您所在的位置: 上海有色 > 有色金属产品库 > 液压打包机设计 > 液压打包机设计百科

液压打包机设计百科

废铜打包机

2017-06-06 17:50:13

废铜打包机可将各种 金属 边角料(钢刨花、废钢、废铝、废铜、废不锈钢以及报废汽车废料等)挤压成长方体,八角形体,圆柱体等各种形状的合格炉料,既可降低运输和冶炼成本,又可提高投炉速度。   废铜打包机特点:1、结构简单耐用,操作方便, 价格 实惠,低投入高回报;2、所有机型均采用液压驱动(或柴油驱动);3、机体出料形式可选择翻包,推包或人工取包等不同方式;4、安装简便,无需底脚固定,在无电源的地方,可采用柴油机作动力;5、挤压力从63吨至400吨有十个等级,供用户选择,生产效率从5吨/班至50吨/班;6、压缩室尺寸和包块形状尺寸及机型尺寸可根据用户要求设计定制。 打包机的工作原理:打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。    打包机的工作流程:带子送到位→收到捆扎信号→制动器放开,主电机启动(1)→右顶刀上升,顶住右带于滑板处(2)→“T”型导板后退(3)→接近开关感应到退带探头(4)→主电机停转,制动器吸合(5)→打包机退带电机转动,退带0.35秒(6)→带子收紧捆在物体上(7)→主电机二次启动,制动器吸合(8)→大摆杆二次拉带,收紧带子(9)→左顶体上升,压紧下层带子(10)→加热片伸进两带子中间(11)→中顶刀上升,切断带子(12)→中顶刀下降(13)→中顶刀再次上升,使两带子牢固粘合(14)→中顶刀下降,左右顶刀同时下降(15)→加热片复位(16)→滑板后退(17)→“T”型导板复位(18)→接近开关感应到送带探头(19)→送带电机启动,带动带子送带(20)→大摆杆复位(21)→带子到位,带头顶到“T”型导板上(22)→接近开关感应到双探头(23)→主电机停转,刹车吸合(24)→打包机完成一个工作循环。    打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。    了解更多有关废铜打包机的信息,请关注上海 有色 网。 

废金属打包机

2017-06-06 17:50:12

废 金属 打包机是什么?废 金属 打包机:主要应用于回收加工 行业 及 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等 金属 原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。该系列设备有以下特点:   1. 均采用液压驱动,工作平稳,安全可靠;   2. 采用手动或PLC自动控制的操作模式;  3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;   4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。   废 金属 打包机技术参数:   电源,功率: 380V/50HZ 750W/5A   打包速度: ≤2.5秒/道   台面高度: 750mm   框架尺寸: 宽800mm*高度根据需要定   捆扎形式: 平行1~多道,方式有点动、手动、连打、球开关、脚踏开关   适用包带: 厚(0.55~1.2)mm*宽(9~15)mm   电器配置: LG“PLC”控制,法国“TE”,日本”OMRON“,”ZIK“电器适合常规物体捆包废 金属 打包机发展趋势(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。   (2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。   (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。   (4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。用途:适用于炼钢厂,回收加工 行业 及 有色 、黑 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花、废铜、废铝等挤压成长方体、圆柱体、八角形体等各种形状的合格炉料,以此降低运输和冶炼成品。更多有关废 金属 打包机请详见于上海 有色 网

废金属打包机

2017-06-06 17:50:13

废 金属 打包机主要应用于回收加工 行业 及 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等 金属 原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。    该系列设备有以下特点:1. 均采用液压驱动,工作平稳,安全可靠;2. 采用手动或PLC自动控制的操作模式;3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。    打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包机(高台标准型)可以实现自动打包,但台面无动力,需要人工推一下,包装物品才能通过打包机。该打包机的原理是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。捆扎机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。捆扎机 价格 :全自动捆扎机 价格 或全自动捆扎机报价是半自动设备的两倍多。    废 金属 打包机发展趋势:(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。(2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。(4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。    了解更多有关废 金属 打包机的信息,请关注上海 有色 网。 

废铝打包机

2017-06-06 17:49:58

废铝打包机又称:金属打包机;打包机;废钢打包机;废铁打包机;废铝打包机;废铜打包机;生铁打包机;废金属打包机;液压打包机;金属屑打包机;钢刨花打包机;铁屑打包机;废铁压块机。适用于炼钢厂,回收加工行业及有色、黑色金属冶炼行业。可将各种金属边角料、钢刨花、废钢、废铝、废铜等挤压成长方形、圆柱体、八角形体等各种形状的合格炉料,以降低运输和冶炬成本。便于储藏、运输及回炉再利用。废铝打包机该系列设备有以下特点: 1. 均采用液压驱动,工作平稳,安全可靠;  2. 采用手动或PLC自动控制的操作模式;   3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;   4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。  产品规格和种类:金属打包机(废铝打包机)有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。  废铝打包机产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。

废铜打包机

2017-06-06 17:49:53

废铜打包机,主要应用于回收加工行业及金属冶炼行业。可将各种金属边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等金属原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。1. 均采用液压驱动,工作平稳,安全可靠;  2. 采用手动或PLC自动控制的操作模式;  3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;  4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。  产品规格和种类:金属打包机有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。  产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。废铜打包机是打包机新型先进的气动包装机械。主要用于钢铁企业和有色金属企业捆扎各种小规格的管材、板材、型材等产品的包装,还适于用木箱包装各种产品的捆扎。   但是由于在使用中零件的磨损,不良的润滑,会引起零件的损坏,可能扩大故障和事故的发生,因此迅速地发现故障、排除故障十分重要。不会因为一点小故障而求助制造厂,从而赢得宝贵的时间和金钱.容易出现故障的地方和维修方法   故障:切不断钢带  原因:1)切刀磨损或故障  维修方法:检查切刀或切刀架是否磨损或故障,如磨损严重应更换  2)气压降低  维修方法:检查工作压力是否正常;  切断钢带力来自封锁气缸参见故障现象;  检查封锁操作  故障:锁扣夹口承受的拉力不够  原因:卡紧块联接孔或联接销磨损  维修方法:在槽深度浅时检查这些零件,必要时更换废铜打包机,是废铜打包的好帮手。

手机设计中铝合金材料的应用

2019-01-09 09:34:17

以前大部分手机机身材质都是塑料,造价低、加工难度小,但是却显得廉价,而金属机身都是在少数旗舰机上才能见到的。不过随着行业的发展,上至旗舰机下到千元机,金属机身突然开始普及起来了!金属机身在各知名品牌厂家的机型中属铝合金应用较为普遍。那铝合金在手机的设计上又是以哪些设计形态出现的呢,让我们来做一些初步的介绍:  靠前类:外观件中框代表机型iphone6/6S,iPhone5S、HTCM8、vivoXshot、Lumia925等  材质分类:  按照合金材料的不同可以将铝合金分为1系到9系,每种系列中的具体型号命名一般都为四位数字,比如6061、7075等,iPhone6S的机身材质就是采用的7系铝合金。7系铝合金以锌元素为主,也少量添加了镁、铜,铝合金硬度更接近钢材硬度——然而还是一磕一个坑啊!6系铝合金以镁和硅为主要合金元素,是目前应用较广泛的合金。  结构设计方式:  整体CNC+纳米注塑,外观装饰件CNC+点胶/贴背胶/锁螺丝,外观面CNC+内部铝合金压铸套啤+纳米注塑方式,锻压+CNC+纳米注塑方式,等等。工艺处理:阳极氧化   优点:和不锈钢的低调相比, 铝合金材料更容易加工出高档、美观、熠熠生辉的感觉。其次、铝合金材料非常轻,比重只有不锈钢的三分之一,也就是说同样体积的不锈钢手机,材料上差不多是铝合金的三倍重。这也是为什么iPhone5比iPhone4S轻了这么多的原因。第三、耐刮伤,铝合金材料在强度上算不上,但表面硬度却达到蓝宝石级别,因此采用铝合金材料的手机有可能会有磕碰很近,但很少有划痕。第四、铝合金材料染色性强,正因为换用了铝合金,Iphone等手机才能拥有我们所谓的“土豪金”、“高端灰”等颜色。  此外,铝合金材料和有耐高温、不留手印、抗静电、环保无毒等特点。  缺点:成本高  IPHONE6掉漆门事件:部分iPhone6S手机使用一段时间后发生“掉漆”,表面随机出现剥落斑点,整体看上去“锈迹斑斑”,像爬满了小虫,完全看不到iPhone手机“高颜值”的特点,反而给人毛骨悚然的感觉。主要原因分析:前期的iPhone6也曾使用牌号为6系列的铝合金作为手机外壳,该铝合金的主要合金元素是镁和硅,合金含量较低,阳极氧化成品率高,氧化膜致密附着力强,保护铝合金材料不受腐蚀,故没有上述“生锈”情况发生。但是6系列铝合金较大的缺点是强度低,因此出现手机很容易就被折弯、坐弯的情况,苹果公司不得不选用更高强度的7系列航空铝合金。iPhone6S使用的7系列航空铝合金是铝合金中室温强度较高,但也较容易发生腐蚀。该系列铝合金除铝以外还添加了锌、镁和铜元素。正是这些合金元素的加入产生各种强化相使强度大幅提高,可以达到普通低碳钢的2-3倍,彻底解决iPhone6容易弯曲问题;但是,也导致了该系列合金耐腐蚀性能差,容易发生应力腐蚀。  为了提高耐腐蚀性,手机的铝合金外壳表面会做人工阳极氧化,使外观更美观,并提高表面硬度。阳极氧化膜的质量和附着力直接影响手机的外观质量和耐腐蚀性。7系列铝合金由于合金成分较高,这些合金元素在常规熔铸铝棒的过程中难以避免会分布不均匀,产生偏聚,也称宏观偏析。部分偏析会在后续均匀化处理和挤压铝排过程中得到部分改善,但是无法完全消除。偏析的存在意味着材料各部分成分分布不均匀,这种成分的不均匀会造成阳极氧化膜质量和附着力不同,导致氧化后易出现色差等外观缺陷,并且使用性能不稳定,部分位置氧化膜附着力不够易脱落。一旦失去了氧化膜的保护,再加上手汗、潮湿空气和高温天气的加速腐蚀,iPhone6S采用的7系列航空铝手机壳就会呈现出上述“掉漆”现象。  7系列铝合金材料的偏析问题从铸造过程就开始产生,并一直存在于材料中难以根除,影响阳极氧化质量,较终导致iPhone6S“掉漆”严重,难以直视。因此,彻底解决该问题还应从源头出发,设法生产高均匀性、无偏析的高品质铝合金原料。  急速冷却工艺制备高品质铝合金原料:  (下图左--急速冷却7075铝合金显微组织,下图右铸造7075铝合金显微组织)常规铸造工艺,由于金属凝固时冷却速度较慢(一般<102℃/s),合金元素易发生偏析并持续生长,严重影响了材料的均匀性;而采用急速冷却工艺冷却速度极快(可达104-106℃/s),液相金属具有很大的过冷度,促进了形核;金属在极短时间完成凝固,使晶粒形核后来不及长大;并抑制了铸造中常见的树枝晶和柱状晶,形成近似球状的等轴晶,消除了常规材料的各向异性;由于细密的晶粒组织,金属产生了细晶强化效果,大幅提高了合金的强度、硬度和塑性;急速冷却工艺中合金的凝固在惰性气体保护中完成,无氧化、夹杂,硬质相细小弥散分布,均一致密组织有利于阳极氧化膜质量和均匀性,提高耐腐蚀性能。  上图是急速冷却7075和铸造7075的显微组织对比。从金相照片上可以看到铸造7075组织粗大,枝晶和偏析现象严重;急速冷却7075晶粒呈球状,无枝晶组织,晶粒细小。表1是急速冷却工艺与常规工艺生产的7系列铝合金性能对比。下图是急速冷却7系列铝合金实物图。

液压钢管规格

2019-03-15 10:05:15

液压钢管,是无缝钢管的其中一种材质,含碳量在0.24—0.32%之间,simn单列是因为是因为五大元素(碳C,硅Si,锰Mn,磷P,硫S)中,硅锰的含量高约为1.10—1.40%。    液压钢管经过酸洗、冷轧、冷拔,然后采用先进的高温热处理技术(NBK状态)表面:光亮、光滑、高精密度、高光洁度,内外壁无氧化层,内外壁精度高,机械性能适应在任何一个角度下进行弯曲,而且可承受高压、冷弯不变形、扩口、压扁、抗拉等要求,做到钢管冷弯不爆裂、无裂痕、且内外壁无氧化层。     液压钢管规格工艺介绍:以DIN2391/EN10305高精度精密液压无缝钢管的成品管作为磷化用钢管,用进口环保型磷化液对钢管进行内外壁磷化,形成黑色磷化保护膜,通过磷化膜中的微孔吸收防锈油作防锈处理,两端封盖作防尘处理。   液压钢管主要特点:钢管颜色:黑中带亮,钢管表面颜色均匀度高,一致性强,外表较为美观,钢管防锈性能好。液压钢管完全可以替代同标准的进口液压无缝钢管液压管和普通钢管的液压钢管规格应用 1、流体用无缝钢管:GB8163-99 2、锅炉用无缝钢管:GB3087-1999   3、锅炉用高压无缝管:GB5310-95(ST45.8-ⅲ型)   4、化肥设备用高压无缝钢管:GB6479-1999   5、地质钻探用无缝钢管:YB235-70   6、石油钻探用无缝钢管:YB528-65   7、石油裂化用无缝钢管:GB9948-88   8、石油钻铤专用无缝管:YB691-70   9、汽车半轴用无缝钢管:GB3088-1999   10、船舶用无缝钢管:GB5312-1999   11、冷拔冷轧精密无缝钢管:GB3639-1999   各种合金管16Mn、27SiMn、15CrMo、35CrMo、12CrMov、20G40Cr,12Cr1MoV,15CrMo钢管按生产工艺不同分为无缝钢管和焊接钢管两类。无缝钢管是由钢锭、管坯或钢棒穿孔制成的无缝的钢管。 液压管重量公式:[(外径-壁厚)*壁厚]*0.02466=kg/米(每米的重量)

铝锭打包

2017-06-06 17:49:56

铝锭打包是投资者们很关心的问题,让我们对它进行下阐述。PET塑钢带-铝锭打包专用当 前 价: 15000 元规格型号: 2512发 货 量: 1000 发布时间: 2010年6月7日有效期至: 60天使用钢带打包铝锭的传统方式已经日渐不适用于当今的工业产品包装,钢带因其自身存在成本高、易生锈、易返松、打包操作不方便、打包浪费严重等不足。使用pet索带(塑钢带)打包是目前及未来工业产品包装的发展趋势。pet塑钢带凭着成本低、省钱、环保美观、易用耐用、高强度和高拉力等优势,成为替代钢带及pp打包带的新型捆扎包装材料。从2002年来,国内的索带需求以每年500%的速度增长,大规模应用到铝锭、有色金属、钢铁、玻璃、木材、造纸、石材、陶瓷等行业。铝锭是一种贵重的工业产品,重量大、搬运频率高、运输距离远等特点,令其在包装方面要求十分严格,特别是对捆扎材料的要求也很高,既要坚实牢固,又要求有足够缓冲保护铝锭,还要经受运输的考验。为此国家制定了《铝及铝合金加工产品包装、标志、运输、贮存》(gb/t 3199-2007)标准,明确规定铝锭的包装形式和方法,为铝锭的包装提供了参考依据。比例条件:每托铝锭需用4条带,每条打包带的长度为4米,每托铝锭共需16米打包带。注:1、钢丝打包每条会浪费0.2米用作收紧,即4条带共浪费0.8米;2、 每条钢带需多支付1个钢扣的费用;3、一体化气动打包机提高打包速度;气动铝锭打包机当 前 价: 2 元/台最小起订:1 台供货总量:200 台特性    1、适合各种PET塑钢带    2、束紧、粘接、切断一次性完成,操作简便。    3、束紧力强,大于2800N以上,适用于冶金、钢铁、建材业等    规格      型号 CMVAQD-19 CMVAQD-25    机重 3.8㎏ 4.0㎏    使用塑带宽度 10-19.0mm 19-25mm    使用塑带厚度 0.4-1.05mm 0.4-1.35mm    打包结合强度 约75% 约75%    咬扣方式 摩擦热熔粘接 摩擦热熔粘接    束紧力 2800N 2800-3000N    平均气压 0.65MPa 0.65MPa如果你想知道铝锭打包等更多的信息你可以登陆上海有色网查看。 

