您所在的位置: 上海有色 > 有色金属产品库 > 气动摩擦熔接打包机 > 气动摩擦熔接打包机百科

气动摩擦熔接打包机百科

废铜打包机

2017-06-06 17:50:13

废铜打包机可将各种 金属 边角料(钢刨花、废钢、废铝、废铜、废不锈钢以及报废汽车废料等)挤压成长方体,八角形体,圆柱体等各种形状的合格炉料,既可降低运输和冶炼成本,又可提高投炉速度。   废铜打包机特点:1、结构简单耐用,操作方便, 价格 实惠,低投入高回报;2、所有机型均采用液压驱动(或柴油驱动);3、机体出料形式可选择翻包,推包或人工取包等不同方式;4、安装简便,无需底脚固定,在无电源的地方,可采用柴油机作动力;5、挤压力从63吨至400吨有十个等级,供用户选择,生产效率从5吨/班至50吨/班;6、压缩室尺寸和包块形状尺寸及机型尺寸可根据用户要求设计定制。 打包机的工作原理:打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。    打包机的工作流程:带子送到位→收到捆扎信号→制动器放开,主电机启动(1)→右顶刀上升,顶住右带于滑板处(2)→“T”型导板后退(3)→接近开关感应到退带探头(4)→主电机停转,制动器吸合(5)→打包机退带电机转动,退带0.35秒(6)→带子收紧捆在物体上(7)→主电机二次启动,制动器吸合(8)→大摆杆二次拉带,收紧带子(9)→左顶体上升,压紧下层带子(10)→加热片伸进两带子中间(11)→中顶刀上升,切断带子(12)→中顶刀下降(13)→中顶刀再次上升,使两带子牢固粘合(14)→中顶刀下降,左右顶刀同时下降(15)→加热片复位(16)→滑板后退(17)→“T”型导板复位(18)→接近开关感应到送带探头(19)→送带电机启动,带动带子送带(20)→大摆杆复位(21)→带子到位,带头顶到“T”型导板上(22)→接近开关感应到双探头(23)→主电机停转,刹车吸合(24)→打包机完成一个工作循环。    打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。    了解更多有关废铜打包机的信息,请关注上海 有色 网。 

废金属打包机

2017-06-06 17:50:12

废 金属 打包机是什么?废 金属 打包机:主要应用于回收加工 行业 及 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等 金属 原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。该系列设备有以下特点:   1. 均采用液压驱动,工作平稳,安全可靠;   2. 采用手动或PLC自动控制的操作模式;  3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;   4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。   废 金属 打包机技术参数:   电源,功率: 380V/50HZ 750W/5A   打包速度: ≤2.5秒/道   台面高度: 750mm   框架尺寸: 宽800mm*高度根据需要定   捆扎形式: 平行1~多道,方式有点动、手动、连打、球开关、脚踏开关   适用包带: 厚(0.55~1.2)mm*宽(9~15)mm   电器配置: LG“PLC”控制,法国“TE”,日本”OMRON“,”ZIK“电器适合常规物体捆包废 金属 打包机发展趋势(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。   (2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。   (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。   (4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。用途:适用于炼钢厂,回收加工 行业 及 有色 、黑 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花、废铜、废铝等挤压成长方体、圆柱体、八角形体等各种形状的合格炉料,以此降低运输和冶炼成品。更多有关废 金属 打包机请详见于上海 有色 网

废金属打包机

2017-06-06 17:50:13

废 金属 打包机主要应用于回收加工 行业 及 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等 金属 原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。    该系列设备有以下特点:1. 均采用液压驱动,工作平稳,安全可靠;2. 采用手动或PLC自动控制的操作模式;3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。    打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包机(高台标准型)可以实现自动打包,但台面无动力,需要人工推一下,包装物品才能通过打包机。该打包机的原理是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。捆扎机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。捆扎机 价格 :全自动捆扎机 价格 或全自动捆扎机报价是半自动设备的两倍多。    废 金属 打包机发展趋势:(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。(2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。(4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。    了解更多有关废 金属 打包机的信息,请关注上海 有色 网。 

废铝打包机

2017-06-06 17:49:58

废铝打包机又称:金属打包机;打包机;废钢打包机;废铁打包机;废铝打包机;废铜打包机;生铁打包机;废金属打包机;液压打包机;金属屑打包机;钢刨花打包机;铁屑打包机;废铁压块机。适用于炼钢厂,回收加工行业及有色、黑色金属冶炼行业。可将各种金属边角料、钢刨花、废钢、废铝、废铜等挤压成长方形、圆柱体、八角形体等各种形状的合格炉料,以降低运输和冶炬成本。便于储藏、运输及回炉再利用。废铝打包机该系列设备有以下特点: 1. 均采用液压驱动,工作平稳,安全可靠;  2. 采用手动或PLC自动控制的操作模式;   3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;   4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。  产品规格和种类:金属打包机(废铝打包机)有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。  废铝打包机产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。

废铜打包机

2017-06-06 17:49:53

废铜打包机,主要应用于回收加工行业及金属冶炼行业。可将各种金属边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等金属原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。1. 均采用液压驱动,工作平稳,安全可靠;  2. 采用手动或PLC自动控制的操作模式;  3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;  4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。  产品规格和种类:金属打包机有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。  产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。废铜打包机是打包机新型先进的气动包装机械。主要用于钢铁企业和有色金属企业捆扎各种小规格的管材、板材、型材等产品的包装,还适于用木箱包装各种产品的捆扎。   但是由于在使用中零件的磨损,不良的润滑,会引起零件的损坏,可能扩大故障和事故的发生,因此迅速地发现故障、排除故障十分重要。不会因为一点小故障而求助制造厂,从而赢得宝贵的时间和金钱.容易出现故障的地方和维修方法   故障:切不断钢带  原因:1)切刀磨损或故障  维修方法:检查切刀或切刀架是否磨损或故障,如磨损严重应更换  2)气压降低  维修方法:检查工作压力是否正常;  切断钢带力来自封锁气缸参见故障现象;  检查封锁操作  故障:锁扣夹口承受的拉力不够  原因:卡紧块联接孔或联接销磨损  维修方法:在槽深度浅时检查这些零件,必要时更换废铜打包机,是废铜打包的好帮手。

铝锭打包

2017-06-06 17:49:56

铝锭打包是投资者们很关心的问题,让我们对它进行下阐述。PET塑钢带-铝锭打包专用当 前 价: 15000 元规格型号: 2512发 货 量: 1000 发布时间: 2010年6月7日有效期至: 60天使用钢带打包铝锭的传统方式已经日渐不适用于当今的工业产品包装,钢带因其自身存在成本高、易生锈、易返松、打包操作不方便、打包浪费严重等不足。使用pet索带(塑钢带)打包是目前及未来工业产品包装的发展趋势。pet塑钢带凭着成本低、省钱、环保美观、易用耐用、高强度和高拉力等优势,成为替代钢带及pp打包带的新型捆扎包装材料。从2002年来,国内的索带需求以每年500%的速度增长,大规模应用到铝锭、有色金属、钢铁、玻璃、木材、造纸、石材、陶瓷等行业。铝锭是一种贵重的工业产品,重量大、搬运频率高、运输距离远等特点,令其在包装方面要求十分严格,特别是对捆扎材料的要求也很高,既要坚实牢固,又要求有足够缓冲保护铝锭,还要经受运输的考验。为此国家制定了《铝及铝合金加工产品包装、标志、运输、贮存》(gb/t 3199-2007)标准,明确规定铝锭的包装形式和方法,为铝锭的包装提供了参考依据。比例条件:每托铝锭需用4条带,每条打包带的长度为4米,每托铝锭共需16米打包带。注:1、钢丝打包每条会浪费0.2米用作收紧,即4条带共浪费0.8米;2、 每条钢带需多支付1个钢扣的费用;3、一体化气动打包机提高打包速度;气动铝锭打包机当 前 价: 2 元/台最小起订:1 台供货总量:200 台特性    1、适合各种PET塑钢带    2、束紧、粘接、切断一次性完成,操作简便。    3、束紧力强,大于2800N以上,适用于冶金、钢铁、建材业等    规格      型号 CMVAQD-19 CMVAQD-25    机重 3.8㎏ 4.0㎏    使用塑带宽度 10-19.0mm 19-25mm    使用塑带厚度 0.4-1.05mm 0.4-1.35mm    打包结合强度 约75% 约75%    咬扣方式 摩擦热熔粘接 摩擦热熔粘接    束紧力 2800N 2800-3000N    平均气压 0.65MPa 0.65MPa如果你想知道铝锭打包等更多的信息你可以登陆上海有色网查看。 

