您所在的位置: 上海有色 > 有色金属产品库 > 食用菌打包机

食用菌打包机

抱歉!您想要的信息未找到。

食用菌打包机专区

更多
抱歉!您想要的信息未找到。

食用菌打包机百科

更多

废铜打包机

2017-06-06 17:50:13

废铜打包机可将各种 金属 边角料(钢刨花、废钢、废铝、废铜、废不锈钢以及报废汽车废料等)挤压成长方体,八角形体,圆柱体等各种形状的合格炉料,既可降低运输和冶炼成本,又可提高投炉速度。   废铜打包机特点:1、结构简单耐用,操作方便, 价格 实惠,低投入高回报;2、所有机型均采用液压驱动(或柴油驱动);3、机体出料形式可选择翻包,推包或人工取包等不同方式;4、安装简便,无需底脚固定,在无电源的地方,可采用柴油机作动力;5、挤压力从63吨至400吨有十个等级,供用户选择,生产效率从5吨/班至50吨/班;6、压缩室尺寸和包块形状尺寸及机型尺寸可根据用户要求设计定制。 打包机的工作原理:打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。    打包机的工作流程:带子送到位→收到捆扎信号→制动器放开,主电机启动(1)→右顶刀上升,顶住右带于滑板处(2)→“T”型导板后退(3)→接近开关感应到退带探头(4)→主电机停转,制动器吸合(5)→打包机退带电机转动,退带0.35秒(6)→带子收紧捆在物体上(7)→主电机二次启动,制动器吸合(8)→大摆杆二次拉带,收紧带子(9)→左顶体上升,压紧下层带子(10)→加热片伸进两带子中间(11)→中顶刀上升,切断带子(12)→中顶刀下降(13)→中顶刀再次上升,使两带子牢固粘合(14)→中顶刀下降,左右顶刀同时下降(15)→加热片复位(16)→滑板后退(17)→“T”型导板复位(18)→接近开关感应到送带探头(19)→送带电机启动,带动带子送带(20)→大摆杆复位(21)→带子到位,带头顶到“T”型导板上(22)→接近开关感应到双探头(23)→主电机停转,刹车吸合(24)→打包机完成一个工作循环。    打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。    了解更多有关废铜打包机的信息,请关注上海 有色 网。 

废金属打包机

2017-06-06 17:50:12

废 金属 打包机是什么?废 金属 打包机:主要应用于回收加工 行业 及 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等 金属 原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。该系列设备有以下特点:   1. 均采用液压驱动,工作平稳,安全可靠;   2. 采用手动或PLC自动控制的操作模式;  3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;   4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。   废 金属 打包机技术参数:   电源,功率: 380V/50HZ 750W/5A   打包速度: ≤2.5秒/道   台面高度: 750mm   框架尺寸: 宽800mm*高度根据需要定   捆扎形式: 平行1~多道,方式有点动、手动、连打、球开关、脚踏开关   适用包带: 厚(0.55~1.2)mm*宽(9~15)mm   电器配置: LG“PLC”控制,法国“TE”,日本”OMRON“,”ZIK“电器适合常规物体捆包废 金属 打包机发展趋势(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。   (2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。   (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。   (4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。用途:适用于炼钢厂,回收加工 行业 及 有色 、黑 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花、废铜、废铝等挤压成长方体、圆柱体、八角形体等各种形状的合格炉料,以此降低运输和冶炼成品。更多有关废 金属 打包机请详见于上海 有色 网

废金属打包机

2017-06-06 17:50:13

废 金属 打包机主要应用于回收加工 行业 及 金属 冶炼 行业 。可将各种 金属 边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等 金属 原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。    该系列设备有以下特点:1. 均采用液压驱动,工作平稳,安全可靠;2. 采用手动或PLC自动控制的操作模式;3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。    打包机又称捆包机或捆扎机,是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包物体基本处于打包机中间,首先右顶体上升,压紧带的前端,把带子收紧捆在物体上,随后左顶体上升,压紧下层带子的适当位置,加热片伸进两带子中间,中顶刀上升,切断带子,最后把下一捆扎带子送到位,完成一个工作循环。 打包机是使用打包带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。打包机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。 打包机(高台标准型)可以实现自动打包,但台面无动力,需要人工推一下,包装物品才能通过打包机。该打包机的原理是使用捆扎带缠绕产品或包装件,然后收紧并将两端通过热效应熔融或使用包扣等材料连接的机器。捆扎机的功用是使塑料带能紧贴于被捆扎包件表面,保证包件在运输、贮存中不因捆扎不牢而散落,同时还应捆扎整齐美观。捆扎机 价格 :全自动捆扎机 价格 或全自动捆扎机报价是半自动设备的两倍多。    废 金属 打包机发展趋势:(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。(2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。(4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便。    了解更多有关废 金属 打包机的信息,请关注上海 有色 网。 

废铝打包机

2017-06-06 17:49:58

废铝打包机又称:金属打包机;打包机;废钢打包机;废铁打包机;废铝打包机;废铜打包机;生铁打包机;废金属打包机;液压打包机;金属屑打包机;钢刨花打包机;铁屑打包机;废铁压块机。适用于炼钢厂,回收加工行业及有色、黑色金属冶炼行业。可将各种金属边角料、钢刨花、废钢、废铝、废铜等挤压成长方形、圆柱体、八角形体等各种形状的合格炉料,以降低运输和冶炬成本。便于储藏、运输及回炉再利用。废铝打包机该系列设备有以下特点: 1. 均采用液压驱动,工作平稳,安全可靠;  2. 采用手动或PLC自动控制的操作模式;   3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;   4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。  产品规格和种类:金属打包机(废铝打包机)有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。  废铝打包机产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。

废铜打包机

2017-06-06 17:49:53

废铜打包机,主要应用于回收加工行业及金属冶炼行业。可将各种金属边角料、钢刨花屑、废钢、废铁、废铜、废铝、铝刨花屑、解体汽车壳、废油桶等金属原料挤压成长方体、圆柱体等各种形状的合格炉料。便于储藏、运输及回炉再利用。1. 均采用液压驱动,工作平稳,安全可靠;  2. 采用手动或PLC自动控制的操作模式;  3. 出料形式有:侧翻包、侧推包、前推包或无出包四种方式;  4. 安装无需底脚螺丝,在无电源的地方可采用柴油机作动力。  产品规格和种类:金属打包机有63吨~600吨、10个品种二十多个规格,可满足不同层次客户的不同需求。  产品优势:机器采用液压传动、结构紧凑、移装方便、操作简单、维修容易、密封可靠、安装时不用底脚螺丝。废铜打包机是打包机新型先进的气动包装机械。主要用于钢铁企业和有色金属企业捆扎各种小规格的管材、板材、型材等产品的包装,还适于用木箱包装各种产品的捆扎。   但是由于在使用中零件的磨损,不良的润滑,会引起零件的损坏,可能扩大故障和事故的发生,因此迅速地发现故障、排除故障十分重要。不会因为一点小故障而求助制造厂,从而赢得宝贵的时间和金钱.容易出现故障的地方和维修方法   故障:切不断钢带  原因:1)切刀磨损或故障  维修方法:检查切刀或切刀架是否磨损或故障,如磨损严重应更换  2)气压降低  维修方法:检查工作压力是否正常;  切断钢带力来自封锁气缸参见故障现象;  检查封锁操作  故障:锁扣夹口承受的拉力不够  原因:卡紧块联接孔或联接销磨损  维修方法:在槽深度浅时检查这些零件,必要时更换废铜打包机,是废铜打包的好帮手。

铝锭打包

2017-06-06 17:49:56

铝锭打包是投资者们很关心的问题,让我们对它进行下阐述。PET塑钢带-铝锭打包专用当 前 价: 15000 元规格型号: 2512发 货 量: 1000 发布时间: 2010年6月7日有效期至: 60天使用钢带打包铝锭的传统方式已经日渐不适用于当今的工业产品包装,钢带因其自身存在成本高、易生锈、易返松、打包操作不方便、打包浪费严重等不足。使用pet索带(塑钢带)打包是目前及未来工业产品包装的发展趋势。pet塑钢带凭着成本低、省钱、环保美观、易用耐用、高强度和高拉力等优势,成为替代钢带及pp打包带的新型捆扎包装材料。从2002年来,国内的索带需求以每年500%的速度增长,大规模应用到铝锭、有色金属、钢铁、玻璃、木材、造纸、石材、陶瓷等行业。铝锭是一种贵重的工业产品,重量大、搬运频率高、运输距离远等特点,令其在包装方面要求十分严格,特别是对捆扎材料的要求也很高,既要坚实牢固,又要求有足够缓冲保护铝锭,还要经受运输的考验。为此国家制定了《铝及铝合金加工产品包装、标志、运输、贮存》(gb/t 3199-2007)标准,明确规定铝锭的包装形式和方法,为铝锭的包装提供了参考依据。比例条件:每托铝锭需用4条带,每条打包带的长度为4米,每托铝锭共需16米打包带。注:1、钢丝打包每条会浪费0.2米用作收紧,即4条带共浪费0.8米;2、 每条钢带需多支付1个钢扣的费用;3、一体化气动打包机提高打包速度;气动铝锭打包机当 前 价: 2 元/台最小起订:1 台供货总量:200 台特性    1、适合各种PET塑钢带    2、束紧、粘接、切断一次性完成,操作简便。    3、束紧力强,大于2800N以上,适用于冶金、钢铁、建材业等    规格      型号 CMVAQD-19 CMVAQD-25    机重 3.8㎏ 4.0㎏    使用塑带宽度 10-19.0mm 19-25mm    使用塑带厚度 0.4-1.05mm 0.4-1.35mm    打包结合强度 约75% 约75%    咬扣方式 摩擦热熔粘接 摩擦热熔粘接    束紧力 2800N 2800-3000N    平均气压 0.65MPa 0.65MPa如果你想知道铝锭打包等更多的信息你可以登陆上海有色网查看。 