铝锭打包带

2017-06-06 17:49:56

铝锭打包带是一种投资者想知道,因为了解它可以帮助操作。铝锭聚酯打包带数量(米)  ≥1价格(元/米) 10000.00元/米铝锭打包带是以聚对苯二甲酸乙二醇酯为主要原料经加工而成的,它是目前世界上用于代替钢带的一种新型环保的包装材料,经这几年新材质的开发成功及成本的大幅下降,已大量使用在钢铁业、化纤业、铝锭业、纸业、砖窑业、螺丝业、烟草业、电子业、纺织业及木业等;是一种取代钢带的新型高强度打包带,是目前世界上使用最广泛的替钢带使用。其特性有:1、高强度 : 铝锭打包带材质是(聚脂),具有极强抗拉性,接近于同规格的钢带,是普通塑料带的几倍。2、高韧性 : 铝锭打包带具有塑料特性,有着特殊的柔韧性,在运输过程中可避免因颠簸造成打包带的断裂导致物体的散落,确保运输的安全。3、安全性 : 铝锭带没有钢带的锋利边缘,也不需要钢扣结合、没有压痕、刮伤问题,不会对被包装物体造成损伤。在打包和开包时不会对操作人员造成伤害,避免一切不安全因素。4、适应性 : 铝锭带因材质和制作工艺因素,能适合各种气候变化,耐高温、耐潮湿,不象钢带受潮生锈污染环境及损失抗拉性,使捆包强度减小。5、环保性 : 因铝锭带质量轻,搬运方便;体积小,节省仓库空间;用过的铝锭带方便回收,符合环保要求。6、美观型:钢带会因暴露在空气中吸收水分而生锈,锈迹渗透性强容易污染包装物。铝锭塑钢带则美观、不生锈、有利环保。7、耐温性 : 熔点为260度,120度以下使用不变形,并能长时间保持拉紧力。8、经济性 : 1吨塑钢带的长度相当于6吨钢皮带,每米单价低于铁皮带,成本仅是铁皮带的60%。如果你想更多的了解关于铝锭打包带的信息,你可以登陆上海有色网进行查询和关注。

国内液压与气动标准大全(二)

2019-01-15 09:49:29

GB/T 15242.1-1994(2001)液压缸活塞和活塞杆动密封装置用同轴密封件尺寸系列和公差   GB/T 15242.2-1994(2001)液压缸活塞和活塞杆动密封装置用支承环尺寸系列和公差   GB/T 15242.3-1994(2001) 液压缸活塞和活塞杆动密封装置用同轴密封   neq ISO 7425-1:1988ISO 7425-2:1989 件安装沟槽尺寸和公差   GB/T 15242.4-1994(2001) 液压缸活塞活塞杆动密封装置用支承环安装沟槽尺寸和公差   GB/T 15622-1995(2001) 液压缸试验方法   neq JIS B 8354-1985   GB/T 15623.1-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-1:1998,MOD 四通方向流量控制阀试验方法   GB/T 15623.2-2003 液压传动 电调制液压控制阀 第1部分:   ISO 10770-2:1998,MOD 三通方向流量控制阀试验方法   GB/T 17446-1998 流体传动系统及元件 术语   idt ISO 5598:1985   GB/T 17483-1998 液压泵空气传声噪声级测定规范   eqv ISO 4412-1:1991   GB/T 17484-1998 液压油液取样容器 净化方法的鉴定和控制   idt ISO 3722:1976   GB/T 17485-1998 液压泵、马达和整体传动装置参数定义和字母符号   idt ISO 4391:1983   GB/T 17486-1998 液压过滤器 压降流量特性的评定   idt ISO 3968:1981   GB/T 17487-1998 四油口和五油口液压伺服阀 安装面   idt ISO 10372:1992   GB/T 17488-1998 液压滤芯 流动疲劳特性的验证   idt ISO 3724:1976   GB/T 17489-1998 液压颗粒污染分析 从工作系统管路中提取液样   idt ISO 4021:1992   GB/T 17490-1998 液压控制阀 油口、底板、控制装置和电磁铁的标识   idt ISO 9461:1992   GB/T 17491-1998 液压泵、马达和整体传动装置稳态性能的测定   idt ISO 4409:1986   GB/T 18853-2002 液压传动过滤器 评定滤芯过滤性能的多次通过方法   ISO 16889:1999,MOD   GB/T 18854-2002 液压传动 液体自动颗粒计数器的校准   ISO 11171:1999,MOD   三、行业标准   JB/T 2184-1977 液压元件型号编制方法   JB/T 5120-2000 摆线转阀式全液压转向器   JB/T 5919-1991(2001) 曲轴连杆径向柱塞液压马达安装法兰与轴伸尺寸和标记(一)   JB/T 5920.1-1991(2001) 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列 靠前部分 20~25MPa的轴转马达   JB/T 5921-1991(2001) 液压系统用冷却器基本参数   JB/T 5922-1991 液压二通插装阀图形符号   JB/T 5923-1997 气动 气缸技术条件   neq JIS B83771991   JB/T 5924-1991参照NFPA/T2.6.1M-1974 液压元件压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 5963-1991 二通、三通、四通螺纹式插装阀阀孔尺寸   JB/T 5967-1991(2001) 气动元件及系统用空气介质质量等级   JB/T 6375-1992(2001) 气动阀用橡胶密封圈 尺寸系列和公差   JB/T 6376-1992(2001) 气动阀用橡胶密封圈 沟槽尺寸和公差   JB/T 6377-1992(2001) 气动气口连接螺纹 型式和尺寸   JB/T 6378-1992(2001) 气动换向阀 技术条件   JB/T 6379-1992(2001)参照ISO 6431:1992 缸内径32~320mm的可拆式单杆气缸 安装尺寸   JB/T 6656-1993(2001) 气缸用密封圈安装沟槽型式、尺寸和公差   JB/T 6657-1993(2001) 气缸用密封圈尺寸系列和公差   JB/T 6658-1993(2001) 气动用O形橡胶密封圈沟槽尺寸和公差   JB/T 6659-1993(2001) 气动用O形橡胶密封圈尺寸系列和公差   JB/T 6660-1993(2001) 气动用橡胶密封圈 通用技术条件   JB/T 7033-1993(2001)参照ISO 9110-1: 1990 液压测量技术通则   JB/T 7034-1993 液压隔膜式蓄能器型式和尺寸   JB/T 7035.1-1993 液压囊式蓄能器型式和尺寸 A型   JB/T 7035.2-1993 液压囊式蓄能器型式和尺寸 AB型   JB/T 7036-1993 液压隔离式蓄能器 技术条件   JB/T 7037-1993 液压隔离式蓄能器 试验方法   JB/T 7038-1993 液压隔离式蓄能器 壳体技术条件   JB/T 7039-1993 液压叶片泵 技术条件   JB/T 7040-1993 液压叶片泵 试验方法   JB/T 7041-1993 液压齿轮泵 技术条件   JB/T 7042-1993 液压齿轮泵 试验方法   JB/T 7043-1993 液压轴向柱塞泵 技术条件   JB/T 7044-1993 液压轴向柱塞泵 试验方法   JB/T 7046-1993(2001)参照NFPA/T3.4.7M-1975 液压蓄能器压力容腔体的额定疲劳压力和额定静态压力验证方法   JB/T 7056-1993(2001) 气动管接头 通用技术条件   JB/T 7057-1993(2001) 调速式气动管接头 技术条件   JB/T 7058-1993(2001) 快换式气动管接头 技术条件   JB/T 7373-1994(2001) 齿轮齿条摆动气缸   JB/T 7374-1994 气动空气过滤器 技术条件   JB/T 7375-1994 气动油雾器 技术条件   JB/T 7376-1994 气动空气减压阀 技术条件   JB/T 7377-1994(2001) 缸内径32~250mm整体式单杆气缸安装尺寸   eqv ISO 6430:1992   JB/T 7857-1995(2001) 液压阀污染敏感度评定方法   JB/T 7858-1995(2001) 液压元件清洁度评定方法及液压元件清洁度指标   JB/T 7938-1999 液压泵站油箱公称容量系列   JB/T 7939-1999 单活塞杆液压缸两腔面积比   eqv ISO 7181:1991   JB/T 8727-1998 液压软管总成   JB/T 8728-1998 低速大扭矩液压马达   JB/T 8729.1-1998 液压多路换向阀 技术条件   JB/T 8729.2-1998 液压多路换向阀 试验方法   JB/T 8884-1999**(JB/Z 347-89) 气动元件产品型号编制方法   JB/T 8885-1999**(ZBJ 22008-88) 液压软管总成技术条件   JB/T 9157-1999 液压气动用球涨式堵头 安装尺寸   JB/T 10205-2000 液压缸 技术条件   JB/T 10206-2000 摆线液压马达   JB/T 10364-2002 液压单项阀   JB/T 10365-2002 液压电磁换向阀   JB/T 10366-2002 液压调速阀   JB/T 10367-2002 液压减压阀   JB/T 10368-2002 液压节流阀   JB/T 10369-2002 液压手动及滚轮换向阀   JB/T 10370-2002 液压顺序阀   JB/T 10371-2002 液压卸荷溢流阀   JB/T 10372-2002 液压压力继电器   JB/T 10373-2002 液压电液动换向阀和液动换向阀   JB/T 10374-2002 液压溢流阀

国内液压与气动标准大全(一)

2019-01-15 09:49:29

一、采标情况:   idt或IDT表示等同采用;eqv或MOD表示等效或修改采用;neq表示非等效采用。   二、国家标准   GB/T 786.1-1993(2001*) 液压气动图形符号   eqv ISO 1219-1:1991   GB/T 2346-2003 流体传动系统及元件 公称压力系列   ISO 2944:2000,MOD   GB/T 2347-1980(1997) 液压泵及马达公称排量系列   eqv ISO 3662:1976   GB/T 2348-1993(2001*) 液压气动系统及元件 缸内径及活塞杆外径   neq ISO 3320:1987   GB/T 2349-1980(1997) 液压气动系统及元件 缸活塞行程系列   eqv ISO 4393:1978   GB/T 2350-1980(1997) 液压气动系统及元件 活塞杆螺纹型式和尺寸系列   eqv ISO 4395:1978   GB/T 2351-1993 液压气动系统用硬管外径和软管内径   neq ISO 4397:1978   GB/T 2352—2003 液压传动 隔离式蓄能器 压力和容积范围及特征量   ISO 5596:1999,IDT   GB/T 2353.1-1994 液压泵和马达安装法兰和轴伸的尺寸系列及标记   neq ISO 3019-2:1986 靠前部分:二孔和四孔法兰和轴伸   GB/T 2353.2-1993(2001*) 液压泵和马达 安装法兰与轴伸的尺寸系列和标记(二)   neq ISO 3019-3:1988 多边形法兰(包括圆形法兰)   GB/T 2514-1993 四油口板式液压方向控制阀安装面   eqv ISO 4401:1980   GB/T 2877-1981 二通插装式液压阀安装连接尺寸   GB/T 2878-1993 液压元件螺纹连接 油口型式和尺寸   neq ISO 6149:1980   GB/T 2879-1986 液压缸活塞和活塞杆动密封沟槽型式、尺寸和公差   neq ISO 5597:1987   GB/T 2880-1981 液压缸活塞和活塞杆 窄断面动密封沟槽尺寸系列和公差   GB/T 3452.1-1992 液压气动用O形橡胶密封圈尺寸系列及公差   neq ISO 3601-1:1988   GB/T 3452.2-1987 O形橡胶密封圈外观质量检验标准   GB/T 3452.3-1988 液压气动用O形橡胶密封圈 沟槽尺寸和设计计算准则   neq ISO/DIS 3601-2   GB/T 3766-2001 液压系统通用技术条件   eqv ISO 4413: 1998   GB/T 6577-1986 液压缸活塞用带支承环密封沟槽型式、尺寸和公差   neq ISO 6547:1981   GB/T 6578-1986 液压缸活塞杆用防尘圈沟槽型式、尺寸和公差   neq ISO 6195:1986   GB/T 7932-2003 气动系统通用技术条件   ISO 4414:1998,IDT   GB/T 7934-1987 二通插装式液压阀 技术条件   GB/T 7935-1987 液压元件 通用技术条件   neq NFPA T 310.3   GB/T 7936-1987 液压泵、马达空载排量 测定方法   neq ISO/DP 8426 (1988版)   GB/T 7937-2002 液压气动用管接头及其相关元件公称压力系列   neq ISO 4399:1995   GB/T 7938-1987 液压缸及气缸公称压力系列   neq ISO 3322:1975   GB/T 7939-1987 液压软管总成 试验方法   neq ISO 6605:1986   GB/T 7940.1-2001 气动 五气口气动方向控制阀 靠前部分:不带电气接头的安装面   idt ISO 5599-1:1989   GB/T 7940.2-2001 气动 五气口气动方向控阀 第二部分:带电气接头的安装面   idt ISO 5599-2:1990   GB/T 7940.3-2001 气动 五气口气动方向控制阀 第三部分功能识别编码体系   idt ISO 5599-3:1990   GB/T 8098-2003 液压传动 带补偿的流量控制阀 安装面   ISO 6263:1997,MOD   GB/T 8099-1987 液压叠加阀 安装面   neq ISO 4401-1980   GB/T 8100-1987 板式联接液压压力控制阀(不包括溢流阀)、顺序阀、   neq ISO/DIS 5781(1987) 卸荷阀、节流阀和单向阀 安装面   GB/T 8101-2002 液压溢流阀 安装面   ISO 6264:1998,MOD   GB/T 8102-1987 缸内径8~25mm的单杆气缸安装尺寸   neq ISO 6432:1985   GB/T 8104-1987 流量控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8105-1987 压力控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8106-1987 方向控制阀 试验方法   neq ISO/DIS 6403(1988)   GB/T 8107-1987 液压阀 压差—流量特性试验方法   neq ISO/DIS 4411(1986)   GB/T 9065.1-1988 液压软管接头 连接尺寸 扩口式   GB/T 9065.2-1988 液压软管接头 连接尺寸 卡套式   GB/T 9065.3-1988 液压软管接头 连接尺寸 焊接式或快换式   GB/T 9094-1988(1997) 液压缸气缸安装尺寸和安装型式代号   eqv ISO 6099:1985   GB/T 9877.1-1988 旋转轴唇形密封圈结构尺寸系列 靠前部分 内包骨架旋转轴唇形密封圈   GB/T 9877.2-1988 旋转轴唇形密封圈结构尺寸系列 第二部分 外露骨架旋转轴唇形密封圈   GB/T 9877.3-1988 旋转轴唇形密封圈结构尺寸系列 第三部分 装配式旋转轴唇形密封圈   GB/T 14034-1993 24°非扩口液压管接头连接尺寸   GB/T 14036-1993 液压缸活塞杆端带关节轴承耳环安装尺寸   neq ISO 6982:1982   GB/T 14038-1993(2001) 气缸气口螺纹   neq ISO 7180:1986   GB/T 14039-2002 液压传动 油液 固体颗粒污染等级代号   ISO 4406:1999,MOD   GB/T 14041.1-1993 液压滤芯结构完整性检验方法   neq ISO 2942:1974   GB/T 14041.2-1993 液压滤芯材料与液体相容性检验方法   neq ISO 2943:1974   GB/T 14041.3-1993(2001)液压滤芯抗破裂性检验方法   neq ISO 2941:1974   GB/T 14041.4-1993(2001)液压滤芯额定轴向载荷检验方法   neq ISO 3723:1976   GB/T 14042-1993(2001) 液压缸活塞杆端柱销式耳环安装尺寸   neq ISO 6981:1982   GB/T 14043-1993 液压控制阀安装面标识代号   eqv ISO 5783:1981   GB/T 14513-1993(2001) 气动元件流量特性的测定   neq ISO/DIS 6358(1989)   GB/T 14514.1-1993(2001)气动管接头试验方法   neq JIS 8381-85   GB/T 14514.2-1993(2001)气动快换接头试验方法   neq ISO 6150:1988

