁屑复原也需求耗酸。由此可见,出产进程中过多地鼓人空气是有害的。酸解每锅需加人等量的硫酸和等量的钛铁矿,而每锅终究的有用酸不同,乃至有些距离很大。这首要是因为每锅鼓人的空气量不相同,其所耗费硫酸的量不相同所造成的。
高锌或铅鼓风炉渣回收锌
2019-01-16 11:53:19
从含高锌或铅鼓风炉渣、炼锌的浸出渣、含锌的钢铁粉尘中回收锌、铅以及其他有用物质时,也有火法和湿法两种。1.渣烟化法锌渣(10-18%Zn)在鼓风炉型的炉中熔融,从风口一并吹入空气和微粉煤,还原挥发演中的锌,在气相中氧化,回收ZnO。最近有用电炉还原挥发锌渣,再冷凝回收锌。炼锌浸出残渣也有用作铅鼓风护的原料,提高渣中的锌量,可用烟化法回收。2.威尔兹法(Waelzprocess)在浸出残法或含锌的钢铁粉尘等当中加焦粉为还原剂,装在称为威尔兹炉的稍有倾斜的回转窑中。从一端用重油喷嘴加热,炉料在炉内旋转的同时向前移动,还原挥发的锌、镉、铅在中途氧化,在收尘装置中以粗氧化锌((65-70%Zn)形态回收,作为炼锌原料。3.电热法 在含锌原料中加焦粉和返矿进行制粒、烧结。此烧结矿(25%Zn, 30%Fe,4%Pb,+1Omm)55%加入同粒度的焦炭45%,装入电热蒸馏炉中使锌还原挥发,捕集回收为ZnO,矿渣含6%Zn,5.5% Pb,50%Fe, 1%Cu,经磁选,非磁性物返口,磁性物在电护还原熔融,分离回收铁和铅。 4.硫酸化培烧法在浸出残渣中加入等量的硫化铁精矿(FeS2),用沸腾焙烧炉在950K进行硫酸化焙烧,则铁酸锌分解为ZnSO4和Fe2O3浸出ZnSO4浸出液送往炼锌的主流程。 5.湿法处理浸出残渣用锌电解尾液在约363K(90℃)条件下浸出,锌、铁一起溶解。而且,在SO2的还原气氛下极易溶解。所得浸出残清中富集不溶性的铅和银。浸出液中含有大量的铁(30kg/m3左右)。因此,必须使铁形成过滤性良好的沉淀而除去。为此,可采用如下三种方法:(1)在363K(90℃)条件下加Na+,NH4+中和,生成过滤性良好的铁矾((Na/NH4)Fe3 (SO4)2 (OH)6)沉降除去。(2)添加ZnS(锌精矿)使Fe3+还原为Fe2+,同时通入空气进行中和,生成针铁矿(FeOOH)沉淀而除去。(3)用高压釜,在高压氧气下加热到470K,生成赤铁矿(Fe203)而除去
云锡三冶盐酸-FeCl3浸出流程工艺方案实例
2019-03-08 12:00:43
云锡三冶的工艺流程见下图,其操作及目标如下:图 云锡公司焊锡阳极泥酸浸湿法归纳收回工艺流程
一FeCl3浸出:
(1)湿磨筛分:阳极泥在球磨机内浆化磨细。矿浆浓度达50%,磨至粒度—80目。
(2)浸出:在拌和浸出槽中进行。槽为¢8m×1.7m钢壳,内衬橡胶与瓷砖,蒸汽直接加热。浸出液成分(g/L)为:170~180HC1,20~40FeC13;液固比4:1;温度85~90℃;拌和时刻4h;中止拌和后加少数凝聚剂,弄清冷却4h。
(3)浸出产品的处理:含锡、锑、铋的上清液抽至高位槽;铅、银沉积物经浆化、洗刷、过滤后送脱铅工序,其成分为:4.5%~5%Ag,29%~41%Pb。
热水浸出:
(1)热水浸出(开始脱铅):液固比30:1,pH>3 ,蒸汽直接加热至95℃,煮沸2h。
(2)趁热抽出含PbCl2的上清液,同槽洗渣两次。
(3)水煮渣成分:银进步至15%~18%,铅降至5%~7%,其他为3%~5%Sn,0.5%As,2%Sb,0.5%Bi。金银入渣率96%~98%。
置换-浮选:
(1)水煮后渣在珐琅反响锅中加铁粉将AgCl置换成海绵银粉,以便于浮选出银。
