废铜打包机
2017-06-06 17:50:13
废铜打包机可将各种
金属
边角料(钢刨花、废钢、废铝、废铜、废不锈钢以及报废汽车废料等)挤压成长方体,八角形体,圆柱体等各种形状的合格炉料,既可降低运输和冶炼成本,又可提高投炉速度。 废铜打包机特点:1、结构简单耐用,操作方便,
价格
实惠,低投入高回报;2、所有机型均采用液压驱动(或柴油驱动);3、机体出料形式可选择翻包,推包或人工取包等不同方式;4、安装简便,无需底脚固定,在无电源的地方,可采用柴油机作动力;5、挤压力从63吨至400吨有十个等级,供用户选择,生产效率从5吨/班至50吨/班;6、压缩室尺寸和包块形状尺寸及机型尺寸可根据用户要求设计定制。 打包机的工作原理:打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包机的工作流程:带子送到位→收到捆扎信号→制动器放开,主电机启动(1)→右顶刀上升,顶住右带于滑板处(2)→“T”型导板后退(3)→接近开关感应到退带探头(4)→主电机停转,制动器吸合(5)→打包机退带电机转动,退带0.35秒(6)→带子收紧捆在物体上(7)→主电机二次启动,制动器吸合(8)→大摆杆二次拉带,收紧带子(9)→左顶体上升,压紧下层带子(10)→加热片伸进两带子中间(11)→中顶刀上升,切断带子(12)→中顶刀下降(13)→中顶刀再次上升,使两带子牢固粘合(14)→中顶刀下降,左右顶刀同时下降(15)→加热片复位(16)→滑板后退(17)→“T”型导板复位(18)→接近开关感应到送带探头(19)→送带电机启动,带动带子送带(20)→大摆杆复位(21)→带子到位,带头顶到“T”型导板上(22)→接近开关感应到双探头(23)→主电机停转,刹车吸合(24)→打包机完成一个工作循环。 打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 了解更多有关废铜打包机的信息,请关注上海
有色
网。
废金属打包机
2017-06-06 17:50:12
废
金属
打包机是什么?废
金属
打包机:主要应用于回收加工
行业
及
金属
冶炼
行业
。可将各种
金属
边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等
金属
原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。该系列设备有以下特点: 1. 均采用液压驱动,工作平稳,安全可靠; 2. 采用手动或PLC自动控制的操作模式; 3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式; 4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。 废
金属
打包机技术参数: 电源,功率: 380V/50HZ 750W/5A 打包速度: ≤2.5秒/道 台面高度: 750mm 框架尺寸: 宽800mm*高度根据需要定 捆扎形式: 平行1~多道,方式有点动、手动、连打、球开关、脚踏开关 适用包带: 厚(0.55~1.2)mm*宽(9~15)mm 电器配置: LG“PLC”控制,法国“TE”,日本”OMRON“,”ZIK“电器适合常规物体捆包废
金属
打包机发展趋势(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。 (2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。 (4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。用途:适用于炼钢厂,回收加工
行业
及
有色
、黑
金属
冶炼
行业
。可将各种
金属
边角料、钢刨花、废铜、废铝等挤压成长方体、圆柱体、八角形体等各种形状的合格炉料,以此降低运输和冶炼成品。更多有关废
金属
打包机请详见于上海
有色
网
废金属打包机
2017-06-06 17:50:13
废
金属
打包机主要应用于回收加工
行业
及
金属
冶炼
行业
。可将各种
金属
边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等
金属
原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。 该系列设备有以下特点:1. 均采用液压驱动,工作平稳,安全可靠;2. 采用手动或PLC自动控制的操作模式;3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。 打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包机(高台标准型)可以实现自动打包,但台面无动力,需要人工推一下,包装物品才能通过打包机。该打包机的原理是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。捆扎机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。捆扎机
价格
:全自动捆扎机
价格
或全自动捆扎机报价是半自动设备的两倍多。 废
金属
打包机发展趋势:(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。(2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。(4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。 了解更多有关废
金属
打包机的信息,请关注上海
有色
网。
废铝打包机
2017-06-06 17:49:58
废铝打包机又称:金属打包机;打包机;废钢打包机;废铁打包机;废铝打包机;废铜打包机;生铁打包机;废金属打包机;液压打包机;金属屑打包机;钢刨花打包机;铁屑打包机;废铁压块机。适用于炼钢厂,回收加工行业及有色、黑色金属冶炼行业。可将各种金属边角料、钢刨花、废钢、废铝、废铜等挤压成长方形、圆柱体、八角形体等各种形状的合格炉料,以降低运输和冶炬成本。便于储藏、运输及回炉再利用。废铝打包机该系列设备有以下特点: 1. 均采用液压驱动,工作平稳,安全可靠; 2. 采用手动或PLC自动控制的操作模式; 3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式; 4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。 产品规格和种类:金属打包机(废铝打包机)有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。 废铝打包机产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。
废铜打包机
2017-06-06 17:49:53
废铜打包机,主要应用于回收加工行业及金属冶炼行业。可将各种金属边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等金属原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。1. 均采用液压驱动,工作平稳,安全可靠; 2. 采用手动或PLC自动控制的操作模式; 3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式; 4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。 产品规格和种类:金属打包机有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。 产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。废铜打包机是打包机新型先进的气动包装机械。主要用于钢铁企业和有色金属企业捆扎各种小规格的管材、板材、型材等产品的包装,还适于用木箱包装各种产品的捆扎。 但是由于在使用中零件的磨损,不良的润滑,会引起零件的损坏,可能扩大故障和事故的发生,因此迅速地发现故障、排除故障十分重要。不会因为一点小故障而求助制造厂,从而赢得宝贵的时间和金钱.容易出现故障的地方和维修方法 故障:切不断钢带 原因:1)切刀磨损或故障 维修方法:检查切刀或切刀架是否磨损或故障,如磨损严重应更换 2)气压降低 维修方法:检查工作压力是否正常; 切断钢带力来自封锁气缸参见故障现象; 检查封锁操作 故障:锁扣夹口承受的拉力不够 原因:卡紧块联接孔或联接销磨损 维修方法:在槽深度浅时检查这些零件,必要时更换废铜打包机,是废铜打包的好帮手。
铝锭打包
2017-06-06 17:49:56
铝锭打包是投资者们很关心的问题,让我们对它进行下阐述。PET塑钢带-铝锭打包专用当 前 价: 15000 元规格型号: 2512发 货 量: 1000 发布时间: 2010年6月7日有效期至: 60天使用钢带打包铝锭的传统方式已经日渐不适用于当今的工业产品包装,钢带因其自身存在成本高、易生锈、易返松、打包操作不方便、打包浪费严重等不足。使用pet索带(塑钢带)打包是目前及未来工业产品包装的发展趋势。pet塑钢带凭着成本低、省钱、环保美观、易用耐用、高强度和高拉力等优势,成为替代钢带及pp打包带的新型捆扎包装材料。从2002年来,国内的索带需求以每年500%的速度增长,大规模应用到铝锭、有色金属、钢铁、玻璃、木材、造纸、石材、陶瓷等行业。铝锭是一种贵重的工业产品,重量大、搬运频率高、运输距离远等特点,令其在包装方面要求十分严格,特别是对捆扎材料的要求也很高,既要坚实牢固,又要求有足够缓冲保护铝锭,还要经受运输的考验。为此国家制定了《铝及铝合金加工产品包装、标志、运输、贮存》(gb/t 3199-2007)标准,明确规定铝锭的包装形式和方法,为铝锭的包装提供了参考依据。比例条件:每托铝锭需用4条带,每条打包带的长度为4米,每托铝锭共需16米打包带。注:1、钢丝打包每条会浪费0.2米用作收紧,即4条带共浪费0.8米;2、 每条钢带需多支付1个钢扣的费用;3、一体化气动打包机提高打包速度;气动铝锭打包机当 前 价: 2 元/台最小起订:1 台供货总量:200 台特性 1、适合各种PET塑钢带 2、束紧、粘接、切断一次性完成,操作简便。 3、束紧力强,大于2800N以上,适用于冶金、钢铁、建材业等 规格 型号 CMVAQD-19 CMVAQD-25 机重 3.8㎏ 4.0㎏ 使用塑带宽度 10-19.0mm 19-25mm 使用塑带厚度 0.4-1.05mm 0.4-1.35mm 打包结合强度 约75% 约75% 咬扣方式 摩擦热熔粘接 摩擦热熔粘接 束紧力 2800N 2800-3000N 平均气压 0.65MPa 0.65MPa如果你想知道铝锭打包等更多的信息你可以登陆上海有色网查看。
铝锭打包带
2017-06-06 17:49:56
铝锭打包带是一种投资者想知道,因为了解它可以帮助操作。铝锭聚酯打包带数量(米) ≥1价格(元/米) 10000.00元/米铝锭打包带是以聚对苯二甲酸乙二醇酯为主要原料经加工而成的,它是目前世界上用于代替钢带的一种新型环保的包装材料,经这几年新材质的开发成功及成本的大幅下降,已大量使用在钢铁业、化纤业、铝锭业、纸业、砖窑业、螺丝业、烟草业、电子业、纺织业及木业等;是一种取代钢带的新型高强度打包带,是目前世界上使用最广泛的替钢带使用。其特性有:1、高强度 : 铝锭打包带材质是(聚脂),具有极强抗拉性,接近于同规格的钢带,是普通塑料带的几倍。2、高韧性 : 铝锭打包带具有塑料特性,有着特殊的柔韧性,在运输过程中可避免因颠簸造成打包带的断裂导致物体的散落,确保运输的安全。3、安全性 : 铝锭带没有钢带的锋利边缘,也不需要钢扣结合、没有压痕、刮伤问题,不会对被包装物体造成损伤。在打包和开包时不会对操作人员造成伤害,避免一切不安全因素。4、适应性 : 铝锭带因材质和制作工艺因素,能适合各种气候变化,耐高温、耐潮湿,不象钢带受潮生锈污染环境及损失抗拉性,使捆包强度减小。5、环保性 : 因铝锭带质量轻,搬运方便;体积小,节省仓库空间;用过的铝锭带方便回收,符合环保要求。6、美观型:钢带会因暴露在空气中吸收水分而生锈,锈迹渗透性强容易污染包装物。铝锭塑钢带则美观、不生锈、有利环保。7、耐温性 : 熔点为260度,120度以下使用不变形,并能长时间保持拉紧力。8、经济性 : 1吨塑钢带的长度相当于6吨钢皮带,每米单价低于铁皮带,成本仅是铁皮带的60%。如果你想更多的了解关于铝锭打包带的信息,你可以登陆上海有色网进行查询和关注。
球磨铸铁标准
2019-03-18 08:36:58
Q450铁素体球墨铸铁 0~100℃线胀系数α1:11.2×10^(-6)/K 0~200℃线胀系数α1:12.2×10^(-6)/K 0~500℃线胀系数α1:13.5×10^(-6)/K参考资料:球墨铸铁 GB/T 1348-1988球磨铸铁标准①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。 钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如铆螺专用的30CrMnSi钢,钢号表示为ML30CrMnSi。 6.低合金高强度钢 ①钢号的表示方法,基本上和合金结构钢相同。 ②对专业用低合金高强度钢,应在钢号最后标明。例如16Mn钢,用于桥梁的专用钢种为“16Mnq”,汽车大梁的专用钢种为“ 16MnL”,压力容器的专用钢种为“16MnR”。 7.弹簧钢 弹簧钢按化学成分可分为碳素弹簧钢和合金弹簧钢两类,其钢号表示方法,前者基本上与优质碳素结构钢相同,后者基本上与合金结钢相同。
铁精矿的成球机理---精矿粉的成球
2019-01-25 15:49:24