铝锭打包带

2017-06-06 17:49:56

铝锭打包带是一种投资者想知道,因为了解它可以帮助操作。铝锭聚酯打包带数量(米)  ≥1价格(元/米) 10000.00元/米铝锭打包带是以聚对苯二甲酸乙二醇酯为主要原料经加工而成的,它是目前世界上用于代替钢带的一种新型环保的包装材料,经这几年新材质的开发成功及成本的大幅下降,已大量使用在钢铁业、化纤业、铝锭业、纸业、砖窑业、螺丝业、烟草业、电子业、纺织业及木业等;是一种取代钢带的新型高强度打包带,是目前世界上使用最广泛的替钢带使用。其特性有:1、高强度 : 铝锭打包带材质是(聚脂),具有极强抗拉性,接近于同规格的钢带,是普通塑料带的几倍。2、高韧性 : 铝锭打包带具有塑料特性,有着特殊的柔韧性,在运输过程中可避免因颠簸造成打包带的断裂导致物体的散落,确保运输的安全。3、安全性 : 铝锭带没有钢带的锋利边缘,也不需要钢扣结合、没有压痕、刮伤问题,不会对被包装物体造成损伤。在打包和开包时不会对操作人员造成伤害,避免一切不安全因素。4、适应性 : 铝锭带因材质和制作工艺因素,能适合各种气候变化,耐高温、耐潮湿,不象钢带受潮生锈污染环境及损失抗拉性,使捆包强度减小。5、环保性 : 因铝锭带质量轻,搬运方便;体积小,节省仓库空间;用过的铝锭带方便回收,符合环保要求。6、美观型:钢带会因暴露在空气中吸收水分而生锈,锈迹渗透性强容易污染包装物。铝锭塑钢带则美观、不生锈、有利环保。7、耐温性 : 熔点为260度,120度以下使用不变形,并能长时间保持拉紧力。8、经济性 : 1吨塑钢带的长度相当于6吨钢皮带,每米单价低于铁皮带,成本仅是铁皮带的60%。如果你想更多的了解关于铝锭打包带的信息,你可以登陆上海有色网进行查询和关注。

国内液压与气动标准大全(二)

2019-01-15 09:49:29

GB/T 15242.1-1994(2001)液压缸活塞和活塞杆动密封装置用同轴密封件尺寸系列和公差   GB/T 15242.2-1994(2001)液压缸活塞和活塞杆动密封装置用支承环尺寸系列和公差   GB/T 15242.3-1994(2001) 液压缸活塞和活塞杆动密封装置用同轴密封   neq ISO 7425-1:1988ISO 7425-2:1989 件安装沟槽尺寸和公差   GB/T 15242.4-1994(2001) 液压缸活塞活塞杆动密封装置用支承环安装沟槽尺寸和公差   GB/T 15622-1995(2001) 液压缸试验方法   neq JIS B 8354-1985   GB/T 15623.1-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-1:1998,MOD 四通方向流量控制阀试验方法   GB/T 15623.2-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-2:1998,MOD 三通方向流量控制阀试验方法   GB/T 17446-1998 流体传动系统及元件 术语   idt ISO 5598:1985   GB/T 17483-1998 液压泵空气传声噪声级测定规范   eqv ISO 4412-1:1991   GB/T 17484-1998 液压油液取样容器 净化方法的鉴定和控制   idt ISO 3722:1976   GB/T 17485-1998 液压泵、马达和整体传动装置参数定义和字母符号   idt ISO 4391:1983   GB/T 17486-1998 液压过滤器 压降流量特性的评定   idt ISO 3968:1981   GB/T 17487-1998 四油口和五油口液压伺服阀 安装面   idt ISO 10372:1992   GB/T 17488-1998 液压滤芯 流动疲劳特性的验证   idt ISO 3724:1976   GB/T 17489-1998 液压颗粒污染分析 从工作系统管路中提取液样   idt ISO 4021:1992   GB/T 17490-1998 液压控制阀 油口、底板、控制装置和电磁铁的标识   idt ISO 9461:1992   GB/T 17491-1998 液压泵、马达和整体传动装置稳态性能的测定   idt ISO 4409:1986   GB/T 18853-2002 液压传动过滤器 评定滤芯过滤性能的多次通过方法   ISO 16889:1999,MOD   GB/T 18854-2002 液压传动 液体自动颗粒计数器的校准   ISO 11171:1999,MOD   三、行业标准   JB/T 2184-1977 液压元件型号编制方法   JB/T 5120-2000 摆线转阀式全液压转向器   JB/T 5919-1991(2001) 曲轴连杆径向柱塞液压马达安装法兰与轴伸尺寸和标记(一)   JB/T 5920.1-1991(2001) 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列 靠前部分 20~25MPa的轴转马达   JB/T 5921-1991(2001) 液压系统用冷却器基本参数   JB/T 5922-1991 液压二通插装阀图形符号   JB/T 5923-1997 气动 气缸技术条件   neq JIS B83771991   JB/T 5924-1991参照NFPA/T2.6.1M-1974 液压元件压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 5963-1991 二通、三通、四通螺纹式插装阀阀孔尺寸   JB/T 5967-1991(2001) 气动元件及系统用空气介质质量等级   JB/T 6375-1992(2001) 气动阀用橡胶密封圈 尺寸系列和公差   JB/T 6376-1992(2001) 气动阀用橡胶密封圈 沟槽尺寸和公差   JB/T 6377-1992(2001) 气动气口连接螺纹 型式和尺寸   JB/T 6378-1992(2001) 气动换向阀 技术条件   JB/T 6379-1992(2001)参照ISO 6431:1992 缸内径32~320mm的可拆式单杆气缸 安装尺寸   JB/T 6656-1993(2001) 气缸用密封圈安装沟槽型式、尺寸和公差   JB/T 6657-1993(2001) 气缸用密封圈尺寸系列和公差   JB/T 6658-1993(2001) 气动用O形橡胶密封圈沟槽尺寸和公差   JB/T 6659-1993(2001) 气动用O形橡胶密封圈尺寸系列和公差   JB/T 6660-1993(2001) 气动用橡胶密封圈 通用技术条件   JB/T 7033-1993(2001)参照ISO 9110-1: 1990 液压测量技术通则   JB/T 7034-1993 液压隔膜式蓄能器型式和尺寸   JB/T 7035.1-1993 液压囊式蓄能器型式和尺寸 A型   JB/T 7035.2-1993 液压囊式蓄能器型式和尺寸 AB型   JB/T 7036-1993 液压隔离式蓄能器 技术条件   JB/T 7037-1993 液压隔离式蓄能器 试验方法   JB/T 7038-1993 液压隔离式蓄能器 壳体技术条件   JB/T 7039-1993 液压叶片泵 技术条件   JB/T 7040-1993 液压叶片泵 试验方法   JB/T 7041-1993 液压齿轮泵 技术条件   JB/T 7042-1993 液压齿轮泵 试验方法   JB/T 7043-1993 液压轴向柱塞泵 技术条件   JB/T 7044-1993 液压轴向柱塞泵 试验方法   JB/T 7046-1993(2001)参照NFPA/T3.4.7M-1975 液压蓄能器压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 7056-1993(2001) 气动管接头 通用技术条件   JB/T 7057-1993(2001) 调速式气动管接头 技术条件   JB/T 7058-1993(2001) 快换式气动管接头 技术条件   JB/T 7373-1994(2001) 齿轮齿条摆动气缸   JB/T 7374-1994 气动空气过滤器 技术条件   JB/T 7375-1994 气动油雾器 技术条件   JB/T 7376-1994 气动空气减压阀 技术条件   JB/T 7377-1994(2001) 缸内径32~250mm整体式单杆气缸安装尺寸   eqv ISO 6430:1992   JB/T 7857-1995(2001) 液压阀污染敏感度评定方法   JB/T 7858-1995(2001) 液压元件清洁度评定方法及液压元件清洁度指标   JB/T 7938-1999 液压泵站油箱公称容量系列   JB/T 7939-1999 单活塞杆液压缸两腔面积比   eqv ISO 7181:1991   JB/T 8727-1998 液压软管总成   JB/T 8728-1998 低速大扭矩液压马达   JB/T 8729.1-1998 液压多路换向阀 技术条件   JB/T 8729.2-1998 液压多路换向阀 试验方法   JB/T 8884-1999**(JB/Z 347-89) 气动元件产品型号编制方法   JB/T 8885-1999**(ZBJ 22008-88) 液压软管总成技术条件   JB/T 9157-1999 液压气动用球涨式堵头 安装尺寸   JB/T 10205-2000 液压缸 技术条件   JB/T 10206-2000 摆线液压马达   JB/T 10364-2002 液压单项阀   JB/T 10365-2002 液压电磁换向阀   JB/T 10366-2002 液压调速阀   JB/T 10367-2002 液压减压阀   JB/T 10368-2002 液压节流阀   JB/T 10369-2002 液压手动及滚轮换向阀   JB/T 10370-2002 液压顺序阀   JB/T 10371-2002 液压卸荷溢流阀   JB/T 10372-2002 液压压力继电器   JB/T 10373-2002 液压电液动换向阀和液动换向阀   JB/T 10374-2002 液压溢流阀

国内液压与气动标准大全(一)