铝锭打包带

2017-06-06 17:49:56

铝锭打包带是一种投资者想知道,因为了解它可以帮助操作。铝锭聚酯打包带数量(米)  ≥1价格(元/米) 10000.00元/米铝锭打包带是以聚对苯二甲酸乙二醇酯为主要原料经加工而成的,它是目前世界上用于代替钢带的一种新型环保的包装材料,经这几年新材质的开发成功及成本的大幅下降,已大量使用在钢铁业、化纤业、铝锭业、纸业、砖窑业、螺丝业、烟草业、电子业、纺织业及木业等;是一种取代钢带的新型高强度打包带,是目前世界上使用最广泛的替钢带使用。其特性有:1、高强度 : 铝锭打包带材质是(聚脂),具有极强抗拉性,接近于同规格的钢带,是普通塑料带的几倍。2、高韧性 : 铝锭打包带具有塑料特性,有着特殊的柔韧性,在运输过程中可避免因颠簸造成打包带的断裂导致物体的散落,确保运输的安全。3、安全性 : 铝锭带没有钢带的锋利边缘,也不需要钢扣结合、没有压痕、刮伤问题,不会对被包装物体造成损伤。在打包和开包时不会对操作人员造成伤害,避免一切不安全因素。4、适应性 : 铝锭带因材质和制作工艺因素,能适合各种气候变化,耐高温、耐潮湿,不象钢带受潮生锈污染环境及损失抗拉性,使捆包强度减小。5、环保性 : 因铝锭带质量轻,搬运方便;体积小,节省仓库空间;用过的铝锭带方便回收,符合环保要求。6、美观型:钢带会因暴露在空气中吸收水分而生锈,锈迹渗透性强容易污染包装物。铝锭塑钢带则美观、不生锈、有利环保。7、耐温性 : 熔点为260度,120度以下使用不变形,并能长时间保持拉紧力。8、经济性 : 1吨塑钢带的长度相当于6吨钢皮带,每米单价低于铁皮带,成本仅是铁皮带的60%。如果你想更多的了解关于铝锭打包带的信息,你可以登陆上海有色网进行查询和关注。

国际铜协:铝材料抑菌指数低于铜

2019-01-02 14:54:40

针对近期空调行业爆发的“铝代铜”口水战,一直保持沉默的国际铜业协会昨日向《每日经济新闻》发来声明称,铜作为空调连接管的材料,其承压、抗疲劳、抗腐蚀性能优于铝是有科学依据的事实。在抑菌指数方面,铝的相关指数也远低于铜,“铝代铜”的发展前景仍无法预测。          国际铜业协会声明称,铜管作为空调连接管,经过了几十年的实践检验。单就空调连接管的材料而言,铜的承压、抗疲劳、抗腐蚀等性能均优于铝。而铜铝管作为近两年刚面世的新产品,其耐电化学腐蚀、疲劳破坏,还有待时间的考验。国际铜业协会表示,空调连接管材料的替代更新必须经过慎重的研究和论证。               此前,国内某品牌空调在各地商场促销时,宣称该品牌空调一直使用铜质连接管,并通过软文曝料国内多数品牌空调为节省成本,在空调接管上以铝管代替铜管。该品牌空调有关“黑心管”的宣传,立即引来以科龙为代表的其他空调品牌的反击。               国际铜业协会昨日向本报出具的一份由中国疾控中心环境与健康相关产品安全所2006年对几种主要材料抗菌性能进行的功效比较显示,不锈钢、塑料、铝、银离子、纳米、铜等几种材料中,银离子的抑菌指数最高,铜居次,纳米的抑菌指数为未知,其他材料的抑菌指数为零。据称,在5月份举行的家用空调污染与解决方案专家研讨会上,上海疾病控制中心公布了一条调查数据:易引起食物中毒的蜡样芽孢杆菌在家用空调散热片上的检出率高达100%,家用空调卫生状况堪忧。              家电专家刘步尘表示,在这场空调连接管铜、铝之争中,出现了“权威机构失语”的情况。国内第三方检测机构,此刻应在这场争论中发出声音,就铜、铝空调连接管承压、抗疲劳、抗腐蚀及节能等性能给出权威的对比实验结果。