(2)浮选别离铅银:用丁基胺黑药或戊基黄药捕收银、金,产出35%~45%Ag的银精矿。操控尾矿含银低于0.25%,银的选矿收回率96%~97%。以六聚偏磷酸钠或甲羧基纤维素按捺铅,使铅入尾矿,产出含45%~50%Pb的氯化铅精矿,铅的选矿收回率高于97%。
收回银:
(1)银精矿成分(%)为:Ag35~45,Au35~45g/t,Pb8~12,Snl~2,As0.5~1,Sbl~2,Bi0.5~1,CI-3~4。其间Cl-主要为PbCl2带入。
(2)铁粉置换脱氯:在拌和浸出槽中进行。先将银精矿浆化,再以硫酸调pH至1~2,温度高于90℃,参加铁粉置换出PbC12中的C1-成为FeC12进入溶液。
(3)硝酸浸银:脱氯后的银精矿加于4~4.5mo1/LHNO3溶液中,拌和,银变为AgNO3溶于水中。生成的Pb(NO3)2与精矿中剩余的硫酸根反响生成PbSO4进入浸出渣。渣中尚含银3%~6%,金250~320g/t,是提金质料。银浸出率97%~98%。作业中发生的NO2通过文氏管水洗,所得淋洗液回来浸出。
(4)沉银:加于溶液中,沉积出高纯度的AgCl。沉银率高于99%。母液处理后排放。
(5)复原银:(N2H4·H2O)是强复原剂,在碱性榕掖中能将AgCl复原为银粉,其反响为:
4AgCI+N2H4+4NH4OH=4Ag↓+N2↓+4NH4Cl+4H2O
此作业在拌和浸出槽中进行。先加少数水于槽中,以蒸汽直接加热至50~60℃,再加20%至液固比为3:1。加少数调整溶液至pH=9~10;再开拌和,缓慢(少数屡次)参加预定量的AgCl。从槽中取上清液参加反响,至无沉积,即为复原结尾。此反响速度快,复原率高达99%。母液含Ag低于0.00lg/L。lkg银粉耗20%1~1.5kg,40%0.45kg。
产出白色海绵状银粉,成分(%)为:99.983Ag,,0.002Pb,0.0006Cu,0.004Sb,0.0025Bi,0.0075Fe。
(6)海绵银熔铸:海绵银烘干后,装入120号石墨坩埚,放进¢0.5m×0.8m柴油坩埚炉或中频感应电炉中熔化。升温至1200℃,天然氧化精粹。银粉中锑、铋等杂质高时,可适当通入氧气吹炼,以保证精银含Ag高于99.95%。银精粹实收率高于99%。由银精矿至精银的直收率为95%。
收回金:
(1)硝酸浸银后的渣富集着金,成分(%)为:Ag3~6,Au250~320g/t,Pb3~7,Sn5~6,Bil~2,Sb6~8,As2~3,Sel。从此渣中收回金的办法,可用浸出-铁置换法或水溶化-草酸复原法。均在拌和槽中进行。
(2)浸出-铁置换法:溶液含(CS(NH2)2)30g/L,液固比10:1,用硫酸调整pH至1.5。在40℃温度下搅浸3h,银浸出率80%~85%,金浸出率95%~96%。用铁粉置换,置换渣含金可达3%。
(3)水溶化-草酸复原法:将渣浆化,再通氯化,或以次(NaClO3 +NaCl)浸出金,使金成为AuC13或AuOCI进入溶液。金浸出率98%以上。操控渣含Au低于2g/t,Ag低于2%。溶液用草酸复原出金粉,操控金粉含Au高于99.9%。
收回锡:
(1)阳极泥用和浸出的上清液成分(g/L)为:20~25Sn,0.1~0.15Ag,2~2.5Pb,10~13As,18~20Sb,8~12Bi,3~5Cu,1.5~2.2H+。此液用铁屑置换法脱除As、Sb、Bi、Cu后,用石灰中和法产出锡精矿,或许用电积法产出金属锡。
(2)铁粉置换脱As,、Sb、Bi、Cu:作业在¢1.8×1.7m的密封槽中进行,须有杰出的抽风设备坚持槽内为负压。以蒸汽直接加热溶液至45~50℃,用压缩空气拌和,操控在4h内完结作业。置换率:砷高于85%,锑高于90%,铋高于95%,而锡低于3%。溶液中仍保留着绝大部分呈SnCl2形状的锡。