2019-01-15 09:49:29

一、采标情况:   idt或IDT表示等同采用;eqv或MOD表示等效或修改采用;neq表示非等效采用。   二、国家标准   GB/T 786.1-1993(2001*) 液压气动图形符号   eqv ISO 1219-1:1991   GB/T 2346-2003 流体传动系统及元件 公称压力系列   ISO 2944:2000,MOD   GB/T 2347-1980(1997) 液压泵及马达公称排量系列   eqv ISO 3662:1976   GB/T 2348-1993(2001*) 液压气动系统及元件 缸内径及活塞杆外径   neq ISO 3320:1987   GB/T 2349-1980(1997) 液压气动系统及元件 缸活塞行程系列   eqv ISO 4393:1978   GB/T 2350-1980(1997) 液压气动系统及元件 活塞杆螺纹型式和尺寸系列   eqv ISO 4395:1978   GB/T 2351-1993 液压气动系统用硬管外径和软管内径   neq ISO 4397:1978   GB/T 2352—2003 液压传动 隔离式蓄能器 压力和容积范围及特征量   ISO 5596:1999,IDT   GB/T 2353.1-1994 液压泵和马达安装法兰和轴伸的尺寸系列及标记   neq ISO 3019-2:1986 靠前部分:二孔和四孔法兰和轴伸   GB/T 2353.2-1993(2001*) 液压泵和马达 安装法兰与轴伸的尺寸系列和标记(二)   neq ISO 3019-3:1988 多边形法兰(包括圆形法兰)   GB/T 2514-1993 四油口板式液压方向控制阀安装面   eqv ISO 4401:1980   GB/T 2877-1981 二通插装式液压阀安装连接尺寸   GB/T 2878-1993 液压元件螺纹连接 油口型式和尺寸   neq ISO 6149:1980   GB/T 2879-1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差   neq ISO 5597:1987   GB/T 2880-1981 液压缸活塞和活塞杆 窄断面动密封沟槽尺寸系列和公差   GB/T 3452.1-1992 液压气动用O形橡胶密封圈尺寸系列及公差   neq ISO 3601-1:1988   GB/T 3452.2-1987 O形橡胶密封圈外观质量检验标准   GB/T 3452.3-1988 液压气动用O形橡胶密封圈 沟槽尺寸和设计计算准则   neq ISO/DIS 3601-2   GB/T 3766-2001 液压系统通用技术条件   eqv ISO 4413: 1998   GB/T 6577-1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差   neq ISO 6547:1981   GB/T 6578-1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差   neq ISO 6195:1986   GB/T 7932-2003 气动系统通用技术条件   ISO 4414:1998,IDT   GB/T 7934-1987 二通插装式液压阀 技术条件   GB/T 7935-1987 液压元件 通用技术条件   neq NFPA T 310.3   GB/T 7936-1987 液压泵、马达空载排量 测定方法   neq ISO/DP 8426 (1988版)   GB/T 7937-2002 液压气动用管接头及其相关元件公称压力系列   neq ISO 4399:1995   GB/T 7938-1987 液压缸及气缸公称压力系列   neq ISO 3322:1975   GB/T 7939-1987 液压软管总成 试验方法   neq ISO 6605:1986   GB/T 7940.1-2001 气动 五气口气动方向控制阀 靠前部分:不带电气接头的安装面   idt ISO 5599-1:1989   GB/T 7940.2-2001 气动 五气口气动方向控阀 第二部分:带电气接头的安装面   idt ISO 5599-2:1990   GB/T 7940.3-2001 气动 五气口气动方向控制阀 第三部分功能识别编码体系   idt ISO 5599-3:1990   GB/T 8098-2003 液压传动 带补偿的流量控制阀 安装面   ISO 6263:1997,MOD   GB/T 8099-1987 液压叠加阀 安装面   neq ISO 4401-1980   GB/T 8100-1987 板式联接液压压力控制阀(不包括溢流阀)、顺序阀、   neq ISO/DIS 5781(1987) 卸荷阀、节流阀和单向阀 安装面   GB/T 8101-2002 液压溢流阀 安装面   ISO 6264:1998,MOD   GB/T 8102-1987 缸内径8~25mm的单杆气缸安装尺寸   neq ISO 6432:1985   GB/T 8104-1987 流量控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8105-1987 压力控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8106-1987 方向控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8107-1987 液压阀 压差—流量特性试验方法   neq ISO/DIS 4411(1986)   GB/T 9065.1-1988 液压软管接头 连接尺寸 扩口式   GB/T 9065.2-1988 液压软管接头 连接尺寸 卡套式   GB/T 9065.3-1988 液压软管接头 连接尺寸 焊接式或快换式   GB/T 9094-1988(1997) 液压缸气缸安装尺寸和安装型式代号   eqv ISO 6099:1985   GB/T 9877.1-1988 旋转轴唇形密封圈结构尺寸系列 靠前部分 内包骨架旋转轴唇形密封圈   GB/T 9877.2-1988 旋转轴唇形密封圈结构尺寸系列 第二部分 外露骨架旋转轴唇形密封圈   GB/T 9877.3-1988 旋转轴唇形密封圈结构尺寸系列 第三部分 装配式旋转轴唇形密封圈   GB/T 14034-1993 24°非扩口液压管接头连接尺寸   GB/T 14036-1993 液压缸活塞杆端带关节轴承耳环安装尺寸   neq ISO 6982:1982   GB/T 14038-1993(2001) 气缸气口螺纹   neq ISO 7180:1986   GB/T 14039-2002 液压传动 油液 固体颗粒污染等级代号   ISO 4406:1999,MOD   GB/T 14041.1-1993 液压滤芯结构完整性检验方法   neq ISO 2942:1974   GB/T 14041.2-1993 液压滤芯材料与液体相容性检验方法   neq ISO 2943:1974   GB/T 14041.3-1993(2001)液压滤芯抗破裂性检验方法   neq ISO 2941:1974   GB/T 14041.4-1993(2001)液压滤芯额定轴向载荷检验方法   neq ISO 3723:1976   GB/T 14042-1993(2001) 液压缸活塞杆端柱销式耳环安装尺寸   neq ISO 6981:1982   GB/T 14043-1993 液压控制阀安装面标识代号   eqv ISO 5783:1981   GB/T 14513-1993(2001) 气动元件流量特性的测定   neq ISO/DIS 6358(1989)   GB/T 14514.1-1993(2001)气动管接头试验方法   neq JIS 8381-85   GB/T 14514.2-1993(2001)气动快换接头试验方法   neq ISO 6150:1988

铝合金搅拌摩擦焊组织

2019-01-11 09:43:16

7050铝合金是一种可热处理强化的超硬铝合金资料,熔铸便利,成形性好,具有杰出的归纳功能。因为铝合金弧焊时焊缝经常会发作气孔、裂纹、咬边等缺点,特别是关于热处理强化的超高强铝合金,其弧焊焊接性更差,很容易出现热裂纹,严峻阻止了7050铝合金在工业中的使用。拌和冲突焊(FSW)作为一种高效、优质、环保、低成本的新式焊接方法对7xxx系高强铝合金能够进行极好的焊接。这篇文章选择8mm的7050-T7451铝合金板进行单道对接拌和冲突焊实验,并对接头的安排和力学功能进行了剖析。     焊接实验用资料为8mm厚的7075-T7451铝合金,拌和头资料选用H13热作模具钢。化学腐蚀液为15mlHCl+1mlHF+2.5mlHNO3+95mlH2O;在显微镜OptelicsTMS130下调查焊合区的安排特征;在CSS-44100电子全能实验机上进行拉伸实验;在HX-1000显微硬度计上进行硬度丈量。     焊核区发作接连动态再结晶形成细微的等轴晶;热机影响区在机械力和热循环的效果下呈条弧状安排;热影响区的安排晶粒发作粗化。当转速为375r/min、焊速为100mm/min时,接头抗拉强度较高,可到达母材的88.6%。焊缝硬度的散布出现“W”形,较小值根本出现在撤退侧热机影响区与热影响区的过渡处。

铝合金搅拌摩擦焊的发展趋势

2019-03-12 09:00:00

在我国,北京航空制作工程研讨所和英国TWI的拌和打听焊技能合作中心――我国拌和冲突焊中心在拌和冲突焊的根底办法研讨,材料使用研讨、开发,拌和冲突焊设备的规划、制作和供应等方面,都获得很大的发展。  (1)现在,中心正在针对拌和冲突焊在航天火箭筒体制作,航空飞机结构、蒙皮和结构间的拌和冲突焊制作,船只轻合金制作以及高速列车的铝合金型材的快速制作等方面正在打开全面的研讨和工程攻关。别的,在承包国防科研和总装课题的一起,还加强了和厂商、大学的横向联合及技能合作。  (2)在拌和冲突焊设备的制作方面现已规划出3大类6类种方式的拌和冲突焊设备,并且在2003年3月为哈尔滨工业大学和华东船只工业学院制作交付了2台专业化的拌和冲突焊设备。   (3)在工程使用方面,铝合金拌和冲突焊将在输变电、高速列车、新一代战斗机及新式运载火箭等方面首要得到使用。   拌和冲突焊作为一种新式的焊接技能将对铝合金等轻合金材料的衔接制作发生性的影响,根据这种衔接技能在焊接办法的打破,估计拌和冲突焊技能将对飞机、火箭、高速列车、快艇、全铝合金战车等军、民品的规划和制作基线发生根本上的革新。

铝合金搅拌摩擦焊组织及性能分析

2019-01-11 09:43:26

7050铝合金是一种可热处理强化的超硬铝合金材料,熔铸方便,成形性好,具有良好的综合性能。由于铝合金弧焊时焊缝经常会产生气孔、裂纹、咬边等缺陷,特别是对于热处理强化的超高强铝合金,其弧焊焊接性更差,极易出现热裂纹,严重阻碍了7050铝合金在工业中的应用。搅拌摩擦焊(FSW)作为一种高效、优质、环保、低成本的新型焊接方法对7xxx系高强铝合金可以进行很好的焊接。本文选取8mm的7050-T7451铝合金板进行单道对接搅拌摩擦焊实验,并对接头的组织和力学性能进行了分析。    焊接试验用材料为8mm厚的7075-T7451铝合金,搅拌头材料采用H13热作模具钢。化学腐蚀液为15mlHCl+1mlHF+2.5mlHNO3+95mlH2O;在显微镜OptelicsTMS130下观察焊合区的组织特征;在CSS-44100电子多功能试验机上进行拉伸试验;在HX-1000显微硬度计上进行硬度测量。    焊核区发生连续动态再结晶形成细小的等轴晶;热机影响区在机械力和热循环的作用下呈条弧状组织;热影响区的组织晶粒发生粗化。当转速为375r/min、焊速为100mm/min时,接头抗拉强度较高,可达到母材的88.6%。焊缝硬度的分布呈现“W”形,较小值基本出现在后退侧热机影响区与热影响区的过渡处。