铀矿石冶金菌优势菌株的研究

2019-01-31 11:05:59

目    录 序言 (1)国内外研讨现状 (2)生物冶金开展趋势及远景 (3)冶金微生物 (4)浸矿系统中的微生物 (5)冶金微生物的多样性 (6)环境微生物多样性的研讨办法 (7)双层固体平板法 (8)本文的研讨意图和含义 1实验材料与仪器  1.1菌株来历 1.2首要仪器 1.3培育基 1.3.1液体培育基 1.3.2固体培育基 2 实验办法 2.1活性培育 2.1.1富集办法 2.1.2 Fe分析办法 2.2 菌株的挑选和纯化 2.2.1 稀释涂布法 2.3 菌株的判定 2.4.1  菌株的判定 2.4.2单菌落的富集培育 2.4.2.1氧化亚铁硫杆菌属 2.4.2.2氧化硫硫杆菌属 2.4.2.3异养菌类 2.4.3基因组DNA的提取 2.4.3.1蛋白酶K法 2.5 最佳成长条件评论 2.5.1铁杆菌 2.5.1.1初始pH值的影响 2.5.1.2接种量的影响 2.5.1.3温度的影响 2.5.2硫杆菌 2.5.2.1不同底物对成长的影响 3 实验成果分析与评论 3.1 活性培育成果分析 3.1.2 铁氧化速率 3.2 菌株挑选成果 3.2.1铁杆菌 3.2.2硫杆菌 3.2.3异养菌 3.3菌株判定成果 3.3.1菌体形状特征 3.3.2显微调查 3.3.2.1普通染色法调查成果 3.3.2.2革兰氏染色成果 3.3.3基因组DNA提取 3.3.3.1 蛋白酶K提取DNA电泳成果 4.3.3.2 16Sr PCR成果 3.4铁氧化曲线 3.4.1 :总铁的改变状况 3.4.1.1细菌氧化Fe2+的机理 3.5成长因子 3.5.1铁杆菌A6 3.5.1.1初始pH 3.5.1.2温度 3.5.1.3接种量的影响 3.5.2硫杆菌B1 3.5.2.1 B1对单质S的运用 3.5.2.2硫杆菌B1对Na2S2O3的运用 3.5.2.3硫杆菌B1对Na2SO3的运用 结  论 参考文献 序言     当今国际金属矿产资源日益干涸,跟着富矿、易挖掘矿不断发掘,低档次、鸿沟档次矿及尾矿许多堆积,惯例冶炼办法本钱过高,使这部分矿产资源不能够运用。生物冶金因具有本钱低、生态环境友好而成为近年来各国争相研讨的热门,并已完结工业化。生物冶金是近代学科穿插开展生物工程技能和矿藏加工技能相结合的工业上的一种新工艺[1]。按微生物在冶金进程中的效果,生物冶金可分为生物浸出、生物氧化、生物吸赞同生物堆集[2]现在生物冶金技能现已在提取低档次难处理矿石中的金属方 面得到大规划的运用,提取的金属包含铜、金、镍、锌、钴、铀等。生物冶金出产的铜、金、铀别离占国际总产量的15%、25%、13%[3],因而生物冶金具有宽广的远景。 (1)国内外研讨现状难浸金矿的细菌氧化预处理,最早1946年在法国提出,但一向到20世纪80年代中期1986年第非金科公司投产时,生物湿法冶金才开端推行到其它金属的提取[4]。自1980年以来,智利、美国、澳大利亚等国相继建成了大规划铜矿藏堆浸厂,锌、镍、钻、铀等金属的生物提取技能亦得到研讨。加拿大用细菌浸铀规划最大、前史最久,安大略州伊利埃特湖区三铀矿公司1986年产铀360t。智利北部的Qubeard Balanac矿山是现在生物浸出实践中十分好的典范,并展现了生物湿法冶金在矿业中的成功开展。我国史书记载“禹收九牧之金,铸九鼎,象神州。”阐明早在原始社会就具有冶金才能了,公元11世纪记载有“胆水浸铜”,可见古人很早就会运用生物冶金技能。在国内,微生物浸矿的研讨始于20世 纪60年代,中科院微生物研讨所对铜官山铜矿进行 实验研讨,后因种种原因而一度中止。20世纪70年代初,在湖南711铀矿进行了处理量为700t贫铀矿石的细菌堆浸扩展实验[5]。核工业北京化工冶 金研讨院在抚州铀矿厂进行半工业细菌堆浸实验收回铀1142.14kg[6]。2000年我国榜首座年产50t规划的难浸金精矿生物氧化—化提金车间在烟台市 黄金冶炼厂正式投产,标志着我国细菌氧化技能在难处理金矿提金工艺中现已从科研阶段转向正式工 业出产[7]。在铜矿挖掘中,1997年5月,德兴铜 选用细菌堆浸技能处理含铜0. 09%~0. 25%的废石,建成了出产才能2000t/a的湿法铜厂[8]。福建紫金铜矿已探明的铜金属储量253万t,属低档次含砷铜矿,铜的均匀档次0.45%,含As2037%。该矿选用生物堆浸技能浸出铜,并建成了年产300t阴极铜的实验厂,现在正在进行建造年产20000t阴极铜的微生物堆浸厂的前期工作。此外,紫金山铜矿还将运用这一新工艺着手进行出产有色金属纳米材料和其它新式粉体材料及复合粉体材料的研讨,逐步完结传统矿业经济向新式经济工业跨进,力求在五年内把紫金矿业建造成为国内闻名的高科技效益型矿业厂商集团,并完结紫金山铜矿的全面开发。(2) 生物冶金开展趋势及远景生物冶金因其有利于环境保护、基建投资少、在某些状况下运作本钱低一级优越性,将取得进一步的开展。现在研讨热门集中于菌种选育,微生物—矿藏界面相互效果实质及其反响速度操控进程,对原生硫化矿提取高效冶金细菌,加强细菌对重金属离子及有毒离子的习惯性,浸矿微生物生态规矩、遗传及代谢调控机制。工艺及工程方面开展趋势为:习惯气候改变的高效细菌,堆浸和就地浸出的水文地质及矿藏学研讨,浸矿工艺流程的优化以及生物冶金规划化,微生物运用于矿山废水以便从水溶液提取贵金属,对其它非金属矿进行生物浸矿探究。   (3) 冶金微生物1947年,Colmer和Hinckle[9]首先从酸性矿坑水中别离出能氧化硫化矿的氧化亚铁硫杆菌,这今后Temple[10]和Leathen[11]对这种自养细菌的特性进行了研讨,发现这种细菌能将Fe2+氧化成Fe3+,并能把矿藏中的硫化物氧化为硫酸。经过半个多世纪的研讨,能够运用生物冶金的细菌有几十种,按它们成长的最佳温度能够分为三类:中温菌(20~40℃)、中等嗜热菌(40~60℃)与高温菌(大于60℃)。它们能够一起把铁和硫作为动力,而一些原核生物只能氧化其间之一作为动力[12]。冶金环境中的微生物是多样的,至今现已报导有13个属类的细菌能够氧化浸出金属硫化物,即Acidianus、Acidimicrobium、Acidiphilium、Acidithioba- cillus、Ferrimicrobium、Ferromicrobium, Ferroplasma, Leptospirillum、Sulfobacillus、Sulfolobus、Sulfurispha- era、Thermoplasma和Thiobacillus。还有一些属的细 菌能够在酸性条件下成长,现在还没有发现它们的 效果,可是不能够扫除这种或许性。这些属包含 Acidisphaera、Acidiobacterium、Alicyclobacillus、Acidi- omonas、Acidiothermus、Picrophilus、Frateuria, Halo- thiobacillus、Propionibacterium和Thiomonas[13]。常用的浸矿细菌首要有:嗜酸性氧化硫硫杆菌 (Acidithiobacillus thiooxidans)、嗜酸性氧化亚铁铁 杆菌(Acidiferrobacillus ferrooxidans)、嗜酸性氧化亚 铁硫杆菌(Acidithiobacillus ferrooxidans)、硫化叶菌属(Sulpolobus)。其间运用最多的是A.t ferrooxi- dans和A.t thiooxidans,尤以前者的生物氧化研讨最为深化[14]。(4) 浸矿系统中的微生物 生物浸出中运用的首要是化能自养微生物,此类微生物可从无机物的氧化进程中取得能量,并以CO2为首要碳源和以无机含氮化合物作为氮源组成细胞物质;又可进一步细分为硫化细菌、氢细菌、铁细菌和硝化细菌等4种生理亚群[15,16]。在硫化矿生物浸出中运用最多的为硫化细菌,在有空气(含有电子受体和少量CO2)、必定的pH、温度及必定的含氮无机物状况下,硫化细菌就能成长繁衍,并将元素S和某些复原态的硫化物氧化成S042-从中取得能量。其间嗜酸氧化亚铁硫杆菌还能氧化金属硫化物,将Fe2+离子氧化成Fe3+离子,三价铁盐是湿法冶金中常用的氧化剂。因而有色冶金中运用嗜酸氧化亚铁硫杆菌在常温酸性溶液中,进行硫化矿石或精矿浸出,使金属硫化物转变为可溶性硫酸盐[17]。按效果的温度这些菌种可分为:中温菌种(msophiles,20-40℃)、中等嗜高温菌种(moderatethermophiles,40-60℃)、嗜高温菌种(thermoples,>60℃)[15-16]。特别是近年来从含硫丰厚的酸性热泉流中别离出的酸热硫化叶片菌、嗜酸热硫球菌以及嗜热嗜酸酸杆菌乃至可在更高的温度下用于硫化矿的酸性浸出[16-18]。矿藏浸出系统中所涉及到的微生物品种是多种多样的,首要有化能自养菌、异养菌和真菌[19,20],此外也有原生动物存在[21]。其间己用于硫化矿生物浸出的菌种首要有嗜酸氧化亚铁硫杆菌(Acidithiobacillusferrooxidans,简称A.f)、嗜酸氧化硫硫杆菌(Acidithiobacillusthiooxidans,简称At)和氧化亚铁微螺菌(Leptospirillum ferrooxidans,简称L.f)。其间嗜酸氧化亚铁硫杆菌(Af能够氧化Fe2+离子、元素硫和复原态硫化物,嗜酸氧化硫硫杆菌(A.t)能氧化元素硫,不能氧化Fe2+离子;氧化亚铁微螺菌(Lf能氧化Fe2+离子,但不能氧化元素硫[18]。除以上几种首要浸矿细菌外,现在许多研讨发现,在硫化矿堆浸系统、硫化矿酸性废水以及酸性温泉中存在其它多种微生物[19,22].在一些堆浸系统和矿山废水中,因为地热或硫化物氧化发作热量,使这些系统中存在着温度梯度,不同温度生态习惯性的细菌生活在不同的温度环境中。在40℃以下的环境中,首要的微生物是嗜酸氧化亚铁硫杆菌和氧化硫硫杆菌。在温度为40-50℃的环境下,首要是硫叶菌属等中等嗜高温菌细菌。在温度超越50℃的极点环境下,只要硫化叶菌等少量几种嗜高温的微生物存在[23]。