您所在的位置: 上海有色 > 有色金属产品库 > 铝合金aa柱

铝合金aa柱

抱歉!您想要的信息未找到。

铝合金aa柱百科

更多

铝塑板包柱

2017-06-06 17:50:11

铝塑板包柱图与铝塑板包柱比较:盒式蜂窝铝板最大板面可以做到1500mm×4500mm,因为板本身为复合材料,内部的铝制蜂窝为板本身承受自己身重量提供了保证,使得板本身不需要加任何的加强筋。而普通铝单板在宽度大于1m或长度大于2m的时候就必须在板背后加入加劲肋。加劲肋需要焊接在板的背面,因为加劲肋与板本身的热膨胀系数不相同,若干次的冷热变化后,板的正面会出现凹凸不平的现象。且这种现象通常在项目完工后的半后到一年就开始出现。  铝塑板包柱属于单层产品,加工相对简单,造型能力强,但精度较差;蜂窝板为复合产品,加工速度和能力较弱,但精度有保障。盒式蜂窝铝板所采用的是扣盖系统,有胶缝外露和隐胶缝两种系统可供选择,系统充分考虑热胀冷缩对板面本身的影响,板面的四个方向都可以自由伸缩,有效避免了温度应力对板面平整度的影响。普通单层铝板只有胶缝外露系统,且安装都是用安装码固定在龙骨上,没有合适空间释放温度应力,导致板面容易发生翘曲。蜂窝板为复合型板材,具有质量轻,强度高,平整度好,板面大,安装简便,易维护,环保性好,可重复利用,抗热胀冷缩性能优异等优点。更多有关铝塑板包柱的内容请查阅上海 有色 网