涂装静电粉末摩擦喷枪对复杂件的喷涂优势

2019-03-04 11:11:26

冲突因为具有较高的上粉功率,关于有多种换色要求以及小批量出产选用不收回体系也能取得较高的经济效益,出产的灵活性使得运用供应商在产品种类方面取得更大的竞争性。 冲突静电在喷涂具有杂乱工件时则能发挥其浸透性能好的优势(如各种铝型材及深槽工件)。 冲突的运用作用需配用专用的冲突粉末。跟着粉末出产水平的不断进步,越来越多的粉末供应商出产出合适高压及冲突运用的喷涂粉末。 喷涂粉末一般由下列三种不同尺度的粉末颗粒组成: 纤细颗粒:20微米以下 中颗粒:20——45微米 粗颗粒:45微米以上 不同的尺度颗粒发生不同冲突静电效应的差别是显着的,较小的颗粒在通过冲突内冲突管时,可取得较大的触摸冲突作用,与管壁抵触冲突的时机更大。因而,能够敏捷到达冲突充电的作用。中颗粒粉末是合适冲突喷涂运用。 冲突的长处 1、可选用全面的主动喷涂,节约人工。 2、与高压静电比较,表面质量更完美、滑润。 3、表面涂层均匀性完善。 4、战胜法拉第效应,对杂乱工件喷涂尤为有用。 5、上粉率高,减少了设备的出资本钱 冲突喷涂可取得更滑润的表面质量 一般冲突喷涂取得的表面质量比高压静电喷涂的愈加滑润光亮,是因为冲突喷涂粉末在工件上不会因为堆积而发生静电排挤,战胜了因而发生的“桔皮作用”。粉末静电的“桔皮作用”一般在下列景象时发生: 1、粉末微粒堆积在工件表面过厚时,外层颗粒不能充沛接地,彼此之间排挤,而且对持续喷向工件的粉粒发生推斥作用,影响上粉功率及表面质量。在工件表面,有或许呈现表面不平坦,乃至起泡现象。 2、过多的粉末也或许形成涂膜与工件表层之间发生细小空隙,形成桔皮表面。 3、高压静电过高。作用粉末的高压静电过高时,也会相同形成涂层表面桔皮。而冲突喷涂时可防止这种现象。 4、流平缓固化进程不完善,固化炉内温度散布不均匀,工件升温不完全。 冲突喷涂注意事项 1、喷涂时用第 一把冲突对喷涂工件进行“初始”喷涂,以完成工件的接地效应。这样能够使工件发生相似“预热”的作用,进步后边喷涂的上粉功率。 2、调整喷与进入工件的喷涂视点,使工件与喷涂粉末有尽量长的触摸时刻。尽量使喷涂的粉末与工件有较大的触摸时刻。 3、对具有深槽的工件喷涂时,可选用二组进行。第 一组以较高的出粉量近间隔对深槽内部进行喷涂,因为喷嘴与工件间隔近,可使深槽内部得以喷涂。第二组喷安置离工件较远,而且以较小的出粉量低速向工件外部进行喷涂。 4、防止喷喷幅的彼此穿插,喷幅的彼此穿插不能改进喷涂作用,却会形成喷幅紊乱。

气动铝合金球阀定义及工作原理介绍

2018-12-28 09:57:14

气动铝合金球阀在工业上的应用是广泛的,以下介绍下气动铝合金球阀知识及工作原理。   气动铝合金球阀是由旋塞阀演变而来。它具有相同的旋转90度动作,不同的是旋塞体是球体,有圆形通孔或通道通过其轴线。球面和通道口的比例应该是这样的,即当球旋转90度时,在进、出口处应全部呈现球面,从而截断流动。本类阀门在管道中可任意位置安装。   气动球阀是球阀配上气动执行器。气动执行器的执行速度相对较快,最快的开关速度0.05秒/次,所以通常也叫气动快速切断球阀。气动球阀通常配置各种附件,比如电磁阀、气源处理三联件、限位开关、定位器、控制箱等,以实现就地控制和远距离集中控制,在控制室里就可以控制阀门的开关。    气动铝合金球阀工作原理如下:    1.当气动执行器与电路和系统气源接通后,空气通过管道A或B管进入A缸(B缸)推动活塞向一端运动,从而带动旋转轴和球芯转动90°    2.气动执行器顶部连动可视器,当绿色标志指向“开”字时标志阀门开启。    3.回信器信号灯绿灯亮时阀门处在开启位置,而红灯亮时阀门处在关闭位置    4.定位器可调节阀门管道流量5.阀座采用弹性密封结构,密封可靠,启闭轻松。    6.阀杆采用有倒密封的下装式结构,阀腔异常升压时,阀杆不会被冲击。    7.气动活塞式执行器采用低摩擦材料做成轴承套,缸体内外表面经硬质阳极氧化防腐处理,大大提高了气缸的使用寿命。    气动铝合金球阀广泛适用于天然气、油品、化工、冶金、造纸、电力、矿业、印染、生物制药、日用化工、食品饮料、水处理及空气处理等行业的流体控制或调节控制,与自动化气动仪表配套使用。

气动缸筒用精密内径和液压无缝钢管

2019-03-18 11:00:17

气动缸筒用精密内径和液压无缝钢管标准(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。以上气动缸筒用精密内径和液压无缝钢管是常用的无缝钢管标准。

液压气动缸筒用精密内径无缝钢管

2019-03-19 09:03:26

液压和气动缸筒用精密内径无缝钢管(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。液压气动缸筒用精密内径无缝钢管标准要遵守。

气动五金工具各部分功能介绍

2018-12-25 14:53:33

气动工具根据其基本工作方式可分为旋转式(偏心可动叶片式)和往复式(容积活塞式),一般气动工具主要由动力输出部分、作业形式转化部分、进排气路部分、运作开启与停止控制部分、工具壳体等主体部分,当然气动工具运作还必须有能源供给部分、空气过滤与气压调节部分以及工具附件等。   工具附件   这里的工具附件是指安装在气动工具本体上直接与工件直接接触的工具,气动三联件承担了该项任务。气动三联件主要由气压表、过滤器、油雾器、调压器等部分组成,其中过滤器中内置滤芯,在使用一段时间后要进行维护清洗、定期更换;这样的压缩空气不进行任何处理,直接进入气动马达,则将导致马达寿命大大缩短,从而致使整把工具动力输出不足、且不稳定,易造成马达等零部件连环损坏的现象,为此在由管道输送的压缩空气至气动工具之间,必须设置压缩空气过滤、调节装置,包括各类气动套筒、接杆、转换接头、刀头等。   动力输出部分   它是气动工具主要组成部件之一,主要有气动马达及动力输出齿轮组成,它依靠高压力的压缩空气吹动马达叶片而使马达转子转动,对外输出旋转运动,并通过齿轮带动整个作业形式转化部分运动。按定子与转子是否同心,气动马气动马达可分为同心马达和偏心马达,按进气孔的数量多少,可分为单进气孔马达、双进气孔马达和多进气孔马达等。无论是何种形式的气动马达,都是依靠压缩空气吹动马达叶片带动转子旋转的,马达叶片在高速旋转时,时刻与定子内壁发生摩擦,它是马达内最为常见的易损部件,因而它对压缩空气的质量和压缩空气中是否含润滑油分子要求很高。   作业形式转化部分   它主要是将马达输出的旋转运动进行相应的转化。在汽车制造业中,由于以螺纹联接的方式甚多,大部分是旋转运动,当然也有直线往复运动。对于不同类型的气动工具,作业形式转化部分主要分为机械式离合器及行星齿轮组、摩擦片式离合器及行星齿轮组、液压油缸、扭力杆及锤打块组等。以上部件均以旋转运动为基础的重要部件,它决定着该气动拧紧工具的扭力大小、转速快慢、拧紧精度等重要参数,由于它不停的离合、受压或扭矩转变,故它的组成部件易受损坏。   进排气路部分   显而易见,进排气路部分是压缩空气进出的相关通道,是保障马达正常运动的能源供给系统。   运动开启与停止控制部分   即通常所述的气动开关,由于它时刻和操作人员及外界物体直接接触,且多工程塑料制品,故易出现损坏。   能源供给部分   压缩空气主要是空压机将大气进行压缩后而形成的,由压缩空气管道输送至相关的用气电,且呈脉动状。   空气过滤及气压调节部分   由于压缩空气通常是通过无缝钢管制造的管道进行输送的,在长期使用时,其内壁的锈蚀物、压缩空气中的水分、粉尘等将不断形成。若这样的压缩空气不进行任何处理,直接进入气动马达,则将导致马达寿命大大缩短,从而致使整把工具动力输出不足、且不稳定,易造成马达等零部件连环损坏的现象,为此在由管道输送的压缩空气至气动工具之间,必须设置压缩空气过滤、调节装置,气动三联件承担了该项任务。气动三联件主要由气压表、过滤器、油雾器、调压器等部分组成,其中过滤器中内置滤芯,在使用一段时间后要进行维护清洗、定期更换。