这些高与此一起,HerbertL等人还从浸矿系统中发现许多异养细菌,包含中温细菌、嗜热细菌和嗜热古细菌[23] 多项研讨标明混合微生物群落存在协同浸矿效果,混合种群细菌间的协同效果能够优化环境中群落活性,相互扬长避短,使互相更好地得到成长,进而促进矿藏的氧化,其浸矿效果比单菌种更好。研讨标明异养菌(如AcidiPhilium spp.)能消化浸矿系统中自养菌的有机代谢产品及残体,下降有机物对自养菌的毒害效果,并能发作维生素、辅因子、鳌合物和表面活性剂,促进自养浸矿细菌的成长及其对金属硫化物的浸出效果。硫氧化细菌(如AL.aldus)能够代谢硫化矿氧化溶解时表面掩盖的单质硫,确保Fe3+能够接连地氧化,硫化矿表面的含硫基团发作Fe2+供铁氧化细菌成长一起阻挠或推迟矿石表面硫膜的构成而促进对金属硫化物的浸出[23,24,25]。 共培育的铁氧化菌L.ferrooxidans和硫氧化菌A.thtoox或ALca比单一菌种对黄铜矿具有更高的溶解功率[26]。Fcihilus和A.thtooxidans的混合培育物能够氧化黄铁矿,可是单菌种不具备此才能。铁氧化菌属如bacillussPp.和A.ferrooxidans的共生可使混合种群在无有机物存在的状况下快速氧化亚铁离子[27]。尽管A.ferrooxidans的铁氧化速率比sthermosu dooxidans低,可是其二氧化碳固定才能却比sthermosu dooxidans强,因而两者共培育能够快速氧化亚铁离子。 (5)冶金微生物的多样性  跟着微生物对硫化矿的不断氧化,其周围环境条件如pH、温度和溶液中可溶性金属离子的浓度也不断发作改变,这些特殊的环境条件必定约束了生命方式的多样性,因而,在生物出槽或堆或反响器中存在的生命方式比较简略,往往归于单细胞生物,并且其优势菌群首要是细菌和古生菌。它们大多数生活在pH[28],它包含嗜酸氧化亚铁硫杆菌、嗜酸氧化硫硫杆菌和嗜酸喜温硫杆菌。这些细菌遍及存在于国际各地的硫化温泉、酸性矿坑水和其他适合的环境。本属细菌归于小杆状细胞,借助于鞭毛运动。革兰氏阴性。从一种或多种复原态的或部分复原的含硫化合物,包含各种硫化物、无机硫、硫代硫酸盐、连多硫酸盐和盐。终究氧化产品为硫酸盐。最适合温度因种而异。 (6)环境微生物多样性的研讨办法环境微生物多样性的研讨办法许多,从国内外现在选用的办法来看,大致上包含以下四类:(1)传统的微生物平板纯培育办法; (2) Biolog微平板分析办法;(3)磷脂脂肪酸法(PLFA);(4)分子生物学技能办法等。 (7) 双层固体平板法 双层固体平板法是本实验的关键技能,经过对传统单层平板培育 技能的改善,把单层改为上下两层,并在基层平板 参加SJH(Acidiphilium sp. ) 菌株。SJH 菌来自英 Bangor大学嗜酸性研讨室,是一种异养性嗜酸性细 菌(Acidiphilium sp. ) ,在静置条件下,能将Fe3 +复原为Fe2 + ,从中取得能量成长。其根本原理是处于饥饿状况的SJH菌株能够运用任何游离的单糖分子和化能无机自养细菌代谢发作的废物,然后使无机自养细菌取得抱负的成长环境。 (8) 研讨意图和含义     生物湿法冶金的开展己稀有十年的前史,因为本钱低、无污染、操作简略而日益遭到人们的注重,特别适用于我国矿产资源档次低、成分杂乱的显现状况。菌种研讨是湿法冶金的研讨要点,而嗜酸性菌在浸出矿藏的运用中,因为削减了工业反响器的冷却设备,供给了更多的优越性,具有极大的运用远景。     本文旨在经过对中温反响器傍边微生物群落组成结构研讨,别离挑选出其间的部分优势菌株,对其最适成长环境进行评论,进一步加深对中温嗜酸微生物浸矿的了解,为今后的大规划工业运用供给可资学习的数据和经历。     研讨内容包含:    (1) 山南矿区堆浸实验六个采样点活性分析    (2) 对活性最佳的群落进行别离挑选得到单菌落    (3) 对得到的单菌落进行判定和最佳成长环境的研讨 1实验材料与仪器     1.1 菌株来历: 721矿山5000吨堆浸实验采纳酸化处理后矿样S1,S2,S3,S4,S5,S6。 采样用镐头挖去表层15cm的矿石后用小铲子搜集矿石装与废矿泉流瓶内,做好符号贴上标签。取样方位见图1.  图1 取样方位示意图     1.2 首要仪器           BT 224S电子天平                      北京赛多利斯仪器系统有限公司     SHZ-82A气浴恒温振动器                江苏荣华仪器制作有限公司     雷磁PHS—3C精细pH计                  上海精细仪器有限公司     UV-1600紫外、可见分光光度计          北京瑞利分析仪器有限公司     SW-CJ-1FD型单人单面净化工作台        姑苏净化设备有限公司     DNP-9082BS-Ⅲ电子恒温培育箱          上海新苗医疗器械制作有限公司     手提式不锈钢蒸汽消毒器               上海三申医疗器械制作有限公司     TGL-16C高速离心机                    上海安亭科学仪器厂     GL-21M型高速冷冻离心机               湖南湘仪离心机仪器有限公司      XSD-01光学显微镜                     重庆奥特光学仪器有限公司     PCR仪                                德国艾本德公司     M70型制冰机                     美国格兰特我国制冷设备制作有限公司     凝胶电泳和紫外成像系统 1.3培育基1.3.1液体培育基 9K(A液) :(NH4)2 SO4 3.0g/L, KCl 0.11 g/L, K2HPO4 0.15 g/L,MgSO4·7H2O 0.15g/L, Ca (NO3)2 0.101 g/L, pH 1.8; 9k (B 液) : FeSO4·7H2O 25 g/ l, pH 1.8。 Waksman: (NH4 ) 2 SO4 0.12 g/L,K2HPO4 3.100 g/L, MgSO4·7H2O 015 g/L CaCl2 0.1126 g/L,硫粉5g/L,pH4.0。HBS (50倍异养根底盐溶液) : Na2 SO4· 10H2O 7.15 g/L, ( NH4 ) 2 SO4 2.215 g/L,       KCl 2.15 g/L,MgSO4 ·7H2O 2.5 g/L, KH2PO4 2.15 g/L, Ca (NO3 ) 2 ·4H2O 0.17 g/L。YF: 50 倍HBS 20 mL,酵母提取物0.12 g/L, Fructose 0.13 g/L, TE 1mL, pH 3.0。上述选择性培育基选用高压蒸汽灭菌锅121℃灭菌20 min,冷却至室温备用; FeSO4 ·7H2O 选用滤除菌。 1.3.2 固体培育基 FeO: A液: 50倍HBS 8 mL, tryptone soya broth 0.11g, 0.14 ml TE, H2O 276 mL,pH 2.5;B 液: agarose 2.18 g, H2O 100 mL;C液: FeSO4 ·7H2O 1M /L。iFeO:去掉FeO中的tryptone soya broth即可。FeSO: A液:50倍HBS 8mL, tryptone soya broth 0.11 g, 0.12 mL TE, H2O276 mL;B 液: agarose 2.18 g, H2O 100 ml;C液: FeSO4·7H2O 1mol/L。YF : A液: 50倍HBS 8 mL,酵母提取物0.108 g, Fructose 0.112 g, TE 0.14 mL, H2O 292 mL, pH 310;B液: agarose 2.18 g, H2O 100 mL;C液: FeSO4 ·7H2O 1mol /L 。四种选择性固体培育基FeO,iFeO,FeSO,YF前三种为双层固体平板,分上、下两层,除基层培育基中添加SJH菌外,其它成分相同。双层固体平板法是本实验的关键技能,经过对传统单层平板培育技能的改善,把单层改为上下两层,并在基层平板 参加SJH (Acidiphiliumsp ) 菌株。SJH菌来自英Bangor大学嗜酸性研讨室,是一种异养性嗜酸性细菌(Acid iphiliumsp ) ,在静置条件下,能将Fe3+复原为Fe2+ ,从中取得能量成长。其根本原理是处于饥饿状况的SJH菌株能够运用任何游离的单糖分子和化能无机自养细菌代谢发作的废物,然后免除有机物对无机自养细菌的成长按捺。 FeO平板用于别离铁氧化兼性或异养菌; iFeO平板用于别离铁氧化自养菌; FeSO平板用于别离硫氧化或铁硫氧化兼性菌; YF平板为单层,用于别离以有机物为动力的嗜酸性异养细菌或真菌(Johnson, 1995)。各种培育基与琼脂糖别离经高压蒸汽灭菌后冷却至50℃左右(琼脂糖温度可稍高至65℃)混合,别离参加所需量的经滤灭菌的FeSO4·7HO2、连四硫酸钾。基层培育基在45℃时接种入5% SJH,充沛混匀,敏捷倒入平板,待凝结后倒入上层。一般平板制备好后需室温放置2~3d,置4℃冰箱冷藏。 2 实验办法 2.1活性培育 2.1.1富集办法 别离取矿样10g在无菌条件下接种到已灭菌的9K+S+Fe液体培育基中, 35℃,130r/min条件下气浴振动培育。每隔必定的时刻测定Fe2+的转化状况,当Fe2+转化率到达95%-98%时停止,保存。 2.1.2 Fe分析办法液体培育以Fe2+转化为Fe3+的转化速率反映铁氧化细菌的活性;硫氧化细菌活性以pH值的改变为根据。Fe2+、Fe3+选用EDTA滴定法;精确量取1ml待测液,参加1滴1mol/L HCl、1滴显色剂结晶紫、5滴10%磺基水杨酸,此刻溶液色彩为红褐色,用标定好的1mol/L的EDTA滴定,色彩变为浅黄色时为滴定结尾,此刻测定的数值为Fe3+含量。参加氧化剂过硫酸铵能够将溶液中的Fe2+氧化为Fe3+,持续滴定,滴定结尾刻度为总Fe含量。Fe2+含量为总Fe含量减Fe3+含量。 