液压同步技术在冶金行业的应用

2019-01-03 09:36:54

在工业或者军工设备上有很多场合要求两个或多个液压缸同步动作,于是产生了液压系统同步问题的要求,根据工况要求和投资成本可以使用多种液压同步的控制方案。 1. 多个普通节流阀或者调速阀同时使用 使用在同步要求不是很高或者同步功能可以通过机械结构进行缓冲的场合,特点是控制简单,投资成本非常低。比如某厂的板坯翻转台就使用这种控制方案,由于其用于线外设备,且对同步要求不是很高,达到基本同步即可满足工艺参数(见图1)。而且这种同步控制方式成本非常低,达到了既满足工艺动作要求,又满足投资成本控制的要求,非常合适此类场合的使用选择。 2. 使用分流集流阀 分流集流阀又称速度同步阀,是分流阀、集流阀、单向分流阀、单向集流阀的总称。它们在液压系统中,可使同一系统中的2—4个相同的执行元件,无论负载大小如何,均能达到速度同步的运行目的。自调式分流集流阀是在分流集流阀基础上,增加了流量、压力自调节能力,使得该阀可以适应大的流量、压力变化范围和大的偏载工作条件。如某钢厂包盖提升机构液压控制如图2。 3. 使用同步马达 如某炼钢厂转炉裙罩提升控制,转炉裙罩是一个非常庞大的结构件,与其他设备还有配合要求,因此对其提升的同步有一定的要求,特别是要求可靠性比较高,一旦控制功能发生故障,将会引起严重的后果和巨大的经济损失。为了达到高可靠性,这里优先选择机械原理的同步控制方案,因此比例伺服阀加位置传感器的同步控制方法这里不合适;由于此设备运动过程中与其他设备还有配合要求,因此同步要求比较高,所以普通的分流集流阀在这里精度达不到要求。为了满足上述的工艺动作要求,使用同步马达在这里比较合适。使用精度合适的同步马达可以满足设备的同步控制要求,同时机械同步大大确保了设备的可靠性,确保生产线能够顺利运行,避免生产事故和不可估量的经济损失。 4. 使用同步马达配合普通小型换向阀 在对同步要求较高的时候,而又不愿意增加投资成本,就可以采用另外一种简单可靠的同步控制系统,他的原理是正常情况下使用同步马达保持同步,在油缸的位置传感器检查的同步误差超过设计值的时候,打开小型同步阀对油缸进行微量的调整,使油缸回到同步状态中。如某钢厂生产线使用的同步顶升系统见图4。此系统顶升力量近百吨,顶升的目标是液态钢水,且每动作一次就要求保持位置在40分钟,如此长的保压时间,难免两个油缸产生误差,一般的传统控制方式采用两个比例阀单独控制两个带位置传感器的油缸,保压过程中产生不同步时,系统采取控制相对应的比例阀来调整油缸的方式,但是这种方式成本较高,且无法避免软件故障带来的事故停产和其他经济损失,如果发生液态钢水外溢将会发生重大事故,为了达到高可靠性,又能够控制设备投资成本,改成如图4所示的系统后,不仅降低了成本,同时完全实现了原同步控制的要求。 5. 使用伺服阀配合液压缸位置传感器 这种控制方式控制的系统同步精度非常高,能够时刻保持同步,而且频响可以达到较高的水平;但是投资成本非常高并且控制方式比较复杂。除非设备要求较高的状态,不推荐使用。如图5所示某生产线使用的同步振动系统。此系统对应的两个油缸要求完全同步,且两个油缸件基本没有机械刚度,同时,两个油缸作高速高频往复运动,工艺要求每时每刻两个油缸均保持相同的转态。对这类要求非常苛刻的同步控制,只有采用下图的控制方式来实现。 6.其他 当然近年来又出现了一些新的控制技术如北京某公司开发的数字液压技术来实现同步控制,达到了很高的水平,但是业绩有限且成本难于控制,此类技术还有待于更近一步的研究和大家的关注。 总之,液压同步控制的方案非常多,具体使用过程中应该根据实际的工艺动作要求,安装可靠性的要求和投资成本的预算等多方面因素最终确定具体的控制方案。

铝箔车间设计

2019-01-18 09:30:25

铝箔车间设计 (design of aluminium foil workshop)以0.5mm左右厚的铝带坯为原料,经退火、轧制、分卷、剪切等工序,生产铝箔的铝加工厂车间设计。铝箔厚度为0.006~0.2mm,使用宽度一般小于1000mm,通常以倍尺进行生产,最大轧制宽度可达2000mm。以软状态、硬状态供应用户。铝箔的深度加工产品有与纸或塑料薄膜组合而成的复合铝箔,表面压花、着色、印花的花色铝箔和表面涂有耐水、耐油、绝缘等性能涂布剂的涂层铝箔等。根据建厂具体情况,以上产品可以在铝箔车间生产,也可以单独建设铝箔深度加工车间。设计主要内容为:工艺流程选择、设备选择和车间布置。 工艺流程选择 以厚0.5mm左右的铝箔坯料为原料,一般经过退火、初轧、中轧、清洗、合卷、精轧、分卷、退火和剪切等工序生产铝箔成品。现行的铝箔轧制工艺有两种。一种是每道次轧制使用一台轧机的群体式轧制工艺。这种工艺需要的轧机台数多(形成一个轧机群体),轧制中间需要退火和清洗才能生产薄规格铝箔。另一种工艺是将各道次轧制集中在粗、中、精轧机上,可用一台、两台或多台轧机进行生产,一般不需要中间退火和清洗。前者轧机规格小,装备水平较低,建设投资较少,适合于年产几百吨至1~2kt的生产规模。后者轧机规格较大,装备水平高,产品质量和生产效率均很高,适合于年产几千至几万吨的生产规模。铝箔的成品退火,有低温长时间和高温短时间两种制度。低温长时间退火时,铝箔卷上的残余润滑油有充分的时间挥发掉,退火后表面光亮,但需要炉子台数较多。高温短时间退火,一般适用于群体式轧制工艺。生产薄规格铝箔需要叠轧,叠轧前要合卷。合卷工序可单独设置,也可在精轧机上将合卷和精轧一次完成。 叠轧后的铝箔要分卷,分卷的同时可以分切,分切的宽度在200mm以上。铝箔的成品剪切,依厚度的不同,分别在厚规格剪切机、薄规格剪切机上进行。剪切成用户要求的宽度,并缠在规定直径的卷芯上。 设备选择包括铝箔轧机、退火炉、分卷机、剪切机和深度加工设备的选择。 铝箔轧机主要有二辊式、四辊式两类。二辊式轧机,辊身长通常在800mm以下,压下力及张力、厚度的调节由人工控制,仅在采用群体式轧制工艺时选用。四辊可逆式轧机装备水平与二辊式相近,一般只用于铝箔的初轧。四辊不可逆式轧机是20世纪70年代以后铝箔生产使用的主要机型,轧机的辊身长在800mm以上,装备有液压压下、厚度、张力、速度的自动控制系统和板型控制系统,其产品精度和生产效率都很高,可作为铝箔的初、中、精轧机。当生产规模为2~3kt/a时,可选用万能铝箔轧机。这种轧机具有控制方式全、轧制范围宽、换辊速度快等特点,可在一台轧机上完成铝箔的初、中、精轧。 退火炉包括坯料退火炉和成品退火炉。坯料退火炉通常选用带空气循环的箱式退火炉。成品退火的箔材是经过分卷及剪切的小卷,通常选用带空气循环的竖式炉和箱式炉。当炉子台数多时,可选用统一的装出料机构。分卷机用于将叠轧后的铝箔,分成单张铝箔。分卷铝箔的厚度为0.006~0.040mm,分卷机的速度通常为10~20m/s。卷取的张力可随箔卷的直径增大而递减,以调整卷材的松紧度。分卷机可配备上料、开卷装置及自动卸料机构而形成机组。箔材剪切机厚度为0.04~0.2mm的铝箔,使用厚规格剪切机;厚度为0.006~0.04mm的铝箔,使用薄规格剪切机。剪切速度在10m/s以下。剪切机张力可随箔卷直径的变化而调整。深度加工设备 包括铝箔与纸或塑料薄膜复合用的湿式、干式复合机;铝箔涂色、印花用的印花机;压出各种花纹的铝箔压花机等,可根据要求选择。 车间布置结合厂区条件,可配置成长条式、多跨式或有垂直跨的形式。当采用多跨式布置时,主跨为轧机跨。轧机传动侧的副跨配置轧机的电气、液压、润滑、油雾回收等设备。其中,电子计算机及控制设备放在隔开的房间内,液压、润滑设备多放在地下室,油雾回收装置设在室外。轧机非传动侧的辅跨配置退火炉、分卷机、剪切机和成品包装场地。轧辊磨床配置在轧机附近隔开的房间内。铝箔的深度加工部分,可布置在辅助跨隔开的房间内,或布置在另建的密闭厂房内。当大气中含尘量较大时,厂房一般采用全封闭式,用机械通风,屋面设采光罩采光;车间出入口设过廊,车辆在过廊清除泥污后再进入车间。当周围环境洁净时,厂房可按采用自然通风、采光的一般厂房设计。

铝合金汽车板材和管材液压成形工艺

2018-12-29 11:29:07

普通冲压工艺加工铝合金表面质量差,成品率低(只有70%左右),不能满足车身零件高精度、高可靠性、高效率和低缺陷制造的要求。汽车车身零件的液压成形技术在欧美、日韩等发达国家的汽车产业中获得了大量应用,设备最高压力达到了400 MPa,加工出铝合金汽车发动机罩内外板、车门内外板及翼子板等覆盖件已装车应用。大型铝铸件、液压成形部件是奥迪A8的两项核心技术。铝合金汽车板材和管材液压成形工艺如图4。    与冲压工艺相比,液压成形工艺的优势如下     (1)减小毛坯尺寸,节约材料。     (2)提高成形极限,减少成形道次。     (3)零件的表面质量和尺寸精度大幅提高。     (4)降低配套模具数量和成本。     (5)减少后续机械加工和组装焊接量。     (6)可以成形形状复杂、变形程度大、整体性要求高的零件。     这项技术在国外已成为汽车轻量化的主流技术,并朝着集成化、快速化、大型化、精确化等方面发展。虽然国内在大吨位样机研制方面已经取得成功,如1 600 t和1 050 t板材液压成形设备,但是在国内推广应用铝板液压成形技术还存在着以下主要难点。     (1)基于铝板液压成形设计知识的欠缺。提供给设计人员的液压成形知识不系统、不全面,造成我国设计人员无法或根本不能够考虑到液压成形技术在轻量化结构件上的应用。     (2)面向液压成形技术的铝板材料成形性和零件质量控制体系的研究不足。多数面向普通冲压成形的铝板材料成形性和零件质量控制研究的结果并不适用于液压成形技术。     (3)诸多的工装模具及超高压液压源系统面向产业化的关键技术有待突破。     (4)以铝板液压成形为核心的全系统联动的装备研究不完善。由于上述原因,面向产业化的并联动作系统并未得到实际的应用,工装和模具开发成型难度大、调试周期长,因而成本较高,在国内车型仍鲜见应用。

贵金属设计

2017-06-06 17:50:13

贵 金属 设计就是设计以贵 金属 为材料的产品,主要有贵 金属 饰品和贵 金属 纪念币的设计。贵 金属 设计需要掌握的内容:一. 了解饰品的材质平品质1.黄金 铂金 银 铜 合金 钢二.掌握金工制作的名称、用途、用法1.尖嘴钳 2.圆嘴鉗、剪鉗 4.火枪一套 火砖 焊夹 油壶 风箱 吊钻 卡尺 铁棒 大小错奥一套 铁锤 锯弓 内卡  镶石棒 钻针 飞碟等三.组装如何主装一条链子。四.烧焊组装好的链子需要焊接这道工序,所以焊接这道工序,也是做金工的一个 重要的技术过程。五.打磨打磨之前首先要确认毛胚产品有无变形,若变形我们我们要依照好的产品原样复原,然后再以锉刀,锤子等工具把毛胚产品的外形做休整使之整体形状更加完美,接下来再以320#砂纸打磨 金属 表面使之棱角分明更加光滑细腻。六.了解宝石材质1.人造钻石 2.碧玺 3.玻璃 4.玛瑙 5.玉  6.铁矿石 7.水钻 8.水晶七.镶嵌一件毛胚产品经加工后要镶嵌上一些人工钻石或其他材质宝石 使饰品显得跟家靓丽多彩。八.抛光 九.制版起版制作大多以铜银合金原材料为主,首先要选材,依饰品图样大小来取材,然后在选好的材料上画上简图根据形状用锯弓沿线锯下,最后组装焊接,打磨等工序来完成版子的制作。想要了解更多关于贵 金属 设计的资讯,请继续浏览上海 有色 网( www.smm.cn ) 有色金属 频道。 

液压气动缸筒用精密内径无缝钢管

2019-03-19 09:03:26

液压和气动缸筒用精密内径无缝钢管(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。液压气动缸筒用精密内径无缝钢管标准要遵守。