(一)精矿粉成球的机理 颗粒极细的精矿粉,被水润湿到合适的程度,在外力的作用下,会聚集成为一定大小的球。成球过程大致可分为三个步骤:精矿粉成核是成球的第一步。矿粉颗粒被水润湿,首先在其表面形成薄膜水,见图1(a);若进一步润湿,并且被润湿的颗粒有机会相接触,在触点处形成毛细水,靠毛细管的作用力,使两个或较多的颗粒连系起来,形成小球,见图1(b)和(c),继续增加水,以并在机械力的作用下,小球内部颗粒重新排列,进一步密集,形成比较坚实稳定的小球,见图1(d),一般称之为母球。母球的形成过程,即精矿粉的成核过程。母球仍然是多孔的,它内部包含有固体、液体和气体三个相,它的稳定性取决于矿粉的粒度和粒度组成,以及颗粒的形状和亲水性。 生球长大,是成球的第二步。母球在滚动过程中,彼此碰撞,使得内部颗粒之间毛细管形状发生变化,颗粒排列密集,毛细管收缩,蜂窝状毛细水变为饱和毛细水,一部分水被挤到母球表面上来,这时母球可以三种机理长大。母球水分较高,而且塑性较好,它们互相结合在一起,使生球迅速长大,见图2(a)。被称做聚结机理;在工业生产中如果将一大批湿料倾入造球机中,或者精矿粉粒度极细,亲水性极强,母球多靠聚结机理长大,在生产中将湿料均匀不断地加进造球机,表面含水较高的母球,在滚动中遇到矿粉,便将矿粉粘在表层,小球互相碰撞,将新粘上的一层湿矿粉压紧,毛细管中的水,被挤到表面上来,又可粘结新的一层矿粉,如果水分不足,可以向小球表面洒水,如此返复,使母球长大,见图2(b),被称做成层机理;此外小球在造球机中运动,总有少数球由于强度不够,水分较低等原因,发生破损及开裂,产生的碎片,粘附在另一个球上,见图2(c),被称做磨剥转移机理。总之由细粒精矿到生成母球,再到具有一定尺寸的生球,其成长机理,不外以上三种。至于以哪一种机理为主,则取决于原料的性质和造球工艺条件。 当母球长大到要求的尺寸,应当停止补充加水润湿,使生球在造球机内滚动一定时间,由于相互碰撞的结果,使生球内部颗粒排列得更加紧密,为成球的第三步。生球滚动过程中机械力的作用会使内部颗粒发生选择性的按最大接触面排列,颗粒相互靠近,毛细管直径缩小,甚至可以达到颗粒表面薄膜水层相互连接。在这种情况下,颗粒之间的分子作用力,毛细管作用力以及摩擦阻力综合作用,使生球具有很高的机械强度。以上所述生球成长的三个步骤,在生产中实际同时发生于同一造球机中。[next] (二)影响精矿成球的因素 影响精矿成球的因素很多,概括起来,可分为两类,一是原料的自然性质,二是造球工艺条件。 (1)原料的自然性质。造球原料的自然性质中,以颗粒表面的亲水性、颗粒形状,对其成球性影响最大。颗粒表面亲水性愈高,固相与液相界面的接触角愈小,颗粒容易被水润湿,薄膜水和毛细水含量高,毛细水的迁移速度也高,从而成球性好。根据测定的结果,铁矿粉和造球常用的添加剂的最大分子水和毛细水的含量。 细磨物料的成球性可以用成球性指数表示,见公式(1) 式中 Wƒ———最大分子水含量,%; Wm———毛细水含最,%。 K=0.20~0.35 物料属弱成球性, K=0.35~0.60 物料属中成球性, K=0.60~0.80 物料属良成球性, K>0。80 物料属优成球性。 铁矿粉的成球性以褐铁矿最好,磁铁矿最差。除它们的亲水性不同外,颗粒的形状也有关系,如褐铁矿颗粒呈针状、片状,比表面积大,而且疏松多孔,所以其湿容量大,成球性好。 (2)原料的粒度与粒度组成。原料的粒度和粒度组成,对于其成球性影响很大。粒度小,比表面积大,成球性好。原料具有合适的粒度组成,可使颗粒排列紧密,毛细管平均直径缩小,颗粒之间的结合力增大。各种原料都有其适宜的造球粒度,例如造球用的磁铁矿,其粒度上限不应大于0.2mm,而-200网目的粒级应占80%以上。国外有些球团矿厂,为了使原料的粒度达到要求,对铁精矿再度磨细。 原料中微细粒级(-0.01mm)的含量,对其成球性有重要影响,它填充在较大颗粒之间的空隙中,使颗粒之间的毛细管直径缩小。而且增加颗粒问的靡擦阻力。当然并非粒度愈细愈好,因为磨矿耗费大量电能,过细会导致生产成本升高。况且粒度愈细,毛细管直径愈小,水在颗粒间的迁移速度下降,从而使成球速度降低。 (3)原料的水份。原料含水份多少,对于成球影响很大。对于不同的原料,生球有不同的适宜水份。例如用磁铁矿精矿造成的生球,一般含水份8~10%,此时生球的成球率高,强度也好。在正常生产条件下,经常维持原料含水份略低于生球的适宜水份,为造球时补加水份留有余地。 若原料含水过低,虽然在造球时可以洒水补充,但成球速度慢,生产率降低,而且往往由于洒水不均匀,使生球脆弱。 原料含水过高,给造球带来极大困难,使生球粒度不均匀,互相粘结、形成大块。在这种情况下,必须将原料预先干烘,降低其中水份。 造球时,原料适宜水份波动范围因原料的不同而异。例如磁铁矿精矿造球,对于水份的波动最为敏感,所以对于不同的原料,适宜的水份应当用实验方法确定。[next] (4)添加物的影响。在造球原料中配加某些添加物,可以改善物料的成球性。常用的添加剂有皂土、消石灰、石灰石等。它们的亲水性和成球性指数,均优于铁矿粉。 皂土是造球常用的添加剂。它能改善精矿粉的成球性,提高生球的强度,更重要的是它能提高生球的爆裂温度。一般球团矿配料中加0.6~1.2%皂土,便有明显的作用。 皂土又名膨润土,它的主要矿物是蒙脱石,其化学结构式为:Al2(Si4O10)(OH)2,含Al2O328.3%、SiO266.7%,属于羟基组分的H2O5%.蒙脱石是一种呈层状结构的铝硅酸盐,由硅氧四面体和铝氧八面体平行链结,组成单位晶胞,见图3垂直叠置,呈层状结构。 蒙脱石晶体内部常发生不等价阳离子的同晶置换。在硅氧四面体中,Si+4可以被Al+3代替,在铝氧八面体中Al+3可被Fe+2、Mg+2置换,因而使结构带有负电荷。 蒙脱石常带负电荷,它能够吸附阳离子,自然界中常被它吸附的有Ca+2、Mg+2、Na+和K+等。吸附Ca+2为主的称做钙基膨润土,吸附Na+为主的叫做钠基膨润土。蒙脱石吸附的这些阳离子,可以按以下的原则相互交换。 介质中浓度高的阳离子,可以交换浓度低的阳离子; 介质浓度相同时,高价阳离子能交换低价阳离子; 介质浓度以及阳离子价相同时,离子半径大者,能交换半径小者。 基于上述原则,在实际生产中,可以根据需要,将膨润土改型。例如可以使钙基膨润土改为钠基膨润土。 蒙脱石有很强的吸水能力。除了象一般固态矿物表面吸附水分子以外,还有大量的层间内表面吸附水。钙基膨润土随着吸水量增加,晶层间距扩大,但达到21.4Ao便不能再增加,钠基膨润土可以继续吸水膨胀,甚至呈分离状态,所以钠基膨润土在造球中的作用更为明显。 消石灰是生产熔剂性球团矿时常用的添加剂,其化学分子式为Ca(OH)2.。它由生石灰(CaO为主)遇水消化而生成,比表面积大。消石灰的颗粒表面带负电荷,而水分子有偶极性,所以它可以吸附水分子,周围仍呈负电性。它有很强的亲水性和天然的粘结力,从而改善物料的成球性。不过消石灰的比重小,配加量不宜过多,否则按体积计,它在物料中占的比例过大,使毛细水迁移速度降低,影响成球速度。此外在大规模工业生产中,难以做到生石灰消化充分同时又保持其水份稳定而不结成大块,故多改用石灰石粉。 石灰石粉的主要成分为CaCO3。细磨石灰石粉的亲水性和粘结力虽然不及消石灰,但是它的颗粒表面粗糙,亲水性较磁铁矿粉好,所以配料中加入细磨的石灰石粉,对于造球性的改善有帮助。 近几年来世界各国都开始研究有机添加剂,用以代替皂土。因为皂土虽然能有效地改善物料的成球性,但是含SiO2高达60%以上,会降低球团矿的含铁品位,增加冶炼时的渣量,此外皂土还带来高炉最不希望的碱金属。目前已用于工业生产的有机添加剂为荷兰公司制造的佩利多(PERIDUR)XC-3,只要配加0.5%,便可显示出效果。经济效果与加皂土相似,但它不会带来SiO2,而这一点对于生产直接还原用的球团矿非常重要。[next] (5)造球工艺的影响。造球工艺对成球的影响可以概括为设备与操作两方面。 在造球设备方面,包括造球机的转速、倾斜角度、造球盘的边高等。西欧和我国的球团矿厂常用圆盘造球机。圆盘的直径大小不等,但倾斜角度一般在45°~50°之间。倾角固定时,造球盘的速度可在一定范围内调节,以造球盘的周边切线速度计,经常保持在1.0~2.0m/sec之间。周速过小,物料上升不到圆盘韵上部区域,一方面造球盘的面积得不到充分利用,另一方面生球在盘内滚动获得的位能低,因而滚动时动能小,球与球相互碰撞的机械作用力小,因而成球慢,生球的强度低。若周速过大,由于离心力作用,物料抛向边缘,跟随造球盘旋转,中心出现无料区,滚动成球的作用受到破坏,甚至无法成球。造球盘的倾角较大,要求较高的圆周速度,使盘内物料滚动次数增加,有利于提高生球的产量和增加它的强度。 造球盘的边高与其直径有关,直径5.5米的大型造球盘边高600~650毫米,边高影响造球盘的充填率,造球机的边高大,倾角小,在给料不变的条件下,物料在造球盘中停留时间长,有利于提高生球的强度。 刮料板的位置也很重要,它将粘在造球盘上的物料刮下,保持适当的底料厚度,避免粘料过多,加重驱动马达的负荷。此外刮板还起疏导料流的作用,使成核区和长大区分开,以便于控制生球的成长。 在工艺操作方面,影响成球的因素有:加水和加料的方法、造球时间控制等。正常情况下,造球物料的水份应控制在略低于适宜造球的水份,造球时补加少量水,以控制母球的形成和生球长大。补加水的大部分以滴状加在成核区,以形成母球,少部分以雾状喷淋在生球成长区,帮助母球迅速长大。 加料的方式也必须兼顾生成母球和母球长大,要防止形成过多的母球。在保证生球达到要求尺寸的前提下,应使母球的生成速度与生球的长大速度达到平衡。 滚动成球的时间,与对球团矿粒度的要求,以及原料成球的难易有关。球团矿的粒度大,要较长的造球时间;原料成球性差,造球时间也会延长。一般的规律是:延长造球时间,有利于提高生球的强度,特别对于粒度很细的原料,更须要较长的造球时间,才能使生球具有更高的强度。 (三)生球品质的控制 生球不是最终产品,但是它的品质,在很大程度上决定了下一步焙烧工序能否顺利进行,以及成品球团矿的品质。对生球品质的基本要求是:粒度合适而且均匀,机械强度高,在进入下步工序前,不应破裂,热稳定性好。 生球的粒度直接决定成品球团矿的尺寸,而成品球团矿的粒度,受高炉冶炼过程约束。过去球团矿的粒度较大,近几年来,为了改善高炉内的还原过程,球团矿的粒度大多在9~12毫米范围之内。生球焙烧过程中,会发生体积收缩,但生球的粒度也不能太大。此外生球的粒度愈小,造球机的生产率愈高。 生球从造球机出来,经过皮带输送机,到达焙烧设备。在焙烧设备中球团堆成一定厚度的床层。生球要有足够的抗压和抗落下冲击的强度。必须经过抗压和落下试验。 抗压强度的测定:通常取10~20个生球,用弹簧称或天平,测定其压裂的公斤数,并取其平均值及标准偏差。 抗冲击强度的测定:取生球10个,自0.5米高处自由落在钢板或橡胶板上,返复跌落,直至裂纹或溃破。累计每个球的不破落下次数,取平均值及标准偏差。 利用球团开始爆裂的温度表示生球的热稳定性。一般不应低于300℃。因为生球含水份甚高,焙烧前须经烘干,如果烘干时发生爆裂,则不仅损失了球团矿,而且影响下步焙烧工序的顺利进行。测定生球爆裂温度的办法有静态和动态两种。所谓静态,即在没有热气流条件下测定。动态即以指定温度的热气流,以一定流速通过生球,视其开始发生爆裂的温度。显然后者更接近实际,但测出的结果一般均低于前者。 生球的爆裂温度高,表明可以用较高温度的热气流烘干生球,从而使设备可以达到更高的生产率。 生球的水分测定:一般取一定数量的生球试样,用烘干法测定其水分。水分的适宜与稳定,代表造球操作的水平,而且只有水分适宜和稳定,生球的品质才有保证。
氧化铝空心球
2017-06-06 17:50:09
氧化铝空心球是一种新型的高温隔热材料,它是用工业氧化铝在电炉中熔炼吹制而成的,晶型为a-Al2O3微晶体。以氧化铝空心球为主体,可制成各种形状制品,最高使用温度1800℃,制品机械强度高,为一般轻质制品的数倍,而体积密度仅为刚玉制品的二分之一。在石化工业气化炉、炭黑工业反应炉、冶金工业感应电炉等高温、超高温窑炉上得到广泛应用,取得了十分满意的节能效果。 氧化铝空心球及其制品是一种耐高温、节能优异的轻质耐火材料,在各种气氛下使用都非常稳定。特别是于在1800℃的高温窑炉上应用。空心球可用于做高温、超高温隔热填料,高温耐火混凝土轻质集料,高温浇注料等。空心球砖可用于高温节能( >30%)倒焰窑、梭式窑、钼丝炉、钨棒炉、感应炉、氮化炉等。对于减轻炉体重量,改造结构、节约材料、节省能源,均会取得明显效果。
球团的生产及设备简介
2019-01-04 11:57:16
粉矿造块的重要方法之一。先将粉矿加适量的水分和粘结剂制成粘度均匀、具有足够强度的生球,经干燥、预热后在氧化气氛中焙烧,使生球结团,制成球团矿。这种方法特别适宜于处理精矿细粉。球团矿具有较好的冷态强度、还原性和粒度组成。在钢铁工业中球团矿与烧结矿同样成为重要的高炉炉料,可一起构成较好的炉料结构。也应用于有色金属冶炼。球团矿生产先将矿粉制成粒度均匀、具有足够强度的生球。造球通常在圆盘或圆筒造球机上进行。矿粉借助于水在其中的毛细作用形成球核;然后球核在物料中不断滚动,粘附物料,球体越来越大,越来越密实。矿粉间借分子水膜维持牢固的粘结。采用亲水性好、粒度细(小于0.044毫米的矿粉应占总量的90%以上),比表面积大和接触条件好的矿粉,加适当的水分,添一定数量的粘结剂(皂土、消石灰和生石灰等),可以获得有足够强度的生球。
生球经过干燥(300~600℃)和预热(600~1000℃)后在氧化气氛中焙烧。在预热和焙烧阶段出现氧化铁的氧化、石灰石分解和去硫等反应。焙烧是球团固结的主要阶段。球团固结过程中,固相反应和固相烧结起重要作用,而液相烧结只在一定的条件下才得到发展。焙烧温度一般是1200~1300℃,主要用气体或液体燃料,有时也可用固体燃料。设备球团矿的焙烧设备主要有竖炉、带式焙烧机和链篦机-回转窑三种。用竖炉焙烧,单机能力小,加热不均,对原料适应性差;但设备简单,操作方便。中国在竖炉焙烧技术方面有所突破。带式焙烧机主要是德腊沃-鲁奇型(Dravo-Lurgi),具有单机能力大、有余热利用系统、设备简单可靠、操作方便等优点;是目前世界上球团焙烧的主要设备,生产的球团占世界总产量一半以上。链篦机-回转窑具有焙烧均匀、单机能力大等优点,但设备环节多。
昆钢球团生产线提高生球成球率的研究与应用
2019-01-24 17:45:41
酸性球团矿配加高碱度烧结矿是公认的比较合理的高炉炉料结构。为进一步优化高炉炉料结构,提高入炉品位,降低冶炼成本,替代昂贵的进口球团,昆明钢铁股份有限公司(以下简称昆钢)于2004年7月22日建成投产了一条120万t/a链蓖机-回转窑酸性氧化球团生产线。受原料条件、设计缺陷、设备故障、经验贫乏等影响,投产初期成球率仅达30%左右,严重制约了产量水平。为此,昆钢联合中南大学开展了大量的试验研究和现场调研工作,并先后组织开展了4个阶段的工艺改造和技术攻关,取得了明显成效,昆钢球团生产线的生球成球率提高到了60%以上,并顺利达产。
一、成球率低的原因分析
(一)单矿种造球试验研究