2.2 菌株的挑选和纯化      2.2.1 稀释涂布法    取1mL富集培育菌液按无菌操作梯度稀释到10ˉ8,别离取10ˉ6、10ˉ7、10ˉ8稀释度的菌液0.1mL涂布于固体iFeo,FeSO,YF培育基平板上,置35℃恒温培育箱培育。2.3 菌株的判定2.3.1 菌株的判定      经过对细菌菌落形状特征、显微镜下细菌形状调查、细菌的生理生化特性;DNA提取,16S rPCR ,将细菌进行分类判定[微软我国1] 。 [微软我国2] [微软我国3] 2.3.2单菌落的富集培育 2.3.2.1氧化亚铁硫杆菌属: 先用接种环挑取单菌落,接种到1ml iFeo培育基的离心管中,做好符号。该离心管在35℃恒温培育箱内培育,直到色彩变成棕赤色。在超净工作台内转接到含5mL iFeo培育基的试管中,35℃气浴摇床内培育到色彩至棕赤色。再将该试管转接到50ml 9K+Fe培育基中扩展培育。 2.3.2.2氧化硫硫杆菌属: 先用接种环挑取单菌落,接种到1ml FeSO培育基离心管中,做好符号。该离心管在35℃恒温培育箱内培育,直到色彩变成蛋黄色。在超净工作台内转接到含5ml FeSo培育基的试管中,35℃气浴摇床内培育到色彩至黄色。再将该试管转接到50ml 9K+S培育基中扩展培育,将扩展培育得到的菌液离心得到菌体。 2.3.2.3异养菌类: 挑取但菌落接种在5ml 5倍固体YF平板浓度培育基中,扩展培育后接种到50ml pH值为2.0的 LB培育基内。 LB培育基先高压蒸汽灭菌,在超净工作台内用已灭菌的pH为0.5的硫酸调理pH。 2.3.3基因组DNA的提取 2.3.3.1蛋白酶K法 离心搜集的细胞用TE缓冲液洗刷3-4次以去掉高价铁离子沉积。细胞破壁之前,上述细菌细胞从头悬浮于400ul  pH8.0的TE缓冲液中,并于70℃温育10min,以损坏或许存在的DNA酶的活性。稍冷却后,在上述悬浮液中参加4ul20%(w/v)的SDS和5ul 20mg/ml的蛋白酶K,55℃温育15min。然后,参加等体积的/戊醇(24/l,v/v)混匀后,  12000rp/min  10min,将上清液小心肠吸入到新的EP管中,重复一次;在上清液中参加2倍体积的无水乙醇,并置于-20℃ 20min或过夜。5000rpm离心5min搜集DNA沉积,沉积用70%的乙醇洗刷三次后,天然枯燥并将沉积溶于适量的pH8.0的TE缓冲液中。在溶有DNA的缓冲液中参加终究浓度为 20µg/ml的RNase A, 37℃90min。最终,顺次用等体积的酚//戊醇(25/24/l,v/v)和/戊醇(24/1,v/v)各抽提一次,无水乙醇沉积,70%的乙醇洗刷三次。纯化后的DNA别离用5µl的pH8.0的TE缓冲液和去离子水溶解,4℃保存备用。 2.3.4 16sr DNA PCR扩增 所用的引物序列如下所示: 16SP1:5'-AGAGTTTGATCCTGGCTCAG-3' 16SP2:5'-GGTTACCTTGTTACGACTT-3' 扩增反响系统如下:           ddH2O                     4.3μL           2×GC buffer                12.5μL           dNTPs                        2μL           16SP1                      0.5μL           16SP2                      0.5μL           LA Taq(5U/μL)             0.2μL           模板DNA                    5μL           总体积                      25μL       PCR扩增反响条件为:94℃变性3min;94℃,1min, 48℃,30s; 72℃,1min,30个循环;72℃延伸10min。0.68%的琼脂糖电泳检测(上样量:3μL DNA+3μL的2×buffer)。-20℃保存。     2.4 最佳成长条件     2.4.1铁杆菌:     在35℃气浴摇床,转速为130r/min,接种量为10%,pH=2.0的条件[微软我国4] 下,研讨微生物成长状况,以Fe3+为目标,制作微生物的铁氧化曲线。 2.4.1.1初始pH值的影响 在9K+Fe培育基,35℃气浴摇床,转速为130r/min,接种量为10mL的条件下,研讨培育基不同初始pH对微生物成长状况(以氧化率到达98%所需求的时刻计)的影响。调理初始pH为 1.0、1.5 、2.0 、2.3、2.5 、3.0。 2.4.1.2接种量的影响 在9K+Fe培育基,35℃水浴摇床,转速为130r/min,pH=2.3的条件下,研讨培育基不同接种量对微生物成长状况(单位时刻铁的转化量计)的影响,接种量别离为5%、10%、20%、25%、30%、50%。 2.4.1.3温度的影响 在9K+Fe培育基,转速为130r/min的气浴摇床,接种量10%,pH=2.3的条件下,研讨培育基不同温度对微生物成长状况(铁的转化状况计)的影响,调理温度为25℃、28℃、30℃、35℃、40℃、45℃、. 2.4.2硫杆菌: 2.4.2.1不同底物对成长的影响: 办法 制造不含Fe2+的9K培育基,别离参加单质S、Na2S2O3和Na2SO3,以S计,参加S的浓度为1g/L,即0.03mol/L,于35℃,130r/min条件下培育。因为硫化合物的氧化生成硫酸,是一个产酸进程,可用溶液pH值的下降程度标明硫化合物被细菌氧化量的多少,因而,按必定时刻距离测定溶液中pH值调查硫杆菌对硫化合物的运用状况。pH值由pH计测定。3 实验成果分析与评论 3.1 活性培育成果分析: 3.1.1 pH改变状况:图2  S1-S6在9K+S+Fe培育基pH改变状况 同图2可见,S2,S3,S5,S6  pH出现先上升后下降的趋势,培育0-18h时段氧化亚铁硫杆菌占优势,Fe2+氧化为Fe3+很活泼pH出现上升趋势,此刻氧化硫硫杆菌遭到按捺,培育到20h后,氧化亚铁硫杆菌因为底物缺乏遭到按捺,氧化硫硫杆菌为优势菌株,单质S氧化为SO42-发作H+  pH下降。 S1先下降后上升,标明在培育初始阶段,硫杆菌推迟期比较短,先进入对数成长阶段。中后期铁杆菌进入快速成长阶段,硫杆菌成长遭到按捺。 S4,pH值整个阶段改变不大,标明成长进程中两类细菌平衡且呈必定份额。 3.1.2 铁氧化速率:图3  S1-S6在9K+S+Fe培育基培育进程Fe氧化状况由图能够看出,S1-S6成长曲线呈S型,接种0-10h为延滞期10-20h 为对数成长期,Fe2+敏捷氧化为Fe3+,25h之后因为产品的堆集,铁氧化速率变缓,转入衰亡期。纵向比较发现S3成长速率较快,单位时刻内氧化Fe2+的量最多,最早Fe2+氧化率到达98%。 3.2 菌株挑选成果: 经过划线法,涂布倒平板法,极限稀释法得到多个单菌落。要点研讨了活性最佳的S3菌群。从S3挑选得到6种菌落形状不同的铁杆菌,1种硫杆菌和3种异养菌。 3.2.1铁杆菌:图4 S3在 iFeo平板上别离得到的A1菌株[微软我国5]  培育时刻10天 表1  A1菌落形状特征菌株形状直径(mm)边际通明色彩中心有无Fe沉积Fe沉积圈直径 A1圆形0.5-0.8规矩不通明红褐色有细小可见图5 S3在 iFeo平板上别离得到的A2菌株 培育时刻8天 表2 别离株A2形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A2圆形2-3不规矩不通明红褐色有0.5mm-1.5mm图6  S3在 iFeo平板上别离得到的A3菌株 培育时刻8天 表3 别离株A3形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A3圆形3-8不规矩不通明红褐色有2mm-5mm图7  S3在 iFeo平板上别离得到的A4菌株 培育时刻7天 表4 别离株A4形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形10规矩不通明红褐色有6mm图8  S3在 iFeo平板上别离得到的A5菌株 培育时刻8天 表5  别离株A5形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形3-6规矩不通明红褐色有2mm-4mm图9  S3在 iFeo平板上别离得到的A4菌株 培育时刻7天 表6  别离株A6形状特征表菌株形状巨细d(mm)边际通明色彩中心有无Fe沉积Fe沉积d A4圆形1-3规矩不通明红褐色有0.5mm-1mm     3.2.2硫杆菌:图10 S3 在FeSO平板别离得到的B1菌株 培育时刻5天 表7 别离株B1形状特征表菌株形状巨细d(mm)边际通明色彩B1椭圆形12规矩不通明中心蛋黄色外围白色    3.2.3异养菌图11 S3 在YF平板别离得到的C1菌株 培育时刻4天 表8 别离株C1形状特征表菌株形状巨细d(mm)边际通明色彩C1圆形50规矩不通明中心棕褐色外围白色图12  S3 在YF平板别离得到的C2菌株  培育时刻3天 表9 别离株C2形状特征表菌株形状巨细(mm)边际通明色彩B1圆形3-5不规矩不通明中心白色外围白灰色图13  S3 在YF平板别离得到的C3菌株  培育时刻3天 表10 别离株C3形状特征表菌株形状巨细(mm)边际通明色彩B1圆形5规矩不通明外层通明中层白色内层褐色 因为A6平板形状比较特殊,本实验室比较罕见,所以本文对A6进行要点研讨 3.3菌株判定成果 3.3.1菌体形状特征 该菌在固体培育基上培育时,培育基的色彩由开端的浅绿色变为黄绿色,约5天左右在培育皿上长出小菌落,该菌落为黄褐色、圆形,直径约0. 5—0. 中部突起,被水合高铁包裹,质地坚固,较难挑起。在显微镜下该菌为短杆状,两头钝圆,以单个、双个或几个呈短链状存在,能运动,革兰氏染色阴性,用测微尺量得菌体直径约0.5-0.7um,长度约1.2-1.8um。 