幕墙节点设计探索

2018-12-21 16:01:47

建筑幕墙受到广大建筑师的青睐,在国内的应用量很大。但幕墙的技术水平与国外相比还存在一定差距,原因很多,一方面幕墙技术的发展受市场接受程度的制约,许多新技术、新材料、新理念的应用都必须被建筑市场接受,才会得到广泛的应用和发展;另一方面幕墙的造价问题往往起到决定性作用,企业在激烈的市场竞争中不得不展开价格战,结果使我国幕墙的整体技术发展缓慢,与巨大的市场相脱节;第三方面与企业在科研方面的投入相关,企业的设计和研究人员为了应付繁重的工程任务,很难投入精力来研究幕墙节点的设计问题。   从幕墙行业整体看来,国内仍以普通框架幕墙为主,近些年发展起来的在技术方面较有优势的单元幕墙和双层幕墙等得不到应有的发展。而且在技术方面不论是那一类幕墙,与国外幕墙发达的国家相比均有一定的差距,这一点需要我们思考,更需要多方面的投入。   本文试图通过近些年的试验室检验和工程案例的分析,将工程中容易被忽视的问题总结出来,对幕墙节点设计提出一些看法,不一定全面和正确,仅供参考。   幕墙设计存在的问题   1.隐框幕墙现场打注结构胶   现行规范JGJ102和GB/T50210中均对结构胶的打注环境提出要求,规定隐框幕墙应在符合条件的专用房间内进行,不能在施工现场打注结构胶。但在试验室检测和工程质量检测时现场打注结构胶的现象仍时有所见。尤其是半隐框幕墙,在隐框部分节点设计时采用无副框结构,直接用结构胶粘接。这种设计方面的缺陷,必然给工程造成潜在的安全问题。   更有甚者,在北京某工程中,隐框幕墙玻璃单元没有副框,均靠少许结构胶和双面贴与横梁立柱粘接,造成巨大的工程隐患。   2.隐框幕墙中空玻璃的设计和选用存在问题   采用中空玻璃是解决幕墙隔热问题的有效方案,但由于设计人员的误解,往往将靠近室内的一片设计成普通浮法玻璃,且厚度比外片薄1~3mm,达到降低幕墙成本的目的。但我中心的试验发现,这种设计存在一定的问题,经常内片发生爆裂,达不到预期的效果。建议在工程中尽量选用双钢化的中空玻璃,且双片玻璃厚度差控制在为2mm之内。   在北京的某个幕墙工程,采用8T+12A+6F外片钢化内片普通浮法玻璃的隐框中空幕墙,工程还没有交工,已有250多片玻璃发生炸裂,严重危机使用者的安全。初步分析认为内外温差、安装误差和中空玻璃副框设计的失误是造成玻璃炸裂的主要原因。   3.玻璃自爆的控制   玻璃自爆是目前门窗和幕墙行业需要解决的问题。我国现行规范JGJ102和JGJ3035对玻璃的引爆处理没有作出明确的规定,致使许多工程业主和幕墙设计人员忽视对玻璃设计、选用和加工质量的要求,致使许多工程的钢化玻璃自爆现象相当严重。新近执行的GB/T50210-2001对幕墙玻璃的引爆处理提出明确的要求,8mm以下的钢化玻璃须进行引爆处理,并且对玻璃加工提出要求,希望引起足够的重视。   4.无防噪音设计   幕墙因热胀冷缩和风力等原因,会在金属件之间产生摩擦噪音。而这种噪音与相对高档的幕墙建筑很不协调。国内企业为了降低幕墙系统的价格,基本上不考虑防噪音设计,因此幕墙工程产生噪音的现象比较严重。   5.不可拆卸性设计   目前我国通行的幕墙体系均在外部进行安装施工,幕墙的可拆卸问题被忽视,以至幕墙整体完工后,进行局部更换变得相当困难,尤其是石材幕墙和单元式幕墙,这种现象比较严重。希望设计者充分考虑幕墙的可拆性,降低幕墙的运行和维护费用。在欧洲考察时,看到某企业的办公楼石材幕墙可模拟一年四季的变化进行面材更换,足以说明幕墙的可拆性并不困难,而且非常必要。   国内技术比较先进的企业已经注意到幕墙可拆卸性设计的重要性,如石材幕墙的背栓结构和小单元结构、单元幕墙和小单元幕墙的组合设计等。   6.开启扇挂接结构无防脱设计   目前,开启扇采用挂接结构形式比较多,在重力作用下开启扇保持垂直稳定状态,并且在上部一般设有披水胶条,看上去比较完整、可靠。但工程案例证明,仅靠重力作用并不可靠,仍会有滑脱的可能,因此建议在挂钩上部设置压板固定,做到万无一失。   国外流行的设计理念   1.“环保施工”,现场不打密封胶,不进行结构件的焊接   所谓的环保施工,有两方面的含义:现场不打密封胶,不焊接。由于现场施工条件较差,并且施工质量容易受到工人责任心和情绪的影响,因此在欧洲更看重结构设计本身的重要性,很多节点采用结构化防水,不再依靠密封胶被动防水的设计理念,使幕墙的整体性能提高到一个新的层次。   结构化防水设计在欧洲和北美比较流行,采用扣板和EPDM胶条相结合,利用等压原理和雨幕原理对幕墙节点构造进行合理设计,在降雨量不大的地区,采用这样的结构比较实用,且成本低,性能可靠。   现场焊接,包括予埋件的焊接在国内引起过很多争论,但在欧美和南亚国家更普遍采用设计本身完成转接件的最后定位。如采用齿啮合长孔、齿啮合角板和防滑动螺母等技术设计转接件,避免焊接带来的诸多缺陷。 12后一页

生态幕墙设计理念与传统幕墙设计理念的区别

2018-12-24 09:29:14

生态幕墙设计理念与传统幕墙设计理念,我认为主要有五个方面的不同:   1.对自然生态环境的态度:传统设计理念是幕墙与自然生态环境相分离,对自然通风考虑不够;而生态设计理念是幕墙与自然生态环境组成统一的有机体。精心设计自然通风。   2.对资源能源的态度:传统是没有或很少考虑有效的资源,能源再生利用及对生态环境的影响;而生态是必须考虑节能,资源重复利用,保护生态环境,积极利用太阳能等自然能量。   3.设计依据:传统是依据功能,性能及成本需求来设计;而生态是依据环境效益和生态环境指标与功能、性能及成本来设计。   4.设计目的:传统是以人对幕墙的美学和功能的需求为主要设计目的;而生态是为人的需求和环境而设计,其最终目的是创造舒适,健康的居住生活环境,提高自然、经济、社会的综合效益,满足可持续发展的要求。   5.施工技术或工艺:传统是在施工和使用过程中很少考虑材料的回收利用;而生态是在施工和使用过程中可拆卸,易回收,不产生毒副作用,废弃物少。   如德国法兰克福银行大厦就是典型之例:它是1997年设计的,其设计师诺曼福斯特提出的目标是:节能并不是最终目的,设计的基本原则是在保证自然通风和健康舒适生态环境的前提下尽量节能。为达到这一目的,建筑师把立面的双层玻璃幕墙和内部空间及建筑结构统一处理精心设计。这座大厦是50多层的三角形塔楼,塔楼三个角部都有核心空间,里边包括电梯,楼梯和服务台,这些核心空间组成了每八层的一个办公单元的支撑结构体系。建筑为中空,形成一个通高的中庭,以其烟囱效应为整个大厦排气。   这个中庭又被玻璃天花每12层分为一段,以阻挠气流或烟聚集。52层被划分为4个办公单位,每个办公单元都带有一个4层高的空中花园,并种植了丰富的植物,空中花园的外侧是双层玻璃幕墙,室外空气通过外墙进风口进入内,外层玻璃幕墙之间的热通道,可开启的窗户设在内层玻璃幕墙上,即使再恶劣的天气,最高层窗户的开启,也不会受到强风的干扰,从而保证了整个大厦的自然通风,办公室朝向中庭一侧的窗户也是可以开启的,从而保证一年的大部分时间都可以自然通风。花园植物的光合作用、双层玻璃幕墙的自然通风和中庭烟囱效应的排气等共同构成了大厦之“肺”,将绿色植物引入室内,创造与自然接触的人性化空间,又称之为“生态舱”,福斯特自称这一设计是世界上第一座活着的、能够自然呼吸的高层建筑。   此建筑塔楼的标准层、结构和交通核心在建筑的角部,这样,中国部分就被解放出来,以容纳中庭和花园,在其中一个室内广场的咖啡厅里,可以尽情享受阳光,而办公室和景区的交接处,工作空间的这些花园直接相连,从而使人们享受自然通风,外围办公室通过双层幕墙通风,内部办公室则由中庭的花园通风。在冬季,计算机将关闭内层幕墙窗户,通过中庭来自然通风;在夏季,窗户可以大打开,已获得穿堂风。福斯特成功地将自然景观引入超高层集中式办公建筑,使城市高密度生活方式与自然生态环境相融合,被称为世界上第一座“生态型超高层建筑”,其相应的双层结构玻璃幕墙也是生态型的呼吸幕墙,这座大楼是建筑师和幕墙设计师合作,成功利用BBL技术的范例。   总之,生态幕墙是新结构幕墙,新理念幕墙,它须和生态建筑一起设计,生态幕墙是生态建筑的主要组成部分。随着技术的发展、计算机为生态幕墙的实施提供了有力的支持,生态幕墙作为生态建筑的一部分,它的产生和发展是历史、社会、经济发展的必然,也是人类进步的象征,党的“十六”大为我们开创规划了美好的新时代,新时代需要新建筑,新幕墙,新门窗,而生态幕墙门窗正是这种面向未来新时代的新产品、新建筑。   这个时代的幕墙特点是:采用新技术,进一步提高幕墙的使用功能和舒适度,像绿色环保化、智能生态化方向发展。

气动缸筒用精密内径和液压无缝钢管

2019-03-18 11:00:17

气动缸筒用精密内径和液压无缝钢管标准(GB8713-88)是制造液压和气动缸筒用的具有精密内径尺寸的冷拔或冷轧精密无缝钢管。以上气动缸筒用精密内径和液压无缝钢管是常用的无缝钢管标准。