昆钢球团生产线设计用料结构为“30%大红山铁精矿+70%巴西MBR球团精粉”,但由于受外部资源和运输条件的限制,投产后大部分时间的实际用料结构为“25%-33%巴西MBR球团精粉+67%-75%省内混合精矿”,其中省内混合精矿的构成比较复杂,主要由大红山精矿、曼南坎精矿、易门铜精矿浮选厂的含铁尾矿,以及其他粗颗粒精矿经二次磨矿后的产品等几种原料构成。易门选厂浮选铜矿后的副产品受浮选药剂的影响,成球性较差;巴西MBR球团精粉粒度组成比较均匀、细粒级含量少,也属于难成球物料;其他省内精矿粒度均较粗,小于0.074mm粒级含量只有50%左右,成球性能也不理想。经中南大学烧结球团研究所造球试验测定,昆钢球团生产线所使用的几种物料的静态成球性指数均较低,属于弱成球性或无成球性物料,详见表1。
表1 昆钢球团生产线铁精矿静态成球性能铁精矿最大毛细水/%最大分子水/%毛细水迁移速率/(mm·min-1)K值巴西
铜尾
曼南坎
大红山
小红山
再磨
疆锋16.29
15.63
15.68
14.06
14.09
16.18
15.861.19
1.29
4.34
2.11
3.32
2.24
4.6610.40
2.61
4.05
2.82
1.94
3.58
8.220.08
0.09
0.38
0.18
0.31
0.16
0.42
(二)现场混合料造球试验研究
在实验室条件下进行造球试验,研究不同生产原料条件下的造球性能和提高生产成球率的技术措施。主要精矿样品有预配精矿(生产中没有经过高压辊磨的铁精矿,即预配料精矿)、辊磨精矿(生产中经过高压辊磨处理后的铁精矿)、强混精矿(生产中经强力混合机处理后的铁精矿,已经混合有一定量的膨润土)。造球试验结果见表2。
表2 混合料造球试验结果矿种试验条件试验结果膨润土用量/%造球水分/%造球时间/min落下强度/(次·0.5m-1)落下强度/(次·1m-1)抗压强度/(N·个-1)爆裂温度/℃预配精矿
辊磨精矿
强混精矿2.5
2.0
2.59.0
8.6
8.010
14
103.4
3.0
3.60.6
0.5
0.211.8
13.7
14.5437
535
418
研究表明,经过不同种类混合铁精矿的合理搭配以后,单种铁精矿造球性能的不足之处能够得到一定程度的弥补。预精矿和强混精矿的膨润土用量须达到2.5%以上时生球落下强度才能达到3.0次/0.5m以上;辊磨精矿的膨润土用量须达到2.0%以上时生球落下强度才能达到3.0次/0.5m以上。
(三)不同精矿预处理方式的造球试验研究
在相同原料条件下,预精矿分别经过高压辊磨、强力混合、润磨后的造球试验结果见表3。试验过程中膨润土的用量为2.0%,造球时间为10min。
表3 不同精矿预处理方式的造球试验比较试验条件试验结果膨润土种类膨润土用量/%造球水分/%造球时间/min落下强度/(次·0.5m-1)落下强度/(次·1m-1)抗压强度/(N·个-1)爆裂温度/℃预精
辊精
强混
预润KN2
KN2
KN2
KN22.0
2.0
2.0
2.08.8
9.6
9.4
8.610
10
10
102.4
3.3
4.4
9.70.3
0.6
0.7
1.910.3
11.0
10.6
12.2
铁精矿经过高压辊磨、强力混合、润磨后,生球的落下强度均会有不同程度的提高。相比较而言,采用润磨预处理方式对提高生球落下强度的作用较好,但会对生球的爆裂温度产生一定影响。
(四)生产工艺流程考查
昆钢球团生产线的成球率按单位时间内的球团成品矿量除以球盘投料量计,国内其他企业一般按球盘出球量除以球盘投料量计,两者大约相差30个百分点。因此,球团成球率不但与原料的物理、化学性质、准备方法、物料的表面性质和亲水性、造球设备及工艺参数、生球质量等密切有关,而且与生球的转运次数、转运高度、链蓖机-回转窑热工制度等同样关系密切。在试验研究的基础上,昆钢和中南大学又组织专人重点考查了造球机→链蓖机转运过程中的生球粒度、强度的变化,以及预热球、焙烧球质量。根据考查结果,得出导致昆钢球团生产线成球率较低的主要原因有:①铁精矿成球性能差(如巴西矿、铜尾精等),导致造球过程中混合料成球、长大困难;②造球水分过高(10.5%),导致造球过程中球团发生兼并长大,使生球落下强度、抗压强度、爆裂温度较低;③造球机内刮刀位置、加水位置与加水方式不当,导致球盘内球团分级不明显;④生产工艺中生球的转运次数多、转运点落差大,导致强度本来不佳的合格生球在运输过程中被破碎;⑤链蓖机操作参数不合理,抽风干燥I、Ⅱ的风温、风速过高,料层透气性差造成干燥过程中的生球爆裂量大。
二、提高生球成球率的生产实践
(一)优化原料结构
由于原料供应情况的变化,对球团原料结构先后进行了多次调整,详见表4。
表4 球团用料结构对比%序号巴西大红山优精曼南坎罗精1
2
3
433.65
24.58
26.32
5.3532.21
32.16
26.60
81.5434.14
32.22
21.25
5.75
11.04
25.83
6.22
1.14
单种铁精矿的造球性能一般不是最理想的,必须经过配矿,使原料结构获得优化。根据昆钢铁矿资源造球性能、焙烧性能的研究结果,在生产实践中对铁精矿的配比进行了调整。第1阶段的用料结构基本上是采用了巴西、大红山和优精各三分之一的用料模式;第2阶段的用料结构中逐步增加了试验造球效果较好的省内曼南坎铁精矿用量,总用料种类达到了4种;第3阶段进一步增加了省内曼南坎铁精矿用量,适当降低了大红山和优精矿的配比;第4阶段的主要特点是提升自产大红山矿的用量,逐步停止昂贵的巴西铁精矿的使用,省内自产精矿的使用量达到了90%~100%,总用料种类一度达到创纪录的5种。
除了原料结构发生变化以外,省内铁精矿的质量也逐步得到改善,球团用铁精矿主要物化性质如表5所示。
表5 球团用精矿的物化性质%品种序号ωTFeωSiO2ωH2O<0.074mm粒级含量<0.045mm粒级含量大红山
优 精
巴 西
曼南坎
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
463.18
63.76
64.49
62.85
60.89
61.54
60.12
62.20
66.79
67.40
67.14
67.13
61.60
61.60
61.11
59.507.81
7.28
5.90
7.23
7.39
7.78
7.63
7.72
1.45
1.55
1.81
1.80
5.64
8.58
7.10
7.207.56
7.57
8.84
9.03
9.99
9.67
9.40
9.52
6.97
8.35
8.46
9.10
9.30
9.20
9.30
9.6064.01
77.15
89.39
90.42
84.36
92.10
85.81
88.60
88.40
88.36
85.39
84.68
71.80
71.80
75.50
76.40
87.80
60.75
60.39
59.12
58.12
57.40
58.90
60.40
(二)降低生球转运冲击
1、降生球转运落差。利用检修停机先后对生球转运胶带机进行了多次降落差改造:D101皮带头轮降低约50mm,并增加了溜料板降低生球跌落速度D102皮带头轮降低约100mm; D103皮带头轮降低约100mm;通过减小摆式布料皮带头轮直径降低落差约200mm;D102至D103、宽皮带至小球辊筛、小球辊筛至链蓖机等落点增加了溜料板。
2、降胶带机转速。降低皮带转速,可以改变生球抛落轨迹,降低抛落速度,减小生球跌落冲击力,从而保护生球减少破裂。先后把D101B~H等胶带电机(1450r/min )更换成低转速电机(960r/min),皮带转速从1.2 m/s降至0.8m/s。
3、胶带机托辊加密。对D103皮带上托辊进行了加密,每两组托辊之间增加一组托辊,相当于托辊密度增加了1倍。托辊增加后,生球在皮带上形成的堆积更稳定,减少了生球之间的相对运动,从而降低了生球破坏量,提高了成球率。
4、定期清筛制度。为提高辊式筛分机的筛分效率,保证合格生球不进入返球中,制定了相关的操作维护制度。一是要求造球工适时清理筛辊间的积料,保持辊子间隙畅通,避免合格生球从大球辊筛进入大球中或粉末从小球辊筛进入链蓖机;二是定期检查辊筛间隙变化程度,发现因辊子磨损严重或辊子轴承座位移引起间隙变大则视情况进行调整或更换辊子。
(三)优化造球工艺制度
1、倾角与转速调整。造球盘的倾角和转速直接影响混合料在盘内的运行轨迹和停留时间,不同性质的原料适宜的转速和倾角也不同。昆钢球团造球盘的转速是通过更换不同直径的传动皮带轮调整的,投产初期仅能选择4种转速:7.0、7.5、8.0、8.5r/min。通过生产实践,确定7.5r/min为适宜值。然后通过调整倾角来与转速匹配。4个阶段的生产实践证明,造球盘内生球粒度周期性地变大变小时就必须调整倾角,改变混合料在盘内的运行轨迹和成球时间,使物料在母球区、长球区的分配更加合理,稳定生球粒度和出球量。尽管原料变化频繁、变化幅度大,通过调整倾角都能避免粉末出盘、造出合格生球,稳步提高成球率。
2、刮刀结构及位置调整。针对造球机存在的盘面运转不平稳、盘底粗糙且分台、电动边刮刀磨损严重且所在位置不利于物料在球盘内合理分区等问题,将电动底刮刀改用耐磨陶瓷刀头并增大与盘面的接触面积。另外由于旋转边刮刀安装位置不太合理(钟表的1:30左右位置),起不到分流和导流的作用,研究后取消了旋转边刮刀,在圆盘正上方位置增加固定边刮刀,刮刀与盘边角度可调,盘内物料运行轨迹和分布更加合理了,母球区、长球区物料的分配也更适宜,球盘出粉明显减少、生球量和生球质量有明显提高。
3、球盘边高调整。昆钢氧化球团生产线投产初期,受原料条件及高压辊磨机效果差的影响,混合料粒度及粒度组成较差,其小于0.074mm粒级和小于0.045mm粒级的含量仅达70%和40%。为延长混合料成球时间,提高成球率,于2005年将造球盘边高从600mm增至700mm。改造后,出盘粉末明显减少,生球强度明显提高。
4、加水管形状及位置调整。实际生产中,造球盘的倾角、转速、边高及刮刀是相对固定的,改变加水管形状及加水位置成为改善生球质量、提高成球率的主要手段。通过考察学习,试验不同长度、不同管径、不同出水孔径、不同出水孔密度的加水管,试验用三通管把压缩空气和水混合形成雾化水加入造球盘,试验把几个加水管放在不同位置组合等,取得了一些宝贵的实践经验。但结果表明,不同配矿方案,不同原料条件都需要适当调整加水管位置甚至更换不同形状的加水管。为方便调整,目前备有3种以上不同形状的加水管,且加水管位置未固定。
5、加料方式调整。通过长期观察和试验,在向球盘输送物料的拖料秤头部增加松料装置,同时降低拖料秤上物料的堆高,使物料呈松散状布到造球盘内,一定程度上实现由线布料向面布料的调整,增大了新料与母球的接触面积,进一步提高了成球速度。
(四)热工制度的优化
根据生产情况,对热工制度进行优化,具体调整情况如表6所示。
表6 球团生产热工制度的调整序号鼓干段温度/℃抽干I段温度/℃抽干Ⅱ段温度/℃预热段/℃窑头/℃1
2
3
4299.83
334.48
348.09
358.33349.20
366.10
358.06
359.02594.90
580.55
585.72
579.20974.90
945.84
961.05
923.321017.60
1147.68
1067.90
932.46
从第2阶段开始逐步降低了抽风干燥I、ll段的温度水平,第4阶段又适当下调了预热段和窑头的温度水平。
(五)加强原料的预处理
为了充分发挥高压辊磨对原料预处理的作用,降低高压辊磨机进料量和进料水分,消除膨润土和预热球对高压辊磨机的影响,在第2阶段对返球系统进行了改造。改造后,返球和粉尘不再进入高压辊磨机,其进料量降至200t/h左右,进料水分降至8.5%~9.0%,膨润土和预热球对高压辊磨机的影响也随之消除。同年请德国专家进行现场调试,辊磨机工作压力和工作电流分别提高至约60×105 Pa和400A,达到额定参数。改造和调试完成后,辊磨效果及混合料成球性明显提高,精矿小于0.074mm粒级和小于0.045mm粒级的质量分数可提高5%~8%,成球率提高约5%。
(六)其他工艺参数的优化
除了对原料结构、热工制度进行优化外,还对其他一些工艺参数进行调整,具体情况详见表7。
表7 过程参数调整情况序号混合料过程参数生球链篦机料高/mm作业率/%成球率/%H2O/%<0.074mm粒级含量/%H2O/%落下/(次·个-1)1
2
3
48.94
9.07
8.93
8.6079.01
83.57
86.42
94.0610.50
10.02
9.91
9.918
10
9
9200
161
161
16161.04
74.80
73.55
88.6434.32
50.58
57.16
66.32
从表7可以看出,由于原料结构的调整,以及省内精矿细度的提高,混合料中小于0.074mm粒级的含量明显增加。生球水分也逐步降低,为提高生球质量以及后续工序的优化提供了条件。另外,考虑到生球水分偏大、链蓖机鼓风干燥温度偏高、料层透气性不理想等实际情况,2005年5月份球团利用检修,将链蓖机侧板高度从200mm降低到160mm。
(七)实施效果
昆钢120万t/a氧化球团生产线各个阶段成球率的变化情况详见图1。从图1中可以看出,由于试验研究充分、原因分析准确、整改措施有力,昆钢120万t/a氧化球团生产线的实际成球率从投产初期的34.32%,提高到了第4阶段的66.32%,提高了32个百分点,提高幅度为93.24%。 三、结论
现场工艺考查以及试验研究结果表明,造成昆钢120万t/a氧化球团生产线投产初期成球率偏低的主要原因是原料结构不合理、单种铁料造球性能差、造球工艺制度不尽合理、生球转运落差过大,以及预热焙烧制度欠优化等,通过4个阶段的技术改造和生产实践,这些问题绝大部分得到了整改落实。由于试验研究充分、原因分析准确、整改措施有力,昆钢120万t/a氧化球团生产线的实际成球率从投产初期的34.32%提高到了66.32%,平均提高了32个百分点,提高幅度达到93.24%。
如何选择高铬球参考建议
2019-01-21 11:55:16
对于矿山、水泥等球磨机使用厂家来说,选择一家合格的高铬球生产厂家,能够有效的提高球磨机的生产效率,保证产品质量,节约企业成本。
高铬球厂家选择参考建议:
1.必须有国家认可的检测中心和实验室,拥有如光谱仪(对铁水进行检验,确保没炉铁水成分合格)、洛氏硬度检测仪(随时抽检产品硬度是否达标等专业的检测设备)等专业的检测设备。
2.必须有先进的生产设备和热处理设备,如全自动油淬火设备和全自动回火炉设备,高铬球油淬处理才能真正体现它的优越性
一个合格的高铬球生产厂家必须在生产设备和技术研究上都达到行业领先水平,才能确保能够生产优质的高铬球。