(3)中和法沉锡:用石灰乳中和SnCl2溶液至PH=4~4.5,可产出含锡高于40%的锡精矿,锡收回率高于90%。此精矿成分为Sn(OH)2·xH2O,经枯燥煅烧,再熔炼成金属。
(4)电积法提锡:以SnCl2溶液作电解液,用铁板作阳极,精锡片作阴极,在塑料电解槽中进行电积。操控电流密度80~100A/m2,槽电压0.5~0.6V。产出的阴极锡含75%~85%Sn,3%~50%Pb,1%~3%Bi,0.2%~0.4%Sb。锡收回率可达94%,电流效率75%~80%。电耗为225kW ·h/t阴极锡。
收回砷锑:
(1)收回锡时的置换渣成分(%)为:11~17As,21~27Sb,12~25Bi,1~2Sn,0.2~0.3Pb,0.15Ag,6Fe。此渣应薄层堆存,使之天然氧化,让砷、锑转变为氧化物。每年定时处理此渣,其作法为:先用溶液浸出已氧化的渣,使砷、锑转变为硫代盐和硫代锑酸盐进入溶液;再用硫酸中和使砷、锑成为硫化物从溶液中沉积出来;然后用干馏法使硫化砷蒸发而留下硫化锑渣。
(2)浸, 出砷锑:浸出, 液为Na2S+NaOH。其反响为
(Sb,As)2O3十6Na2S+3H2O=2Na3 (Sb,As)S3+6NaOH
As2O3+6NaOH=2Na3AsO3+3H2O
置换渣枯燥后磨至—80目,与按1:1分量比参加拌和浸出槽中。液固比8:1,蒸汽加热至96~98℃,拌和2h。锑浸出率可达82~85%,砷浸出率>96%。铋、铜留于浸出渣中。
(3)硫酸中和沉出砷锑:其反响为
3Na3 (As,Sb)S3+3H2SO4=(As,Sb)2S3+3Na2SO4+3H2S
常温下中和,操控pH=2~2.5。锑沉积率98%,砷沉积率95%。锑砷渣成分(%)为:35~40Sb,6~8As,进行中和作业的拌和浸出槽上须设抽气设备,以避免H2S气体外逸。抽出的气体通过文氏管,以NaOH溶液循环淋洗,收回Na2S回来浸出。
(4)硫化锑砷渣干馏脱砷与砷锑的收回:锑砷渣用低温干馏法脱砷并以白砷形状收回砷,其反响为: △ (Sb,As)S(固)→SbS(固) +AsS(气)2AsS(气) + 7/2O2(气) →As2O3 +2SO2
干馏作业在电热不锈钢回转窑中进行,操控温度330℃。蒸宣布的AsS气体,经冷凝室与布袋收尘室被氧化为白砷(As2O3),档次达70%~80%。再通过一次精馏后,As2O3含量高于98%,即为制品。
干馏剩余的硫化锑渣,含锑高于50%,是出产精锑的质料。
收回铋铜:
(1)Na2S浸出渣为As、Sb、Bi、Cu渣,含有(%):18~21Bi,2~3Cu,0.7~1.0As,6~8Sb,0.25~0.3Ag。此渣经天然氧化后,用浸出铜铋,使之成为氯化物进入溶液,再用铁粉置换出铜铋成为海绵金属,通过加硫脱铜得粗铋,而硫化铜渣则可作为铜质料。
(2)浸出铜铋:天然氧化后的渣中铜、铋易被溶解成为BiC13,CuCl2,而AgCl及砷锑等则大部分留在浸出渣中。铋含量高时可用HCI+FeC13浸出,或许在浸出液中参加少数硝石作氧化剂以进步铋的浸出率。浸出作业操控液固比7:1,溶液含HC165~70g/L,常温搅浸6h。铋浸出率高于95%。浸出渣含Ag0.6%~1.2%,回来阳极泥浸出以收回Ag,,Au。
(3)铁粉置换铋铜:含铋铜的浸出液在有抽风设备的密封槽中,用蒸汽加热至50~70℃,加铁粉置换得海绵金属,其成分(%)为:Bi>70,Cu3~7,Sb2~3,Snl~2,As0.2~0.3。