铁尾矿回收利用设计

2019-02-21 10:13:28

一、尾矿的性质(尾矿的工艺矿藏学研讨)     该尾矿取自本钢南芬铁矿的矿样。     (一)尾矿的化学和矿藏组成。尾矿的光谱分析、化学组成和矿藏组成别离见表1~表3。 表1  尾矿的荧光光谱分析成果    (%)元 素ONaMgAlSiPSClKCa含 量49.0880.1823.4081.8534.7770.1240.276-0.5712.306元 素TiMnFeCoZnRbSrVPb 含 量0.0870.1137.0960.0120.0110.0040.0050.090.007    表2  尾矿的化学多元素分析成果    (%)元 素PbZnCuSAsTfe含 量0.0010.0210.0010.520.029.31元 素SiO2MgOCaOAl2O3P 含 量72.533.433.341.650.081    表3  尾矿首要矿藏组成及相对含量    (%)矿藏称号磁铁矿赤铁矿、褐铁矿黄铁矿其他硫化物石英、长石相对含量2.05.50.8微51.0矿藏称号角闪石类、辉石类云 母绿泥石、黏土矿藏方解石其 他相对含量36.60.42.01.20.5        分析成果标明该尾矿的首要组成元素有O、Si、Fe、Mg、Ca、Al等,其次为K、Na、S、Ma等,首要化学成分有SiO2和铁的氧化物,其次是镁、钙、铝的氧化物,铜、铅、锌等有色金属元素及硫、砷含量较低。尾矿藏的首要金属矿藏为磁铁矿、赤铁矿,其次为褐铁矿、黄铁矿,微量的磁黄铁矿、毒砂等,其他金属矿藏、硫化物含量甚微。首要的非金属矿藏是石英、角闪石、透闪石等,其次为辉石、长石、阳起石、金云母、黑云母、白云母、绿泥石、方解石、菱铁矿、高岭石类黏土矿藏等,微量的绿帘石、(斜)黝帘石、滑石、电气石、磷灰石等。     (二)铁、硫的赋存状况。铁是尾矿中含量最多的金属元素,尾矿中铁和硫的化学物相分析成果见表4、表5。分析成果标明,铁首要赋存于赤铁矿(包含褐铁矿)及硅酸盐矿藏中,其次赋存于磁铁矿中,微量赋存于黄铁矿等硫化物及碳酸盐矿藏中。硫在尾矿中的含量虽低,矿藏组成相对简略,作为尾矿归纳运用,能够考虑收回,硫首要赋存于黄铁矿中,其次赋存于硫酸盐中。 表4  尾矿中铁的物相分析成果  (%)铁的相含 量散布率备 注磁铁矿中的铁1.4515.10首要的铁相赤铁矿、褐铁矿中的铁3.8339.90首要的铁相硫化物中的铁0.353.65首要为黄铁矿,其他硫化物甚微碳酸盐中的铁0.515.31菱铁矿、方解石等碳酸盐,铁含量甚微硅酸盐中的铁3.4636.04首要赋存于角闪石、辉石、阳起石、 绿泥石、云母等硅酸盐矿藏中总铁9.60100.00-   表5  尾矿中硫的物相分析成果  (%)硫的相含 量散布率备 注硫化物中的硫0.44991.45首要为黄铁矿,其他硫化物甚微硫酸盐中的硫0.0428.55硫化物氧化、水化构成的各种硫酸盐总 硫0.491100.00-         (三)尾矿的粒度分析及单体解离度测定。尾矿的粒度分析、铁矿藏、硫化物的单体解离度测定成果见表6~表8。 表6  粒度组成和铁含量散布粒级/mm产率/%铁档次/%铁散布率/%+0.256.839.146.49+0.156.8319.1913.63+0.109.4211.7611.52+0.07411.2811.3613.32+0.04316.366.9511.82+0.03710.357.948.54-0.03738.938.5734.68全样100.009.62100.00   表7  铁矿藏的单体解离度﹡粒级/mm单体解离度/%备 注+0.2550连生体首要与脉石毗邻连生+0.1566连生体首要与脉石毗邻连生+0.1063连生体首要与脉石毗邻连生+0.07468连生体首要与脉石毗邻连生,部分细粒者被脉石包裹+0.04371连生体首要与脉石毗邻连生,部分细粒者被脉石包裹+0.03775连生体首要与脉石毗邻连生,部分细粒者被脉石包裹-0.03783连生体以毗邻连生为主全样72- ﹡氧化铁矿藏包含磁铁矿、赤铁矿及褐铁矿,二种氧化铁矿藏之间的连晶视为单体。   表8  硫化物的单体解离度﹡粒级/mm单体解离度/%备 注+0.2535连生体首要被脉石包裹或半包裹,其次为毗邻连生+0.1063毗邻连为主,其次被脉石包裹或半包裹+0.07469毗邻连为主,其次被脉石包裹或半包裹+0.04367毗邻连为主,其次被脉石包裹或半包裹+0.03776连生体以毗邻连生为主-0.03780连生体以毗邻连生为主全样68- ﹡金属硫化物首要是黄铁矿,包含一些偶见的磁黄铁矿、毒砂、闪锌矿等,它们之间的连晶视为单体。          粒度分析标明,尾矿产率首要在-0.074mm以下,在-0.037mm最多,铁在-0.037mm散布率最多;首要是磁铁矿和赤铁矿,少数褐铁矿。粒度多在0.04~0.2mm,氧化铁的单体解离度为72%,连生体首要与脉石矿藏呈毗邻连生,部分细粒者(0.03mm以下者)多被脉石包裹或半包裹连生。金属硫化物首要是黄铁矿(FeS2),其他如磁黄铁矿、毒砂、闪锌矿、方铅矿,黄铁矿等含量甚微,镜下偶见。黄铁矿的粒度多在0.03~0.08mm,解离度约68%,连生体首要与脉石矿藏呈毗邻连生,部分细粒者(0.03mm以下者)多被脉石包裹或半包裹连生。脉石矿藏首要是石英,其次为柱状硅酸盐矿藏角闪石、辉石、透闪石、阳起石等,还有少数的方解石和片状硅酸盐矿藏金云母、黑云母、绿泥石、黏土矿藏等。它们是尾砂的首要组成矿藏,粒度从0.01~0.3mm不等。相互间根本呈解离状况,部分集合体可见与氧化铁矿藏、黄铁矿等连生。     工艺矿藏学研讨标明,铁的氧化物和硫化物是可收回的金属矿藏,可加收回运用的非金属矿藏首要是石英、长石类矿藏。从铁的物相分析来看,能够收回的主权是磁性铁和赤、褐铁矿以及碳酸铁(磁化焙烧方案),硅酸铁极难收回,硫化铁中的铁首要在硫精矿中。因而铁的理论收回率为60.31%。因为尾矿中含有脉石矿藏包裹的铁矿藏以及以脉石矿藏为主的连生体,即于出产本钱等原因,不能考虑直接再磨,因而脉石矿藏包裹的铁矿藏以及以脉石矿藏为主的连生体根本难以收回。     二、从尾矿中收回铁     (一)预富集方案的挑选     因为南芬选厂现场尾矿中铁档次较低,因而须选用预富集作业,首要扔掉很多的尾矿,使全铁档次到达30%左右或更高,才有或许使铁的收回具有经济含义。依据工艺矿藏学研讨成果,南芬选厂现场尾矿中铁矿藏首要是赤铁矿及少数磁铁矿和碳酸铁,氧化铁矿藏单体解离度约72%,尾矿再进行磨矿一是出产本钱高,二是在技能上无必要,因而首要断定尾矿不预先磨矿。选用重选(螺旋溜槽)和磁选(弱磁+强磁)两种预富集方案。     依据南芬现场尾矿中铁矿藏单体解离度较高,且铁矿藏密度大于脉石矿藏,重选选用螺旋溜槽预富集,螺旋溜槽实验准则流程见图1。螺旋溜槽规格为Ф400mm。  图1  溜槽实验工艺流程        因为南芬选厂现场尾矿中可收回的铁首要是磁性铁和赤褐铁及碳酸铁,因而首要选用弱磁收回磁性铁,后用强磁收回赤、褐铁矿及碳酸铁,实验准则流程见图2。    图2  磁选预富集铁收回实验准则流程     实验成果标明:     1、南芬铁矿尾矿选用螺旋溜槽预富集,经一粗一精,粗精矿全铁档次可富集至31.28%,经一粗二精,粗精矿全铁档次可富集至41.05%。     2、南芬铁矿尾矿选用磁选预富集,粗精矿须磨矿后才干富集至35%左右,且铁收回率较螺旋溜槽预富集低。从技能、本钱和作用来看,选用重选预富集办法比较抱负。     (二)预富集粗精矿收回铁选矿实验     1、流程方案挑选     依据重选预富集实验成果,南芬选厂现场尾矿经过螺旋溜槽一粗一精(或二精)预富集后,粗精矿全铁档次在30%~40%,到达了一般铁选厂原矿档次,依据收回赤铁矿的经历,断定选用以下三种方案进行铁精矿的收回实验:     (1)脱硫浮选―磁化焙烧―弱磁工艺。工艺流程见图3,实验成果见表9。  图3  南芬现场尾矿方案1全流程实验工艺流程 (需求清楚资料的会员,请来电免费讨取)   表9  南芬现场尾矿方案1全流程实验成果  (%)产品称号产 率品 位收回率TFeSTFeS铁精矿5.2166.340.4535.234.51硫精矿1.1140.2740.564.5686.58弱磁尾矿9.5110.26-9.85-溜槽尾矿84.175.87-50.36-给 矿100.009.810.52100.00-        (2)弱磁―强磁―反浮选工艺。工艺流程见图4,实验成果见表10。    图4  南芬现场尾矿方案2全流程实验工艺流程       表10  南芬现场尾矿方案2全流程实验成果  (%)产品称号产 率品 位收回率TFeSTFeS弱磁精矿0.9863.780.216.31-铁精矿3.9362.290.4024.70-硅精矿0.8127.38-2.24-硫精矿0.1540.1437.570.6110.84强磁尾矿4.9722.30-11.18-溜槽尾矿89.166.11-54.97-给 矿100.009.910.52100.00-        (3)直接反浮选工艺。工艺流程见图5,实验成果见表11。    图5  方案3全流程实验工艺流程   表11  南芬现场尾矿方案3闭路实验成果  (%)产品称号产 率品 位收回率TFeSTFeS铁精矿5.4962.520.2934.54-硫精矿1.1240.1338.854.5283.68硅精矿4.2314.36-6.11-溜槽尾矿89.166.11-54.82-给矿100.009.940.52100.00-        2、方案比较     南芬选厂现场尾矿铁收回方案比较见表12。从表12可知,方案1不管从铁精矿铁收回率、档次,硫精矿硫收回率、档次,仍是终究磨矿粒度目标均优于方案2和方案3。因而,选用方案1收回铁比较抱负,即先选用螺旋溜槽预富集丢掉很多低档次尾矿,铁精矿经脱硫浮选得到硫精矿,浮选尾矿经磁化焙烧,磨至70.76%-0.074mm后进行磁选即可取得高档次铁精矿。流程特点是充分运用铁矿藏和硫矿藏与脉石矿藏的密度差异,先开始富集,得到铁矿藏、硫化物粗精矿,然后运用硫化矿藏与氧化矿藏的可浮性差异得到硫精矿。磁化焙烧将磁铁矿、赤铁矿及碳酸铁改改变为磁性铁,防止角闪石、透闪石等难浮硅酸盐矿藏对铁精矿档次的影响,一同也防止了浮选需求的细磨问题。 表12  南芬选厂现场尾矿铁收回方案比较  (%)方 案铁精矿硫精矿磨矿细度产 率铁档次铁收回率产 率铁档次铁收回率15.2166.3435.231.1140.5686.58-0.074mm70.76%24.9162.5931.010.1537.5710.84-0.043mm81.12%35.4962.5234.541.1238.8583.68-0.043mm88.25%        3、废水废渣处理     螺旋溜槽和磁选废水经沉积后清水可直接回用,浮选废水可直接回来浮选体系,螺旋溜槽和磁选尾矿均进入下一步非金属矿藏资源化归纳运用。     4、铁精矿的质量     铁精矿质量分析见表13。 表13  铁精矿质量分析成果  (%)元素TFeFeOSPAsPbZnSiO2CaOMgOAl2O3含量66.3419.430.450.0050.010.0010.014.340.370.400.23        三、尾矿中非金属矿藏的收回     (一)质料性质     尾矿经得选收回铁后的尾矿作为非金属矿藏收回运用的质料,其首要化学成分、粒度组成和矿藏组成见表14~表16。 表14  选铁后尾矿首要化学成分  (%)成分TFeSiO2Al2O3CaOMgO含量5.6876.122.323.373.59   表15  选铁后尾矿粒度组成粒级/mm+0.25+0.15+0.074+0.043+0.037-0.037产率/%11.2312.1226.6716.009.9224.06   表16  选铁后尾矿首要矿藏组成  (%)矿藏 称号磁铁矿赤铁矿 褐铁矿硫化物石英 长石角闪石 辉石类云母绿泥石 黏土矿藏方解石其他相对 含量1.02.5微48.042.00.41.52.00.5        (二)收回方案     荧光光谱分析标明铁尾矿中不含放射性元素,在重选预富集尾矿中,二氧化硅的含量到达76.12%,石英、长石、角闪石类、辉石类非金属矿藏占90%以上,充分运用这部分非金属矿藏则是铁矿石选矿尾矿归纳运用的重要组成部分。这类非金属矿藏适合于作各种建筑材料、土壤改良剂及无机补强填充材料。     依据重选尾矿的粒度组成,持续选用处理量大、无污染的重选办法别离产出不同粒度规模的产品,经不同的深加工技能处理,取得不同性质和用处的相关产品。归纳运用工艺流程如图6。  图6  非金属矿藏归纳运用工艺流程        (三)各级产品的物化性质     分级产品的产率见表17,化学组成见表18。粒度组成见表19、表20,矿藏组成见表21。 表17  分级产品的散布份额分级产品+0.25mmФ75mm沉砂Ф25mm沉砂Ф25mm溢流产率/%11.2372.1110.705.96   表18  分级产品首要化学组成  (%)分级产品TFeSiO2Al2O3CaOMgO+0.25mm含量4.8670.831.262.353.16Ф75mm沉砂含量5.3879.412.313.193.32Ф25mm沉砂含量7.4870.143.273.034.92Ф25mm溢流含量9.0765.103.783.797.10   表19  Ф75mm旋流器沉砂筛分成果粒级/mm+0.15+0.074+0.043+0.037-0.037含量/%13.5731.1519.6012.0621.62   表20  Ф25mm沉砂、溢流产品激光粒度分析成果产品称号体积累积散布粒径/μm均匀粒径/μm表面积/cm210%50%90%97%Ф25mm沉砂7.4422.3939.4745.3923.222864Ф25mm溢流0.863.7710.9817.765.2128508Ф25mm二次溢流0.511.677.179.072.7960391     表21  分级溢流产品的矿藏组成矿藏称号相对含量/%Ф75mm沉砂Ф25mm沉砂Ф25mm溢流Ф25mm二次溢流氧化铁矿藏1.31.41.51.6硫化物微微微微石英42403736角闪石类、辉石类44.546.55051长石6655绿泥石、黏土矿藏、云母类4444方解石1.71.622其他0.50.50.50.4          四、产品应用技能     (一)建筑用砂     溜槽尾矿的+0.25mm部分经粒度及相关成分分析,到达契合国家建筑用砂3类标准。建筑用砂检测成果见表22。 表22  建筑用砂检测成果  (%)粒径检测成果3级配区标准成分检测成果标准4.75mm010~0云母0.81<2.02.36mm0.6515~0含泥量0.16<5.01.18mm2.1525~0轻物质含量0.32<1.060022.4040~16有机物含量合格合格30057.7585~55硫化物及硫酸盐0.43<0.5150100.00100~90氯化物0.02<0.03粒度模数1.821.6~2.2表观密度2610>2500---堆积密度1400>1350---空地率46.5<47          (二)玻璃     选用Ф75mm旋流器的沉砂,配入硼砂、高等第石英砂等质料,按质料―配料―混料―熔制―成型―退火―加工―产品的工艺流程进行玻璃熔制实验,成果标明,这部分产品可代替部分石英砂用于出产日用普通玻璃,因为质猜中含铁较高,只局限于出产带色普通玻璃。     (三)玻化砖     依据Ф75mm旋流器的沉砂的化学组成及玻化砖的成分要求,配入部分高铝质质料,按质料―配料―混料―熔制―成型―退火―加工―产品的工艺流程出产玻化砖。产品的吸水率0.3%、抗折强度1365N,抗压强度65.3MPa,莫氏硬度为7级,损坏强度1065N,开裂模数49.17MPa。契合相关标准(吸水率≤0.5%、损坏强度≥600N,开裂模数≥35MPa)。成果标明,铁矿尾矿能够部分代替陶瓷质料出产玻化砖(尾矿含铝较低,参加量不能过大),因为含铁较高,局限于出产灰色、棕色、棕红色系列产品。     (四)免烧砖     混凝土免烧砖一般运用的粗细集料别离为卵石(或碎石)和河沙以合理的配比,与水泥一同拌和,运用振荡、加压等工艺手法即可出产具有必定物理功能的混凝土制品。一般来说,混凝土制品中粗细骨料所占份额在80%以上,用经过挑选的铁尾矿Ф75mm沉砂部分,配入必定份额的建筑用砂、采矿废石破碎的碎石、水泥,制造免烧空心砖和实心砖。工业实验产品的检测成果为:免烧空心砖容重3.5kg/块,抗压强度单位最小值9.4MPa,均匀值为11.2MPa,抗冻性检测强度损失率12.7%,质量损失率0.8%,到达行业标准JC943-2004的MU10等级;放射性检测目标均低于技能要求。实验标明,运用铁尾矿代替混凝土粗细集料出产混凝土免烧砖是切实可行的,可充分运用我国现有的较为老练的工艺设备及出产条件,安排规模化出产,为很多归纳运用铁尾矿拓荒一条新的有用算途径。     (五)轻质建材     以铁尾矿Ф75mm沉砂部分为质料,配入必定份额的水泥、石灰、石膏、引发剂、发气剂,按质料―细磨(各质料别离细磨)―配料―拌和―成型―静养―蒸压的工艺进行混凝土加气砌块的实验,检测成果:蒸气加压混凝土砌块抗压强度单块最小值3.4MPa,均匀值为4.0MPa,抗冻性检测质量损失率0.6%,冻后抗压强度3.8MPa,枯燥缩短性0.45mm/m,契合GB11968-2006的技能要求。工业实验成果标明,用铁尾矿出产轻质建材施行产业化是可行的。     (六)填充材料     橡胶补强填充剂是橡胶组成中不行短少的组分,它起着进步橡胶强力。削减缩短、降低本钱等作用。一般在橡胶中的用量为30%~150%,跟着橡胶工业的快速开展,对补强填充剂的需求日益增长,各种新式补强填充剂也不断开发,以习惯橡胶工业开展的需求。用铁尾矿的Ф25mm溢流部分为质料,别离在天然橡胶、MC炭黑和绢云母粉,在丁胶中的补强功能优于除半补强炭黑以外的其他无机补强填充剂;将Ф25mm溢流产品用适宜的表面改性剂改性后,进行配方和胶料功能实验,成果标明其在橡胶中的补强功能显着优于未改性产品。选用Ф25mm的二次溢流产品的胶料物理机械功能比选用一次溢流产品更好。阐明尾矿中细粒级的非金属矿藏可作为橡胶的补强填充材料。并且,粒度越细,作用越好。     (七)土壤改良剂     经过检测,铁尾矿没有放射性,其间含有Fe、Ca、Mg、P、S等植物成长所需的矿藏元素。依据土壤环境质量标准(GB15618-1995),该尾矿契合Ⅱ类土壤分类标准,即可作为一般农田、蔬菜地、茶园、果园、草场等用土,根本上对植物和环境不形成损害和污染。用Ф75mm沉砂和Ф25mm溢流粉、磁选尾矿、植物园土壤按不同份额培养实验,经过6个水平不同配比的土壤培养实验,8个目标的检测,成果标明,有的植物在尾砂中成长状况比单独在植物园土壤中培养好(如莴芛),有的植物需求尾砂两种粒径成分和植物园土壤按必定的份额培养,作用会更好(如雨衣甘蓝)。此成果阐明尾矿还田是或许的,鉴于尾砂的特性,能够将尾砂掺入土壤中,尤其是磁选矿矿的掺入,可进步土壤的磁性,引起土壤中磁团粒结构的改变,导致土壤中铁磁性物质活化,使土壤的吸收功能、缓冲功能、抗逆功能等物理、化学和生物特性得到改进,进步通透性、保水保肥才能和有机质含量,促进作物成长。     综上所述,铁尾矿中的铁矿藏、硫矿藏和很多非金属矿藏均可收回运用,经过有方案的体系开发,得到不同性质和用处的系列产品,归纳运用率可达90%以上。