伪劣高铬球的使用表现:
1.外观差:钢球外观存在严重夹渣、夹砂、高桩、皱皮等外观缺陷,而这些缺陷点就是钢球应力集中点,会在球磨机使用过程中因应力变化,而造成钢球破碎或剥落等;
2.磨耗高:主要原因是有的厂家没有淬火设备,没有经过淬火设备的钢球耐磨性是很低的,或者以次充好,造成产品硬度低,从而磨耗高;
3.破碎:主要是由于钢球的成分未达标,热处理方式不对,外观差,或者是使用劣质原材料,造成钢球内部夹杂物高,从而引起破碎。
4.剥落:原因同破碎原因相似。
使用劣质高铬球对使用厂家的危害:
1.虽然购买成本低,但是实际使用成本很高
2.因钢球破碎、剥落,会给企业造成直接的经济损失
3.因使用耐磨性低等劣质高铬球,会使球磨机的磨球配比在运转过程中不稳定,从而造成球磨机的磨矿效率降低,直接影响到球磨机的台时产量降低3%—10%
4.使用劣质高铬球还会降低磨矿细度,使产品质量降低。
综上可知,使用劣质高铬球会给企业带来不可估量的损失,为了保证球磨机的正常运转,替企业节约成本,专家建议,应当选择品牌值得信任的高铬球。
氧化铝空心球
2017-06-06 17:50:12
氧化铝空心球是一种新型的高温隔热材料,它是用工业氧化铝在电炉中熔炼吹制而成的,晶型为a-Al2O3微晶体。 以氧化铝空心球为主体,可制成各种形状制品,最高使用温度1800℃,制品机械强度高,为一般轻质制品的数倍,而体积密度仅为刚玉制品的二分之一。在石化工业气化炉、炭黑工业反应炉、冶金工业感应电炉等高温、超高温窑炉上得到广泛应用,取得了十分满意的节能效果。 氧化铝空心球及其制品是一种耐高温、节能优异的轻质耐火材料,在各种气氛下使用都非常稳定。特别是于在1800℃的高温窑炉上应用。空心球可用于做高温、超高温隔热填料,高温耐火混凝土轻质集料,高温浇注料等。空心球砖可用于高温节能( >30%)倒焰窑、梭式窑、钼丝炉、钨棒炉、感应炉、氮化炉等。对于减轻炉体重量,改造结构、节约材料、节省能源,均会取得明显效果。 氧化铝,刚玉型晶体接近于原子晶体,其它晶型的基本上是离子晶体,熔点为2050℃,沸点为3000℃,真密度为3.6g/cm。它的流动性好,难溶于水,能溶解在熔融的冰晶石中。它是铝电解生产中的主要原料。有四种同素异构体β-氧化铝 δ- 氧化铝 γ-氧化铝 α-氧化铝 ,主要有α型和γ型两种变体,工业上可从铝土矿中提取。氧化铝,又称三氧化二铝,分子量102,通常称为“铝氧”,是一种白色无定形粉状物,俗称矾土。 了解更多有关氧化铝空心球的信息,请关注上海
有色
网。
烧结球团技术(铁选矿)
2019-01-08 09:52:35
烧结技术是我国人造富矿的主要手段。1996年共生产人造富矿16095.6万t,其中重点企业9485.9万t,占58.9%,地方国营企业6133.7万t,占38.1%。 我国在细精矿烧结的技术上已达到相当水平。鞍钢早在50年代初就在烧结机上成功地把酸性烧结矿制作方法改为碱性烧结矿制作方法,在世界上第一个用消石灰或生石灰作熔剂解决了细精矿烧结问题。 烧结球团的装备水平也有所提高,全国共有烧结机419台,总面积15522m2,其中:130m2级以上的烧结机有22台,合计面积4107m2;24~129m2的烧结机197台,合计面积9387m2;小于24m2的烧结机200台,合计面积2028m2。1994年2月24日在马鞍山钢铁厂投产的300m2烧结机,是我国除宝钢外自行设计、制造和建设的规模最大的现代化烧结机。 全国1995年烧结的主要技术经济指标为:利用系数1.36t/(m2•h),烧结矿品位53.00%,烧结机日历作业率80.94%,烧结矿合格率为84.92%,工人劳动生产率为2170t/(h•a)。
精矿粉成球的机理
2019-01-04 17:20:20
球团矿靠滚动成型。被水润湿的精矿粉在滚动过程中靠机械力和毛细管作用成为球性,细微的颗粒之间靠毛细管作用力、分子引力、摩擦力等使生球具有一定的强度。
一、水在矿粉中的形态及作用
干燥的矿粉颗粒一般都具有亲水性。在颗粒表面分子力和电场的作用下,水分子被吸附于其表面,由于水分子具有偶极性,所以它的排列有一定秩序。吸附水层的厚度极小,一般只有几个水分子的厚度。它与颗粒的亲水性和周围介质中水蒸气的分压有关,虽然电分子力的作用半径很小,但作用力极大,例如吸附在固体颗粒表面的第一层水分子,其作用力相当于10000大气压(98066.5×104帕)。因此被吸附的多层水分子,牢固地附着在颗粒表面,吸附水的性质已与一般水不同,例如它不能自由流动,密度大于1.0,冰点远低于0度等。当相对湿度达到100%时,吸附水量达到最大值,称为最大吸附水。一般颗粒只含吸附水时,仍然为散砂状,不能结合成团,除非粒度极细(1微米左右)的物料。
颗粒表面达到最大吸附水后,还有未被平衡的分子引力,于是在吸附水外,又形成了一层薄膜水,薄膜水与颗粒表面的结合力比吸附水弱,其内层靠近吸附水的一层受颗粒的作用力较强,称之强结合水。强结合水虽然不及吸附水与颗粒结合之紧密,但是也相当牢固,例如在大于重力加速度70000倍的离心力作用下也不能将它排除。它可以从一个颗粒的表面,向另一个的表面迁移,不受重力的影响。强结合水的冰点也在0度以下。
矿石颗粒所持有的吸附水与强结合水之和叫做最大分子水。最大分子水可以使粉料成型,但仍不具有塑性。
薄膜水的外层叫做弱结合水。它更接近于自由水,矿粉具有弱结合水后,可以在外力作用下发生塑性变形。
吸附水和薄膜水可视为矿粉颗粒的外壳,在外力作用下,它随颗粒一同移动,并使颗粒彼此结合起来。因此矿粉开始滚动成球,并且具有一定的强度。
当矿粉被水润湿超过薄膜水时,在颗粒之间出现了毛细水,开始出现的叫做触点态毛细水,它使颗粒连系起来。继续增加水,以及毛细水表面张力或外力作用,使颗粒靠拢,于是在它们之间形成了蜂窝状毛细水,这时毛细水在颗粒之间开始连接起来,可以迁移。进一步润湿,则出现了饱和毛细水,这时达到了最大毛细水含量。
精矿粉成球,毛细水起主导作用,最适宜的含水量介于触点态和蜂窝状毛细水之间。精矿粉成球速度决定于毛细水的迁移速度。亲水性强的物料,可使毛细水迁移速度加快。
二、精矿粉的成球
颗粒极细的精矿粉,被水润湿到合适的程度,在外力的作用下,会聚集成为一定大小的球。成球过程大致可分为三个步骤:
精矿粉成核是成球的第一步。矿粉颗粒被水润湿,首先在其表面形成薄膜水;若进一步润湿,并且被润湿的颗粒有机会相接触,在触点处形成毛细水,靠毛细管的作用力,使两个或较多的颗粒连系起来,形成小球;继续增加水,以并在机械力的作用下,小球内部颗粒重新排列,进一步密集,形成比较坚实稳定的小球,一般称之为母球。母球的形成过程,即精矿粉的成核过程。母球仍然是多孔的,它内部包含有固体、液体和气体三个相,它的稳定性取决于矿粉的粒度和粒度组成,以及颗粒的形状和亲水性。
生球长大,是成球的第二步。母球在滚动过程中,彼此碰撞,使得内部颗粒之间毛细管形状发生变化,颗粒排列密集,毛细管收缩,蜂窝状毛细水变为饱和毛细水,一部分水被挤到母球表面上来,这时母球可以以三种机理长大。母球水分较高,而且塑性较好,它们互相结合在一起,使生球迅速长大,被称做聚结机理;在工业生产中如果将一大批湿料倾入造球机中,或者精矿粉粒度极细,亲水性极强,母球多靠聚结机理长大,在生产中将湿料均匀不断地加进造球机,表面含水较高的母球,在滚动中遇到粉矿,便将矿粉粘在表层,小球互相碰撞,将新粘上的一层湿矿粉压紧,毛细管中的水,被挤到表面上来,又可粘结新的一层矿粉,如果水分不足,可以向小球表面洒水,如此反复,使母球长大,被称做成层机理;此外小球在造球机中运动,总有少数球由于强度不够,水分较低等原因,发生破损及开裂,产生的碎片,粘附在另一个球上,被称做磨剥转移机理。总之由细粒精矿到生成母球,再到具有一定尺寸的生球,其成长机理,不外以上三种。至于以哪一种机理为主,则取决于原料性质和造球工艺条件。
当母球长大到要求的尺寸,应当停止补充加水润湿,使生球在造球机内滚动一定时间,由于相互碰撞的结果,使生球内部颗粒排列得更加紧密,为成球得第三步。生球滚动过程中机械力的作用会使内部颗粒发生选择性的按最大接触面排列,颗粒相互靠近,毛细管直径缩小,甚至可以达到颗粒表面薄膜水层相互连接。在这种情况下,颗粒之间的分子作用力,毛细管作用力以及摩擦阻力综合作用,使生球具有很高的机械强度。以上所述生球成长的三个步骤,在生产中实际同时发生于同一造球机中。
三、影响精矿成球的因素
影响精矿成球的因素很多,概括起来,可分为两类,一是原料的自然性质,二是造球工艺条件。
(1)原料的自然性质。造球原料的自然性质中,以颗粒表面的亲水性、颗粒形状,对其成球性影响最大。颗粒表面亲水性愈高,固相与液相界面的接触角愈小,颗粒容易被水润湿,薄膜水和毛细水含量高,毛细水的迁移速度也高,从而成球性好。
(2)原料的粒度与粒度组成。粒度小,比表面积大,成球性好。原料具有适宜的粒度组成,可使颗粒排列紧密,毛细管平均直径缩小,颗粒之间的结合力增大。
原料粒度并非愈细愈好,因为磨矿耗费大量电能,过细会导致生产成本升高。况且粒度愈细,毛细管直径愈小,水在颗粒间的迁移速度下降,从而使成球速度降低。
(3)原料的水分。原料含水份多少,对于成球影响很大。对于不同的原料,生球有不同的适宜水份。在正常生产条件下,经常维持原料含水份略低于生球的适宜水份,为造球时补加水份留有余地。
若原料含水过低,虽然在造球时可以洒水补充,但成球速度慢,生产率降低,而且往往由于洒水不均匀,使生球脆弱。
如果原料含水过高,会给造球带来极大困难,使生球粒度不均匀,相互粘结、形成大块。在这种情况下,必须将原料预先烘干,降低其水分。
(4)添加物的影响。在造球原料中配加某些添加物,可以改善物料的成球性。详见粘结剂章节的介绍。
(5)造球工艺的影响。造球工艺对成球的影响可以概括为设备与操作两方面。
在造球设备方面,包括造球机的转速、倾斜角度、造球盘的边高等。西欧和我国的球团矿厂常用圆盘造球机。圆盘的直径大小不等,但倾斜角度一般在45º~50º之间。倾角固定时,造球盘的速度可在一定范围内调节,以造球盘的周边切线速度计,经常保持在1.0~2.0m/s之间。周速过小,物料上升不到圆盘的上部区域,一方面造球盘的面积得不到充分利用,另一方面生球在盘内滚动获得的位能低,因而滚动时动能小,球与球相互碰撞得机械作用力小,因而成球慢,生球得强度低。若周速过大,由于离心力作用,物料抛向边缘,跟随造球盘旋转,中心出现无料区,滚动成球的作用受到破坏,甚至无法成球。造球盘的倾角较大,要求较高的圆周速度,使盘内物料滚动次数增加,有利于提高生球的产量和增加它的强度。
造球盘的边高与其直径有关,直径5.5米的大型造球盘边高600~6500毫米,边高影响造球盘的充填率,造球机的边高大,倾角小,在给料不变的条件下,物料在造球盘中停留时间长,有利于提高生球的强度。
刮料板的位置也很重要,它将粘在造球盘上的物料刮下,保持适当的底料厚度,避免粘料过多,加重驱动马达的负荷。此外刮料板还起疏导料流的作用,使成核区和长大区分开,以便于控制生球的成长。
在工艺操作方面,影响成球的因素有:加水核加料的方法、造球时间控制等。正常情况下,造球物料的水分应控制在略低于适宜造球的水分,造球时补加少量水,以控制母球的形成和生球的长大。补加水的大部分以滴状加在成核区,以形成母球,少部分以雾状喷淋在生球成长区,帮助母球迅速长大。
加料的方式也必须兼顾生成母球核母球长大,要防止形成过多的母球。在保证生球达到要求尺寸的前提下,应使母球的生成速度与生球的长大速度达到平衡。
滚动成球的时间,与对球团矿粒度的要求,以及原料成球的难易有关。球团矿的粒度大,要较长的造球时间;原料成球性差,造球时间也会延长。一般的规律是:延长造球时间,有利于提高生球的强度,特别对于粒度很细的原料,更须要较长的造球时间,才能使生球具有更高的强度。
稀土精矿球团脱铁除磷
2019-01-24 17:45:52
稀土精矿球团经电弧炉、矿热炉脱铁除磷制备稀土精矿渣,是冶炼合格稀土硅铁合金的重要环节。下面重点介绍电弧炉脱铁除磷制备稀土精矿渣,的工艺和原理。
稀土精矿球团电弧炉脱铁除磷的工艺 利用电弧炉进行稀土精矿脱铁除磷制备稀土精矿渣,具有工艺简单、操作便利、设备利用率高等优点,因而在工业生产中采用。其工艺流程如图1所示。所用设备为冶炼稀土硅铁合金的电弧炉,渣铁罐为耐高温铸铁件。罐内渣铁经过8h以上的静止冷却,即可完全分离,注意不可将高磷铁混入渣中。
铁矿生产中高铬球与低铬球经济效益对比分析
2019-01-17 10:51:20
长期以来国内一些水泥行业、火力发电厂,尤其一些铁矿及有色金属采选行业低铬球和锻打钢球作为一种研磨体仍得到广泛应用。虽然国内一些钢球生产厂家采用高铬铸球取代低铬球和锻打球使用做了较多工作,但因其自身产品质量不过硬,没有良好的耐磨性,有时甚至出现大量破碎等情况,总之就是说性价比较差,因此不能给用户带来经济效益,所以一直以来未能改变现状。
下面从几个方面就矿山用球情况作经济效益方面的分析(以铁矿为例):
大多数的矿山一般都是使用低铬球,其价格约在6000元/吨左右,吨精矿粉消耗研磨体约3Kg。若采用我厂ZQCr10的普通高铬球,平均价按8000元/吨(不包括运费和包装费,以下同),吨精矿粉消耗按1.5Kg/T,若按该矿山年生产10万吨精矿粉计算,用高铬球代替低铬球该单位年实际钢球用量定会大幅度下降,则钢球节约部分即为直接效益,运费降低台产增加部分也会产生较大的效益。
1、磨耗降低带来的采购成本的降低:原来用低铬球磨耗3Kg,价格6000元/吨,生产10万吨精矿粉需300吨低铬球总价值为180万元;现改用高铬球,磨耗1.5Kg,价格8000元/吨,生产10万吨精矿粉需150吨高铬球,总价值为120万元。两比节约60万元。同时因采购数量大幅度降低,也节约了一大笔运费。
2、从客户生产车间使用的角度来说,使用ZQCr10的普通高铬球,反映在吨精矿粉消耗成本是8000元/吨×1.5公斤/吨?精矿粉=12元,而使用ZQCr2高铬球,反映在吨矿山球耗成本是6000元/吨×3公斤/吨?精矿=18元,吨精矿粉球耗成本降低了6元,生产10万吨精矿粉可节约60万元,其经济效益非常可观。
3、由于高铬球基体组织碳化物呈弥散分布,(Cr,C)7C3型碳化物的含量高,因此耐磨性能好磨耗低,研磨效率高,磨机内的球的级配稳定不易发生变化,不仅在一定程度上增加了细度提高了台时产量,保证和提高了精矿粉质量,同时延长了加球周期,减轻了工人劳动强度。
4、直观上看吨钢球的采购成本上升2000元,实际上按球耗,价格相比即可看出实际钢球价格为:
(1500克/吨×8000元/吨)/3000克/吨=4000元/吨;这就是说使用宁瑞牌高铬球ZQCr10实际钢球价格为4000元,磨耗的降低反映的价格是每吨降低6000-4000=2000元.