(4)海绵金属加硫除铜与铋铜的收回:先将海绵金属在精粹锅中加碱熔化,700℃熔化后吹风氧化脱砷锑,降温至550℃捞去砷锑渣,降温至320℃加硫除铜。作业在拌和状态下进行,缓慢均匀地参加,结尾时渣为黑色粉状,再降至280℃捞渣。此硫化铜渣含13%~15%Cu,8%~9%S,可作为出产硫酸铜的质料。
脱铜后的金属为粗铋,含97%~98%Bi,0.5%~0.7%Sb,0.1%~0.3%Cu,0.05%~0.06%Ag,由砷锑铋铜渣至产出粗铋,铋的实收率可达90%~91%。粗铋通过加锌脱银、通脱铅锌后产出含Bi高于99.99%的精铋产品。
收回铅:
浮选别离银铅时产出的PbCl2尾矿含铅40%~50%,Ag2000~2500g/t。此尾矿在搅浸槽中浆化,加调pH至2,加热至95℃再参加铁粉拌和置换2h,产出海绵铅,含Pb高于75%。铅置换率可达97%。
海绵铅粉杂质含量高,而且堆存时易氧化,故须熔化成高锡锑粗铅,送电解精粹。
氧化铜矿处理几种理论研究(二)
2019-02-14 10:39:39
(三)分支浮选在氧化铜矿浮选中的使用 据有关材料介绍,分支浮选对低档次矿石效果明显。铜矿峪矿石档次偏低,精矿产率小,契合选用分支浮选的条件,为了验证分支浮选工艺对这类矿石的适应性,实验采集了一批氧化率43.19%,原矿档次0.33%的矿石。 实验流程,加药地址与硫化矿相同,见下图。实验成果见下表。氧化矿低档次矿石分支再磨实验成果浮选工艺浮选目标%药剂用量 克/吨原矿档次精矿档次收回率混黄药乙酯油惯例浮选0.34721.49484.125009012分支浮选0.34123.49884.03275759单支精矿再磨0.34926.64884.13009012分支精矿再磨0.3326.0983.44275759
实验成果证明:分支浮选对氧化矿低档次矿石是有用的。精矿再磨进步精矿档次5%与硫化矿共同,阐明粗精矿再磨工艺对铜矿峪矿石是适用的。[next] 分支浮选工艺适合于铜矿峪低档次、精矿产率小的矿石,也适应于氧化矿。分支浮选工艺与粗精矿再磨工艺相结合,可以节约各种药剂10~15%,又能进步精矿档次4~5%。总的经济效果十分明显,是当时下降选矿本钱,进步经济效益的途径之一。 (四)用铁粉从胆矾溶液中置换铜的机理研讨 在使铜从溶液里直接沉积的许多办法中(例如电解,用铁、铝或锌置换;用CO、H2、H2S或SO2沉积;以及用Ca(OH)2或CaCO3沉积),实践证明,只有用铁置换的办法对低浓度、多杂质的溶液才是经济上可行的。 我国江西铜业公司用萃取—电积法或石灰沉积法收回铜的矿山,现已改用铁粉置换法收回铜。铁粉置换法的经济效益已逐渐被知道,因而,经过理论分析和科学实验来进一步论述铁粉置换技能,仍具现实含义。北京矿冶研讨总院有人著文就铁粉置换技能,工艺要求,下降铁耗和取得高纯铜粉的办法进行了实验和评论。 1.铜离子被铁置换的行为 pH值与置换速度的联系 跟着溶液的pH值下降(游离酸添加),交流速度加速,溶液中无游离酸存在,则难以进行交流;跟着溶液中Cu2+含量下降,交流速度也随之减慢,最终到达溶解与沉积的平衡,交流率不再上升,这种平衡一向坚持到铁粉耗尽;胆矾和金属铁交流的适合pH值为2~2.5。 置换时刻与交流率的联系 跟着置换时刻添加,交流率上升,但速度减慢(因Cu2+浓度下降和pH值上升),当正反响和逆反响平衡时,交流率到达最高值,该值一向坚持到金属铁耗尽;金属铁被悉数溶解之后,溶液里过剩的游离酸使沉积铜被从头缓慢溶解,导致排出液含铜上升,交流率下降。因而,正确把握化学平衡极为重要。 