钼矿选矿厂设计

2019-02-21 12:00:34

杨家杖子坐落辽宁省境内。该厂始建于1940年。解放后重建选厂,1953年后,进行改、扩建,处理量增加,1960年钼精矿产量到达最高记载。此后因原矿档次下降和矿石储量削减,近年来处理量削减,其出产技术指标列于表1。   表1  杨家杖子出产技术指标年规划,t原矿档次 %精矿档次 %尾矿档次 %回收率 %年处理原矿量年产钼精矿量1960319001992100.16345.060.033679.651970231424549690.11345.470.015586.311980175670829090.087646.010.011586.961984  0.083645.70-87.07       选厂处理的矿石首要来自两个矿区,即岭前矿和松北矿。别离间隔选厂2公里和7.2公里。     岭前矿属热液告知大型矽卡岩钼矿床。辉钼矿以浸染状或星点状嵌布于矿石中。晶形较好,粒度为0.42~0.08毫米,钼档次0.15%~0.08%。除钼外,还有少数黄铁矿、黄铜矿、闪锌矿和方铅矿。非金属矿藏以柘榴子石、辉透石、方解石及石英为主。矿石普氏硬度为15。围岩首要是灰岩和页岩,属易选矿石。     松北矿属高温热液屡次告知,以花岗斑岩、石灰岩为主的钼矿床。金属矿藏除黄铁矿较多外,与岭前矿类似。非金属矿藏以长石、石英、方解石和高岭土为主。辉钼矿以细微的集合体呈薄膜状嵌布于矿石中,粒度为0.15~0.02毫米,钼档次0.12%~0.06%。矿石普氏硬度为10,密度为2.9克/厘米3,属较难选的石矿。      1978年在离选矿厂13公里的东北处兰家沟发现新钼矿床,含钼0.15%。是含钼石英脉、赋存于断层破碎带中。它将作为杨家杖子选矿厂的接续矿山。     钼矿藏相分析和多元素分析,别离列于表2和表3。 表2  钼矿藏相分析,%矿石氧化钼二硫化钼全钼氧化率岭前0.00150.150.15151.0松北0.00420.09580.104.2       破碎流程:选用三段一闭路。粗碎设在坑口进行,然后由架空索道输送到选矿厂,别离进行中、细碎,终究破碎产品粒小于12毫米。首要的破碎设备如下:     粗碎:岭前矿:900毫米侧排矿旋回破碎机一台。           松北矿:1500×1200毫米鄂式破碎机一台。   表3  原矿多元素分析,%矿石SiO2CaOAl2O3FeMgOCaSO4   Na2sO4TiO2岭前33.6631.3710.085.83.32.61.5松北40.2422.0510.937.423.525.141.0矿石MnMoSP2O5ZnAsBi岭前0.640.190.250.080.0750.01<0.01松北1.080.0950.300.070.270.01<0.01       中碎:2100毫米标准型圆锥破碎机二台。     细碎:2100毫米短头型圆锥破碎机四台。     筛分机:1800×3600毫米自定中心振动筛八台。     选矿工艺:依据岭前和松北两种矿石性质的不同,选用两种矿石别离进行粗磨矿和粗选,然后将粗精矿兼并处理的流程。粗磨矿溢流细度:岭前矿石为58%小于0.074毫米,松北矿石为60%小于0.074毫米。经一粗二扫丢尾矿,两体系粗精矿兼并进入再磨机,再磨细度为80%小于0.074毫米。经八次精选、七次扫选得终究钼精矿、钼中矿和另一尾矿。浓度为35%的钼精矿泡沫进入φ8000×2500毫米浓缩机,浓度为60%的浓缩机底流经过滤机过滤、滤饼含水15%,最终枯燥为含水4%的精矿。全流程如图1所示。图1  杨家杖子选矿工艺流程       选矿首要设备:     球磨机:φ3000×1670毫米锥型球磨机三台             φ3200×4200毫米格子型球磨机一台             φ3200×3100毫米格子型球磨机四台     再磨机:φ1200×1200毫米格子型球磨机一台     浮选机:XJK-2.8浮选机176台             XJK-1.1浮选机22台             XJK-0.35浮选机1台     浓缩机:φ800×2500毫米1台            φ3600毫米1台     过滤机:φ5米21台             φ6.5米21台     枯燥机:φ1.0×9.0米长筒式枯燥机1台     药剂品种和增加点     磨矿:增加火油(或与芳烃混合)、松醇油、水玻璃。     粗选段:精选增加黄药。             扫选增加火油、松醇油     精选段:水玻璃增加于精1、精3、精5、精7和精扫1。             松醇油增加于精1、中扫1和中扫3。             增加于精5、精7。            增加于精7。     药剂:     总用量:火油120克/吨、黄药10克/吨、松醇油110克/吨。             水玻璃3400克/吨、7克/吨、0.9克/吨。     选矿首要原材料耗费列于表4。   表4  1960~1985年首要原材料耗费项目单位1960年1970年1980年1983年1984年1985年黄药g/t5.4-9.17.6108火油(芳烃)g/t167.0201105.0110.0119130松醇油g/t84119101928683钢球kg/t-0.8550.890.890.880.89电耗kWh/t2425.8228.5431.3332.6131.0       该选厂出产历史悠久、除等获得作用外,在选钼药剂方面也进行了很多的研究工作,获得了经历和经济作用。其间包含初次运用少数极性捕收剂黄药类,1972年曾经,该矿一向运用火油作捕收剂。后探究用“重蜡”作捕收剂。重蜡是以正构烷烃为主的液体白腊,凝固点6~8℃。出产证明它对粗粒级钼的回收率比火油高。总回收率进步1%。但它凝固点高,冬季运用不方便。近几年又运用芳烃作捕收剂。芳烃是催化裂化轻柴油经二甲基亚砜抽提后得到的环状不饱和芳烃。它具有疏水性,还有必定起泡力。浮选作用与重蜡适当,因凝固点较低,所以现在以芳烃作捕收剂,或芳烃与火油混合运用。为进步磨矿产品质量,杨矿采纳在磨矿中增加水玻璃作助磨剂的办法,进步磨机的非矿浓度和分级机溢流浓度、并使磨矿产品粒度均匀,特别削减粗粒级的份额,然后进步了粗选回收率。工业实验证明:磨机排矿浓度对松北矿进步3%,对岭前矿进步2%。粗选回收率关于松北矿进步4%~5%,对岭前矿进步2.98%。为按捺钼精矿中铅含量,该矿选用与的反响产品抑铅,作用比原运用的重好,特别是对细粒方铅矿的按捺作用更显着,确保了钼精矿含铅量在标准以下。一起也按捺黄铁矿。

工业萃取铜过程设计

2019-02-13 10:12:44

萃取剂挑选    在浸取-萃取-电积流程中,浸取液成分,萃取剂及萃取、反萃取的各种条件和参数以及电积富液和残液的成分相互影响,互为限制。在规划一个浸取-萃取-电积工厂时第一步要用实践矿石进行浸取实验,取得浸出液的均匀成分,首要是铜浓度和pH值,其次是铁浓度。断定了浸出液的均匀成分今后,就能够挑选萃取体系所需的萃取剂及其浓度。核算的基本准则是在稳态工作下浸取,萃取和反萃取以及电积各进程中铜的质量流量应坚持平衡。因为电积是相对比较稳定的进程,因此,多先设定电积进液和出液的铜和硫酸的浓度,这样便于断定反萃后有机相的铜浓度。然后,反萃工序所需求断定的参数就剩余两相流比了。    尽管萃取剂品种许多,但现在一般都用醛肟为首要成分的新式萃取剂,如捷利康公司的AcorgaM5640、M5615、M5397、P-5100、PT-5050以及汉高的LIX984、LIX973、LIX931、LIX860、L1X84、LIX622系列及其改善类型等。尽管各种供应商的萃取剂技能说明书所标明的参数不尽相同,但,一般包含该萃取剂的最大负荷才能、传输才能和萃取及反萃等温平衡点。    萃取流程规划    萃取流程规划是要断定萃取剂浓度、比较、级数等操作参数。以一料液含铜1.2g/L,pH=1.8为例进行操作参数核算。假定选用LIX984或984N为萃取剂。依据经历,可选用二级逆流萃取,一级反萃的流程,在进行萃取核算时可取比较1:1。依据该萃取剂的说明书,当浓度为10%(v/v)时净传输才能为2.7g/L,最大负荷5.1~5.4g/L,反萃等温平衡点1.8g/L。现在需求传输的铜为1.2g/L,可开始选用5%(v/v)的浓度,并估量反萃等温平衡点的有机相铜浓度为10%时的一半,即0. 9g/L。这样,负荷有机相的铜浓度应为1.2+0.9 =2.lg/L,为其最大负荷的81%。这是恰当的,过高,没有地步,不利于萃取操作;过低,则萃取剂使用率太低。所以,一般说操作负荷在最大负荷的80%~85%为宜。生产厂在进行萃取剂性质测守时,电积贫液设定为Cu30g/L,H2S04180g/L;富液为Cu45g/L,则反萃比较A/0=7.1。这样就断定了萃取和反萃的悉数操作参数。    捷利康公司开发了一种称作Minchem的核算机程序,它能依据给定的一些操作参数对萃取-反萃工艺进行流程核算,评价现在的操作状况,也能够使用已知条件进行萃取-反萃优化规划。例如一个用户的料液铜浓度为2.5g/L,pH =2.3,有机相是10% Acorga5640-火油。反萃用的电解贫液Cu30g/L,H2S04180g/L;电解进液含铜45g/L。 Minchem的等温线模块即可核算得萃取及反萃平衡等温线。如该厂是二级萃取一级反萃,并已知萃取的两比较较为0/A =1/1,萃取时混合-弄清槽的级功率90%,反萃时95%。然后,程序的“流程图制作及核算模块”即能核算出各级两相浓度及反萃流比方下图所示。 [next]     核算成果显现,铜的直收率为93.3%。用户可改动以上设定的参数如级功率、流比、乃至级数或选定其他参数再进行核算,以比较不同条件下的工作成果,断定最佳操作参数。最近,经过改善的Minchem程序使用了用户视窗界面,操作非常便利。并且,核算成果,包含等温线,均可打印出来。    核算所得的操作参数虽能够作为实践操作的依据,可是,在真实的工作进程中有必要依据料液铜浓度及pH值的改动进行调整。在料液成分改动不大的状况下能够经过改动两相流比来确保铜的直收率,假如料液浓度改动太大,则可在弥补萃取剂时调整它的浓度。    可是,假设料液浓度很高,或许流程有特别的要求,则应该依据实践状况进行规划,如在一从含铜金精矿的焙砂浸取液中萃取铜的流程中选用LIX84萃取剂规划了4级萃取,将萃余液中的铜含量下降到0.1g/L以下,然后排去,改动了一般回来浸取的做法。为的是防止萃余液中的有机物吸附在浸取渣上影响化提金[1]。    氯离子腐蚀铅阳极,假如料液含有3g/L以上氯离子,在萃取时有一部分会进入有机相,应该设一洗刷级把杂质洗去,不让其进入电解液。硝酸根以及二价锰离子也都对电积有不良影响,浓度高时也需洗刷。    工业萃取的工作    铜萃取级数少,设备大,除了萃取工作的一起关键,如各种溶液的流量操控等之外,还有几点需特别注意。    接连相的挑选    在两相混合时,涣散相总会发作一些极小的液滴,在弄清槽中不能从接连相中分离出来,而夹藏进入下一工序。尽管经厉萃取剂对铜有极高的挑选性,可是,如有机相夹藏了料液相同也能将杂质传递到反萃液,对电积铜的质量形成不良影响。夹藏的有机相随水相丢失,也添加生产成本。准则上说,萃取阶段负荷有机相出口级应坚持水相接连,以削减有机相中夹藏的水相。反之,萃余液出口级有机相应为接连相,以减低有机相的丢失。因此,两级萃取的接连相应是不同的。假如反萃只要一级,则以有机相接连为好。这样能够坚持电解液的清洁,确保电铜的质量。反萃有机相夹藏的高浓度铜溶液可在萃取时收回。    坚持相接连的办法一是发动混合槽时拌和桨应在涣散相中,再是坚持混合槽中接连相的体积大于涣散相。在工业进程中,后者是首要的办法。即便开车时接连相的挑选是正确的,工作进程中有时会发作“相倒转”,即接连相变为涣散相、涣散相变为接连相。因此,在工作中需对相接连状况进行监控。最常用的判定办法是丈量电导,水相接连电导率高于有机相接连。    削减夹藏    前已述及,夹藏是因为在两相触摸时部分液滴涣散过细。液滴越细微依托重力从另一相中分离出来的进程越缓慢。在弄清槽的逗留进程中,许多小滴来不及分出而被带入下一级。因此,要削减夹藏,从根本上说就是要防止液滴涣散过细。在两相触摸时,下降液滴直径当然有利于传质。但滴径呈必定的散布状况,应该尽量使滴径均匀,或说,散布窄一些,削减过细的液滴。形成散布过宽的首要原因是拌和桨规划或操作不妥。桨叶的剪切力过大就会发作过细的液滴。有的混合一弄清槽槽间的联合管开口方位不妥,空气卷进混合室,并且时有时无。这将导致混合室内液流崎岖的潮涌现象,因此,两相涣散状况也随之改动,发作过细液滴。一起,水、油、空气的三相混合物还会导致发作三相乳化物。乳化将导致严峻的夹藏。    参考文献:    1.Zhu Tun,Zhou Xiexi,A New Process for Copper Recovery in A Gold Refinary,Proceedings of ISEC’96,ed. by D. C. Shallcross, R. Paimin and L M. Prvcic,Vol. I,1996. 581一586

冶金原料整粒车间设计

2019-01-18 09:30:34

冶金原料整粒车间设计(design of crushing and screening system for metallurgical bulkmatenals)对各种散状原料,如铁矿石、锰矿石、石灰石和煤等,进行破碎筛分作业的生产车间设计。冶金原料整粒车间设计是冶金原料准备厂设计的组成部分。整粒是为了提高冶炼产品产量、降低能耗,对原燃料的粒度上限、下限、含粉率进行控制的生产作业。例如,当高炉使用经整粒的小、匀、净原燃料时,可使高炉的产量增加,焦比降低。整粒车间一般由破碎机室、筛分机室、原矿贮槽、成品矿贮槽和输送机系统等组成。破碎筛分流程选择和计算 破碎及筛分的段数主要取决于散状料进厂粒度和用户厂对原料粒度的要求,即取决于总破碎比,并按下式计算:i=Dmax/dmax式中i为破碎作业的总破碎比;Dmax为进厂物料最大粒度,mm;dmax为要求产品的最大粒度,mm。总破碎比等于各段破碎比的乘积。各段破碎比取决于破碎机的型式、流程类型和物料硬度。 筛分作业主要分预先筛分(简称预筛分)、检查筛分和分级筛分三种形式。预筛分设在破碎机之前,用以筛除粒度小于破碎机排料口宽度的细粒物料,以防散料的过粉碎,充分发挥破碎机的生产能力。检查筛分设在破碎机之后,用以控制产品粒度和充分发挥破碎机的能力。分级筛分设在破碎筛分系统的最后一段,是按需要将物料分为各种粒级产品。 破碎筛分设备选型破碎硬矿石和中硬矿石时,通常选用颚式破碎机、旋回破碎机和标准圆锥破碎机等。破碎中硬物料和易碎物料时,一般采用颚式破碎机、环锤式破碎机、反击式破碎机和锤式破碎机等。破碎脆性物料时,一般采用齿辊破碎机和光面辊式破碎机等。 常用的筛分机有振动筛、共振筛和概率筛等。振动筛机型较多、筛分效率较高,一般可达到80%~85%,主要有惯性振动筛、自定中心振动筛、重型振动筛等。惯性振动筛和自定中心振动筛主要用于中轻负荷工作状态和中、细粒筛分;重型振动筛主要用于重负荷工作状态和粗、中粒筛分。 整粒车间布置破碎机室、筛分机室原矿仓和成品仓布置要紧凑。破碎机室和筛分机室有条件时可布置在同一厂房内。当破碎筛分段数较多时,为了避免厂房过高,可采取破碎机室与筛分机室独立布置。