氧化铝空心球砖的应用
2018-12-28 09:57:29
氧化铝空心球砖主要用作1800℃以下的高温工业窑炉内衬,例如耐火材料、电子、陶瓷工业的高温窑炉内衬砖;高温热工设备的保温隔热层,例如石油化工工业气化炉、造气炉、炭黑工业反应炉、冶金工业感应电炉的隔热砖。在上述领域中应用可节能20%~30%。这种砖用作高温窑炉内衬,烘烤时升温速度不能太快,否则将产生裂纹,降低强度和使用寿命;因其显气孔率高,故不能用于接触熔渣的部位,否则将因熔渣的渗透而损坏。
氧化铝空心球砖
2018-12-28 09:57:29
氧化铝空心球砖 简介 氧化铝空心球砖是有氧化铝空心球和氧化铝粉为主要原料,结合其他的结合剂,经过1750度高温烧制而成。属于超高温材料节能保温材料的一种。 性能 氧化铝空心球砖的Al2O3含量不小于98%,SiO2含量不大于0.5%,Fe2O3含量不大于易0.2%,体积密度1.3~1.4g/cm3,显气孔率60%~80%,耐压强度不小于9.8MPa,荷重(0.2MPa)软忱温度不小于1700℃,热导率0.7~0.8W/(m?K)。
氧化铝空心球砖制作工艺
2018-12-28 09:57:29
制作工艺 制造首先制备氧化铝空心球,再制氧化铝空心砖。 步骤一、制备氧化铝铝空心球 氧化铝空心球的制备以工业氧化铝为原料,用电熔法熔化后喷吹制得。电熔设备为电弧炉。熔池用石墨制品或其他耐火材料砌成,边缘上砌一个流口,在流口外侧安装一个压缩空气用喷嘴,喷嘴以管道与压缩空气装置连接;炉体可以倾动;电极为石墨制品。 在熔池内加入工业氧化铝粉后即可送电熔融,当熔液温度达到或高于2200℃时,熔液翻滚,即倾动炉体,使熔液流出;同时以压缩空气喷吹熔液流股,由于熔液粘度和表面张力的作用,熔液在喷吹和冷凝过程中便形成了包裹空气的空心球,经收集、筛选,将其按不同颗粒分别存放备用。 不同粒径氧化铝空心球的数量比例随着压缩空气喷吹压力的不同而异,压力愈大则小球的数量愈多。 空心球的壁厚随着粒径不同而异,当粒度在5~0.5mm范围内波动时,其壁厚相应在0.3~0.1mm范围内波动。 空心球的粒径愈大,其自然堆积密度愈小;粒径愈小,则其自然堆积密度愈大。例如:粒径5.13~3.22mm时,自然堆积密度为470g/L;3.22~2.0mm时,670g/L;2.0~1.0mm时,810g/L;1.0~0.5mm时,915g/L。 步骤二、制造氧化铝空心球砖 氧化铝空心球砖的制造将氧化铝空心球、烧结氧化铝细粉与结合剂按一定比例配料、成型、干燥、烧成,制得氧化铝空心球砖。 氧化铝细粉是以工业氧化铝为原料制坯并经1500℃煅烧后磨细、酸洗、干燥制得。 制砖所用结合剂通常为硫酸铝水溶液或磷酸二氢铝水溶液。 氧化铝空心球粒径一般为5~0.5mm,雨量65%~70%,氧化铝细粉用量30%~35%;结合剂用量5%。 将上述物料混合均匀,用振动成型法成型,砖坯经干燥后于1500~1800℃烧成,制得烧成砖;也可不经烧成制得不烧制品,或以不定形材料直接构筑炉衬。
采购耐磨高铬球注意事项
2018-12-07 13:58:01
7月18日消息:采购耐磨高铬球注意事项 目前我国铸造磨球行业现代化水平仍然较低,产品质量参差不齐,鱼龙混杂。特别是相当数量规模较小的企业连最基本的质量检测设备都没有,根本无法保证产品质量。因此部分磨球厂家钻水泥、电厂、矿山等企业无法检测磨球质量的空子,采取种种投机行为骗取不法利益。 一是偷梁换柱,品种上以低充高:以中铬、低铬合金铸造磨球冒充高铬合金铸造磨球,说是中铬、低铬球,实际上根本就不含铬合金或含少量铬合金;有的高锰钢衬板连5%的锰都达不到。 二是打擦边球,成份上偷工减料:有的企业在合金成分控制上,专取国家标准的下限或负差,虽然节省了成本,但磨球总体质量水平得不到保证。 三是求稳怕碎,硬度上降低标准:一般用户认为,磨球只要不碎就是好球,于是,有的磨球生产厂害怕出现碎球就一味降低硬度,结果碎球少了,但耐磨性很差,根本达不到高铬球的使用效果。 四是曲线救国,工艺上化繁为简:有的企业既没有回火设备,更谈不上有高温淬火设备,磨球以铸态方式冒充淬火球直接出售,有的用上砂掩埋代替回火处理,有的纯粹高铬球淬火后根本不进行回火去应力处理,磨球的铸造应力和组织应力难于彻底消除,碎球率较高。有的用回火代替高温淬火,不仅硬度指标较低,耐磨性差,而且由于浇冒口部位内部组织得不到改善,极易出现“苹果状”失圆现象。 五是王婆卖瓜,效果上夸大其词:有的企业盲目夸大产品效果,欺骗用户。比如磨耗指标,每个企业的原料成分、熟料硬度、设备运转率等工况不同,磨耗指标会截然不同,未经实际实验任何承诺都是不负责任的行为。 六是金蝉脱壳,质量上逐步退化:有的企业片面追求利润最大化,刚开始送货时不敢作假,一旦正常供货关系疏通后,就开始偷工减料,有些厂家甚至以低成本购进劣质球来偷梁换柱。
锰矿粉的造球与矿石冶炼
2019-01-03 09:36:42
(一)锰矿粉造块
造块方法包括烧结、球团和压球3种工艺。目前,我国造块多采用烧结法。只是在锰精矿或粉矿很细,-200目在80%以上又不允许产品中含残碳时,则采用球团或压团。
50年代初期,我国锰矿粉多采用烧结锅烧结和土法烧结。随着钢铁生产的发展,土法烧结不能适应要求,因而纷纷着手建设烧结机或其他高效的造块设备。1970年,我国第一台粉锰矿烧结机(18m2)在湘潭锰矿建成投产,1972年江西新余钢铁厂又建成2台24m2烧结机,1977年,我国第一台锰精矿球团设备80m2带式焙烧机在遵义锰矿建成投产。进入80年代,湘潭锰矿、八一锰矿、湘乡铁合金厂相继建成18~24m2烧结机多台,上海铁合金厂引进压球设备作为粉矿造块使用。
造块技术的发展,给锰系合金的冶炼带来更大的经济效益。以江西新余钢铁厂为例,增加入炉熟料比和用冷烧矿取代热烧结矿,可使高炉冶炼技术指标大为改善。
(二)锰矿石冶炼
锰矿石冶炼产品主要有高碳锰铁、中低碳锰铁、锰硅合金以及金属锰等,通称为锰质合金或锰系合金。
高碳锰铁。我国主要采用高炉生产。50年代尚未形成专门厂家生产高炉锰铁(高碳锰铁),而是一些钢铁厂自炼自销,生产量很小。从1958年后,湘潭锰矿先后建起6.5m3、33m3高炉专炼锰铁,60年代以后,新余、阳泉、马钢三厂、重钢四厂等转产高炉锰铁,进入80年代,高炉锰铁发展更快。高炉锰铁产量由1981年的20万t增至1995年40万t。
电炉生产的产品包括碳素锰铁、中低碳锰铁、锰硅合金、金属锰四类。我国电炉生产最早的是吉林铁合金厂,于1956年建成投产,最大电炉容量为12500kVA;60年代初,湖南、遵义、上海等铁合金厂相继建成投产,这些厂都可生产碳素锰铁、中低碳锰铁和锰硅合金;遵义铁合金厂还用电硅热法生产金属锰。据冶金工业部1995年《全国铁合金主要技术经济指标》记载,1994年全国15家重点铁合金厂中有11家生产锰系合金产品。这些重点铁合金厂经过不断发展、扩大,为满足钢铁工业生产作出了重要贡献。
80年代以来,地方中小型铁合金企业发展迅速。据资料统计,地方中小企业铁合金产量占全国比重由1980年的32.39%,上升到1989年的54.01%,到1996年已达69.85%,企业数已达1000家以上。这些中小企业大多数是采用1800kVA的小电炉,设备落后,产品质量比较差。
电炉锰铁与锰硅合金生产所用设备基本相同,都是采用矿热电炉,电炉变压器容量一般为1800~12500kVA。湖南、遵义铁合金厂分别从德国引进3000kVA和31500kVA锰硅电炉,现已投产。
我国电炉高碳锰铁的生产,一般多采用熔剂法生产工艺。锰硅合金的生产,一般都采用有渣法生产工艺。
中低碳锰铁的生产,主要有电炉法、吹氧法和摇包法3种。摇包法包括在摇包中直接生产中低碳锰铁和摇包-电炉法生产中低碳锰铁。摇包-电炉法工艺比较先进、生产稳定可*、技术经济效果好,目前上海、遵义等铁合金厂都采用此法。
金属锰生产方法有火法冶炼和湿法冶炼。火法冶炼金属锰,我国始于1959年,由遵义铁合金厂首次用电硅热法试制成功,一直独家生产至今。生产工艺采用三步法,第一步用锰矿石炼成富锰渣;第二步用富锰渣炼制高硅硅锰合金,第三步用富锰渣为原料,高硅硅锰作还原剂及石灰作熔剂,即电硅热法制成金属锰。湿法冶炼主要是电解法,常称电解金属锰。我国于1956年由上海901厂建成第一家电解锰生产厂,到90年代初已有大小电解金属锰厂50余家,年总生产能力达4万余t。生产工艺流程大致分硫酸锰溶液制备、电解、后处理3个生产工序。后处理是电解完成后包括产品纯化、水洗、烘干、剥离、包装等系列操作。最终获得合格电解金属锰产品,含Mn99.70%~99.95%。
废有色金属的预处理-打包与压块
2019-01-24 11:10:25
废有色金属的预处理是指将有色金属废件和废料的状态变成能够进行有效的后续冶金加工的过程。这一过程包括:使各种废件和废料达到规定的外形尺寸和重量标准;将有色金属与黑色金属分离;去除非金属夹杂物、水分、油质等。对废有色金属进行精细和高质量的准备,使之适用于冶金工序,可以使有色金属损失减少到最低程度,使燃料、电力、熔剂的单位消耗降低,使冶金设备和运输工具得到有效的利用,并使劳动生产率及有色金属与合金产品的质量得到提高。
有色金属废件与废料的预处理包括下列主要工序:分选,切割,打包,压块,破碎,粉磨,磁选,干燥,除油等。特种再生原料(废蓄电池、废电动机、废电线、马口铁废料)的预处理,采用专门的生产线。全苏再生有色金属科学研究设计院研究出废有色金属预处理的一般工艺流程(图1),该流程从有色金属废件与废料进入车间起,至成品发往用户厂为止。图1打包和压块
打包的目的是把松散的轻薄的废件与废料压实并制成一定重量、尺寸和密度的打包块。密实的物料便于装炉熔炼,熔炼过程中氧化造成的金属损失也小,同时,原料的运输费用还可得到降低。需要进行打包加工的,是分解成块的大型废件、废散热器、切边、废棒材、废管材、废电缆、废定子绕组、碎屑、废压模、日用废品等。加工的打包块密度,取决于压力的大小以及所压制的物料的厚度。废铜打包需用2000~4500千牛顿压力,废铝打包则需用1400~2000千牛顿压力。
各种液压打包机(表4)按压力大小分为小功率(压力2500千牛顿)打包机(Б-132型、Б-133型、ПГ-150型)、中等功率(压力2500~5000千牛顿)打包机(Б-1334型、ПГ-400型、CPA-400型)和大功率(压力5000千牛顿以上)打包机(CPA-1000型、CPA-1250型)。
表1(前)苏联国产打包机的技术参数机型外形尺寸(米)最后压级压力(千牛顿)打包机生产能力(块/小时)
电动机功率(千瓦)
打包机重量(吨)
挤压室打包状Б-132型*1.5×0.7×0.60.3×0.4×0.6100025108Б-1330型1.7×0.9×0.30.3×0.3×0.51000758526П-150型1.8×0.7×0.60.3×0.3×0.61500202010Б-1334型1.7×1.4×1.20.4×0.4×0.525003513572CPA-400型3.0×2.6×0.80.6×0.6×1.229001220113ПГ-400型2.8×1.5×1.10.4×0.5×0.639002022087CPA-1000型**4.5×4.0×1.31.0×0.7×2.0620020250308CPA-1250**2.2×0.8×2.91.0×0.8×0.81180045430285
*Б-132型打包机虽然已经停止生产,但许多企业仍在使用。
**CPA型打包机是由捷克斯洛伐克生产供应的。
打包过程包含以下主要工序:废料的验收和准备,装入打包机,打包,将打包块推出挤压室,验收并运走成品打包块。
现用Б-132型打包机(图2)的作业来说明打包过程中各道工序之间的连贯性。借助液压缸将原料由料箱1送入挤压室2。挤压室则用由液压缸4传动的盖3盖住。此时露出挤压室边缘的废料尾端由固定在盖的侧面和前面的刀切掉。打包过程中采用纵向和横向挤压头两次挤压,挤压头固定在液压缸5、6的活塞杆上。压制完毕后,打开挡板并借助液压缸7将打包块推出挤压室。
各种液压打包机都是自动化或半自动化作业,能将废料打压成重量为50~4500千克的不同打包块。
图2 Б-132型打包机的打包流程
а-装料;б-关盖;ъ,г-打包;э-推出打包块
压块适合在对废有色金属屑进行冶金处理前备料时采用。压块的目的是便于存放和运输,加快溶炼过程并减少金属损失。在压块过程中,原料被压实至2000~2200千克/米3的密度。适合进行压块的是粒度小于100毫米的无夹杂干屑。[next]
(前)苏联国内许多企业在对废屑进行压块加工时广泛使用液压压块机(Б-654型)和脉冲式压块机(MИБ-275型)。
用Б-654型压块机(图3)生产压块的过程,包括6个自动实施的连续工序:Ⅰ-切截批量废屑并用风动捣锤捣实;Ⅱ-用挤压头夹住废屑并将其压入阴模,同时进行压块造形,并使系统中的压力达到13亨帕;Ⅲ-移开捣锤,夹入新批量废屑;Ⅳ-在主液压缸的作用下使压块成形,成形过程持续至压力达16亨帕为止;Ⅴ-由阴模取出成品压块并使带有捣锤的挤压筒复位;Ⅵ-退出挤压头,使压块落入出料槽。在整个循环作业过程中,振动器均匀地将废屑由料仓给入进料槽。