铁粉用量与置换速度的联系 在相同的交流时刻里,复原铁粉用量越多,交流速度越快;当溶液的pH值超越4今后,交流率不再上升。溶液中有过量的金属铁存在时,可以避免溶液里Cu2+上升,但过多的铁粉用量将使沉积铜档次下降,酸耗添加。 溶液含铜量对交流的影响 溶液中Cu2+浓度越高,交流率越高,因而,在实践使用时应尽量进步进液浓度;采纳添加Cu2+和Fe°的碰撞频率及进步FeSO4分散速度之办法,以求加速交流速度和取得较高听交流率。 逆流交流实验 选用逆流交流法可以在挨近理论铁耗的状况下,一起取得高档次沉积铜和高听交流率; 实验条件为 进液每立升含铜5克,pH值为2,复原铁粉用量为理论铁耗的110%,交流时刻15分钟,实验成果核算于下表。产品批号排出液含铜克/升沉积铜档次Cu%交流率%10.199696.0720.00379599.9230.01994.799.6140.193.897.9350.8246.783.02[next]
溶液中氢离子浓度下降,交流速度减慢,导致排出液含铜量升高,交流率和沉积铜档次下降,因而,在交流进程中要严厉监控氢离子浓度的改动和当令的补加游离酸于交流液中;第一批交流液理论铁耗的5.5倍复原铁粉相遇,按化学反响原理它的交流率应当最高,但是恰恰相反,它的排出液含铜居然高达0.19克/升,这一“失常”现象极为重要,是逆流交流实验所赋予的很有含义的启迪。 Fe3+对置换的影响 在铜矿石的硫酸浸出液中,或多或少的存在必定数量的三价铁离子。在以铁粉置换铜时,溶液中的三价铁大部分按反响式Fe2(SO4)3+Fe→3FeSO4被复原成二价铁,然后添加了铁耗,所添加的铁耗量以彻底反响核算,是溶液中三价铁离子量的二分之一。依据实验所得到的数据,可以得出这样的定论:在用铁粉置换铜时,溶液傍边的Fe3+简直悉数被复原为Fe2+。因而,在交流进程中要避免Fe2+的氧化,Fe2+的氧化将使铁耗添加和加速Fe3+的水解,给置换作业带来损害。对处理Fe3+浓度很高的溶液,选用铁粉置换法是不适合的,在这种状况下,考虑预先将Fe3+复原是必要的。 2.铁粉置换法收回铜的实例 例1 武山铜矿石酸浸液铜的收回 武山归纳矿石酸浸液每立升含铜14.1克、含铁7.7克、含Fe3+0.25克,在交流时需求往每立升溶液中追加0.125克纯铁,做为将Fe3+复原成Fe2+之用。然后,再按每一克铜需求0.88克纯铁来核算理论铁耗。先用硫酸将溶液的pH值调至2,再在搅动的状况下参加铁粉置换15分钟。实验成果见下表。理论铁耗%沉积铜档次%交流率补白10096.7594.25溶液里尽管有多种离子,但重金属离子的含量很低,因而,在沉积铜中的共沉物很少。10595.499.4311090.45~10011590.5~10012084.6~100
例2 城市山铜锌矿石酸洗液铜的收回 江西城门山铜锌矿石中含有水溶铜和吸附铜,需将这部分铜用稀硫酸洗脱,再加以收回。酸洗液每立升含铜0.97克,因无其它离子的化学分析数据,故在核算铁耗时只能依据铜的含量核算,并以通用的工业铁耗标明。先钭酸洗液的pH值调至2左右,然后在搅动的状况下参加复原铁粉,交流15分钟,马上过滤,清洗。对所得成果列于下表。工业铁耗%沉积铜档次Cu%交流率%排出液pH10092.894.643.511088.798.143.512082.398.354
实验证明:用抱负溶液的参数实验成果,辅导天然含铜溶液的交流实践,是可行的。 3.胆矾溶液铁粉提铜原理 铁粉置换化学 铁粉置换进程发作的三个首要反响为: CuSO4+Fe→FeSO4+Cu (1-1) Fe2(SO4)3+Fe→3FeSO4 (1-2) H2SO4+Fe→ FeSO4+H2 (1-3)[next] 在pH为2~2.5时,搅动的状况下式(1-1)为首要反响,而在停止的状况下式(1-2)则变得重要,当pH