3.3.2显微调查: 3.3.2.1番红染色调查成果: 菌株A6: 形状: 短杆状,两头钝圆,以单个、双个或几个呈短链状存在图14  A6在光学显微镜下400倍 染色液为番红染液 3.3.2.2革兰氏染色成果:革兰氏染色:阴性图15  A6革兰氏染色状况:光学显微镜1000倍下调查     3.3.3基因组DNA提取 3.3.3.1蛋白酶K提取DNA电泳成果 如图所示   图16  为A6  蛋白酶K法提取DNA 琼脂糖凝胶电泳图   (上样量: 3μL DNA+3μL 2×buffer ) D 箭头所指W1为意图DNA 3.3.3.2 16Sr PCR成果图17  为A6 16s rDNA PCR成果图 (P1为Marker,P2,P3,P4为PCR产品电泳图,p5为阴性对照,上样量:3μL DNA+3μL 2×buffer) 如图(17)所得电泳条带成果显现:所得PCR产品片段为1500bp,与估计成果相吻[微软我国6] 合。[微软我国7]  3.4铁氧化曲线s图18  为A6在9K+Fe培育基中35℃  130r/min 制作的铁氧化曲线 由图(18)能够看出,在接种后的初始阶段,因为生存环境的改变,细菌处于推迟期,活性很低,细胞根本不割裂或割裂很少,细菌数量根本保持安稳,所以接种后前5h内培育液的Fe3+改变较小,细菌对铁的氧化速率相对较低.10h后开端出现对数成长,20h 左右到达安稳时. 3.4.1 :总铁的改变状况:图19  为A6在9K+Fe培育基中35℃  130r/min 制作的总铁改变曲线 由图(19)可见,在细菌培育进程中,溶液的总铁含量随时刻改变呈下降趋势,这是因为Fe2+被细菌氧化为Fe3+后,Fe3+又发作水解反响: 4Fe2++2H++O2→2Fe3++2H2O    (1) Fe3++H2O→FeOH2+H+              (2) Fe3++2H2O→Fe(OH)2+2H+      (3)Fe3++3H2O→Fe(OH)3+3H+      (4)3Fe (OH)3+4SO2-4+3Fe3++3H2O+2NH+4→2[NH4Fe3(SO4)2(OH)6]+3H+  (5) 实验中发现,在细菌培育进程中,三角瓶内壁和瓶底逐步生成一层黄色的沉积物———黄铵铁矾[NH4Fe3(SO4)2(OH)6][4]。在生物脱硫和细菌浸矿中,该沉积可占据载体表面,影响底物与代谢产品的传递,导致养分直销缺乏,下降细菌氧化速率 3.4.1.1细菌氧化Fe2+的机理 从反响式(1)能够看出,在Fe2+被细菌氧化为Fe3+进程中, Fe2+为电子供体,O2为电子受体。电子由Fe2+传送至O2的进程中,菌体起着传导电子的效果[29],并将细胞色素c向分子氧投递进程中所 开释的能量贮存在ATP中供成长需求[30]。所以,Fe2+的氧化速率是电子传导速率的直接反映,能够描绘细菌的成长活性 3.5成长因子 3.5.1铁杆菌A6 3.5.1.1初始pH 在35℃气浴摇床,转速为130r/min,接种量为10mL的条件下,研讨培育基不同初始pH对微生物成长状况(培育24h不同出始pH铁氧化百分率计)的影响,实验果如图所示。从图能够看出,跟着培育液的初始pH值的不断增大,氧化率逐步增大,当培育液初始pH值到达2.30后氧化率最高到达98%,当到达2.5后,氧化率敏捷下降.因而,氧化亚铁硫杆菌成长的最佳初始pH值约为2.30.当pH超越3.0时成长遭到按捺.图20 为A6在9K+Fe培育基中35℃  130r/min 不同初始pH,培育24h二价铁氧化率图21 为A6在9K+Fe培育基中35℃  130r/min 不同初始pH,培育进程铁氧化状况 由图(20-21)能够看出当pH 为2.3时单位时刻铁氧化速率最快。 本实验存在的缺乏与改善: 因为在不同的pH,空气也能将Fe2+氧化为Fe3+,所以应该做一组空白实验。 实验进程中发现9K培育基在pH>3时分不安稳,会出现沉积现象。 3.5.1.2温度 温度的影响 从图(22)中能够看出,当温度适合即为30℃~35℃左右时,迟延期为10小时左右,阐明细菌在这一温度规模内,能够十分敏捷地习惯培育液条件,吸收养分物质,转化Fe2+为Fe3+。而当温度超出或低于这一温度规模时,迟延期都会有显着延伸,阐明细菌成长被按捺。   图22 为A6在9K+Fe培育基中pH 2.3  130r/min 不同温度,培育进程铁氧化状况 由图(22)标明温度在35℃时,成长最佳。 本实验存在的缺乏:本实验应该考虑到空气对Fe2+的氧化,也应该做一组空白对照。 3.5.1.3接种量的影响 接种量为1%-10%时争加接种量迟延期的缩短呈线形联系,当接种量到达10%今后持续增大接种量迟延期的缩短仅有细小改变,当到达50%时持续增大接种量反而会 增大迟延期。分析以为这首要是因为,当接种适量添加时,进入培育液中的初始菌数添加,相应的在培育液中能够习惯环境,具有较强活性的菌数也会添加,有利于氧化亚铁硫杆菌的快速繁衍。但因为培育液中的养分物质有限,参加过多的菌液也会影响细菌的成长繁衍。所以养分物质满足充沛,其它条件适宜的状况下应尽量加大细菌的接种量来对其进行培育。图23 为A6在9K+Fe培育基中35℃  130r/min 不同温度,培育进程铁氧化状况 由图(23)能够看出在1%-10%之间,单位时刻内铁氧化速率随接种量的添加呈线性联系,接种量在10%-30%之间单位时刻内铁氧化速率不再呈线性联系,接种量超越30%接种量添加,单位时刻内铁氧化速率反而下降。 3.5.2硫杆菌B1 3.5.2.1 B1对单质S的运用   图24  为B1对单质硫氧化进程中PH改变状况 以单质S为底物时,B1成长进程中pH值的改变状况如图(24)可知,溶液中pH一向呈下降趋势,但在培育的前两10h溶液的pH值下降较缓慢,在第10h后,才有较大起伏下降,或许因为替换动力物质,细菌开端有一段延滞期,活性较差,需求经过本身生理机能的调理以习惯新环境。细菌直接氧化单质硫,与它和单质硫的 直触摸摸有密切联系,涉及到菌体在固体颗粒表面吸附,一起细菌能发作一些表面活性物质,如磷脂酰甘油,能下降介质的表面张力,促进细菌与硫的直触摸摸。Kovaleva等[31].经过电镜调查发现,硫杆菌在元素硫培育基中成长时,有硫被细菌吸收并散布在细胞表面、细胞壁、细胞周质以及细胞色素中。Karavaiko等[32]发现吸收的元素硫构成直径为20~40nm的圆球,且细菌在安稳成长期对元素硫的吸收率最高。     单质硫被氧化硫硫杆菌氧化为硫酸或许经过下列进程[33]:单质硫经过细胞壁进入细胞内部,与复原型胱苷肽(GSH)构成多硫化合物。谷胱苷肽多硫化合是硫氧化系统的活性物质。盐是硫氧化进程中的榜首级产品。或许的反响如下: S8+GSH→GS8SH(1) GS8SH+O2→硫氧化酶→GS8SO2H(2) GS8SO2H+H2O→GS7SH+H2SO3(3) (2)SO32-经过硫磷酸腺苷(APS)效果进一步氧化成SO42-: 2SO32-+2AMP→硫磷酸腺苷复原酶→2APS+4e-(4) 2APS+2Pi→二磷酸腺苷复原酶→2ADP+2SO42-(5) 2ADP→AMP+ATP(6) SO32-氧化进程中,能量以ATP方式贮存。一旦硫被氧化成SO32-时,菌体对动力的运用变得较快。当硫杆菌B1以单质S为底物成长时,整个进程涉及到硫杆菌在固体颗粒表面的吸附及产品透过细胞壁分散等一系列杂乱的传质进程,因为硫杆菌B1在单质S颗粒表面的吸附速度较慢,使得该固相界面传质进程成为单质S运用进程的限速进程[34]。跟着细菌对新环境的习惯以及氧化硫的酶系统的发动,硫杆菌B1就以单质S为基质进行成长繁衍。 3.5.2.2硫杆菌B1对Na2S2O3的运用图25 为B1对Na2S2O3氧化进程中PH改变状况 如图(25)可看出,溶液中pH值改变趋势与以单质S为底物时略有不同。因为Na2S2O3是弱碱性盐,溶液中有微量OH-解离,因而,参加Na2S2O3后,会导致溶液pH值升高,而此刻细菌在新的环境中有一个习惯进程,其活性也较低。经过两天的延滞期,细菌进入快速成长阶段,第30h时,溶液中pH值降至1.49。在培育的进程中可显着看到单质硫的小颗粒。这是因为NaS2O32一方面是强配体,又具有必定复原性,易被细菌的氧化酶氧化,另一方面Na2S2O3在酸性条件下不安稳,易发作歧化反响:Na2S2O3→Na2SO3+S↓,分化发作的硫没能被细菌及时运用则集合沉积[35]。 3.5.2.3硫杆菌B1对Na2SO3的运用图26 为B1对Na2SO3氧化进程中PH改变状况 在以Na2SO3为底物时,B1成长进程中pH值的改变状况如图26所示。因为Na2SO3为弱酸强碱盐,其投加后直接导致溶液pH值的升高。当细菌经过时间短的习惯后,随同菌体的成长,溶液pH值开端下降。前5h的时刻内,pH值下降较快,之后,跟着SO32-的削减,pH值的下降趋势减缓。 经过以上三张图比照咱们能够判别,硫杆菌B1对硫的运用率是Na2S2O3﹥S﹥Na2SO3结  论经过完本钱次实验,总结出以下定论: (1):活性培育发现S2,S3,S5,S6  pH出现先上升后下降的趋势,培育0-18h时段氧化亚铁硫杆菌占优势,Fe2+氧化为Fe3+很活泼pH出现上升趋势,此刻氧化硫硫杆菌遭到按捺,培育到20h后,氧化亚铁硫杆菌因为底物缺乏遭到按捺,氧化硫硫杆菌为优势菌株,单质S氧化为SO42-发作H+  pH下降。 S1先下降后上升,标明在培育初始阶段,硫杆菌推迟期比较短,先进入对数成长阶段。中后期铁杆菌进入快速成长阶段,硫杆菌成长遭到按捺。 S4,pH值整个阶段改变不大,标明成长进程中两类细菌平衡且呈必定份额。 S1-S6成长曲线呈S型,接种0-10h为延滞期10-20h 为对数成长期,Fe2+敏捷氧化为Fe3+,25h之后因为产品的堆集,铁氧化速率变缓,转入衰亡期。纵向比较发现S3成长速率较快,单位时刻内氧化Fe2+的量最多,最早Fe2+氧化率到达98%。 (2):S3经过平板别离,极限稀释法别离得到铁杆菌6株、硫杆菌1株、异养菌3株。 (3):经过 平板菌落调查、显微调查、革兰氏染色、DNA 提取和16 sr DNA PCR 开始 对铁杆菌A6进行判定 (4):对铁杆菌A6的成长因子:温度、初始pH、接种量进行研讨发现最佳成长温度为35℃ 最佳pH为2.3   最合理的接种量为10% (5):对硫杆菌B1不同底物的氧化状况进行分析,发现最适合B1的底物为Na2S2O3其次为单质S。 