图3 Б-654型压块机
1-带有液压缸的横梁;2-移动挤压筒的液压缸;3-振动器;
4-带风动捣锤的挤压筒;5-充油阀;6-充油箱;7-压力阀;
8-快速液压缸;9-油箱;10-操纵台;11-空气分配器;
12-液压工作缸;13-电动机;14-泵;15-可逆阀
脉冲式压块机的挤压功能,是在天然气和空气的混合物燃爆过程中释放产生的。采用这种压块机加工铝屑,可制取直径275毫米、高65~75毫米、重10~12千克的压块。压块机的加工能力为1.2~1.5吨/小时。
铝渣球在LF精炼炉的作用
2019-02-28 11:46:07
铝渣球具有脱氧和组成精粹剂的成效。其化学成分为Al≥40%、Al2O3:10-20%、MgO≤3.0%、CaO:10-15%、SiO2≤6.0%、S≤0.50%、P≤0.50%;粒度:10-50mm。初炼出钢时投入可作为脱氧剂脱去钢中游离氧,此外它能快速成渣掩盖在液面阻隔空气。
铝渣球参加有两种方式:一是电炉在出钢过程中作为脱氧剂与其它类脱氧剂一起参加,将钢中溶解氧降低到操控范围内;二是钢水包抵达LF钢包精粹位时参加,以调整渣的组分,赶快脱去渣中的氧得以快速构成适合的精粹渣系。
在实践出产中的使用:
1、电炉工序参加。炉后终脱氧剂选用铝渣球和,依据结尾碳含量脱氧剂参加量:铝渣球0.5-1.0kg/t;,2.0-3.0kg/t。参加次序:钢水出到20t开端向钢包内参加、铝渣球,出钢时刻大于110秒,出钢禁止下渣。 2、LF炉精粹工序。精粹时,依据钢水成分进行调整成分和造渣,造渣剂的参加状况为:铝渣球,50-100kg;粉、硅铁粉为20-30kg;火砖沙为15-25kg。 3、脱硫状况。选用铝渣球造渣速度快,脱硫效率高,渣样精粹在15分钟内能够变白,对脱硫和去搀杂适当有利。 4、产品搀杂物量及氧氮含量。选用铝渣球脱氧和造精粹渣已成功出产焊丝盘条,盘条规格为φ5.5mm,盘条纯净度即搀杂物含量很低为:A类0-0.5/0.5;B、C类0.5-1/0.7;D类0-1.5/1。[O]为25-60/39×10-6,[N]为45-80/68×10-6,质量很好。
涞源锌钼矿破碎、球磨、浮选操作流程
2019-01-21 18:04:39
破碎部分:
破碎部分主要的设备有颚式破碎机600x900两台、400x600两台;1750、1650、900圆锥破碎机各一台。其中1650破碎机为液压控制系统。
启车时
首先,启动除尘设备,减小正常运转时,空气中粉尘的含量。
其次,启动破碎机时动900圆锥破碎机的润滑系统,保证900圆锥破碎机轴瓦润滑正常,然后启动900圆锥破碎机及给矿皮带和出矿皮带以及去1号料仓的总皮带及振动筛。然后启动1750圆锥破碎机的润滑系统,保证1750圆锥破碎机轴瓦润滑正常,然后启动1750圆锥破碎机及给矿皮带和出矿皮带。确认设备运转正常之后启动1号400x600颚式破碎机。
最后,确认设备运转正常之后启动山上的600x900的颚式破碎机,及400x600颚式破碎机的给矿皮带及振动筛。
1号仓和2号仓之间的连接皮带在2号仓需要给的料的时候启动。主要给3号球磨机供料。
停车时
与上述的启车顺序相反。先停山上600x900颚式破碎机,1750破碎机的给矿皮带没料时,停2号和横皮带。再停1号400x600颚式破碎机及2-1号皮带,然后听1750破碎机及1750的轴瓦润滑系统和2-3号皮带。确认900圆锥破碎机内及各个皮带上无料时,方可停止皮带和900圆锥破碎机及900圆锥破碎轴瓦润滑系统。最后停止除尘系统。
1650圆锥破碎机和2号400x600颚式破碎机作为备用设备启动和停止方法和上面的一样。
破碎部分流程图 球磨、浮选部分:
浮选车间的主要设备有:BF4系列浮选机15台、6A系列浮选机一共27台其中精选车间16台、BF10系列浮选机11台、4A系列浮选机9台,BF10搅拌、BF4搅拌、BF4提升、6A搅拌、粗精搅拌各一台,精矿提升泵2台,精尾泵箱提升泵2台,粗精泡沫提升泵2台。
启车时
先从精选车间4A系列浮选机5号开始启动按顺序至6A系列浮选机16号(注:4A系列浮选机1至4号主要看矿石品位,来决定是否启动)。然后启动粗精搅拌及粗选车间的BF4、BFA10、6A系列的浮选机,及6A、BF4、BF10搅拌槽。最后启动球磨机和分级机,当设备运转正常之后启动振筛和给料皮带。(注:当浮选机里面有泡沫的时候应在启动浮选机的时候同时开启水管和刮板)
停车时
先掐料,及停止给矿皮带,待球磨机运转一段时间之后再停球磨机,和分级机以及球磨和分级机的给矿水。然后,看粗选浮选机和搅拌槽里面矿浆,确认后再停粗选部分。最后停精选部分,及泄矿水。
注:上述操作流程都是在正常情况下的启车与停车顺序,遇到突然断电或其他情况而导致的停车,必须拉断电源,保证各部分开关电源处于断开状态,以免突然转车造成不必要的伤害。
球磨、浮选工艺流程图
含铁粉矿球团化制备工艺研究
2019-01-24 09:36:35
近年来,随着钢铁工业的迅速发展和生产规模的不断扩大,在钢铁冶金生产中产生的含铁粉矿也随之迅速增长。主要包括烧结粉尘、高炉粉尘及尘泥、转炉粉尘、电炉粉尘、轧钢皮及尘泥等,这些粉矿的含铁量比较高,是一种可循环再利用的宝贵资源。此外,金属矿在开采过程中也会产生粉矿,对这些含铁粉矿资源的再次利用,具有重要意义,因此有很多球团厂和钢铁企业均对如何利用含铁粉矿进行了深入的研究[1-2]。
在含铁粉矿利用过程中,还存在以下主要问题:①生产出来的球团抗压力太低,满足不了球团进入高炉冶炼的要求。②制备工艺过程中的粘结剂对原材料要求高,含铁矿粉本身来源复杂,严格要求是不可能的,甚至有的粘结剂还要求原料中要加入一定量的含铁90%以上的金属粉才能固化,这就失去了利用矿粉的意义。③球团的固化时间太长,有的需要几十个小时固化时间、或几十天的养护才能产生抗压力,没办法实现批量生产。
本研究拟开发一种简单可靠、适应性广的球团生产工艺,并具有设备简单、投资少、生产成本低、便于操作等优点;要实现这一目标,首先粘结剂的烘干温度要低,加热时间要短,能源消耗要少,不污染环境,所以首先研制了新型粘结剂。已有不少关于球团用粘结剂的研究[3-6],在前人研究的基础上,对粘结剂进行了进一步深入研究,获得了新的无机、有机复合粘结剂,以此为基础,对加热固化制度工艺也进行了研究,并探索了粘结剂的合适加入量及粘结剂对不同矿粉原料的适应性,以获得能用于实际工业生产的含铁粉矿的球团化制备工艺。
一、试验条件与方法
(一)原材料
1、粘结剂,采用自制无机有机复合粘结剂(简称粘结剂)。
2、含铁粉矿,来自攀枝花某企业,其化学组成见表1。(二)试验过程
每次称取含铁粉矿原料500g,试验采用人工配料混合,试样加压成型是在万能压力试验机上进行。加压成型压力为30000N/个,每个球团用料30g,直径为25mm。粉矿加压成型后放在加热炉中进行烘干固结,最后测其径向抗压力。其径向抗压力与实际工业生产中对辊压块法生产的椭圆球团两端点间的力更接近,所以在试验中,都是采用的测试试样的径向抗压力。试验过程如图1所示。
(三)抗压力测试
试样为直径25mm,高20mm的圆柱体,每种条件下制作5个试样进行抗压力测试,去掉最高、最低值,取其余3个值的平均值作为该条件下的抗压力值。
(四)所用仪器与设备
加压设备为YE-30型液压式压力试验机,烘干设备为TMF-4-3型陶瓷纤维高温炉,抗压力检测设备为CMT5105型微机控制电子万能试验机。二、试验结果与分析
(一)加热固化制度对球团抗压力的影响
所用粘结剂要在加热条件下才能固化,因此加热固化制度是球团制备重要的工艺参数之一。通过查阅文献,采用自制的无机有机复合粘结剂,首先在固定12%粘结剂用量的条件下,通过改变加热固化温度,进行试验,其固化温度对球团抗压力影响的试验结果见表2。从表2可见,将试样从室温直接加热到加热固化温度并保温1h的条件下,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力是依次增大的,在500℃时达到最大值。当温度800℃时,径向抗压力反而降低了。所以采用500℃为此工艺较合适的加热温度。通过查阅文献,当球团试样加热到500℃左右时,球团试样中的粘土失去结构水,粘土变成了死粘土,相当于常见的泥通过烧制变成了砖瓦,从而表现出球团抗压力的提高。不仅如此,粘土向死粘土的转化,可使球团在雨水作用的条件下不会散开,而保持其力,有利于球团生产后的储存和运输,这对大批量生产球团的企业非常重要。
试验过程中,发现水分对粘结剂的固化作用产生影响,所以设计了在加热固化过程中的一个除水的过程,在105℃时保温0.5h,以除去试样中的水分(表3)。
从表3可见,在105℃保温0.5h后,球团试样的径向抗压力明显提高。在105℃保温0.5h,可以除去球团试样中的水分,防止了水分对粘结剂的固化作用产生影响,所以抗压力就提高了。综上,加热固化温度从300,400,500℃,变化到800℃的过程中,试样的径向抗压力在500℃时均达到最大值。所以选定的最佳加热固化制度是球团在加热固化过程中先从室温升至105℃,让其在此保温0.5h后,再连续升温到500℃并保温1h。
(二)粘结剂加入量对抗压力的影响
在球团化的制备工艺中,球团抗压力的产生主要来源于粘结剂的固化作用,所以粘结剂的加入量的多少,直接影响到球团整体性能,也是进行工业化生产过程中,生产成本的主要部分。用相同的加热固化工艺,采用不同的粘结剂加入量,进行了试验,试验结果见表4。从表4可见,随着粘结剂加入量的增加,球团试样的径向抗压力会相应提高。当粘结剂用量为12%时径向抗压力过到最大值。继续增加粘结剂的用量,当增加到14%时径向抗压力反而有所降低。在球团中,径向抗压力的产生主来源于粘结剂在加热固化过程中形成的粘结膜。所以当粘结剂用量增加,形成的粘结膜球团的数量也会相应增加,球团的抗压力会提高。但当粘结剂用量达到14%时,粘结剂的量早已达到饱和状态,多的粘结剂无法再继续形成粘结膜,反而增加了球团中的水分,影响了粘结剂的加热固化效果,导致其抗压力下降。在粘结剂的加入量为12%,先在105℃时保温0.5h,再连续升温到500℃并保温1h的条件下,在攀枝花某企业进行了球团中试生产试验,并用所生产的球团进行了转鼓指数测定,发现大部分转鼓指数在67%左右,最高的可达90%。
(三)不同粉矿条件下的抗压力
为了验证此球团化制备工艺的普适性,选用了3种不同的粉矿原料进行试验。①原料1。高铁粉36%,中加粉40%,转炉污泥24%,含铁量50.81%。②原料2。泥矿20%,中加粉30%,高铁粉30%,铁精矿20%,含铁量52.31%。③原料3。泥矿10%,中加粉50%,高铁粉40%,含铁量50.89%。
按粘结剂加入量为12%,烘干制度采用先在105℃时保温0.5h,再连续升温到500℃并保温1h的工艺方案,对以上3种不同的粉矿原料进行试验,结果见表5。从表4可见,3个不同的原料配比,按此工艺,其球团试样的径向抗压力最低为1.4153 kN,达到了使用的要求。该工艺对粉矿原料没有特别的要求,具有普适性,有很广的应用前景。
通过对加热固化制度、粘结剂的加入量对含铁粉矿球团化力的影响试验,找到了一套合适的制备工艺。此制备工艺生产的球团径向抗压力较高,能满足进入高炉冶炼的要求;此制备工艺对含铁粉矿的原料没有严格的要求,具有普适性;在此工艺中,固化时间为2h左右,生产周期短,适合企业实现批量生产;为解决目前球团生产中存在的主要问题奠定了基础。
三、结论
(一)试验研究表明,球团在加热固化过程中,先在105℃时保温0.5h,除去球团中的水分,再连续升温到500℃并保温1h的工艺方案,所生产的成品球团径向抗压力可从1.5731 kN提高到1.9122kN,成品球团还能抗水,便于工厂保存和运输。
(二)当粘结剂的用量在12%时,所制备的球团径向抗压力最大达到1.9122 kN,能满足高炉冶炼的要求。
(三)通过对不同含铁粉矿的试验研究表明,此工艺对粉矿原料没有特别的要求,具有普适性。
参考文献
[1] 甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
[2] 田昊,马晓春.烧结除尘灰混合炼钢污泥喷浆的工艺设计与应用[J].烧结球团,2005(4):34-36.
[3] Eisele T C,Kawatra S K.A review of binders in iron orepelletization[J].Mineral Processing and Extractive Metallurgy Review,2003,24(1):90-98.
[4] 刘新兵,杜烨.含有机粘结剂人工钠化膨润土在球团生产中的应用[J].烧结球团,2003,28(6):47-50.
[5] 李宏煦,姜涛,邱冠周,等.铁矿球团有机粘结剂的分子构型及选择判据[J].中南工业大学学报,2000,31(1):17-20.
[6] 杨永斌.有机粘结剂替代膨润土制备氧化球团[J].中南大学学报:自然科学版,2007,38(5):851-857.