非金属矿物填料对改性聚丙烯熔接痕强度的影响

2019-03-06 10:10:51

滑石粉、碳酸钙、硅灰石、云母粉、硫酸等是聚(PP)填充改性常用的无机填料,其形状首要有颗粒状、纤维状、片层状等,非金属矿藏含量、粒径、类型等对填充PP复合材料熔接痕强度具有重要影响。 1、矿藏填充PP复合材料实验 (1)质料 滑石粉:粒径800目、1250目、3000目、5000目、8000目,编号分别为TALC-1、TALC-2、TALC-3、TALC-4、TALC-5; 碳酸钙:粒径1250目、3000目、5000目,编号分别为CC-1、CC-2、CC-3; 硅灰石:粒径400目、1250目,编号分别为WS-1和WS-2; 云母粉:粒径325目、800目,编号分别为MICA-1和MICA-2; 硫酸:粒径1250目、3000目,编号分别为BAS-1和BAS-2; 玻璃纤维:单丝直径13μm、直径10μm,编号分别为GF-1和GF-2。 (2)实验办法 将各种原材料混合均匀后经过双螺杆挤出机挤出造粒,挤出造粒的加工条件为:各区加工温度180-210℃之间,主机转速650r/min,真空度为-0.08-0.04MPa。考虑到实践使用状况,硅灰石和玻璃纤维加料从挤出机的侧喂料口参加。 将上述挤出粒料在注塑机上注塑成契合ISO527-1/2 Type1A标准的普通哑铃型拉伸和带熔接痕的哑铃型拉伸试样,并测验普通拉伸样条功能、熔接痕强度功能和微外观测验。 2、矿藏品种及粒径对PP填充材料的影响 熔接痕的强度取决于界面处高分子链是否有满足的时刻和能量来进行分散,以构成分子链的环绕。 表1 矿藏品种及粒径对PP复合材料熔接痕强度的影响表2 矿藏品种及粒径对PP复合材料熔接痕强度的影响由表1和表2可知: (1)球型矿藏对熔接痕的影响小于片层矿藏,针状矿藏介于两者之间,但增加玻璃纤维的熔接痕强度坚持率是最小的。 首要原因是两股料流对冲时球型结构矿藏对两股料流前端的分子链彼此环绕影响小,而片层结构矿藏在两股料流对冲时前端的片层很难彼此嵌插然后导致分子链环绕困难,针状矿藏对两股料流前端分子链环绕的影响介于球型结构与片层结构。 如增加球型结构的碳酸钙或硫酸其熔接痕强度坚持率在84%以上,而增加片层结构的滑石粉或云母粉其熔接痕强度依据粒径巨细不同在72%-84%不等。 (2)小粒径的矿藏对熔接痕的影响小于大粒径。 首要原因是粒径越小对两股料流前端的分子链彼此环绕影响越小。 如增加片层结构的滑石粉其粒径从800目到8000目不断増加时,其熔接痕强度坚持率从73.8%上升至84.6%,增加球型结构的碳酸钙其粒径从1250目到5000目不断増加时,其熔接痕强度坚持率从84.5%上升至87.1%。 (3)在所有的矿藏填充PP中玻璃纤维对熔接痕的影响最大,熔接痕强度坚持率下降至60%以下。 首要原因一方面是玻璃纤维在PP中的保存长度很大严峻影响了两股料流前端分子链的彼此环绕,另一方面玻璃纤维的参加使得全体流动性变差,这在相同的注塑工艺下两股料流彼此触摸所用时刻比其他矿藏要长,耗时越长最前端的熔体温度也会越低,进而阻止了分子链的彼此环绕。 3、矿藏含量对熔接痕强度的影响 表3-8 滑石粉、碳酸钙、硅灰石、云母、硫酸、玻璃纤维的含量对熔接痕强度的影响。由表3-8可看知:不论矿藏品种怎么,复合材料的熔接痕强度都跟着矿藏含量的増加不断下降。首要原因是跟着矿藏含量的増加,矿藏对整个系统的粘度影响也増加。系统粘度越大在两股料流对冲时所耗费的时刻较长以及系统粘度越大影响分子链彼此环绕越严峻。 4、不同品种矿藏在PP系统中的分散性表征由图1-A和图1-D所示,滑石粉和云母的片层结构显着,此类结构在两股料流对冲时嵌入滑石粉片层的高分子链环绕困难,然后熔接痕强度偏低。 图1-B和图1-E分别为碳酸钙和硫酸,都为球状结构,两者的熔接痕坚持率也比较挨近且比片层结构填充系统高。 图1-C和图1-F分别为针状结构的硅灰石和玻璃纤维,玻璃纤维尺度较大,但由于形状类似,熔接痕坚持率也较挨近。 比三种结构的微观描摹和检测成果能够看出,矿藏的微观形状对熔接痕强度有重要的影响。 5、定论 (1)填充聚复合材料的熔接痕强度与填充的矿藏品种、粒径以及含量有着亲近的联系。 (2)球型结构矿藏填充PP的熔接痕强度坚持率比片层矿藏填充PP的熔接痕强度坚持率高。 (3)相同矿藏品种,不同的粒径对PP复合材料的熔接痕强度坚持率影响不同,矿藏粒径越小熔接痕强度坚持率越高。 (4)相同矿藏品种、相同的粒径,不同的矿藏含量对PP复合材料的熔接痕强度坚持率影响不同,矿藏含量越高熔接痕强度坚持率越低。

废有色金属的预处理-打包与压块

2019-01-24 11:10:25

废有色金属的预处理是指将有色金属废件和废料的状态变成能够进行有效的后续冶金加工的过程。这一过程包括:使各种废件和废料达到规定的外形尺寸和重量标准;将有色金属与黑色金属分离;去除非金属夹杂物、水分、油质等。对废有色金属进行精细和高质量的准备,使之适用于冶金工序,可以使有色金属损失减少到最低程度,使燃料、电力、熔剂的单位消耗降低,使冶金设备和运输工具得到有效的利用,并使劳动生产率及有色金属与合金产品的质量得到提高。     有色金属废件与废料的预处理包括下列主要工序:分选,切割,打包,压块,破碎,粉磨,磁选,干燥,除油等。特种再生原料(废蓄电池、废电动机、废电线、马口铁废料)的预处理,采用专门的生产线。全苏再生有色金属科学研究设计院研究出废有色金属预处理的一般工艺流程(图1),该流程从有色金属废件与废料进入车间起,至成品发往用户厂为止。图1打包和压块     打包的目的是把松散的轻薄的废件与废料压实并制成一定重量、尺寸和密度的打包块。密实的物料便于装炉熔炼,熔炼过程中氧化造成的金属损失也小,同时,原料的运输费用还可得到降低。需要进行打包加工的,是分解成块的大型废件、废散热器、切边、废棒材、废管材、废电缆、废定子绕组、碎屑、废压模、日用废品等。加工的打包块密度,取决于压力的大小以及所压制的物料的厚度。废铜打包需用2000~4500千牛顿压力,废铝打包则需用1400~2000千牛顿压力。     各种液压打包机(表4)按压力大小分为小功率(压力2500千牛顿)打包机(Б-132型、Б-133型、ПГ-150型)、中等功率(压力2500~5000千牛顿)打包机(Б-1334型、ПГ-400型、CPA-400型)和大功率(压力5000千牛顿以上)打包机(CPA-1000型、CPA-1250型)。 表1(前)苏联国产打包机的技术参数机型外形尺寸(米)最后压级压力(千牛顿)打包机生产能力(块/小时)  电动机功率(千瓦)    打包机重量(吨)  挤压室打包状Б-132型*1.5×0.7×0.60.3×0.4×0.6100025108Б-1330型1.7×0.9×0.30.3×0.3×0.51000758526П-150型1.8×0.7×0.60.3×0.3×0.61500202010Б-1334型1.7×1.4×1.20.4×0.4×0.525003513572CPA-400型3.0×2.6×0.80.6×0.6×1.229001220113ПГ-400型2.8×1.5×1.10.4×0.5×0.639002022087CPA-1000型**4.5×4.0×1.31.0×0.7×2.0620020250308CPA-1250**2.2×0.8×2.91.0×0.8×0.81180045430285 *Б-132型打包机虽然已经停止生产,但许多企业仍在使用。 **CPA型打包机是由捷克斯洛伐克生产供应的。     打包过程包含以下主要工序:废料的验收和准备,装入打包机,打包,将打包块推出挤压室,验收并运走成品打包块。     现用Б-132型打包机(图2)的作业来说明打包过程中各道工序之间的连贯性。借助液压缸将原料由料箱1送入挤压室2。挤压室则用由液压缸4传动的盖3盖住。此时露出挤压室边缘的废料尾端由固定在盖的侧面和前面的刀切掉。打包过程中采用纵向和横向挤压头两次挤压,挤压头固定在液压缸5、6的活塞杆上。压制完毕后,打开挡板并借助液压缸7将打包块推出挤压室。     各种液压打包机都是自动化或半自动化作业,能将废料打压成重量为50~4500千克的不同打包块。  图2  Б-132型打包机的打包流程 а-装料;б-关盖;ъ,г-打包;э-推出打包块     压块适合在对废有色金属屑进行冶金处理前备料时采用。压块的目的是便于存放和运输,加快溶炼过程并减少金属损失。在压块过程中,原料被压实至2000~2200千克/米3的密度。适合进行压块的是粒度小于100毫米的无夹杂干屑。[next]     (前)苏联国内许多企业在对废屑进行压块加工时广泛使用液压压块机(Б-654型)和脉冲式压块机(MИБ-275型)。     用Б-654型压块机(图3)生产压块的过程,包括6个自动实施的连续工序:Ⅰ-切截批量废屑并用风动捣锤捣实;Ⅱ-用挤压头夹住废屑并将其压入阴模,同时进行压块造形,并使系统中的压力达到13亨帕;Ⅲ-移开捣锤,夹入新批量废屑;Ⅳ-在主液压缸的作用下使压块成形,成形过程持续至压力达16亨帕为止;Ⅴ-由阴模取出成品压块并使带有捣锤的挤压筒复位;Ⅵ-退出挤压头,使压块落入出料槽。在整个循环作业过程中,振动器均匀地将废屑由料仓给入进料槽。  图3  Б-654型压块机 1-带有液压缸的横梁;2-移动挤压筒的液压缸;3-振动器; 4-带风动捣锤的挤压筒;5-充油阀;6-充油箱;7-压力阀; 8-快速液压缸;9-油箱;10-操纵台;11-空气分配器; 12-液压工作缸;13-电动机;14-泵;15-可逆阀     脉冲式压块机的挤压功能,是在天然气和空气的混合物燃爆过程中释放产生的。采用这种压块机加工铝屑,可制取直径275毫米、高65~75毫米、重10~12千克的压块。压块机的加工能力为1.2~1.5吨/小时。