Cu+Fe2(SO4)3 → CuSO4+2FeSO4 (1-5) Fe2+的氧化和Fe3+的水解:在浸出进程中含铁矿藏中铁的溶解以及硫化矿和某些其他矿藏氧化时,Fe3+的复原发作了适当数量的Fe2+,而Fe3+极易被氧化成Fe3+: 4FeSO4+O2+2H2SO4→2Fe2(SO4)3+2H2O (1-6) 当Fe2+氧化所构成的Fe3+超越了溶解度,或pH值有所添加时,三价铁就按(1-7)水解而到达新的平衡。 Fe3++3H2O ←→Fe(OH)3+3H+ (1-7) 操控溶液pH值避免Fe(OH)3沉积分出 三价铁在浸进程是不可避免要发作的,而对沉积置换又是十分有害的,因而,避免Fe(OH)3沉积分出,对胆水提铜作业的胜败联系甚密。Fe(OH)3沉积的pH值与Fe3+离子浓度有关,当溶液pH超越3.7时,溶液傍边尽管Fe3+离子浓度很低(10-5M)也要被水解沉积分出,分出的Fe(OH)3固体进入沉积铜中则下降沉积铜档次,阻止铜离子被铁复原和下降置换速度。因而,当用铁复原铜时,溶液的pH值最佳操控规模开端为±2,停止为±3。 胆水铁粉提铜动力学 铁粉置换的反响发作在固—液界面,化学作用使界面和溶液内部的浓度发作差异,引起分散作用。但这种浓差只存在于紧贴固体表面的一层相对不动的液膜(分散层)内,而溶液内部是均匀的。在分散层内发作着溶液浓度的接连改动,反响物经过分散层向界面分散,产品则经过分散层脱离界面。 这样,在铁粉置换的反响中包含着分散和界面化学反响这两个环节。实验证明,相界面上的化学反响进行得很快,分散速度慢,成了阻止反响的环节,因而,进程的总速度就取决于分散速度。 胆水铁粉提铜整个反响速度V0等于:
D•A Vo = ———• △C (1-8) V•δ
式中V为溶液体积,△C标明分散层两头浓度的增量。 式(1-8)标明,固—液反响速度取决于分散系数D,相界面面积A和分散层厚度δ,凡能改动这些要素的办法,都能改动反响速度。 在铁粉置换操作中要注意以下几个问题:(1)复原铁粉的粒度,(2)温度,(3)拌和,(4)溶液酸度,(5)胆水浓度。 经过对抱负溶液和实践用水溶液的实验,以及对胆水铁粉提铜机理的评论,阐明,只需选用合理的工艺和对进程影响要素可以及时地检测和调整,就能以挨近理论值的低铁耗,取得高交流率和高档次沉积铜。
氧化铝赤泥选铁工艺
2019-01-14 14:52:56
氧化铝赤泥选铁工艺,属于赤泥处理工艺,特点是包括下述工艺步骤:赤泥浆料加水预混,通过螺旋流槽分选出精矿浆料、中矿浆料和尾矿浆料;精矿浆料通过摇床分流出铁粉浆料,中矿浆料经球磨机球磨破碎后,也进入摇床随精矿浆料一起进行分流。可回收赤泥中6-8%的三氧化二铁与四氧化三铁铁粉,不仅解决了赤泥的闲置堆放问题,改善周边环境,而且实现了废物资源的循环利用,节约原材料。 工艺,其特征在于包括下述工艺步骤:赤泥浆料加水预混,进行稀释和降温,再进入螺旋流槽进行分选,分选出精矿浆料、中矿浆料和尾矿浆料;精矿浆料进入摇床,加水分流,摇床侧部分流出矿质浆料,端部分流出铁粉浆料,铁粉浆料进入产品槽;所述中矿浆料填入球磨机进行球磨破碎后,进入所述摇床随精矿浆料一起进行分流。
马钢铁鳞用于海绵铁生产的试验研究
2019-03-08 11:19:22
1 前语
马鞍山钢铁股份有限公司铁鳞资源总量约5万t/a。为合理运用资源,依据对商场供需情况的分析,公司于1992年立项建造年产万吨级铁粉出产线。