简述钛白粉吨袋拆包机是怎样实现环保无尘的
2019-02-26 11:04:26
钛吨袋拆包机是我公司出产的一种适用于吨袋包装的粉末物料拆袋卸料作业的机械设备。这款设备主动化程度极高,可以有用缓解粉末在拆袋卸料作业时发生的粉尘污染。曩昔职业一般选用人工拆袋卸料的作业方式,不只严重影响了粉末的正常运用,还对出产车间的环境造成了极大的粉尘污染。而我公司研制出产的钛吨袋拆包机能很好的处理这一问题,天然得到了相关职业的广泛运用。
为了可以更好的使相关职业运用钛吨袋拆包机,我公司在该设备的规划制作上特将其规划成手动拆袋和主动拆袋两种作业形式,便利客户对该设备的不同运用需求。仅仅客户在咨询钛吨袋拆包机时,咱们愈加引荐客户选购主动拆袋作业形式的粉末钛吨袋拆包机。
手动拆袋形式下的钛吨袋拆包机,其设备功能、结构等与主动拆袋的钛吨袋拆包机大致相同。仅仅手动形式的钛吨袋拆包机在机箱底部设置有手动解袋的窗口,便利人工解袋,以满意厂商对粉末物料包装袋的重复运用需求。
但经过实际运用可知,粉末这种物料在存储运送过程中简单受潮。当粉末受潮之后会粘附于物料袋表面,待凝结之后便会构成硬块,给物料袋的重复运用造成了必定的影响。因而大部分职业并不会对包装袋有循环运用的需求。但也有一些厂商重视资源运用,经过对粉末加以防潮办法,确保物料不会吸潮粘附的前提下,手动解袋的钛吨袋拆包机便能满意物料包装袋的重复运用需求。
铁精矿球团烧结工艺理论与生产实践
2019-02-14 10:39:49
一、工艺特色 工艺特色如下: (1)从配料至一次混合与传统工艺相同。从一混出来的混合料,悉数或部分进入造球车间进行造球,小球粒度为3~8mm约占80%~90%,小于3mm粒度的小球小于15%.因为混合料构成小球改进了混合料粒度组成,使料层透气性进步,因而能够增产和进步烧结矿质量。 (2)造球车间造好的小球团进入二次混合机,在小球进二混前配入外滚煤粉(一般外配煤粉量占总量的60%~80%),即小球在二次混合机表里滚煤粉,滚好煤粉的小球进烧结机进行布料,因为煤粉裹在球团表面,与空气中氧触摸充沛,焚烧作用好,因而能够大幅度下降固体燃耗。 (3)外配生石灰,即在造球车间造好的小球进二混前,在外配煤粉的一同也配入生石灰,其作用是:榜首,因为生石灰有粘性,有利于煤粉粘结在小球团表面;第二,在二混内可进一步制粒;第三,小球团外滚生石灰,球团表面为高碱度,内核为酸性(对整个小球来讲碱度不变),因为小球表面含CaO高,生成铁酸钙的量添加,即小球与小球之间为铁酸钙粘结,一方面可进步球团烧结矿的强度,另一方面临还原性的改进也有利。 (4)布料设备。球团烧结混合料布到台车上的方法有三种,即宽皮带布料、泥辊反射板布料和多辊布料。 (5)外裹煤粉粒度。球团烧结工艺外滚煤粉粒度与普通烧结出产运用的煤粉粒度相同,即粒度小于3mm者含量占85%以上。 (6)烧结机焚烧前可不设枯燥段。 (7)造球设备可用圆盘造球机也可用圆筒造球机。 二、工艺流程 工艺流程如下: (1)悉数混合料造球。从配料室来的混合料到一次混合机,混合后到圆盘造球机或圆筒混合机构成3~8ram的小球后,进二混外滚燃料和生石灰,然后进烧结机进行烧结,出产出一种以葡萄状为主的球团烧结矿。该工艺即有球团工艺的特色,也有烧结工艺的长处,故叫“球团烧结工艺”。其工艺流程如图1所示。
[next]
(2)部分混合料造球(一个二混机计划)。从一混出来的1/2混合料进入造球车间构成3~8mm的小球为90%左右,该混合料小球再进入二次混合机,别的从一混出来的其他1/2混合料直接进入二混机。上述两种混合料在二混机表里滚煤粉(由现煤粉破碎室破碎后的煤粉粒度小于3mm者含量占85%以上)后,进入烧结机烧结,如图2所示。 (3)部分混合料造球(两个二混机计划)。图3所示为某厂一个二混机混合才能不行的条件下新建一台Ф3m×12m二次混合机,与原二次混合机并排的计划。造球室前面部分与前计划相同,造球室出来的3~8mm的小球直接进入新二混机外滚煤粉(不进现二混机);而从一混出来的其他1/2混合料则直接进入原二次混合机外滚煤粉(煤粉由现煤粉破碎室破碎后粒度小于3mm者含量占85%以上)。然后重新二混机和原二混机出来的混合料一同进入烧结机烧结,如图3所示。
[next]
三、各种因素对烧结目标的影响 咱们运用邯邢精矿粉(精矿率100%,R=2.0)进行了球团烧结工艺烧结杯试验和半工业试验,对影响烧结目标的各主要因素进行了研讨。 (1)煤粉粒度的影响。在内配煤量为0.5%,外配煤量为2.8%条件下(其他条件与表1中15号、16号相同),改动煤粉的粒度,分别为小于1mm、2mm、3mm,做了一系列的试验。 从试验成果能够看出,外滚煤粉小于1mm、小于2mm、小于3mm三种粒度对烧结目标影响不大,因而,工业化出产中选用小于3mm(85%)的煤粉粒度,完全能够满意出产要求。 (2)内配煤量的影响。本次试验球团内部配煤量分别为0%、0.5%、0.8%. 由试验成果能够看出,内配煤量为0和0.8两个条件的球团烧结矿的成品率、运用系数和转鼓强度均低于内配0.5%煤的球团烧结矿的相应的目标,由此可见小球内部配入0.5%的煤粉较为适合。 (3)料层厚度的影响。本次试验料层厚度共做了三个条件,即500mm、550mm、600mm三个料层厚度。 料层厚度为500mm、550mm时,作用较好,运用系数都到达1.5t/(m2•h)以上,其他各项目标也较好。当料层厚度为600mm时,仅仅运用系数有所下降,其他烧结目标也较好。 四、生球的制粒作用 (1)造球前的粒度组成。以某厂为例,出一次混合机混合猜中粒度小于3mm者含量占45%以上。 (2)造球后的粒度组成。经一次混合后混合料进入造球盘进行造球,出造球盘后混合猜中粒度大于3mm者含量到达89.09%. (3)进二次混合机外滚燃料后的粒度组成。上面出造球室的混合猜中粒度大于3mm者含量到达87%以上,此混合料进入二混外滚燃料后,混合猜中粒度大于3mm者含量略有添加,到达89.42%. 五、球团烧结工艺的布料技能 球团烧结工艺布料方法有三种,榜首种为泥辊反射板布料,第二种为多辊布料,第三种为宽皮带布料。 (1)泥辊反射板布料。此种布料方法适宜于小型烧结机,关键是调整好反射板的长度和倾角,当混合料落到反射板上时,大球翻滚力强,落在料层下部,次大球布在料层中部,细粉布在料层表面,构成天然偏析。 (2)多辊布料。混合料从泥辊下来后落在多辊布料器上,发生偏析,大球落在料层底部,次大球布在料层中部,细粉布在料层表面,构成天然偏析。 (3)宽皮带布料。此种布料适宜大型烧结机,在烧结机焚烧器上头设有矿槽,因为大型烧结机产值高,假如选用泥辊反射板布料,烧结机焚烧器上头必须有矿槽,矿槽太小对布料起不到缓冲作用,矿槽大则矿槽内混合料几十吨,很简单把造好的小球破坏掉,因而选用宽皮带布料。现在一些供应商运用作用很好。 六、造球设备的完善 (一)造球盘类型 现在国内运用的造球盘(包含氧化球团工厂及水泥厂运用的造球盘)有三种类型,即Ф=4200mm、Ф=5500mm和Ф=6000mm圆盘造球机,这是国内定型产品。从现在看, Ф=4200mm圆盘造球机因为设备小,造球才能小,装置台数多,平常修理量大,比较之下,Ф=6000mm圆盘造球机造球才能大(是前者的3倍),修理量小,因而, Ф=4200mm造球盘有逐步被Ф=6000mm造球盘替代的趋势。 (二)刮刀方法 依据刮刀方法,造球盘可分为固定刮刀造球盘和旋转刮刀造球盘。 1.固定刮刀造球盘 (1)造球盘刮刀装置方位。刮刀固定装置在造球盘上方水平桁架上,边刮刀方位在造球盘榜首象限与造球盘盘边的夹角不大于30°;中心刮刀装置在第三和第四象限交界处。 (2)刮刀原料。造球盘的刮刀原料是一个老大难问题,主要是选用一般原料制做的刮刀,耐磨功能较差,接连运用几天就被磨下去许多而导致盘面粘结料上涨,这样不只加速了刮刀的磨损而且也加剧了造球盘的传动负荷。经过研讨和出产实践证明,运用高铬一钼耐磨铸铁刮刀作用较好。这种原猜中的碳主要以碳化物的方法散布于金属基体中,具有杰出的抗磨耐磨损功能。实践证明高铬) 钼耐磨铸铁的运用寿命远远高于中锰钢板的运用寿命,大约高出6~8倍。虽然高铬) 钼耐磨铸铁的制构本钱较高,但从性价比归纳来比较,实际上本钱下降。而且因为运用寿命的延伸,削减了刮刀的替换次数,削减了操作人员整理盘面积料的劳作,然后进步了造球盘的作业率。[next] (3)造球盘盘面原料。造球盘的盘面因为要接受混合料的剧烈冲刷,作为普通钢板制造的盘面很快就会被磨穿。为了避免盘面被磨穿就需要挑选耐磨的盘面原料,人们从前运用过多种原料,其间橡胶耐磨陶瓷衬板造价高但耐磨功能好,缺陷是不能耐受稍高的温度,例如在检修造球盘接近衬板处动用电焊时会引起该处衬板的掉落,而再次补装时很难再将该处补装健壮,还会引起周围衬板的脱落。 以后又接连运用了超高分子衬板、瓷砖衬板和灰绿岩铸石等等。经过多种衬板原料的运用,咱们以为灰绿岩铸石比较好,因为其一是本钱较低、装置便利,其二是耐磨性好,而且冲突力适中,有利于混合料的翻滚生长,一般寿命为3个月以上。但要留意该种原料比较脆,在检修造球盘或整理盘面积料时不能用金属物处以过大力的碰击,避免损坏灰绿岩铸石衬板。 2.旋转刮刀造球盘 该种造球盘机械传动结构是引入国外技能,刮刀为圆盘旋转刮刀(旋转刀盘直径Ф1100mm,转速6r/min),能够有效地对整个圆盘盘面进行刮料,避免料面上涨,坚持盘面的平坦,进步造球盘的作业功率。 (1)造球盘盘面原料。现在,可选用的较为适合的材料有如下两种:1)钢板网底衬。在整个造球盘的盘面铺焊了5mm厚的钢板网,钢板网网孔的尺度为40mm×60mm.因为有这些网孔使混合料在整个钢板网上粘结固定上一层混合料,成为混合料构成的底衬,在造球盘运转出产中混合料之间相互冲突,能够说造球盘的盘面不会被磨损。钢板网作为造球盘的底衬造价不高而且装置简洁,若损坏后修理也很便利。2)灰绿岩铸石底衬。前面在固定方法的造球盘底衬中现已谈到,运用灰绿岩铸石底衬比较适合,旋转刮刀造球盘也可运用该种底衬,这样能够削减对刮刀的磨损。 (2)刮刀原料。因为造球盘的盘面运用了钢板网作为底衬,混合料会很简单粘结上涨,这就需要用刮刀来刮除,避免上涨。本来刮刀运用普通原料,而且直径仅为28mm,磨损很严重,跟着刮刀杆的磨损,混合料料面也逐步上涨,接连运转几天料面就会涨到旋转刀盘盘面。不只整理盘面的作业很深重,也大大下降了造球盘的作业率。为此,旋转刮刀的刮刀杆选用YG6和YG8硬质合金制造,这种材料通常是机械加工的刃具,硬度很高、耐磨性好。在高炉喷煤中的运用实践证明硬质合金的运用寿命远远高于其他原料,例如,在高炉喷煤的煤粉运送管路顶用40Cr淬火钢制造的衬套运用不到10天就被磨穿,而用YG8硬质合金制造的衬套能够运用两年以上。用YG6或YG8硬质合金制造的刮刀杆运用寿命能够到达两个月以上。在尽量延伸刮刀杆运用寿命的一同也尽量下降制构本钱,依据刮刀杆在混合猜中受磨损的程度,在刮刀杆下部埋入混合料层的部分运用铜焊焊接壁厚为6mm、5mm、4mm三段不同厚度的硬质合金套管,总长度为105mm。刮刀杆焊接在旋转刀盘上,待硬质合金部分悉数被磨掉之后整理盘面积料,再焊接新的刮刀杆。刮刀杆的结构及尺度图略。 (三)雾化水喷头 在造球盘内混合料成球的机理是往混合料表面加水,混合料的表面被水充沛均匀地潮湿,经过水的毛细粘接力而使造球盘内进行翻滚运动的混合料粘接在一同,构成不同粒度级的小球。为了添加造球盘的成球率,每个造球盘装了两个雾化水喷头。因为新、老造球盘的下料点不同,装置方位有所区别。一般是下料点区域放置一个,成球区域放置一个。 雾化水喷头的原料悉数选用1CRl8Ni9Ti不锈钢制造,具有相当好的抗氧化锈蚀才能。其结构原理属螺旋型喷嘴的一种,主要由切线喷嘴壳、堵头和通针组成。水自圆形喷嘴壳的切线方向接入,经过加压和一段旋流,然后进入渐缩段,旋流速度逐步加速,然后经过喷口喷出雾状水,雾化水的雾化散射角为50°~60°.现在Ф=4200造球盘运用的雾化水喷头的喷水量当水压在0.2MPa左右时,每个雾化水喷头的喷水量为150~180kg/h.这种雾化水喷头的特色是装有一根通针,能够在不停水的情况下常常疏通喷口,避免阻塞,咱们经过一年来的出产实践,至今仍在正常运用。[next] (四)外配煤体系 二次配加燃料,便是在配料室配加一部分燃料进入一次混合机混合后进行造球,造好球的混合料进二次混合机前外配燃料,内、外配加燃料的份额是(30%~50%):(70%~50%) 外配煤称量能够选用核子秤或电子秤,某厂外配煤称量选用了以137(活度值为0.2775×1010贝可)为放射源的核子秤,经过一年多的出产运用标明,如保护妥当核子秤是比较经用的。外配煤的计量配加是经过装置在混合料皮带上的核子秤把混合料过料量的称量信号输入计算机,由计算机按设定好的配煤份额指定配煤圆盘给料机以相应的转速往配煤皮带上给煤,然后经过装置在配煤皮带上的核子秤对配煤量核准反馈给计算机进行调整。近几年出产实践标明,选用外配煤技能后,每吨烧结矿固体燃耗与未外配煤比较,一般可节省煤耗10kg/t. (五)蒸汽预热混合料 烧结混合料的温度凹凸对烧结出产的影响是很大的,假如混合料的温度低于露点,则因为水蒸气在下部料层混合料颗粒表面的冷凝作用,使下部料层水分过度增大,影响烧结料层的透气性,不利于烧结料层的加厚,进而影响烧结产值的进步。为此,在二次混合机中装置了蒸汽喷嘴来加热混合料,对经过造球的混合料,虽然混合猜中加有热返矿进步了料温,但因为造球盘这一段露天作业,温度下降,因而要通蒸汽进一步进步混合料温度。蒸汽管由混合机的进口端刺进,沿混合机的轴向上并排装置5个蒸汽喷嘴,喷嘴的前端距混合机内混合料抛落料面600~800mm.经过蒸汽预热能够使造过球的混合料温度从45℃进步到近60℃. 蒸汽预热混合料的蒸汽压力约为0.3kPa,蒸汽用量为每吨烧结矿4~5kg. 七、外配生石灰技能 (一)外配生石灰的长处 在球团烧结工艺基础上,即一次混合机出来的混合料进造球车间造球后,进二混前外配煤,一同外配生石灰,长处是:榜首,外配生石灰有利于改进制粒作用,可进步产值;第二,小球表面裹一层生石灰,有利于煤粉更多地裹在小球团表面;第三,小球团表面CaO含量高,有利于铁酸钙的生成,即小球表面为高碱度,铁酸钙含量高(内部为低碱度,混合料总碱度不变),小球与小球之间被铁酸钙粘结起来,因为铁酸钙强度高,还原性好,有利于球团烧结矿的强度进步和还原性进步,对高炉冶炼有利。 (二)外配生石灰的最佳条件 经过对包钢公司烧结混合料(R=1.2)造球后外配生石灰的烧结杯试验,能够看出,外配生石灰的作用是比较显着的,其最佳条件如下: (1)混合料造球后,固定外配生石灰量为1.5%改变外配煤份额。包钢烧结混合料造球后,其间毕石灰配比为3%,外配1.5%(表里各占50%),改变外配煤粉的份额(煤粉配比为5%)。 当固定生石灰外配份额为1.5%时,外配煤粉2.5%(占总量50%)烧结目标较好。而只外配生石灰不过配煤与煤粉和生石灰均不过配的烧结目标大体附近。 (2)混合料造球后,固定外配煤粉份额,改变外配生石灰份额。包钢烧结混合料造球后,固定外配煤份额2.5%(外配煤总量5%),改变生石灰份额为1%、1.5%、2%(生石灰总配比3%)。 当固定外配煤粉2.5%时,外配生石灰1.0%、1.5%和2.0%三个条件中,后两者烧结目标较好,但外配生石灰1.5%与外配生石灰2.0%比较,后两者大体附近。 从上面两组试验成果可见,球团烧结工艺在外配煤条件下,外配生石灰对烧结目标的改进是显着的。外配生石灰份额在总配比的50%左右即可。