铝合金搅拌摩擦焊在船舶制造领域中的应用

2019-03-11 13:46:31

铝合金拌和冲突焊在焊接办法、力学功能、制作本钱以及环境等方面的巨大优越性和潜在的工业运用远景,在船只制作范畴里,铝合金拌和冲突焊得到了深入细致的研讨和开发。船只制作不只要求速度的添加,并且要求单位报价载荷功能的前进,所以舰艇制作要尽或许的铝合金材料来下降船只分量。但铝合金材料的传统衔接办法为铆钉衔接和弧焊衔接,铆接添加了制作时刻、人力和物料的运用量,而铝合金熔焊时简单发生变形、缺点及烟尘等,也约束了弧焊在铝合金构件上的运用,所以跟着拌和冲突焊技能的开展,用拌和冲突焊来完成高集成度的预成型模块化制作来替代传统的船只来板-加强件结构的制作,是船只制作技能开展的必定和性的前进。  拌和冲突焊在船只轻合金预成形结构件上的运用,在外观、分量、功能、本钱以及制作时刻上具有显着的优越性,不只能够用于船只轻合金结构件的制作,还能够用于现场安装,为现代船只制作供给了新的衔接办法告诉拌和冲突焊替代熔焊完成轻合金结构件的制作,是现代焊接技能开展的又一次腾跃。  FSW技能在船只制作、海洋工业和宇航工业中有广泛的运用远景,适于用FSW技能焊接的结构包含:甲板、壁板、隔板等板材的拼焊、铝揉捏件的焊接、船体和加强件的焊接、直升机下降渠道的焊接等。现在已用该技能焊接快艇中上长为20m的铝合金结构件,焊缝总长度超越500Km。

简述钛白粉吨袋拆包机是怎样实现环保无尘的

2019-02-26 11:04:26

钛吨袋拆包机是我公司出产的一种适用于吨袋包装的粉末物料拆袋卸料作业的机械设备。这款设备主动化程度极高,可以有用缓解粉末在拆袋卸料作业时发生的粉尘污染。曩昔职业一般选用人工拆袋卸料的作业方式,不只严重影响了粉末的正常运用,还对出产车间的环境造成了极大的粉尘污染。而我公司研制出产的钛吨袋拆包机能很好的处理这一问题,天然得到了相关职业的广泛运用。 为了可以更好的使相关职业运用钛吨袋拆包机,我公司在该设备的规划制作上特将其规划成手动拆袋和主动拆袋两种作业形式,便利客户对该设备的不同运用需求。仅仅客户在咨询钛吨袋拆包机时,咱们愈加引荐客户选购主动拆袋作业形式的粉末钛吨袋拆包机。 手动拆袋形式下的钛吨袋拆包机,其设备功能、结构等与主动拆袋的钛吨袋拆包机大致相同。仅仅手动形式的钛吨袋拆包机在机箱底部设置有手动解袋的窗口,便利人工解袋,以满意厂商对粉末物料包装袋的重复运用需求。 但经过实际运用可知,粉末这种物料在存储运送过程中简单受潮。当粉末受潮之后会粘附于物料袋表面,待凝结之后便会构成硬块,给物料袋的重复运用造成了必定的影响。因而大部分职业并不会对包装袋有循环运用的需求。但也有一些厂商重视资源运用,经过对粉末加以防潮办法,确保物料不会吸潮粘附的前提下,手动解袋的钛吨袋拆包机便能满意物料包装袋的重复运用需求。

铁矿石电选新工艺新技术-摩擦电选工艺理论(四)

2019-01-25 15:49:15

D  离心力Fc    在鼓筒式电选机上进行分选时,离心力Fc直接与转鼓的转速有关,这是除电力而外,影响分选效果最为突出的机械力,以下式表示:    式中  Fc———离心力,N;          m———矿粒质量,kg;          V———鼓筒线速度,m/s;          R———鼓筒半径,m.    E  重力Fg                            Fg=mg                         (13)    式中  m———物体(矿物)质量,kg;          g———重力加速度9.8m/s2    矿粒在鼓筒式电选机上分选时,所受到的重力,其径向和切向分力是随转动角度而改变的,如开始给到鼓筒上时,重力方向完全与鼓面垂直,俟转动后,径向和切向分力不断变化,当转到180°时,方向正好与给入时完全相反。    除上述五种力之外,还有分子间的作用力,矿粒与鼓面的摩擦力和空气阻力,但相对于上述各种力来说都很小,可不予考虑,只有分选细粒级时,分子间的作用力则必须要考虑。    根据矿粒在鼓面上所受电力和机械力的情况导电性好的矿粒,其关系式为:                         F1+FC>F2+Fg                       (14)    故矿粒会在图1.17之AB范围内落下。    导电性差的非导体矿粒,其关系式为:                         F1+F2>Fc+Fg                       (15)    从而会在CD范围内落下。    导电性中等的中矿,其关系式为:                         Fc+Fg>F1+F2                        (16)    从而会在BC范围内落下。    分选电压、鼓筒转速及电极结构三者的交互效应是非常显著的,如果电极结构形式确定后,则电压和转速相互影响又非常突出,实质上是上述关系式中的电力F1F2及离心力Fc的问题,即如何选择和配合好的关键问题。[next]   (四)矿粒在自由落下电选机中所受到的各种作用力    除鼓筒式外,此种自由落下式电选机是使用较多的一种电选设备。给矿乃先经接触碰撞和摩擦或则与给矿槽直接摩擦而获得电荷,然后进入此设备中进行分选图10.    如果忽略空气摩擦效应和邻近颗粒间的库仑力的影响,则矿粒只受到电力和重力的作用,则    电力                 Fe=QE                               (17)    重力                Fg=mg                                (18)    符号与单位均同前述。    从上图10可知,矿粒摩擦带电后,由于进入电场后而受到电力而沿X轴向运动;受到重力而沿Y轴下落,故上述两方程可以写成为    式中  t——— -时间,so负号表示下落方向。    且                Q=Σσs                                  (21)    式中  σs———由于摩擦接触带电后在矿粒上的表面电荷密度,C/m2.显然矿粒的初速度和位移为零,由于电力而产生沿X轴线上的移动,将19式积分后得:    在一般情况下,此种电选机的处理粒度为中等粒级,即48~60网目,根据粒度、密度则可求出矿粒的m值,从而可求得Q/m≈9×10-6.库仑/公斤.此种电选机的电场强度E为4×105伏/米,代入22式得                       X=1.8t2                              (24)    落下高度取0.5米已足够,则从24及25可求得X=0.18米.X值乃离中心线(落下时的位置)距离,从而求得整个设备的横向宽度为0.36米左右。故在分选此等粒度时,设备的高为0.5米,宽0.36米,即可满足要求,而分选细粒则应适当改变。

搅拌摩擦加工铸态铝铁合金组织和性能研究

2018-12-27 16:26:15

搅拌摩擦加工(FSP)是在搅拌摩擦焊接(FSW)基础上发展起来的一种新型有效的加工技术,可用于材料微观组织改性和新型材料制备。加工过程中,利用高速旋转搅拌头的搅拌和摩擦作用,使加工区材料混合破碎,并发生剧烈塑性变形和热机循环作用,实现微观结构的细化、致密化和均匀化。   FSP可破碎粗大枝晶组织和第二相,溶解沉淀相,消除铸态缺陷,显著改善金属材料的性能。铝铁合金具有质轻、耐热性好和抗腐蚀等诸多优良性能,在航天航空领域有着广泛的应用前景。普通熔铸铝铁合金中,铁在铝中的固溶度很低,主要生成Al3Fe等金属间化合物。   Al3Fe呈针状或片状,严重割裂基体,成为应力集中源,显著降低铝铁合金的力学性能。控制和改善含铁相的形态、大小和分布,能使铝铁合金成为实用的结构材料,提高合金性能和实际应用价值。因此,寻求有效的加工细化方法成为解决问题的关键。目前采用高压扭转和等径弯曲等强塑性变形方法能显著细化组织和Al3Fe金属间化合物,增加铁原子在铝基体中的固溶度,提高该合金的力学性能。不过这些方法加工工序复杂,而且得到的试样尺寸较小,因而在实际应用中受到限制。   FSP能有效的细化合金组织,适合连续加工制备大面积的块状材料,是一种很有潜力的材料细化方法。因此,本文采用FSP对普通熔铸方法制备出的铝铁合金进行3道次往复加工,研究3道次加工后铝铁合金组织和性能的变化。   实验用99.9%工业纯铝和Al-20Fe中间合金为原材料,配制含铁3%(质量分数)的Al-3%Fe合金。合金在箱式电阻炉中用石墨坩埚熔炼,经除气和精炼后,于820℃在铜模中浇注成100mm×80mm×5mm板坯试样。FSP实验在改造的X5032型立式升降台铣床上进行。搅拌头材料为W18Cr4V,轴肩直径为16mm,搅拌针直径为5mm,高度为3.8mm。搅拌头旋转速度为1180r/min,焊接速度为47.5mm/min。对铸态合金进行3道次往复FSP。   合金铸态组织存在大量针状Al3Fe相,尺寸约为20~50μm。经搅拌摩擦加工后,针状Al3Fe相被破碎成长度小于1μm的粒状,弥散均匀分布在铝基体中。铸态组织转变为低位错密度的再结晶晶粒,基体中存在细小的含铁亚稳相。搅拌摩擦加工后,加工区的显微硬度较铸态区降低,但分布较均匀。加工区合金的抗拉强度稍微下降,延伸率显著增大。搅拌摩擦加工前后,合金拉伸断口呈现出微孔聚合韧性断裂特征。加工前,韧窝呈抛物线状的撕裂韧窝,韧窝尺寸较小而且较浅,而加工后的韧窝形貌呈等轴状。