参考文献 [1]李学亚,叶茜.微生物冶金技能及其运用[J].矿业工程2006 4(2): 49-51. [2]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].2003:4-9. [3]AkeilA.Potential bioleaching developments towards commercial reality:Turkish metalminings' future[J].Minerals Engineering,2004,17: 477-480. [4]杨显万,郭玉霞.生物湿法冶金的回忆与展望[J].云南冶金,2002,31(3): 85-88. [5]肖芳欢.三二○铀矿床改用留矿淋浸采矿法可行性初探[J] .铀矿采,1990 (1) : 7-11. [6]刘健,樊保团,张传敬.抚州铀矿细菌堆浸半工业实验研讨[J].铀矿冶,2001,20(1): 15-27. [7]谢,刘青廷,朱打败.烟台市黄金冶炼厂金精矿生物氧化--化提金工艺[J].黄金,2003,24(9): 31-32. [8]孙业志,吴爱祥,黎建华.微生物在铜矿溶浸挖掘中的运用[J] .金属矿山,2001 (1) : 3-5. [9]ColmerA R andHinckleM E.The Role ofMicroorganisms in AcidMine Drainage: A PreliminaryReport[J]. Science, 1947,106(2751): 253-256. [10]TempleK L and DelchampsEW. Autotrophic Bacteria and the Formation ofAcid in Bituminous CoalMines[J].AppliedMicrobiology,1953,1(5): 255-258. [11] LeathenW W,KinselN A and Braley SA. FerrobacillusFerrooxiands: A ChemosyntheticAutotrophic Bacterium[J]. JBacteria,l 1956, 72(5):700-704. [12]DouglasRawlings,David Barrie Johnson. Biomining [13]陈勃伟,温建康.生物冶金中混合菌的效果[J].金属矿山, 2008, 382(4): 13-14. [14]廖梦霞,邓天龙.难处理硫化矿生物湿法冶金研讨进展(Ⅰ):微生物氧化工艺技能研讨[J].稀有金属, 28(4): 767-768.[15]RawlingsDE.ThemoleeulargenetiesofThtobaeilh ferrooxl dansandothermesoPhilie,aeidoPhilie,ehethotroPhie,iron-orsulfur-oxidizingbaeteria[J].Hydrometallurgy,2001,59:187-201. [16]姜成林,徐丽华.微生物资源学【M].上海:科学出版社,1997. [17]RawlingsDE.Charaeteristiesandadaptabilityofiron-andsulfur-oxidizingmicroorganismsusedforthereeoveryofmetalsfrommineralsandtheir [M]. 2007: 263-278. [18]钟慧芳,陈秀珠,李雅芹,等一个嗜热嗜酸细菌的新属一硫球菌属[J],微生物学报,1982,22(l):l一7. [19]DoPsonM,LindstromEB.AnalysisofeomrnunitycomPositionduringmoderatelythennoPhiliebioleachingofPyrite,arseniealPyrite,andehaleoPyrite[Jl.MierobiologyEeology,2004,48(l):19-28. [20]RomeroJnezCVasquezMetal.CharaeterizationandidentifieationofanironoxidizingLePtosPirillumlikebaeteriumPresentinthehighsulfateleaehinsolutionofacornlnereialbioleaehingPlant[J].ResearehMicrobiolog 2003,154(5):353--359.[21]童雄.微生物浸矿的理论与实践[M〕.北京:冶金工业出版社,1997. [22]RobbinsE1.BacteriaandarehaeainaeidicenVironmentsandakeytoMorphologiealidentifieation[J].Hrobiologia,2000,433:61-89. [23]FowlerTAHolmesPR.MechanismofPyritedissolutioninthePreseneesofthiobacillusferrooxidans[J].Appliedandenvironmentalmierobiology,1999 65(6):2987~2993. [24]DoPsonMLindstromEB.PotentialroleofThiobae“5inarsenoPtebioleaehing[J].APPliedandenvironmentalmierobiology,1999,65(l):36-40. [25]SemenzaMVieraMCurutehetqetal.TheroleofAeldlthiobaeilh5callusinthebioleaehingofmetalsulfides[J].LatinAmerieanAppliedReseareh,2002,32(4):303-306. [26]Ehrlich-HLBrierleyCL.Aeidophiliebaeteriaandtheiraetivityinmineralsulfideoxidation.Microbialogymineralreeovery,1990:3-27. [27]ClarkDANotrisPR.Aeidimicrobiumferrooxidansgen.novsP.nov.:mixedcultureferrousironoxidationwithSulfobaeillussPeeies[J].Mierobiology,1996,141:785一790. [28]KellyWoodAP.ReelassifieationofsomespeeiesofThiobaeillustothenewlydesignatedgeneraAeidithiobaeillusgen.nov.thiobacillusgennov.andThermithiobaeillusgen.nov[J].hitemationaljoumalofsystematieandevolutionarymierobiology200050:511--516. [29]刘清.徐伟昌.张宇.重金属离子对氧化亚铁硫杆菌活性的影.铀矿冶.2004 23 ( 31: 155-157 .) [30]谢海石,刘华.高铁离子浓度下氧化亚铁硫杆菌的成长行为I JI.进程工程学报.2004  4( 1): 43-46 [31]Kovaleva T V,Karavaiko G I,Piskunov V P.Identification and distribution of sulfur in Thiobacillus ferrooxidans cells[J].Mikrobiologiya,1983,52(3)455-460 [32]Karavaiko G I,Gromova L A,Pereverzev N A.Nature of asulfur containing component and its function in Thiobacillusferrooxidans cells[J].Mikrobiologiya,1983,52(4):559-562. [33]柳建造,邱冠周,王淀佐.硫化矿藏细菌浸出机理评论[J].湿法冶金,1997,16(3):1-3.Liu Jian-she,Qiu Guan-zhou,Wang Dian-zuo.Discus-sion on the bacterial leaching mechanism of sulfide mineral[J].Hydrometallurgy,1997,16(3):1-3(.in Chinese)(1) [34]宫磊.生物催化氧化法处理H2S废气的工艺及理论研讨[D].昆明:昆明理工大学,2005:87-101.Gong Lei.Study on the Technology and Theory of Treat-ment of Hydrogen Sulphide by Bio-catalytic OxidationProcess[D].Kunming:Kunming University of Science andTechnology,2005:87-101(.in Chinese) [35]张俊,范伟平,方苹,等.底物对亚铁硫杆菌生物氧化进程的影响[J].南京化工大学学报,2001,23(6):37-41.Zhang Jun,Fan Wei-ping,Fang Ping,et al.Effect of sub-strates on bio-oxidation catalyzed by Thiobacillus ferrooxi-dans[J].Journal of Nanjing University of, Ch, emical Tech-nology,2001-23(6):37-41(.in Chinese).