球墨铸铁与球化剂的现状和发展
2019-01-21 18:04:33
球墨铸铁问世至今已有52年,其发展迅速之快令人惊讶,即使在经济不景气的情况下,球铁仍然有所发展,有人称球墨铸铁为不适当退却中的胜利者,指出:球墨铸铁由于其高强度、高韧性和低价格,所以在材料市场上仍占有重要的地位,尽管几年来钢铁铸造总产量有所下降,但球铁产量并未下降,奥——贝球铁的出现增强了球铁的竞争地位。 1.球铁的生产和研究现状 1.1常规球铁 目前常规球铁——即以铁素体和珠光体为基体的球铁仍占球铁产量中的绝大部分比例,因此注意提高常规球铁的性能和质量,在保持球铁的竞争地位中起了重要的作用。 1.1.1对影响球铁质量的因素加强控制 球铁的组织与性能取决于铸铁的成份和结晶条件以及所用球化剂的质量,研究认为为了确保球铁的机械性能,必须针对铸件具体壁厚、浇注温度、所用球化剂、球化处理工艺、冷却参数的优化以及有效的排渣措施进行严格控制,而适当的降低碳当量,合金化和热处理是改善球铁的有效措施。 1.1.2有效控制铁素体球铁和球光体球铁的生产[2] 控制球铁基体的主要因素有铸铁的成份、所用球化剂、孕育剂的类型,加入方法以及冷却条件等。 铸态铁素体球铁的成份控制 微过共晶成份,其中碳稍高,但不出现石墨漂浮,含硅稍低,孕育剂硅量应少于3%,锰越低越好,应使Mn<0.04%,硫、磷应低,使S≤0.02%、 P≤0.02%,这是因为硅可改善球铁组织和相应的塑性,Si=3.0~3.5%可得到全部铁素体组织。有研究指出,Si=2.6~2.8%时,铸铁具有最高的延伸率和冲击韧性,但硅在铁中的显微偏析随着含磷量的增加,这种偏析越严重,并对机械性能有不良影响,特别是当温度低于零度时影响更大,而含硫低可以选用低镁低稀土球化剂球化,并减少“黑斑”缺陷的产生,而“黑斑”主要是镁、铈硫化物和氧化物的聚集物,此外也要用低硅球化剂以保证可以进行多次孕育。 对珠光体球铁而言,在生产时铸铁成份中锰可提高至0.8~1.0%,有些铸件如果是用作耐磨性曲轴时,锰可提高至1.2~1.35%,生产铸态珠光体元素铜。加入量大于1.8%时,它阻碍石墨球化,但促进基体完全珠光体化,一般球铁中铜含量应小于1.5%,锡是强烈的珠光体化元素,其对硬度的影响大于铜和锰,但Sn≥1.0%时使石墨畸变,因此其含量应限制在0.08%以下。 1.1.3 稀土在球铁中的作用 稀土能促进镁合金的球化效果(球化率和球的圆整度),它对壁厚球铁件中防止球状石墨畸变的效果受到了重视,这也是国内外球化剂中都包含稀土的主要原因之一。 在铸件中有些元素能破坏和阻碍石墨球化,这些元素即所谓的球化干扰元素,干扰元素分为两类,一是消耗球化元素型干扰元素,它们与镁、稀土生成MgS、MgO、MgSe、RE2O3、RE2S3、RE2Te3等,使球化元素降低从而破坏了球状石墨形成;另一类是晶间偏析型干扰元素,包括锡、锑、砷、铜、钛、铝等在共晶结晶时,这些元素富集在晶界,促进使碳在共晶后期形成畸形的枝晶状石墨 ,球化干扰元素原子量越大,其干扰作用越强,现在许多研究都已找到了干扰元素在铸铁中的临界含量,当这些元素含量小于临界含量时,并不能形成畸变石墨。 [next]在有干扰元素的铸铁中,加入稀土可消除其干扰作用,有研究报告指出在铸铁中干扰元素之和应小于0.10%即z=Ti+Cr+Sb+V+As+Pb+Zn+…<0.10% 有研究指出,中和铁水中的Al、Sb、TI、Pb、Bi、等只要分别加入0.005~0.04%Ce即可,例如,中和Ti、Pb、Sb、Al等只要分别加入0.005~0.007%、0.014%、0.15%和0.008%的Ce即可。 干扰元素在铸件壁厚,冷却速度慢的情况下破坏作用更大。 干扰元素对球铁基体也有影响,Te、B强烈促进白口形成,Cr、As、Sn、Sb、Pb、Bi稳定珠光体,Al、Zr促进铁素体。 值得注意的是,目前正在发展一些球化元素与干扰元素复合球化剂,以改善大断面球铁的处理效果及石墨球的圆整度。 1.1. 4球铁检测加强 球铁检测是保证其质量的重要措施,目前正在研究发展线分析,即产品在生产过程中进行分析,以确定其质量,已有不少单位在大批量生产条件下利用超声波对铸件质量进行分析。 在利用超声波测定铸铁组织时,片状石墨的声速为4500m/s、蠕墨铸铁为5400m/s、球墨铸铁5600m/s,此外在铸铁中高频衰减率的变化也可判断铸铁类型,球铁中心频率为5MHz而片状铸铁仅为1.5MHz。目前还有单位正在用超声波作球化级别的测定,已可测定合格的球化级别和不合格的产品(3级和4级之间),但还不能进行更细分级测定,此方法正在完善中。 1.2奥——贝球铁 20世纪70年代,荷兰、中国、美国彼此独立地,几乎是同时宣布各自研究成功了贝氏体球铁,中国研究成功的是下贝氏体,美国为下贝氏体+马氏体,荷兰为上贝氏体+奥氏体,荷兰成果最具代表性,即现在所称的奥——贝球铁。1977年M.Jokason宣布荷兰的Kgmi Kgmmene公司所属的karkkila铸造厂开发了一种特性优异的新型铸铁,即奥——贝球铁,并在1978年召开第45届国际年会上宣读了有关论文,此一发明在美、英、法、加等13个国家申请了专利(美国专利号:3860457,荷兰专利1996/72,原西德专利2852870),引起了各国重视,被誉为近几十年来铸铁冶金中的重大成就之一。 奥——贝球铁兼备高强度、高韧性和高耐磨性。如英国的标准有NE-GJS-800-8,EN-GJS-1000-5,EN-GJS-1400-1。 奥——贝球铁成份与常规球铁成份相同,球化剂和处理工艺也相同,其差别是必须进行等温淬火处理,等温淬火温度不同时可分别获得上贝氏体+奥氏体,下贝氏+奥氏体,下贝氏+马氏体等不同基体。这种铸铁成本高、生产难度较大,目前应用面虽在不断扩大,但其总量并不大,被人们称之为21世纪材料。 2.球化剂的现状 球化剂是目前获得球铁的主要手段之一,在志包钢稀土一厂共同完成国家攻关课题“稀土三剂系列化”时,我校课题组对世界上100多个球化剂生产厂,国内主要合金生产进行调研,取得了英、美、法、德、日、前苏联、印度等十几个国家50多家合金生产厂的产品样本及国内主要球化剂生产厂的产品样本,为对比国内外球化剂性能及今后球化剂生产改进提供了依据。 [next]2.1球化剂的类型 按生产方式分有下述几种 (1)球化剂的类型 包括镁硅系合金、稀土镁硅系合金、钙系合金(日本用的较多),镍镁系合金、纯镁合金、稀土合金。 上述合金中目前世界上用的最为广泛的是稀土镁硅铁合金,但中国合金中RE/Mg的比值范围大(0.5~2.2),国外的合金RE/Mg的比值范围小(0.1~0.3)。中国合金中稀土大于等于镁含量的占多数,小于镁含量的占少数,而国外(除前苏联一些合金外)球化剂合金中的稀土含量几乎都小于镁含量,因此稀土三剂系列化课题组建议除保留FeSlMg8E18外(此合金是效果优良的蠕化剂),其它全部球化剂中RE/Mg≤1,随后修订的国家标准中采纳了这个建议。 钙镁球化剂主要是日本生产和应用,如日本信越(SHIN—ETSU)生产的钙系合金NC5、NCl0、NCl5、NC20、NC25中镁含量从4~28%变动,但钙含量变化较小,其变化范围为20~31%;此类合金白口倾向小,但要求处理温度高,处理后渣量大。 镍镁合金在美洲、欧洲均有应用,美国国际镍公司生产的镍镁合金最高达82~85%,其中Mg、Ca分别为13~16,及20,镍最低的57~61%(其中Mg4.0~4.5%,Ca<2.5,Fe32~36)。德国金属化学公司生产的镍镁合金中Ni47~51%,Mgl5~17%,C1.0%Si28~32%,RE1.0%余Fe。这些合金的优点是比重大,反映平稳,镍可起合金化作用,其特点是价格贵,这种合金在中国基本没有应用。 镍硅系合金目前在中国基本上已不用。纯镁合金处理时要用专用的压力加镁包,镁的吸收率高,但处理安全措施要极为严格,生产中应用比例较小。 稀土是发明球铁时使用的球化剂,它的发现推进了球铁工业应用的进程。但价格高,白口倾向大,过量会使石墨变态,现在己不作为球化剂单独使用,仅作为辅助球化元素。 (2)压块状球化剂 用镁粉和铁粉及所设计的硅含量直接加压成型,这种球化剂中含硅很低,通常称为低硅压块状球化剂,因而为后续的孕育提供了大的余地,有利于生产铸态球铁,但这种合金易漂浮,处理效果波动大,处理时最好跟块状球化剂混合使用。 (3)包芯线型球化剂 将镁粉、铁粉包覆在薄钢板或钢板中,将其快速送入铁水中达到球化目的,这种球化剂较贵,且设备投资大,但处理时合金吸收率高,因此处理球铁的总成本几乎没有提高。 (4)粉状球化剂 这种球化剂是俄罗斯的一个专利,使用时将镁粉与抑制剂混合放入包内,并使铁水从合金表面上流过,逐层与合金反映达到球化效果,这种专门工艺称之为MC。 2.2球化剂的应用 目前国内外在球铁生产中主要应用火法冶炼的合金,压块球化剂、包芯线球化剂、粉状球化剂应用的很少,火法冶炼的球化剂在生产中应用占90%以上,目前这类合金中增加Ba、Ca、Cu、Ni等以达到控制基体目的,对合金中的氧化镁含量已有限量指标。现对中国33个典型工厂和美国77个工厂生产球铁工厂进行对比分析。 [next] 中国33个工厂的基本情况是:33个工厂总计有36个熔炉,其中电炉(中频、工频、电弧炉)9个占25%,冲天炉22个占61%,冲天炉一电炉双联熔炼厂4个占11%,高炉1个占3%,球铁处理温度大于1500℃,4个占11%,1450~1500℃,20个占56%,1350~1400℃,6个占16.7%,1300~1350℃,2个占5.6%;大于1270℃1个占2.7%;铁水含硫量小于等于0.03%占20%;处理方法中冲入法占94%,喷吹法占3%,压力加镁法3%,用量最大的6#合金Mg8RE8占46%,其次为Mg8RE5占37%,Mg9RE5占11%。 美国77个工厂的基本情况是: 熔化设备冲天炉占30%,感应电炉占63%,球化处理温度1482~1538℃占75%;原铁水在球化处理前有50%工厂采用预脱硫工艺,有90%的工厂S小于0.025%,球化处理方法中在美国大工厂中冲入法占36%,而小厂(小于200吨/周)冲入法仅占22%,压入法、多孔塞法、型内处理法、Tundish盖包法、压力加镁法则占绝大部分比重,使用的球化剂中含镁大于%的占8.2%Mg4~6%占63.3,含镁小于4%占16.4%纯镁占5%,其它的镁合金占8.2%。 资料表明中国生产球铁方面还有不小的差距,美国生产的电炉可保证球化处理所需要的高温,一般经预脱硫,含硫量低,质量要优于我国处理球铁的质量,因此处理球铁可用低镁、低稀土球化剂,而且质量控制也严格,包括使用衰退时间控制器。 我国从90年到现在球化剂生产已有了很大变化,稀土镁合金国家标准经过修订,对合金中的RE作了重大调整,除保留Mg8RE18以外,其它合金中Mg/Re均大于1,工厂使用的合金中稀土量有所下降,Mg8RE5—7的合金应用大量增加,电炉也增加了不少,但原铁水中的含硫量变化不大,预脱硫工艺未有效地推广,因此我国球化剂中Mg、BE仍处在较高的水平上,新的球化处理工艺在我国推广不多,如在美国占有很大比例的Tundish盖包法在我国几乎还未得到应用,这些都是我国球铁生产厂待解决的问题。 2.3球化剂在使用中的问题及质量因素控制指标 影响球化剂质量的因素有:成分、粒度、形状、密度、MgO含且等。 这里仅就火法冶炼生产的球化剂分析,例举不少工厂使用中反映的问题: (1)球化剂成分不准。 (2)球化剂粉化合金粒度不合要求。 (3)球化剂密度波动大、有些球化剂上浮快,反应过于激烈,安全无保证。 (4)MgO含量过高,球化处理不良,球化剂加入量过大。 (5)球化处理后衰退快。 (6)球化后白口倾向大。 要解决上述问题,应从两方面入手: 一是合金生产厂提供质量合格的产品。首先要完善氧化镁分析问题,其次严格控制原材料,控制促进合金粉化的元素和干扰元素,加强管理,第三要严格执行准确的冶炼工艺,控制好影响球化剂质量的主要指标,第四是提供用户所要求的粒度。 [next]另一方面对生产的工人进行培训,让它们懂得合金特性及准确的使用方法。生产中的问题与生产工人素质直接相关,有些工人只是教什么做什么,不能举一反三,这是不行的。需要合金生产厂家和使用厂家的配合,普及提高对球铁的认识和生产技术水平,这样才能使我国球铁生产保持良好的发展势头。 3.计算机在球铁生产中的应用 球铁由于其糊状凝固的特征决定所生产的铸铁由于补缩不良经常产生缩孔、缩松等缺陷,为了能在铸件生产以前预测这些缺陷情况,早在印年代国内外就开展了铸造过程数值模拟.铸造过程数值模拟是使用数值模拟技术,在计算机虚拟的环境下模拟实际铸件形成过程,包括金属液体的充型过程、冷却凝固过程、应力形成过程、判断成型过程中主要因素的影响程度,预测组织、性能和可能出现的缺陷,为优化工艺减少废品提供依据。 1962年丹麦的Forsund第一个采用电子计算机模拟铸件的凝固过程,此后美国、英国、德国、日本、法国等相继开展了这方面的研究。我国于70年代末开始,大连理工大学、沈阳铸造研究所率先在我国开展了这一技术的研究,并分别于1980年发表了研究报告(郭可韧等,大型铸件凝固过程的数字模拟,大连工学院学报,1980(2)1—16;沈阳铸造研究所,铸件凝固热场电子计算机模拟,铸造,1980(1)14—22,此后在我国高等院校投入大量人力开展了这项研究,在“六五”、“七五”期间国家攻关项目中部有计算机在铸造中应用的攻关项目,“六五”的项目为“大型铸钢件凝固控制”、“七五”项目为“大型铸钢件铸造工艺CAD”,组织产、学、研联合攻关,大大推动了此项技术在我国的发展,目前清华大学、华中理工大学已分别能提供FT—Star和华铸CAE—Inte CAST4.0商品化学的软件并在三明重型机器有限公司等单位应用,获得了良好的效果。 计算机数值模拟由前处理、中间计算和后处理三部分组成,包括几何模型的建立,格点划分,求解条件(初始条件和边界条件)的确定,数值计算,计算结果的处理及图形显示。其所用的数值模拟的基本方法主要是有限差分法,有限元法和边界元法。目前铸造中应用的较多的领域是: 1)凝固过程数值模拟,主要进行铸造过程的传热分析。包括数值计算方法的选择,潜热处理、缩孔缩捡预测判别,铸件、铸型界面传热问题处理。 2)流动场数值模拟,涉及动量、能量与质量传递,其难度较大。使用的数值求解技术有MAC 法、SAMC法,SOLA—AOF法以及SOLA一—MAC法。 3)铸造应力模拟,此项研究开展较晚,主要进行弹塑性状态应力分祈,目前有Heyn模型,弹塑性模型,Perzyna模型,统一内变量模型等。 4)组织模拟,目前尚处起步阶段。分宏观、中观和微观模拟。能计算形核数,分析初晶类型,枝晶生长速度,模拟组织转变,预测机械性能。目前有确定性模型,Monte、Cellular、Automaton等统计法模型、相场模型等。 计算机及其应用是目前迅速发展的技术领域,铸造作为重要的工业领域之一,理应加强投入。研究开发计算机在铸造研究及生产领域的应用,彻底改变过去那种“睁眼造型,闭眼浇注”的状态,计算机的应用也必将会促进球墨铸铁的应用和发展。