7050-T7451铝合金搅拌摩擦焊组织及性能分析

2018-12-28 11:21:17

7050铝合金是一种可热处理强化的超硬铝合金材料,熔铸方便,成形性好,具有良好的综合性能。由于铝合金弧焊时焊缝经常会产生气孔、裂纹、咬边等缺陷,特别是对于热处理强化的超高强铝合金,其弧焊焊接性更差,极易出现热裂纹,严重阻碍了7050铝合金在工业中的应用。搅拌摩擦焊(FSW)作为一种高效、优质、环保、低成本的新型焊接方法对7xxx系高强铝合金可以进行很好的焊接。本文选取8mm的7050-T7451铝合金板进行单道对接搅拌摩擦焊实验,并对接头的组织和力学性能进行了分析。   焊接试验用材料为8mm厚的7075-T7451铝合金,搅拌头材料采用H13热作模具钢。化学腐蚀液为15ml HCl + 1ml HF + 2.5ml HNO3 + 95ml H2O;在显微镜Optelics TMS 130下观察焊合区的组织特征;在CSS-44100电子万能试验机上进行拉伸试验;在HX-1000显微硬度计上进行硬度测量。   焊核区发生连续动态再结晶形成细小的等轴晶;热机影响区在机械力和热循环的作用下呈条弧状组织;热影响区的组织晶粒发生粗化。当转速为375r/min、焊速为100mm/min时,接头抗拉强度最高,可达到母材的88.6%。焊缝硬度的分布呈现“W”形,最小值基本出现在后退侧热机影响区与热影响区的过渡处。

搅拌摩擦焊成功焊接6013-T4铝合金材料

2019-01-15 09:49:23

空客公司作为靠前个采用搅拌摩擦焊技术制造大型民用飞机制造的飞机制造商,已将该技术引入A340的制造,并大规模应用于A350的制造。空客公司把搅拌摩擦焊技术用于A340-500s及A340-600s的机身纵缝连接以取代传统的铆接。      这项技术使A350的设计组把纵缝连接机身面板从8块减少到4块,这样做可使重量减轻,并提高飞机的使用寿命及部件的可维护性。   6013-T4 铝合金是美国铝业公司研究开发的一种新型铝合金,其较初的应用目标是汽车工业,通过降低零部件重量从而提高燃油效率。该合金的耐蚀性比高强7XXX系合金好,而强度比普通6XXX系合金高且保持了优良的耐蚀性和成形性,因而该合金在航空、航天、舰船、交通和建筑等部门有着广泛的用途。美国的洛克希德航空设备公司已选定6013板作为飞机铝合金的主要蒙皮材料和部分结构用材料,以替代传统的2024合金板材,空客公司现采用6013铝合金作为A380机身下壁板的材料,用传统的焊接方法易产生气孔等缺陷,国外现用激光焊接6013铝合金,但存在焊接接头的强度不高(通常在母材的70%-80%之间)、设备和工作成本高、材料对激光的反射造成激光吸收率低、产生气孔、裂纹和咬边等缺陷。   搅拌摩擦焊是一种新型的固相连接技术,不会出现熔化焊接中常见的裂纹、气孔等缺陷;其在焊接过程中无需焊丝和保护气体;焊后工件变形小,残余应力小;焊接成本低,效率高,易于实现自动化。值得关注的是,采用搅拌摩擦焊焊接机身下壁板不仅可以有效地避免熔焊常见的缺陷,在提高工作效率,降低生产成本方面也具有独特优势。6013铝合金作为一种航空铝合金,其搅拌摩擦焊接工艺的成功开发,对扩展搅拌摩擦焊在航空领域的应用具有重要意义。

基于辊缝动态摩擦方程的铝板冷轧机垂振机理分析

2019-01-11 09:43:18

板带冷轧机这一多质量、旋转运动体系统,在其高速、瞬态轧制过程中,时常会发生轧机振动现象。当轧制工艺、设备和控制等参数配合良好时,这种振动现象并不会明确体现。但是,一旦轧机运行状态超出对产品的精度要求或设备的承受能力,便会导致轧机振动的频繁发生。在带钢冷连轧过程中经常出现的传动系统扭转振动、垂直振动及垂扭耦合振动等振动形式中,以垂向系统的三倍频振动危害较大,它轻则会对轧件产品的板厚-板形质量指标造成不良的影响,重则会导致轧机设备的损害。    北京科技大学的学者针对高速铝板轧制过程中频繁出现的冷轧机垂直振动现象,结合轧制工艺润滑原理和机械振动理论,建立基于辊缝动态摩擦方程的轧机垂直振动模型。该模型由辊缝几何形状模型,轧辊-轧件工作界面的动态摩擦模型,变形区内的正向轧制应力、摩擦应力分布模型,以及单机架铝板冷轧机二自由度垂向系统结构模型组成。同时,为研究轧辊--轧件工作界面动态摩擦机制影响下的冷轧机垂振机理及系统稳定性,采用某厂单机架铝轧机设备及工艺参数,搭建Matlab/Simulink平台,分别模拟仿真轧制压力和正向轧制应力曲线,验证该模型的有效性;并讨论分析了变形区混合摩擦状态,轧辊--轧件表面粗糙度、轧件入口厚度与系统稳定性的关系。

铁矿石电选新工艺新技术-摩擦电选工艺理论(一)

2019-01-25 15:49:15

矿物通过各种方法荷电后,在电场中进行分选,主要是由于矿粒所受各种电力和机械力不同,从而产生的运动轨迹也不同,使之能彼此分开。电选过程的理论主要涉及三方面的问题:第一是产生适合电选要求的电场;第二是如何使矿粒获得一定量的电荷;第三是获得电荷后受到各种电力及机械力并使之配合好而达到分选。   (一)电场    电选实践中用得最为广泛的是高压电晕电场及静电场,且绝大部分是非均匀电场,而鼓筒式电选机又是使用最为普遍且具有代表性的一种。    A  影响电晕放电的因素    电晕放电是一种自持放电,电选要求稳定地放电,即不随时间而变化的直流放电,负电极使用最广泛。这种放电是粟用直径很小而曲率又很大的电晕极,使之带高压负电或正电,另一极则为接地极,它与带电极相反,其直径很大而曲率很小。正负极距离(称之为极距)很小,常为60~70毫米,这样配合后,很容易产生电晕放电。现在世界各国广泛使用的鼓筒式电选机,其电晕丝的直径仅仅只有,0.2~0.5毫米,而鼓简直径却达250~350毫米,两者直径之比为1:1250或1:1750,显然两者之差极大,如接地极为平面极时,则相差更大。    从选矿的角度来说,要求这种持续放电稳定可靠,即靠近鼓筒或各种接地极之空间产生稳定的空间体电荷,切忌产生火花放电。这主要是由于火花放电时使空间体电荷紊乱,实际中也反复证明,产生火花放电时,选矿指标一定要下降。电晕放电时,其最为突出的影响因素有电源电压、极距以及空气湿度。    电压:在相同条件下,电压越高,在接地极(鼓筒面或平面)上的电晕电流也越大,其关系曲线如图1所示。 [next]     极距:极距也是严重影响电晕放电电流的重要因素,在相同的电压下,极距越小,电流越大,亦即电流随极距的增加而减小,其关系曲线如图2所示。    电选时并不能采用太小的极距,虽然它容易产生电晕放电,但一俟电源电压不稳定及给矿中含有少量铁质时,则极易产生火花放电,以致破坏正常的电选。生产中常采用60~70毫米极距,实验室则常用50毫米的。    空气湿度:空气湿度也是影响电晕放电的因素,在相同的电压下,空气湿度越大,电流越小,这主要是湿度增加,空气分子不易为电子所电离之故。    图3是不同空气湿度时,电压与电流的关系曲线。    电晕放电时,在电极表面产生浅紫色的光辉,像露水珠一样,同时放出臭氧,并发出像漏气样的丝丝响声,从毫安或微安    表上可读出电晕电流的大小,或者还可从鼓筒表面上测出电晕电流的分布。总之,电压越高,这些现象和情况则越为明显。[next]    B  电晕放电电场的计算    电选中电晕电场的计算是比较复杂的,且无准确的公式可用,这是由于极距很小,同时涉及影响放电的因素比较多,目前只有标准的圆筒形,即带电电极正好在圆筒的中心这种形式;另一种是电晕极与平面极配合的形式可计算,其他形式则无法计算。    a  圆筒形电场强度及放电电流的计算    此种形式的起始电晕放电电场强度的计算,可采用下述简单计算法。    式中  E———电场强度KV/m;          r0———电晕放电电极半径,m;          I———线电流密度,mA/m;          K———离子迁移率,m2/V•s.    圆筒形中电晕极放电电流的计算:    式中  R———圆筒内径,m;          u———加于圆筒中心电晕极电压,Kv;          uk———电晕放电起始电压,Kv.    b  平面极与电晕极的电场强度及放电电流的计算    此种形式乃放电电极为尖削极或丝极,接地极为平面极,电场强度的计算公式为:    式中  χ———距电晕极中心距离,m;          ι———为两极之间的距离,m;    其他符号同前。