硫化叶菌对镍钼硫化矿的浸出作用

2019-02-21 11:21:37

一、前语 生物冶金是树立环境友好型冶金形式的一个方向,但与传统湿法浸矿工艺比较,现行硫化矿细菌氧化浸出技能在处理硫化矿方面尚没有真实具有竞赛优势,首要原因是浸出速度慢、浸出周期长,然后使运营本钱偏高,运用仅局限于一些较高价值低档次硫化矿。耐温菌浸出技能的研讨与开展是进步反响速度的要害一步。 现在在生物冶金技能中大多选用氧化亚铁硫杆菌(Thiobacillus ferrooxidans)浸出有色金属,而对钼、镍等重要有色金属的生物浸出报导较少,且仅限于常温菌。一些研讨者选用常温菌浸出低档次钼矿,但浸出率均不抱负且浸出周期长,原因之一在于常温菌的抗钼才干很差。杨显万等用氧化亚铁硫杆菌处理一种含Cu和Mo 的低档次矿,在30℃条件下浸出60 d, Cu 浸出率为60%,而Mo 浸出率仅为0.34%。Donati 等发现氧化亚铁硫杆菌不被MoS3 表面吸附,原因是Mo 对细菌有毒性。Hammaini 等[8]的研讨标明,在9K 培育基顶用T.ferrooxidans 浸矿,1 mmol/L 钼对铁氧化已有按捺作用,2 mmol/L 则彻底按捺铁氧化。经过驯化能够大大进步细菌的耐钼才干,童雄等研讨标明,钼的硫化矿浸出有菌条件比无菌时浸出速度快5 倍。在细菌习惯矿藏前,只能得到15~25 mg/L 的钼浸出液,经过驯化培育,可进步到200 mg/L 以上。本作业选用金属硫叶菌(Sulfolobus metallicus)嗜热菌作为驯化浸矿菌种,对镍钼矿的浸出进行了体系研讨,并与常温菌浸矿才干作了比较。成果标明,古生嗜热菌的金属硫叶菌对镍钼矿的浸出能够战胜常温菌浸出周期长、浸出率低的缺点,尤其在耐钼安稳性上有严重改进。研讨成果有望为生物法提取镍钼等宝贵金属的工艺规划和运用供给重要依据,关于稀有金属生物浸出的菌种选育和拓宽具有重要意义。 二、试验 (一)材料、试剂及仪器 所用矿样为贵州镍钼硫化矿,其含镍矿藏首要为二硫镍矿(NiS2 )、辉镍矿(Ni3S4)和辉砷镍矿(NiAsS),少数或微量针镍矿(NiS)和紫硫镍铁矿(FeMnS4)、硫镍铁矿和含镍黄铁矿等,矿石均匀含钼达5%,其间的钼矿藏是一种胶状的集合体(胶硫钼矿,Jordisite),所以,X 衍射分析没有检测到硫化钼的存在。深化的矿藏学研讨标明,这种钼集合体除硫与钼外,碳也是首要元素,因而称为“碳硫钼矿”。由于碳的原子量较低,故光谱半定量分析未检出。矿藏的首要成分见表1 和图1。 表1  贵州镍钼硫化矿光谱半定量分析成果图1  矿藏X 射线衍射图谱 试验前矿样经烘干、细磨至需求粒径。 菌种:金属硫叶菌(Sulfolobus metallicus,购于日本菌种保藏中心)属古生菌,能够好氧成长,既能氧化S又能氧化Fe2+,最适温度为65℃,选用M174 培育基培育( 成分见表2)。氧化亚铁硫杆菌(Thiobacillus ferrooxidans)由中国科学院微生物研讨所供给,选用9K培育基(见表3)培育。 表2  金属硫叶菌的M174 培育基表3  9K 培育基试剂与仪器:硫酸铵,硼砂,钼酸钠,,酵母等;日立F-2500 型荧光分光光度计,XSP-24N-103型生物显微镜,TZL-16 高速离心机,THZ-82 恒温水浴振动器,PHS-29A 型数字pH 计,原子吸收仪。 (二)试验办法 1、细菌的驯化及无铁细胞悬浮液的制备 细菌驯化:浸出试验前,Sulfolobus metallicus 在相同的矿藏、矿浆浓度条件下进行驯化,使细菌习惯浸矿环境,并进步菌株的耐钼才干。驯化条件:在装有100mL 培育基的150 mL 三角瓶中参加粒径 终究以3000 r/min 离心除矿,以10000 r/min 离心搜集驯化后的细菌,作为浸矿菌种。若当即浸矿,则可接入浸矿液中,不然置入冰箱4℃保存。细胞计数选用血球计数板法。 无铁细胞悬浮液的制备:将培育好的菌液置于低速离心机中3000 r/min 离心10 min,以除掉菌液中的大颗粒沉积物,上清液用高速离心机进行细胞别离,10000r/min 离心30 min,细胞沉积物用pH 1.8 的无菌蒸馏水洗下,清洗数次后稀释至原体积,搜集的细胞当即运用或在4℃冰箱保存。 2、摇瓶浸出 不同条件浸样各重复3 次,取其均匀值。培育基100mL,接种量均为10%(φ),初始pH 为2(浸出进程始终坚持该值),温度65℃, 转速200 r/min,浸出时刻均为20 d.。浸前各摇瓶称重,定时取样,并弥补蒸腾的水分和取走的培育基。浸出率以浸出20 d 的渣样计。浸出20d 的矿渣经抽滤,浸渣用1%的稀洗刷数次后烘干,称重,检测其间Ni 和Mo 含量。 三、成果与分析 (一)无菌及驯化与非驯化条件下的细菌浸出成果 本试验将细菌浸出分为无菌组、以Fe2+为动力培育的驯化细菌浸出组、以Fe2+为动力培育的非驯化浸出组、以S0 为动力培育的驯化细菌浸出组、以S0 为动力培育的非驯化细菌浸出组,顺次编号为No.1~5。矿浆浓度为10 g/L,矿藏粒径 表4  不同培育条件下的浸出成果(二) Fe3+对细菌浸出作用及介质电位的影响 以有菌无铁、有菌有铁、无菌有铁和无菌无铁4 组共12 个浸出样进行摇瓶浸出,编号顺次为1~4。有铁组均参加0.5 g/L Fe3+,矿浆均为10 g/L,矿藏粒径 表5  有菌无铁、有菌有铁、无菌有铁和无菌无铁对细菌浸出的影响对加Fe3+和不加Fe3+的浸出液的总铁浓度和介质电位改动作了比较,总铁浓度成果见图2,可见未加Fe3+浸出时,前6 d 的介质总铁浓度和增加速度比参加0.5g/L Fe3+低许多,这标明加铁组在浸出开端就很快发动了对矿藏的浸出氧化,而对照组由于没有初始Fe3+的存在其浸出发动缓慢许多.图2  浸出初期加铁与不加铁介质中总铁浓度 外加0.5 g/L Fe3+也改动了浸出液的电位。依据伦斯特方程EFe3+/Fe2+=0.78+0.059lg([Fe3+]/[Fe2+]),介质电位取决于溶液中Fe3+的浓度。电位测定显现,有菌外加0.5g/L Fe3+与不加Fe3+的电位改动有差异,加Fe3+的电位比不加Fe3+高,两者在浸出进程中电位都先缓慢下降再缓慢上升(图3)。由于浸出开端一周左右,65℃下矿藏中的FeMoO4 开端水解开释Fe2+,使Fe2+浓度增大,而此刻浸出液中的细菌尚处于延滞期或习惯期,氧化Fe2+的才干极弱,因而外加Fe3+组的Fe3+/Fe2+比下降,而不加Fe3+组Fe3+/Fe2+极低,故两者的电位呈下降趋势。之后又缓慢上升是由于细菌由延滞期进入指数增加期和安稳时,氧化Fe2+的才干增强,浸出液Fe3+/Fe2+逐步增大,电位逐步上升,当至必定电位值后,Fe3+/Fe2+处于安稳状况,此刻浸出液中细菌氧化Fe2+生成Fe3+的量与矿藏中FeMoO4 水解开释的Fe2+量比安稳,浸出液电位在500mV 左右。到浸出后期,由于浸出液中的细菌数削减,氧化 Fe2+才干大大削弱,而矿藏中从FeMoO4 开释出的Fe2+浓度改动不大,且Fe3+作为氧化剂而耗费,Fe3+/Fe2+比下降(若发作铁钒沉积,Fe3+浓度会下降较多),导致浸出液电位下降,但不低于300 mV。总归,在镍钼硫化矿加铁和不加铁的细菌浸出中,浸出液中的电位上升幅度都不大,很或许是由于高温下矿藏中开释的Fe2+及细菌氧化Fe2+生成Fe3+的才干受钼浓度影响而构成Fe3+/Fe2+上升有限。这也是浸出液电位全体不高的原因之一。图 3  加Fe3+组与对照组电位改动 (三)矿浆浓度对细菌浸出的影响 矿藏粒径 表6  矿浆浓度对细菌浸出的影响(四)pH 对细菌浸出的影响 各浸样矿浆浓度均为10 g/L,矿藏粒径 表7  不同pH 条件下的浸出成果(五)矿藏粒径对细菌浸出的影响 每个浸样均参加0.5 g/L Fe3+,无菌组作对照。矿浆浓度10 g/L,接种量10%,温度65℃,浸出20 d。不同矿藏粒径的浸出成果如表8 所示。从表看出,有菌组 表8  矿藏粒径对细菌浸出的影响(六)浸出进程中无菌和有菌样浸出液的 pH 值改动从图4 看出,无菌组和有菌组在浸出进程中的pH改动趋势相反,前者pH 呈逐步上升趋势,然后者则先升高然后逐步下降。这是由于有菌组在浸出进程中开端遭到矿藏脉石的影响而使浸出液pH 上升,当浸出到第4 d 时,细菌不断将矿藏表面的S0氧化成H2SO4,使浸出液的pH 下降。图 4  有菌和无菌浸样在浸出进程中的pH 改动 (七)金属硫叶菌与氧化亚铁硫杆菌的浸出作用比较 在培育基体积(100 mL)、接种量(10%)、矿浆浓度(10g/L)、矿藏粒径(图5  金属硫叶菌与氧化亚铁硫杆菌对镍、钼浸出作用的比较 (八)浸出进程中 Cu,Zn,Fe 含量的改动 浸出进程中浸出液中的有价金属Cu, Zn, Fe 浓度改动如图6 所示。到219.5 h,浸出液中Cu, Zn 和Fe 的浓度别离到达11.07, 8.17 和267.6 mg/L。本研讨标明,当Cu2+浓度小于0.5 g/L 和Zn2+浓度小于1 g/L 时对细菌氧化Fe2+的才干没有影响。该浸矿菌能氧化30 g/L 乃至更高浓度的Fe2+,因而,浸出进程中这3 种金属离子对细菌的浸出不会构成影响。矿藏中其他金属离子对细菌浸矿的影响有待进一步研讨。图 6  浸出进程中Cu, Zn, Fe 浓度改动 (九)金属硫叶菌在浸出液中的增加与钼浓度的联系 挑选10 g/L 矿浆浓度,10%的接种量(接种浓度为4.4×107 mL−1),全程盯梢浸样中的细菌增加和被浸出钼浓度的改动,成果如表9。从表能够看出,经过驯化的金属硫叶菌有很强的耐钼才干。浸出14 d 浸出液中钼浓度达173.74 mg/L,游离细菌为2.54×107 mL−1;浸出20 d 浸出液中钼浓度达283.37 mg/L,游离细菌浓度为0.83×107 mL−1。经过盯梢记数和比较发现,浸出10~12 d时,浸出液中的游离细菌最多,之后逐步削减。因而,在10~12 d 时刻段镍和钼的浸出速率也应是最快的。 表9  浸出时刻、浸出钼浓度与浸出液中S.m 菌浓度的联系图7  浸出16 d 无菌和有菌浸出样的矿粒表面描摹 (十)浸出进程中矿粒表面描摹 浸出进程中矿粒表面的改动能够反映细菌与矿藏的作用方法。在浸出16 d 时,将有菌和无菌浸样中的矿粒别离进行电镜扫描调查,发现无菌样的矿粒表面很润滑,没有细菌与矿藏作用的任何迹象,而有菌样的矿藏表面则呈现很多的腐蚀坑,这显然是细菌附在矿粒表面不断氧化掩盖在矿藏表面的S0 发作硫酸留下的腐蚀痕迹,如图7 所示。(十一)细菌浸矿作用的机理分析 金属硫叶菌以直接作用方法分化二硫镍矿(NiS2)、辉镍矿(Ni3S4)、针镍矿(NiS)。硫化矿细菌浸出的作用机理一向存在着两种观念,即直接作用和直接作用。直接作用就是细菌与硫化矿直接触摸,经过排泄酶来分化矿藏,以浸出矿藏中的金属离子。而直接作用则是细菌经过溶液中的Fe3+和H+与矿藏作用,浸出金属离子。金属硫叶菌浸出NiS2的作用方法是直接作用,这能够从电镜调查及表4 和5 的试验成果得以证明。无菌组和增加Fe3+的浸出试验标明,在无菌无铁的浸出样中,Ni 浸出率达77.64%,这应该是酸性条件下H+与矿藏反响所造成的。有菌无铁和无菌有铁浸出的Ni 浸出率相差不大,标明浸出进程中有菌组经过细菌氧化Fe2+(矿藏中分化)发作Fe3+及细菌经过附在矿粒表面不断氧化浸出进程中发作的S0而发作硫酸,使浸出液坚持必定酸性环境,并在矿藏表面构成许多酸腐蚀坑。无菌有铁组则是经过Fe3+和H+的化学作用浸出,首要反响如下:金属硫叶菌对MoS2 的浸出作用也是直接作用,Fe3+是仅有的氧化剂。李宏煦等以为FeS2, MoS2, WS2氧化硫时是以S2O32−为中间进程而完结的,S2O32−终究氧化为SO42−,伴有部分S7 则被细菌进一步氧化为硫酸,其反响式为:Huang 等以为,在低pH 下,Fe3+经过σ键与黄铁矿表面键合,所构成的化学键有利于电子从黄铁矿中的硫转移到Fe3+,电子并非直接从硫的价带而是从黄铁矿与铁离子构成的t2g 轨迹转移到Fe3+。而Fowler 等以为,氧化进程中Fe3+等氧化剂向t2g 轨迹注入空穴,这些空穴可劈开水分子而构成OH−,而OH−具有强氧化性,可与硫反响,使黄铁矿中的S2−氧化。Silverman 等提出,黄铁矿表面构成的铁氢氧化物或氧化态物质经过从t2g 轨迹得电子而积累电荷,积累的电荷发作电子态改变发作正电位,然后使S2−氧化。同归于细菌直接氧化作用机理的辉钼矿,其氧化进程与黄铁矿相同。在无菌条件下钼的浸出为O2 氧化MoS2所造成的。由于在O2存在的条件下,一切安稳的硫化矿在任何pH 值下都是不安稳的,可被氧化成S, HSO4−, SO42−。而在高温条件下,从体系的热力学和动力学分析可知,高温有利于矿石浸出进程的进行,因而嗜热菌比常温菌的生物浸矿更具热力学和动力学优势。 四、定论 (一)比无菌组高许多,标明细菌浸出比简略的酸浸出作用更好,速度更快。 (二)驯化组比非驯化组的浸出率高。因而,在选用细菌浸出钼矿前,应对细菌进行驯化,使其习惯浸出进程中的物理和化学环境,如钼浓度和机械剪切力等。嗜热金属硫叶菌对矿中镍和钼的浸出率显着高于常温菌氧化亚铁硫杆菌。 (三)以S0培育的细菌浸出率略低于以Fe2+培育的细菌。尽管金属硫叶菌既能氧化S0又能氧化Fe2+,但以Fe2+培育的细菌在浸出时不只具有氧化S0的才干,并且氧化Fe2+的才干更强。 (四)5 g/L 的矿浆浓度比别的几组浓度浸出样的钼浸出率高许多。标明较高矿浆浓度的镍钼硫化矿不只具有较大的剪切力,还具有相对高的钼浓度,对金属硫叶菌的成长代谢有影响,对细菌的浸矿才干发作了必定的按捺作用。必定矿浆浓度对镍浸出率影响不显着。