门窗幕墙的被动设计

2019-01-14 14:52:52

随着建筑对环境的影响日益明显,“被动设计”作为减少建筑对环境不利影响的一种尝试,得到了越来越多的重视。建筑是离不开当地的气候环境的。各地的传统建筑存在的时间比我们所谓的现代建筑存在的时间要长得多,与当地气候的适应性非常强。  随着建筑对环境的影响日益明显,“被动设计”作为减少建筑对环境不利影响的一种尝试,得到了越来越多的重视。建筑是离不开当地的气候环境的。各地的传统建筑存在的时间比我们所谓的现代建筑存在的时间要长得多,与当地气候的适应性非常强。它们不仅仅具有历史文化价值,它们绝大多数仍然具有使用价值,对他们进行建筑物理方面的研究是具有非常重要的意义的。但是,我们知道传统建筑的体形系数都比较大,一般在0.5~0.7之间,它们有足够的空间可以在建筑物理方面做文章。对于我们这种人口大国来说,完全的回归传统是很难做到的,人口的增长和城市化进程要求我们必须针对现有的高容积率的建筑形式提出解决方案,去适应城市化导致的人口集中,同时确保居住者的舒适。  1.“被动设计”的原则  以往建筑师更多地从结构角度看待外立面,通常把建筑外立面叫做围护结构,更多地强调封闭和隔断。但对于“被动设计”,应该尽量多地利用建筑周围的自然环境中的有利因素。因此我们把它看作一种能够随环境动态变化的半透膜,把不利的环境条件隔离掉,把有利的环境条件引入到室内。设计这种半透膜式的外立面的目的和着眼点是确保使用者的舒适,没有了这个前提,其他任何努力都是没有意义的。舒适完全可以用一些特定的指标来量化,而且这些指标不会因为居住者的肤色和种族不同而变化。因此,我们说“被动”的外立面设计应遵循的原则是:在确保舒适的前提下,使外立面动态地适应环境变化,较小化建筑能耗,也就是尽量节约由于采暖、制冷、通风和照明所消耗的能源,同时利用建筑的空闲立面来生成能源。  2.“被动设计”要考虑的几个关键因素  a)门窗保温和控制  提高门窗的保温性能和气密性能是建筑节能不可或缺的措施之一,特别是针对有采暖要求的地区。随着热传导系数(U值)的降低,门窗的保温性能会相应提高,采暖能耗会相应降低,但是当门窗的热传导系数(U值)降至1.5W/(m2K)以下时,继续降低热传导系数所带来的益处与付出的成本之比(益本比)就会明显下降。以上考虑的只是采暖工况,强调的是仍然是隔断和封闭。在制冷工况或适于自然通风的工况下,门窗的保温性能就并不显得很重要了,相比之下,门窗的开启方式和控制方式对于有效节约能源的作用会更大一些。将门窗的开启方式和开闭状态置于电控和程序控制之下,就可以利用昼夜温差和室内空气流向,调节室内温度和空气质量,其所耗费的能量要远远低于空调能耗。  b)外墙保温  在炎热潮湿地区和炎热干燥地区,年平均温度大于25℃,在墙面和屋面上添加40mm的保温层后,对降低制冷负荷的效果并不明显(均小于5%)。而对于夏热冬冷地区的采暖负荷的降低贡献很大(达到20%)。因此在夏热冬冷地区和寒冷地区的建筑墙面和屋面上敷设保温层能够有效提高外墙表面温度,从而节约采暖能耗,提高室内舒适性。对于夏热冬暖地区,则需要仔细考虑铺设保温层的初期投资成本和节约制冷能耗的效果。在定量分析保温层的经济厚度时,我们发现,针对制冷负荷的保温层经济厚度为40mm,大于这个厚度对于继续降低制冷负荷的作用会不明显;针对采暖负荷时,保温层的经济厚度则为80mm。  c)遮阳  较有效率的遮阳形式(外遮阳)与较不节能的内遮阳形式之间的差异非常明显,较多可以达到10℃,这种结果使室内的舒适性出现巨大差异。我们知道,空调设备的选型是以夏季室内较高温度为依据的,选择正确的遮阳形式对降低初始投资和运营成本的意义重大。  d)夜间通风  在昼夜温差较大的地区,利用夜间室外较凉的空气来冷却建筑主体是一种非常有效的降低制冷负荷的手段。两个相同热惰性的房间内,有夜间通风时,室内温度能够降低2到6℃另外,热惰性较大的房间的温度要比热惰性较小的房间低4℃左右。似乎热惰性较大的房间节能效果更明显,特别是在白天运营状态下。因此,在温带和亚热带的昼夜温差较大的地区,较有效的降低通风和通调系统初期投资和运营能耗的方法是,设计具有较高热惰性的房间,同时使外窗具备夜间通风功能。但是,如果该地区室外湿度较大或昼夜温差不明显,采取夜间通风方式并不足以帮助冷却建筑主体,反而会破坏室内的舒适。  e)自然采光  由于公共建筑能耗中的40%被用于人工照明,因此采用一些适当的技术将自然光引入室内,并使其不受日照角度和云层的影响,柔和地分布在室内,对于节约能源和创造健康舒适的室内环境有着重要的意义。在不采用日光引入系统的普通房间中,照度随着与窗口的距离增大而迅速衰减,在增加了不同形式的日光引入系统后,室内的自然采光状态明显改善。  以上谈到的几个针对门窗幕墙“被动设计”的影响因素是综合作用的。优化它们的过程就是较大限度地利用当地气候中的有利因素去对冲人工调节的能耗。一个很好的应用实例是我们目前在国内越来越常见的双层幕墙。这种构造形式,我们与其将其成为一种新型产品,还不如把它叫做前面几种影响因素综合优化后的一种结果。它是在综合考虑该建筑所处的风环境、光环境、热工环境后,优化了各个立面的保温、遮阳、通风和采光,设计出的一种外墙构造。所以我们说双层幕墙不是一种标准产品,而是被动应用气候条件的一种构造形式。  这种随当地气候动态变化的墙体,对冲了建筑周围环境变化幅度,确保了室内相对恒定的舒适环境。这样,即使在一些极端的环境条件下,人工调节系统的介入是不可避免的,但无论如何都能够使能耗较小化。

节能玻璃幕墙的热工设计与节点设计详析

2019-01-14 14:53:00

节能玻璃幕墙的热工设计与节点设计详析:         1、转变设计理念:变被动为主动    玻璃幕墙的热工设计,应该追求设计功能的主动性和积极性,变被动设防为主动利用能源的设计思想,为了减少冬季采暖供热的热损失和能源消耗,为了减少夏季空调制冷的热袭入和能源消耗,玻璃幕墙热工设计的发展趋向是:对于以采暖供热为主的幕墙追求达到温室效应,对于以空调制冷为主的幕墙追求达到冷房效果,无论何种幕墙都将追求合理利用太阳能。动态幕墙(也称热通道幕墙、双层通风幕墙)是一种很好的发展方向,由光电板系统和幕墙系统组成的光电幕墙也是主动利用太阳能的一个应用发展方向,综合运用光能、热能、电能的智能玻璃幕墙是较理想的发展方向。    进行幕墙热工设计时,必须对其复杂的传热过程和传热方式进行分析和研究。玻璃幕墙的传热过程大致有三种途径:一是玻璃和铝合金(不锈钢)金属框格的传热:通过单层玻璃的热流传热,通过金属框格传热,通过玻璃的镀膜层减少辐射换热;二是幕墙内表面与室内空气和室内环境间的换热:内表面与室内空气间的对流换热,内表面与室内环境间的辐射换热;三是玻璃幕墙外表面与周围空气和外界环境间的换热;外表面与周围空气间的对流换热,外表面与外界环境间的辐射换热,外表面与空间的各种长波(如电磁波、红外线等产生的长度)辐射换热。四是普通玻璃幕墙采用单层玻璃和铝合金型材的梁柱结构,而节能玻璃幕墙则应从上述三种途径加以考虑:靠前种途径(热传导)对节点设计影响较大,针对玻璃的导热性能,设计时采用中空玻璃;针对铝框的导热性能,设计时采用尼龙66等结构塑料,形成“断桥”,可增大热阻,减少热传导,从而设计隔热幕墙。在此基础上,再考虑第二种途径(热对流)和第三种途径(热辐射),在构造上采用双层Low-E玻璃,上下端对流开口,从而设计动态幕墙。    2、隔热幕墙的节点设计    隔热幕墙的节能原理是采用中空玻璃和隔热断桥铝型材来实现节能的。隔热断桥铝型材的隔热原理是基于产生一个连续的隔热区域,利用隔热条将铝合金型材分隔成两个部分。隔热条“冷桥”选用材料为聚酰胺尼龙66,其导热系数为0.3W/(m2K),远小于铝合金的导热系数210W/(m2K),而力学性能指标与铝合金相当。20世纪70年代末,隔热断桥铝型材在国外问世,主要用于高寒地区的铝合金门窗,到20世纪80年代末开始用于高寒地区的有框玻璃幕墙。我国目前在保温隔热性能要求很高的建筑中,也开始把它用于明框隔热玻璃幕墙、隐框隔热玻璃幕墙及点支式隔热玻璃幕墙。    此外,在隔热幕墙中,更重要的是要注意中空玻璃的应用与设计(因为在幕墙中,玻璃所占的面积比铝合金框要大的多)。如果采用10+12A+10中空玻璃,那么其传热系数K达3。0W/(m2K)左右,传热系数比单层玻璃低了近1/2,可以大大地降低能耗,因此,在保温性能要求比较高的情况下,应采用中空玻璃,如果中空玻璃内充入惰性气体,其K值还以可降至1。3W/(m2K)。    铝型材节点设计的总体思路是:在铝合金型材截面不变的情况下,通过改变隔热条和胶条的尺寸,分别装配不同厚度的中空玻璃,从而达到不同的隔热设计要求,以供不同地区、不同类型的建筑、不同要求的业主选择。采用隔热幕墙能起到很好的节能和降噪效果。与普通的单层玻璃相比,节省能耗约25%~50%,降噪约达30db~40db。动态幕墙的节点设计动态幕墙是一种新型的节能幕墙,是幕墙技术的新发展。根据其结构,可以分为“封闭式内循环体系”和自然通风的“敞开式外循环体系”两种类型。前者需要通过电机强制抽风,因而总体节能水平不高;后者通过自然通风,所以节能效果更为明显。

铜工业萃取过程设计

2019-03-06 09:01:40

一、萃取剂挑选 在浸取-萃取-电积流程中,浸取液成分,萃取剂及萃取、反萃取的各种条件和参数以及电积富液和残液的成分相互影响,互为限制。在规划一个浸取-萃取-电积工厂时第一步要用实践矿石进行浸取实验,取得浸出液的均匀成分,首要是铜浓度和pH值,其次是铁浓度。断定了浸出液的均匀成分今后,就能够挑选萃取体系所需的萃取剂及其浓度。核算的基本准则是在稳态工作下浸取,萃取和反萃取以及电积进液和出液的铜和硫酸的浓度,这样便于断定反萃后有机相得铜浓度。然后,反萃工序所需求断定的参数就剩余两相流比了。 尽管萃取剂品种许多,但现在一般都用醛肟为首要成分的新式萃取剂,如捷利康公司的AcorgaM5640、M5615、M5397、PT-5050以及汉高的LIX984、LIX973、LIX931、LIX860、LIX84、LIX622系列及其改善类型等。尽管各种供应商的萃取剂技能说明书所标明的参数不尽相同,但,一般包含该萃取剂的最大负荷才能、传输才能和萃取及反萃等温平衡点。 二、萃取流程规划 萃取流程规划是要断定萃取剂浓度、比较、级数等操作参数。以一料液含铜1.2g/L,pH=1.8为例进行操作参数核算。假定选用LIX984或984N为萃取剂。依据经历,可选用二级逆流萃取,一级反萃的流程,在进行萃取核算时可取比较1∶1。依据该萃取剂的说明书,当浓度为10%(v/v)时净传输才能为2.7g/L,最大负荷5.1~5.4g/L,反萃等温平衡点1.8g/L。现在需求传输的铜为1.2g/L,可开始选用5%(v/v)的浓度,并估量反萃等温平衡点的有机相铜浓度为10%时的一半,即0.9g/L。这样,负荷有机相的铜浓度应为1.2+0.9=2.1g/L,为其最大负荷的81%。这是恰当的,过高,没有地步,不利于萃取操作;过低,则萃取剂使用率太低。所以,一般说操作负荷在最大负荷的80%~85%为宜。生产厂在进行萃取剂性质测守时,电积贫液设定为Cu30g/L,H2SO4180g/L;富液为Cu45g/L,则反萃比较A/O =7.1。这样就断定了萃取和反萃的悉数操作参数。 捷利康公司开发了一种称作Minchem的核算机程序,它能依据给定的一些操作参数对萃取-反萃工艺进行流程核算,评价现在的操作状况,也能够使用已知条件进行萃取-反萃优化规划。例如一个用户的料液铜浓度为2.5g/L,pH=2.3,有机相是10%Acorga5640-火油。反萃用的电解贫液Cu30g/L,H2SO4180g/L;电解进液含铜45g/L。Minchem的等温线模块即可核算得萃取及反萃平衡等温线。如该厂是二级萃取一级反萃,并已知萃取的两比较较为O/A=1/1,萃取时混合-弄清槽的级功率90%,反萃时95%。然后,程序的“流程图制作及核算模块”即能核算出各级两相浓度及反萃流比如图1所示。核算成果显现,铜的直收率为93.3%。用户可改动以上设定的参数如级功率、流比、乃至级数或选定其他参数再进行核算,以比较不同条件下的工作成果,断定最佳操作参数。最近,经过改善的Minchem程序使用了用户视窗界面,操作非常便利。并且,长算成果,包含等温线,均可打印出来。图1  典型的二级萃取一级反萃流程图 核算所得的操作参数虽能够作为实践操作的依据,可是,在真实的工作进程中有必要依据料液铜浓度及pH值的改动进行调整。在料液成分改动不大的状况下能够经过改动两相流比来确保铜的直收率,假如料液浓度改动太大,则可在弥补萃取剂时调整它的浓度。 可是,假设料液浓度很高,或许流程有特别的要求,则应该依据实践状况进行规划,如在一从含铜金精矿的焙砂浸取液中萃取铜的流程中选用LIX84萃取剂规划了4级萃取,将萃余液中的铜含量下降到0.1g/L以下,然后排去,改动了一般回来浸取的做法。为的是防止萃余液中的有机物吸附在浸取渣上影响化提金。 氯离子腐蚀铅阳极,假如料液含有3g/L以上氯离子,在萃取时有一部分会进入有机相,应该设一洗刷级把杂质洗去,不让其进人电解液。硝酸根以及二价锰离子也都对电积有不良影响,浓度高时也需洗刷。 三、工业萃取的工作 铜萃取级数少,设备大,除了萃取工作的一起关键,如各种溶液的流量操控等之外,还有几点需特别注意。 (一)接连相的挑选 在两相混合时,涣散相总会发作一些极小的液滴,在弄清槽中不能从接连相中分离出来,而夹藏进入下一工序。尽管羟肟萃取剂对铜有极高的挑选性,可是,如有机相夹藏了料液相同也能将杂质传递到反萃液,对电积铜的质量形成不良影响。夹藏的有机相随水相丢失,也添加生产成本。准则上说,萃取阶段负荷有机相出口级应坚持水相接连,以削减有机相中夹藏的水相。反之,萃余液出口级有机相应为接连相,以减低有机相的丢失。因此,两级萃取的接连相应是不同的。假如反萃只要一级,则以有机相接连为好。这样能够坚持电解液的清洁,确保电铜的质量。反萃有机相夹藏的高浓度铜溶液可在萃取时收回。 坚持相接连的办法一是发动混合槽时拌和桨应在涣散相中,再是坚持混合槽中接连相的体积大于涣散相。在工业进程中,后者是首要的办法。即便开车时接连相的挑选是正确的,工作进程中有时会发作“相倒转”,即接连相变为涣散相、涣散相变为接连相。因此,在工作中需对相接连状况进行监控。最常用的判定办法是丈量电导,水相接连电导率高于有机相接连。 (二)削减夹藏 前已述及,夹藏是因为在两相触摸时部分液滴涣散过细。液滴越细微依托重力从另一相中分离出来的进程越缓慢。在弄清槽的逗留进程中,许多小滴来不及分出而被带入下一级。因此,要削减夹藏,从根本上说就是要防止液滴涣散过细。在两相触摸时,下降液滴直径当然有利于传质。但滴径呈必定的散布状况,应该尽量使滴径均匀,或说,散布窄一些,削减过细的液滴。形成散布过宽的首要原因是拌和桨规划或操作不妥。桨叶的剪切力过大就会发作过细的液滴。有的混合-弄清槽槽间的联合管开口位盆不妥,空气卷进混合室,并且时有时无。这将导致混合室内液流崎岖的潮涌现象,因此,两相涣散状况也随之改动,发作过细液滴。一起,水、油、空气的三相混合物还会导致发作三相乳化物。乳化将导致严峻的夹藏。