马钢铁粉工程系马钢股份有限公司与我国节能出资公司联合出资的国家重点项目。该项目由原机械工业部天津第五规划院规划。其规划结合了国内外铁粉出产供应商的先进工艺技术,规划的工艺特色为“3次磁选、2次复原”,方针是出产高质量的优质铁粉。
马钢铁粉一期工程主体设备有:隧道窑(长166m)1座;从德国克莱默公司引入出产能力为700kgh的CBR-700-95e铁粉复原炉(包含出产能力为80m3 h的ASP-80型分解器和出产能力为80m3h的DR-80型气体干燥器)1台;以及从德马克公司引入的细粉碎机2台。整个工程现已竣工投产。
马钢铁鳞数量虽不大,但品种多,成分杂乱,且有大量库存铁鳞。怎么从中选出合格铁鳞质料用于复原铁粉出产线,是铁粉工程投产首要处理的问题。为此,咱们对公司轧材厂一切的轧制点的铁鳞进行了取样分析,并进行了海绵铁半工业化出产实验,以找出契合优质铁粉出产工艺的铁鳞资源。
2 优质复原铁粉对质料铁鳞的质量要求
铁粉产品对Mn、Si、C、S、P及酸不溶物等有严厉的约束,因而出产海绵铁时对质料铁鳞应严厉把关。一般铁粉出产供应商对处理后的铁鳞成分有如下要求,见表1。
3 铁鳞取样分析及铁鳞处理工艺
3.1 铁鳞取样分析
依据文献[1]及同行的实践出产经历,海绵铁出产多选用热轧低碳欢腾钢铁鳞作质料,由于低碳欢腾钢中SiO2、Al2O3等含量较低,用它作质料制作的铁粉杂质少,性能好。为了选出优质铁鳞,咱们对本公司一切轧制点的铁鳞作了全面的取样分析。成果如表2所示。
3.2 铁鳞处理工艺及经处理铁鳞的技术目标
马钢铁鳞处理工艺流程:铁鳞搜集—堆积—过筛—水洗—烘干—磁选—球磨—筛分—混料—初复原经铁鳞处理工艺处理后的高线普碳、二轧型材和三轧(带钢、线材)铁鳞,各项技术目标均契合运用要求;中板、初轧(420方坯、连轧)铁鳞,经铁鳞处理工艺处理后,酸不溶物超支;棒材、H型材和初轧开坯铁鳞,经铁鳞处理工序后,Mn及酸不溶物超支。
4 马钢铁鳞用于海绵铁半工业化出产实验及分析
4.1 半工业化出产实验
从马钢铁粉项目建造以来,公司有关部门已搜集到高线普碳,二轧型材及三轧带钢、型材等3种根本可满意海绵铁出产需求的铁鳞及中板、初轧(连轧、420方坯)2种酸不溶物超支的铁鳞共约4万余吨,其中有库存期达2-4年的铁鳞,这部分铁鳞已深度氧化。本次进行的半工业化出产实验,目标为上述2类共10种铁鳞。关于中板、初轧铁鳞的实验,首要视其经复原成海绵铁并经磁选后的技术目标是否合格。至于经处理工艺后仍严峻超支的棒材、H型钢、初轧开坯等3种铁鳞,不作为实验目标。
工业化出产实验所选用的倒焰窑的根本尺度为:直径4.8m,容积20m3。共进行了两窑实验。为了精确反映不同铁鳞对海绵铁质量的影响,将不同铁鳞装罐堆积在不同扇形区域(视为倒焰窑各扇形区的热工准则根本相同),每区域共堆积10组复原罐,每组共堆积4层罐,如图1所示。
实验工艺参数是在学习兄弟供应商比较老练的工艺目标的基础上,结合本公司质料的特色经实验优化后拟定的[2]。
榜首窑工艺参数:复原温度为1050-1150℃;复原时刻50h;质料配比:铁鳞∶焦碳=1∶0.55。复原后得到的海绵铁的铁含量示于表3。一起还对复原得较好的以高线、三轧、二轧铁鳞为质料出产的海绵铁中的碳含量及复原情况进行了分析,新轧制和库存铁鳞的碳含量及复原成果比较示于表4。
第二窑工艺参数:复原温度为1050-1150℃;复原时刻56h;质料配比:铁鳞∶焦碳=1∶0.55。复原得到的海绵铁的铁含量示于表5。相同,对复原得较好的高线、三轧、二轧铁鳞为质料出产的海绵铁中的碳含量及复原情况进行了分析,新轧制和库存铁鳞的碳含量及复原作用示于表6。