铁矿石电选新工艺新技术-摩擦电选工艺理论(二)

2019-01-25 15:49:15

平面极与电晕极配合时,电流I的计算公式为    上述各种公式中,除圆筒形的计算符合实际外,其余都属于一些经验公式,而常用电选机的场强及电流是难以算出的,故都采用测定的方法来确定。    C  探极法测定电场强度    探极法是在待测的点上引入一探测电极,其电源乃另外一高压电源,当改变加到探测电极上的高压电压时,则探测电极上的电流就会改变,作出此探测电极的伏安特性曲线后,并将此曲线的直线部分延长而使之与横坐标相交,此交点的电位值,即为测点的电位。图5即为探极法的伏安特性曲线。求出电压后,即可由前述公式计算出场强。[next]    D  电晕电流的测定    电晕极对接地极放电,必然在鼓面上或平面极以及其他形式的接地极上产生微电流,此种电流的大小、分布状态则与电选实际有着很重要的关系。因为它关系着矿粒在此区域内荷电量的多少,在这种极距很小的状态下,根本无法算出,只有靠测定的方法来解决。    测定的方法是在接地极的表面贴上一铜箔,并使之与接地极绝缘,再将此箔片与微安电流表相连接,然后使电晕极带高压电,则从电极发出的电子会落到铜箔上而反映在电流表上,读出此电流之大小,即为该鼓面或平面上该点电流之大小,再转动接地极,则可测出这根或几根电晕极对地极的整个分布曲线、如此类推,则可测出各种电极结构形式的电流分布曲线% 其简单线路如图6所示。    在按地极表面所反映出电流的大小及分布,与电极间的电压、极距、电极结构形式、空气湿度,采用电晕极直径的大小等,都密切相关。电压相同,小极距的电晕电流大,反之则小;同一极距,电压越高,电晕电流越大,反之则小。电压越高,电晕电流在鼓面上的分布范围也越大。图7为极距相同,电压不同,一根电晕极放电时,电晕电流在鼓面上的分布曲线。 [next]     显然20千伏时的电流比12千伏的电流要高出好几倍(中心最高点),而作用区域也明显地增大一些,电压越高,这种情况更为突出。    电极结构不同,则在相同电压和相同极距时,其在接地极表面上的电晕电流分布也大不相同。图8为两种不同形式的电极结构所测出的曲线。上图之A种电极结构由于有静电极,电晕电流(鼓面)减弱,B种电极结构则使电晕电场作用区域减小,这些对我们测定一个电极是否合理适用,有重要意义。

铁矿石电选新工艺新技术-摩擦电选工艺理论(三)

2019-01-25 15:49:15

(二)矿粒在电晕电场中获得的电荷    球形矿粒在电晕电场中所获得的电荷,通常以下式表示:    式中  r———矿粒半径,          ε0———空气介电常数,F/m,          e———离子电荷,等于1.6×10-19C;          n———电晕电场内离子浓度,即每m3离子数;          K———离子迁移率,m2/V•s,在1个标准大气压时,K为1~2×104m2/V•s,相当于15~                 30m2/s          t———放电时间,s。    如采用电场中离子浓度n=1014离子数/米3,从上述公式,令t=10-3,10-2及10-1秒,则可求得矿粒相应的荷电量为极大值Qmax的6%,45%及90%。    矿粒在电晕场中荷电达到极大电荷值Qmax所需的时间关系。    对小于2毫米至0.1毫米的粗粒矿物,要求在电晕场中能荷以较大的电荷值(Qmax)(至少为50%Qmax),这是由于矿粒比较大,在鼓筒式电选机上所受的离心力及重力分力也大,特别是对非导体矿粒而言,则尤为重要,如不从电晕场中吸附较多的电荷以及由此而产生较大的镜面吸力,则必然由于离心力及重力过大而混入导体产品中,影响分选效果;但对导体而言,则不受影响,因为只要能及早地将吸附之电荷通过接地极而传走。    对小于0.1毫米的矿粒而言,由于其粒度小,质量也小,在同等荷电条件下,则比表面电荷大,但如果在鼓筒式电选机的同等转速下(与粗粒相等),则其离心力几乎要小1000倍,如果像分选粗粒一样,也荷以很大的电量,则产生的镜面吸力会更大,这对导体矿粒而言,必然会带来相反的结果,特别是细粒(小于0.1毫米)的分子间的作用力很大,则会极难从细粒群中分出,因此分选细粒要求的荷电量远远比粗粒要小得多,即荷电的时间也要短一些。    根据上述粗粒和细粒的性质和特点,特别是要求荷电量的不同,为此必须采用不同的电极结构以适应于上述情况。此外还必须在操作条件上有明显的不同,主要是电压及产生离心力的转速上,粗粒要求电压高,转速小,细粒要求电压低,转速高。[next]   (三)矿粒在电场中所受到的各种电力和机械力的作用    矿粒在电晕场中获得电荷后,同时受到各种电力和机械力的作用,导体与非导体的运动轨迹不同,从而得以分开。由于鼓筒式电选机具有典型性且广泛为各国使用,故仍以此说明。图9为矿粒在鼓筒不同位置上所受各种电力和机械力的图形。    A  库仑力F1    矿粒在电场中获得电荷后,立即受到库仑力的作用,如果是导体矿粒在高压静电场中受到感应后而带电,同样受到库仑力的作用。库仑力用下式表示:                      F1=QE                      (8)    式中  F1———作用干矿粒上的库仑力,N;          Q———矿粒在电场中所获得的电荷,C;          E———电场强度,V/m或kV/m..    对导体矿粒而言,为静电极对它的吸引力,其方向乃朝着带电电极;对非导体而言,则为斥力,方向乃朝向接地极,恰与导体相反。    B  镜面吸力F2    镜面吸力是矿粒在电晕电场中吸附电荷后,由此而与鼓面感应产生的电力,以下式表示:    式中  Q(R)———矿粒剩余电荷,C;          r———矿粒中心与接地极之间的距离,m.    镜面吸力是使导体与非导体分开最为重要的电力,矿粒在电晕场中吸附电荷后,除去经接地极(转鼓)传走少部分外,绝大部分电荷则与鼓筒之表面相对应位置感应而产生吸引力,此感应电荷与剩余电荷大小相等,而符号相反;导体矿粒之电荷剩余极少或等于零,而非导体则几乎不能传走,故紧吸于鼓面,方向朝向鼓面。[next]    C  非均匀电场的作用力F3    此力又称之为有质动力,其大小以下式表之:    式中  r———矿粒半径,m;          ε0, εa———分别表示真空及空气的介电常数,F/m;          εd———介质的介电常数;          εm———矿粒的介电常数,F/m;          E———电场强度;          gradE———电场梯度。    当εm<εd时,矿粒被排斥到较弱的电场中,反之当εm>εd时,则矿粒被吸向电场强度大的区域。由于电选均在空气中进行,因此εd=1,则上式10可写成    电场强度及梯度愈大,F3愈大;愈靠近电晕极则gradE愈大,根据测定,愈靠近接地极,梯度很小,加之分选之粒度本来已很小,则r3更小,两者之乘积就更小,故可忽略不计。为此真正起作用者则为F1及F2两种电力。

废铝压块机

2017-06-06 17:50:03

废铝压块机属于 金属 压块机的一种。是一种 金属 压块机用来压废铝的。 金属 压块机:包括 金属 屑压块机和 金属 打包机两种机型,是通过大压力将各种 金属 废料直接冷压成型,便于储藏、运输及回收再利用。金属 屑压块机能将粉粒状的铸铁屑、钢屑、铜屑、铝屑、优质矿粉等直接冷压成饼块,以便于储藏、运输及投炉回收再利用。压制成块后投炉回收使用损耗极低 。整个生产过程不需加温、加添加剂或其他工艺,直接冷压成型,成型的同时也确保了原有材质的不变。例如铸铁屑成型后代替铸造生铁使用。对于特别材质的铸件,回收意义更大。金属 屑压块机.jpg" />金属 打包机可将各种比较大的 金属 边角料、废钢、废铁、废铜、废铝,解体汽车壳,废油桶等挤压成长方体、圆柱体、八角形体等各种形状的合格炉料。以便于储藏、运输及投炉回收再利用。金属 打包机.jpg" />废铝压块机的主要特点:1、所有机型均采用液压驱动,可选择手动或PLC自动控制操作; 2、机体出料形式可选择翻包,推包或人工取包等不同方式; 3、安装简便,无需底脚固定,在无电源的地方,可采用柴油机作动力; 4、挤压力从63吨至400吨有十个等级,供用户选择,生产效率从5吨/班至50吨/班;5、压缩室尺寸和包块形状尺寸及机型尺寸可根据用户要求设计定制。