冶金产品成本设计

2019-01-03 15:20:50

冶金产品成本设计(metallurgical product cost preparing)产品成本是在建设项目的可行性研究及初步设计阶段,为了进行经济分析和评价,按设计参数及预期价格,对其产品所编制的成本。产品成本的主要作用是计算利润、计算流动资金需要量,用于财务分析和评价,进行不确定性分析等。根据不同的需要,产品成本具有多种不同的类别或特定的含义。项目成本和要素成本产品成本可以分为项目成本和要素成本。(1)项目成本。它是按生产费用的经济用途和发生的地点划分为各种成本项目。包括:原料及主要材料;辅助材料;工艺过程用燃料;工艺过程用动力;生产工人工资及附加工资;制造费(包括折旧、维修及其他制造费);管理费(包括摊销费、土地使用费和其他管理费);财务费用(包括建设借款利息和流动资金利息);销售费用。其中前五项是直接用于生产过程的费用,叫作直接费用,后几项叫作间接费用。按成本计算项目分类,其特点是能够计算每种产品的成本,便于开展经济核算,挖掘企业内部潜力。(2)要素成本。它是按生产费用的经济性质划分为冶ye各种费用要素。要素成本反映企业在生产过程中的各种消耗。生产费用按经济性质分类,即根据企业费用的原始形态来划分,而不管这些费用的生产用途和发生地点,凡是经济性质相同的费用就列入同一项目中。生产费用按费用要素可以划分为:劳动对象的费用(包括原料及主要材料、辅助材料、燃料和动力费用);劳动手段的费用(包括固定资产折旧);活劳动的费用(包括工资及附加工资);其他现金支出(如邮电费、旅差费、利息等)。固定费用与可变费用 产品成本按其与产量的关系,又可分为固定费用与可变费用。(1)固定费用。有些费用,不管产量的大小总是固定不变,即这类费用在一定时期内不随企业产品的增减而变化,如制造费和管理费。(2)可变费用。指随着产量的变化而变化的费用。它包括原材料费、生产工人工资及其附加工资、燃料动力费、废品损失费等,这些费用一般随着产量的增加而成比例地增加。计时工资只能算半可变费用。经营成本经济评价中经常采取经营成本这个概念。经营成本指产品成本不包括折旧费用和财务费用的成本。经营成本在编制项目计算期内的现金流量表和方案比较中十分重要。现金流量计算只计算现金收支,不计算非现金收支,固定资产折旧费及摊销费只是项目系统内部的固定资产投资的现金转移,而非现金支出,且与投资重复。产品成本费用构成为:

废有色金属的预处理-打包与压块

2019-01-24 11:10:25

废有色金属的预处理是指将有色金属废件和废料的状态变成能够进行有效的后续冶金加工的过程。这一过程包括:使各种废件和废料达到规定的外形尺寸和重量标准;将有色金属与黑色金属分离;去除非金属夹杂物、水分、油质等。对废有色金属进行精细和高质量的准备,使之适用于冶金工序,可以使有色金属损失减少到最低程度,使燃料、电力、熔剂的单位消耗降低,使冶金设备和运输工具得到有效的利用,并使劳动生产率及有色金属与合金产品的质量得到提高。     有色金属废件与废料的预处理包括下列主要工序:分选,切割,打包,压块,破碎,粉磨,磁选,干燥,除油等。特种再生原料(废蓄电池、废电动机、废电线、马口铁废料)的预处理,采用专门的生产线。全苏再生有色金属科学研究设计院研究出废有色金属预处理的一般工艺流程(图1),该流程从有色金属废件与废料进入车间起,至成品发往用户厂为止。图1打包和压块     打包的目的是把松散的轻薄的废件与废料压实并制成一定重量、尺寸和密度的打包块。密实的物料便于装炉熔炼,熔炼过程中氧化造成的金属损失也小,同时,原料的运输费用还可得到降低。需要进行打包加工的,是分解成块的大型废件、废散热器、切边、废棒材、废管材、废电缆、废定子绕组、碎屑、废压模、日用废品等。加工的打包块密度,取决于压力的大小以及所压制的物料的厚度。废铜打包需用2000~4500千牛顿压力,废铝打包则需用1400~2000千牛顿压力。     各种液压打包机(表4)按压力大小分为小功率(压力2500千牛顿)打包机(Б-132型、Б-133型、ПГ-150型)、中等功率(压力2500~5000千牛顿)打包机(Б-1334型、ПГ-400型、CPA-400型)和大功率(压力5000千牛顿以上)打包机(CPA-1000型、CPA-1250型)。 表1(前)苏联国产打包机的技术参数机型外形尺寸(米)最后压级压力(千牛顿)打包机生产能力(块/小时)  电动机功率(千瓦)    打包机重量(吨)  挤压室打包状Б-132型*1.5×0.7×0.60.3×0.4×0.6100025108Б-1330型1.7×0.9×0.30.3×0.3×0.51000758526П-150型1.8×0.7×0.60.3×0.3×0.61500202010Б-1334型1.7×1.4×1.20.4×0.4×0.525003513572CPA-400型3.0×2.6×0.80.6×0.6×1.229001220113ПГ-400型2.8×1.5×1.10.4×0.5×0.639002022087CPA-1000型**4.5×4.0×1.31.0×0.7×2.0620020250308CPA-1250**2.2×0.8×2.91.0×0.8×0.81180045430285 *Б-132型打包机虽然已经停止生产,但许多企业仍在使用。 **CPA型打包机是由捷克斯洛伐克生产供应的。     打包过程包含以下主要工序:废料的验收和准备,装入打包机,打包,将打包块推出挤压室,验收并运走成品打包块。     现用Б-132型打包机(图2)的作业来说明打包过程中各道工序之间的连贯性。借助液压缸将原料由料箱1送入挤压室2。挤压室则用由液压缸4传动的盖3盖住。此时露出挤压室边缘的废料尾端由固定在盖的侧面和前面的刀切掉。打包过程中采用纵向和横向挤压头两次挤压,挤压头固定在液压缸5、6的活塞杆上。压制完毕后,打开挡板并借助液压缸7将打包块推出挤压室。     各种液压打包机都是自动化或半自动化作业,能将废料打压成重量为50~4500千克的不同打包块。  图2  Б-132型打包机的打包流程 а-装料;б-关盖;ъ,г-打包;э-推出打包块     压块适合在对废有色金属屑进行冶金处理前备料时采用。压块的目的是便于存放和运输,加快溶炼过程并减少金属损失。在压块过程中,原料被压实至2000~2200千克/米3的密度。适合进行压块的是粒度小于100毫米的无夹杂干屑。[next]     (前)苏联国内许多企业在对废屑进行压块加工时广泛使用液压压块机(Б-654型)和脉冲式压块机(MИБ-275型)。     用Б-654型压块机(图3)生产压块的过程,包括6个自动实施的连续工序:Ⅰ-切截批量废屑并用风动捣锤捣实;Ⅱ-用挤压头夹住废屑并将其压入阴模,同时进行压块造形,并使系统中的压力达到13亨帕;Ⅲ-移开捣锤,夹入新批量废屑;Ⅳ-在主液压缸的作用下使压块成形,成形过程持续至压力达16亨帕为止;Ⅴ-由阴模取出成品压块并使带有捣锤的挤压筒复位;Ⅵ-退出挤压头,使压块落入出料槽。在整个循环作业过程中,振动器均匀地将废屑由料仓给入进料槽。  图3  Б-654型压块机 1-带有液压缸的横梁;2-移动挤压筒的液压缸;3-振动器; 4-带风动捣锤的挤压筒;5-充油阀;6-充油箱;7-压力阀; 8-快速液压缸;9-油箱;10-操纵台;11-空气分配器; 12-液压工作缸;13-电动机;14-泵;15-可逆阀     脉冲式压块机的挤压功能,是在天然气和空气的混合物燃爆过程中释放产生的。采用这种压块机加工铝屑,可制取直径275毫米、高65~75毫米、重10~12千克的压块。压块机的加工能力为1.2~1.5吨/小时。

湿法炼镍车间设计

2019-03-07 09:03:45

湿法炼镍车间规划(design of nickel hydrometal lurgical plant) 以氧化镍矿或硫化镍精矿为质料,选用湿法冶炼工艺出产电解镍、氧化镍、镍粉和镍块的镍冶炼厂车间规划。规划内容包含质料、工艺流程、首要设备、车间装备和技能经济指标。         20世纪40年代,古巴尼加罗厂(Nicaro Nickel Plant)初次在工业上用浸湿法流程处理氧化镍矿。50年代,古巴毛阿镍厂(Mao Bay Nickel Plant)用加压硫酸浸出湿法流程处理氧化镍矿。后来,澳大利亚和菲律宾等国相继树立湿法镍冶炼厂,选用浸流程处理氧化镍矿。70年代,我国为阿尔巴尼亚规划了浸处理氧化镍矿的湿法冶炼厂。浸处理氧化镍矿是世界上首要的湿法炼镍流程。湿法冶炼处理硫化镍精矿的只要加拿大舍利特•高尔顿公司(Sherritt Gordon CO.)和澳大利亚西方矿业公司(Western Mining CO.)。用湿法冶炼处理含镍磁硫铁矿的有加拿大世界镍公司(Inco Ltd.)和鹰桥公司(Falconbrige Ltd.)。 质料 首要质料是褐铁矿型氧化镍矿,即红土矿,典型成分如表1。湿法冶炼硫化镍精矿的成分(不含贵金属)(%)为: Ni Co Cu FeS 脉石 10 0.5 238 31 14 硫化铜镍矿选矿厂产出的中间产品含镍磁硫铁矿,也可选用湿法冶炼,成分为0.75%~1.1%Ni,0.05%~0.1%Cu,57%~58%Fe,32%~36%S,2%~18%SiO2。 产品 能够产出电解镍、烧结氧化镍(成分为88%Ni、0.7%Co、7.5%O2和1.7%SiO2)、镍粉和镍块。有的湿法炼镍车间仅出产半制品硫化镍,送其他精粹厂进一步处理,其成分为55%Ni,5.9%Co,1%Cu。 工艺流程 湿法炼镍有以下五种类型的工艺流程:氧化镍矿选用复原浸工艺流程(以古巴尼加罗厂为代表)和加压酸浸工艺流程(以古巴毛阿镍厂为代表)。硫化镍精矿选用加压浸工艺流程。        含镍磁硫铁矿能够选用氧化焙烧后再进行复原浸收回镍工艺,也能够选用硫酸化焙烧后浸出收回镍工艺。 (1)复原浸处理氧化镍矿工艺。其流程(图1)为,在复原气氛下将矿石中的氧化镍复原成金属镍,三价铁复原为磁性氧化铁,再用—碳酸铵溶液浸出,浸出液经净化、蒸,产出碱式碳酸镍,再经枯燥、煅烧成烧结氧化镍。(2)加压酸浸处理氧化镍矿工艺。其流程见图2,矿石含铁高,含MgO低时,可选用此工艺。该工艺浸出压力高,因硫酸腐蚀,设备原料要求高,因而推行受到限制,迄今仍只要毛阿镍厂运用此法。将矿石加硫酸调成矿浆并预热后,泵入空气拌和压力釜(压力4.3MPa,温度230~260℃)浸出,浸出残渣用稠密机逆流洗刷。浸出液经净化中和后,用将镍、钴、铜以硫化物沉积。镍钴硫化物送镍精粹厂进一步处理。(见镍阳极板和氧化镍制备车间规划和镍电解精粹车间规划) (3)加压浸处理硫化镍精矿工艺。其流程见图3,硫化镍精矿大部分选用火法冶炼出产镍锍,然后处理镍锍出产镍。该工艺只要加拿大谢里特•高尔顿公司一家选用。该工艺金属收回率高、产品质量优、综合利用好,环境污染易操控,但仅合适处理不含贵金属的硫化铜镍精矿。该工艺是,精矿加浸出液浆化后参加两段加压釜浸出(压力0.84~0.9MPa,温度75~85℃)。浸出液蒸除铜后加压水解深度除铜,净化后液再用加压釜(压力3.2MPa,温度200℃)进行氢复原产出镍粉。 (4)氧化焙烧复原浸法处理含镍磁硫铁矿工艺。加拿大世界镍公司铜崖(Copper Cliff)冶炼厂选用该工艺。精矿在浆式进料的流态化焙烧炉内氧化焙烧产出烧渣,用回转窑进行选择性复原,然后常压浸,浸出液除铜、蒸产出碱式碳酸镍,煅烧后产出制品氧化镍。 (5)硫酸化焙烧浸出处理含镍磁硫铁矿工艺。加拿大鹰桥公司选用该工艺。精矿经流态化焙烧后水浸、复原、铁屑置换,产出含10%Ni的硫化镍精矿送火法冶炼厂冶炼。       复原浸处理氧化镍矿用的复原设备有多膛焙烧炉、回转窑和流态化复原焙烧炉。多膛焙烧炉内径为5.6m高18.3m,每小时处理料12~15t,浸出洗刷过滤运用一般的湿法设备。 加压酸浸处理氧化镍矿用首要设备为加压釜,毛阿镍厂立式加压釜直径为350mm,高15800mm,压力为4.3MPa,温度为230~260℃,矿浆流量为1.76m3/min,日处理矿量为1500t。 加压浸处理硫化镍精矿用首要设备为加压浸出釜。加拿大谢里特•高尔顿公司有8台加压釜,为卧式,直径为3350mm,长13700mm,压力为0.84~0.9MPa,温度为75~85℃,日处理精矿475t。 含镍磁铁矿湿法处理用首要设备为流态化焙烧炉。它与一般硫精矿焙烧炉相同,湿法设备为一般设备。

锡火法精炼车间设计

2019-01-04 13:39:40

锡火法精炼车间设计(design of fire refinery of tin) 以锡熔炼车间产出的粗锡为原料,按其所含杂质种类及含量,选用相应的火法精炼工艺产出精锡的锡冶炼厂车间设计。精炼过程中产生的焊锡及各种浮渣是综合回收伴生金属的原料。 简史 20世纪50年代前,锡火法精炼技术发展缓慢。70年代由英国卡佩尔帕斯冶炼厂(Capper Pass Smelter)研制,经苏联新西伯利亚炼锡厂完善的铁浮渣离心过滤机和真空蒸馏装置,将过去依次脱除铁、砷、铜、锑、铅和铋的过程,简化为离心过滤除铁砷、真空蒸馏除铅铋和精炼除铜锑等工序。80年代初,中国云南锡业公司第一冶炼厂设计研制的电热连续结晶机,取代了劳动强度大、生产效率低的结晶放液锅。1982年该厂精炼车间改建设计,将电热连续结晶机与真空蒸馏炉或焊锡电解装置配套使用,使火法精炼高铅粗锡的技术趋于完善。         工艺流程 粗锡中常见的杂质有铁(0.03%~8%)、铜(0.002%~0.5%)、铅(0.03%~1.5%)、铋(0.003%~0.5%)和硫(0.001%~0.3%)。火法精炼主要包括熔析和凝析除高熔点杂质、加硫除铜、加铝除砷锑、结晶分离铅铋和真空蒸馏除铅铋等作业。一个单项作业可除去一、二种杂质,而一种杂质有时又需两项作业才能达到质量要求。设计时一般根据粗锡杂质种类和含量,参照附表中所列常用作业的工艺参数,选择适宜的精炼作业。作业顺序一般依试剂消耗量少、锡的回收率高并有利于劳动卫生安全等因素确定。中国云南锡业公司第一冶炼厂的火法精炼流程。锡火法精炼流程示意图 火法精炼在锡熔点232℃以上进行。此工艺由于设备日趋完善,生产效率高,作业费用低,已被广泛采用,其所产精锡约占世界锡总产量的90%。主要缺点是难以回收粗锡所含的贵金属和加铝除砷锑所产的浮渣,遇水或潮湿空气会产生剧毒气体AsH3。火法精炼车间的劳动卫生安全防护设计须从严考虑。