4.2 实验成果分析
本次实验首要对海绵铁中的铁含量进行分析。从表3、表4成果看,高线普碳、三轧线材、二轧中型材所产铁鳞在对应的工艺条件下能出产出合格的海绵铁;而库存铁鳞因深度氧化在该工艺条件下未能到达复原结尾而呈现夹生。从表5、表6成果看,高线普碳、三轧线材、二轧中型材所产库存铁鳞在改动后的工艺条件下能出产出合格的海绵铁,而相同工艺下新轧制铁鳞因复原温度进步、时刻延伸而过烧渗碳,导致海绵铁出格。此外实验成果还显现,中板、初轧铁鳞不能用作出产海绵铁的质料。
咱们还将本实验两窑次中合格海绵铁经精复原工序(破碎—磁选—精复原—解碎—磁选—分级合批)处理,其精复原铁粉的化学成分示于表7。从表7可知,选用马钢高线、三轧、二轧铁鳞可以出产出化学成分契合出产要求的复原铁粉。
4.3 马钢铁鳞挑选的准则
经过上述实验成果分析,咱们以为:为了确保马钢铁粉项目投产后的质量,对马钢铁鳞的挑选应遵从以下准则:
(1)铁粉出产宜选用高线、三轧、二轧等热轧欢腾钢铁鳞为质料;
(2)针对现在同种钢材轧制量削减的特色,要严厉留意钢种改变,不契合要求的铁鳞禁止搜集;
(3)露天长时刻寄存的铁鳞易受污染,因而用于海绵铁出产的铁鳞应及时从轧制现场搜集至质料堆积棚;
(4)关于部分库存铁鳞,应拟定相应的工艺准则独自处理,这样才可出产出合格的海绵铁。
5 定论
(1)经取样分析及铁鳞处理工艺处理后挑选出来的马钢高线普碳、二轧型材和三轧带钢、线材新轧制铁鳞,在质料配比铁鳞∶焦碳=1∶055、复原温度1050-1150℃,复原时刻50h的工艺条件下,可出产出合格的海绵铁;
(2)关于铁鳞品种与(1)相同的库存铁鳞,在质料配比与(1)相同,复原温度为1100-1150℃,复原时刻56h的工艺条件下,亦可产出合格的海绵铁;
(3)将二种工艺条件下取得的合格海绵铁粉进行精复原处理,所得复原铁粉化学成分契合出产要求。
铁磁性金属粉末的磁场烧结
2019-02-18 10:47:01
通过操控晶界微观结构来改进合金功能的技能已日益受到重视,因而广泛研讨了热机械加工技能用来操控晶粒尺度(晶界密度)、晶界特性散布(GBCD)以及晶界衔接性等。别的,也选用了外加势能(例如磁场、电场,超声振荡和温度梯度)的技能。其间,外加磁场的使用愈加引起了材料加工界的重视,由于它可以愈加精确地操控显微结构。至今,现已发现外加磁场关于铁磁材料的再结晶、分出行为和相改变等冶金现象的影响都非常大。因而,日本东北大学的研讨者们在这方面从事了很多的研讨。此次,对铁粉和钴粉在外加磁场条件下研讨了它们的烧结行为,所用原始材料是99.9%纯粉和99.5%的纯羰基钴粉,它们的颗粒均匀粒径分别为2.3μm和0.8μm,铁粉的形状是球形的,钴粉是多面体形。这些金属粉末在研讨前均在氩气流中通过673K×3.6ks的脱氧处理,以铲除其表面所附着之氧化物。选用200MPa压力压成直径10mm×高3mm的压坯,在红外线烧结炉中烧结。在烧结过程中,沿平行于圆柱状试样轴线的方向施加外磁场,随后升温。外加直流磁场逐步增强至1.2MA/m(15kOe)。铁粉压块是在5×10-3Pa真空下于873至973K的铁磁温度规模进行磁场烧结,也在1123K顺磁温度下烧结5、20、50和100h;钴粉压块在1173K铁磁温度下烧结5、20、50h。 研讨结果证明,磁场烧结能有效地进步铁粉的细密化程度,促进晶粒长大。磁场越强,细密化程度越高,特别是在烧结的中间阶段效果最强。以为磁场有增强晶界搬迁驱动力的效果,所以在烧结时关于细密化起着重要效果。与铁粉压块比较,磁场关于钴粉压块的细密化却起着按捺的效果。