美国AA、ISO及UNS系统变形铝及铝合金牌号与化学成分

2019-01-02 14:54:42

合金牌号 化学成份,W%AA USN ISO NO.      Si Fe Cu Mn Mg Cr Ni Zn Ca V 其它 Ti 杂质 AlNO. R209         每个         总和 min5754 A95754 AlMg3 0.4 0.4 0.1 0.5 2.6-3.6 0.3 — 0.2 — — 0.10-0.6 0.15 0.05 0.15 余量(Mn+Cr)5854 — — 0.45(Si+Fe) 0.1 0.10-0.50 3.1-3.9 0.15-0.35 — 0.2 — — — 0.2 0.05 0.15 余量5056 A95056 AlMg5 0.3 0.4 0.1 0.05-0.20 4.5-5.6 0.05-0.20 — 0.1 — — — — 0.03 0.15 余量AlMg5Cr5356 A95356 AlMg5Cr(A) 0.25 0.4 0.1 0.05-0.20 4.5-5.5 0.05-0.20 — 0.1 — — (a) 0.06-0.20 0.05 0.15 余量5456 A95456 AlMg5Mn1 0.25 0.4 0.1 0.50-1.0 4.7-5.5 0.05-0.20 — 0.25 — — — 0.2 0.05 0.15 余量5556 A95556 — 0.25 0.4 0.1 0.50-1.0 4.7-5.5 0.05-0.20 — 0.25 — — (a) 0.05-0.20 0.05 0.15 余量5357 A95357 — 0.12 0.17 0.2 0.15-0.45 0.8-1.2 — — 0.05 — — — — 0.05 0.15 余量5457 A95457 — 0.08 0.1 0.2 0.15-0.45 0.8-1.2 — — 0.05 — 0.05 — — 0.03 0.1 余量5557 A95557 — 0.1 0.12 0.15 0.10-0.40 0.40-0.8 — —   — 0.05 — — 0.03 0.1 余量5657 A95657 — 0.08 0.1 0.1 0.03 0.6-1.0 — — 0.05 0.03 0.05 — — 0.02 0.05 余量5280 — — 0.35(Si+Fe) 0.1 0.20-0.7 3.5-4.5 0.05-0.25 — 1.5-2.8 — — (q) — 0.05 0.15 余量5082 A95082 — 0.2 0.35 0.15 0.15 4.0-5.0 0.15 — 0.25 — — — 0.1 0.05 0.15 余量5182 A95182 — 0.2 0.35 0.15 0.20-0.50 4.0-5.0 0.1 — 0.25 — — — 0.1 0.05 0.15 余量5083 A95083 AlMg4.5Mn 0.40-0.7 0.4 0.1 0.40-0.10 4.0-4.9 0.05-0.25 — 0.25 — — — 0.15 0.03 0.15 余量5183 A95183 AlMg4.5Mn 0.40- 0.4 0.1 0.50-1.0 4.3-5.2 0.05-0.25 — 0.25 — — (a) 0.15 0.05 0.15 余量0.7(A)5283 — — 0.3 0.3 0.03 0.50-1.0 4.5-5.1 0.05 0.03 0.1 — — 0.05Zr 0.03 0.05 0.15 余量5086 A95086 AlMg4 0.4 0.5 0.1 0.20-0.7 3.5-4.5 0.05-0.25 — 0.25 — — — 0.15 0.03 0.15 余量6101 A96101 E-AlMgSi 0.30-0.7 0.5 0.1 0.03 0.35-0.8 0.03 — 0.1 — — 0.06 B — 0.03 0.1 余量6201 A96201 — 0.50-0.9 0.5 0.1 0.03 0.6-0.9 0.03 — 0.1 — — 0.06 B — 0.03 0.1 余量6301 A96301 — 0.50-0.9 0.7 0.1 0.15 0.6-0.9 0.1 — 0.25 — — — 0.15 0.05 0.15 余量6002 — — 0.6-0.9 0.25 0.10-0.25 0.10-0.20 0.45-0.7 0.05 — — — — 0.09-0.14Zr 0.08 0.05 0.15 余量6003 A96003 AlMg1Si 0.35-1.0 0.6 0.1 0.8 0.8-1.5 0.35 — 0.2 — — — 0.1 0.05 0.15 余量6103 — — 0.35-1.0 0.6 0.20-0.30 0.8 0.8-1.5 0.35 — 0.2 — — — 0.1 0.05 0.15 余量6004 A96004 — 0.30-0.6 0.10-0.30 0.1 0.20-0.6 0.40-0.7 — — 0.05 — — —   0.05 0.15 余量6005 A96005 AlSiMg 0.6-0.9 0.35 0.1 0.1 0.40-0.6 0.1 — 0.1 — — — 0.1 0.05 0.15 余量6105 A96105 — 0.6-1.0 0.35 0.1 0.1 0.45-0.8 0.1 — 0.1 — — — 0.1 0.05 0.15 余量6205 A96205 — 0.6-0.9 0.7 0.2 0.05-0.15 0.40-0.6 0.05-0.15 — 0.25 — — 0.05-0.15Zr 0.15 0.05 0.15 余量6006 A96006 — 0.20-0.6 0.35 0.15-0.30 0.15-0.20 0.45-0.9 0.1 — 0.1 — — — 0.1 0.05 0.15 余量6106 — — 0.30-0.6 0.35 0.25 0.05-0.20 0.40-0.8 0.2 — 0.1 — — —   0.05 0.15 余量X6206 — — 0.35-0.7 0.35 0 0.13-0.30 0.45-0.8 0.1 — 0.2 — — — 0.1 0.05 0.15 余量20-0.506007 A96007 — 0.9-1.4 0.7 0.2 0.05-0.25 0.6-0.9 0.05-0.25 — 0.25 — — 0.05-0.20Zr 0.15 0.05 0.15 余量6008 — — 0.50-0.9 0.35 0.3 0.3 0.40-0.7 0.3 — 0.2 —— 0.05-0.20 — 0.1 0.05 0.15 余量6009 A96009 — 0.6-1.0 0.5 0.15-0.6 0.20-0.8 0.40-0.8 0.1 — 0.25 — — — 0.1 0.05 0.15 余量6010 A96010 — 0.8-1.2 0.5 0.15-0.6 0.20-0.8 0.6-1.0 0.1 — 0.25 — — — 0.1 0.05 0.05 余量6110 A96110 — 0.7-1.5 0.8 0.20-0.7 0.20-0.7 0.50-1.1 0.04-0.25 — 0.3 — — — 0.15 0.05 0.15 余量6011 A96011 — 0.6-1.2 1 0.40-0.9 0.8 0.6-1.2 0.3 0.2 1.5 — — — 0.2 0.05 0.15 余量6111 A96111 — 0.7-1.1 0.4 0.50-0.9 0.15-0.45 0.50-1.0 0.1 — 0.15 — — — 0.1 0.05 0.15 余量6012 — — 0.6-1.4 0.5 0.1 0.40-1.0 0.6-1.2 0.3 — 0.3 — — 0.7Bi 0.2 0.05 0.15 余量0.40-2.0PbX6013 — — 0.6-1.0 0.5 0.6-1.1 0.20-0.8 0.8-1.2 0.1 — 0.25 —   — 0.1 0.05 0.15 余量6014 — — 0.30-0.6 0.35 0.25 0.05-0.20 0.40-0.8 0.2 — 0.1 — 0.05-0.20 — 0.1 0.05 0.15 余量6015 — — 0.20-0.40 0.10-0.30 0.10-0.25 0.1 0.8-1.1 0.1 — 0.1 — — — 0.1 0.05 0.15 余量6016 — — 1.0-1.5 0.5 0.2 0.2 0.25-0.6 0.1 — 0.2 — — — 0.15 0.05 0.15 余量6017 A96017 — 0.55-0.7 0.15-0.30 0.05-0.20 0.1 0.45-0.6 0.1 — 0.05 — — — 0.05 0.05 0.15 余量6151 A96151 — 0.6-1.2 1 0.35 0.2 0.45-0.8 0.15-0.35 — 0.25 — — — 0.15 0.05 0.15 余量6351 A96351 AlSi1Mg0.5Mn 0.7-1.3 0.5 0.1 0.40-0.8 0.40-0.8 — — 0.2 — — — 0.2 0.05 0.15 余量6951 A96951 — 0.20-0.50 0.8 0.15-0.40 0.1 0.40-0.8 — — 0.2 — — — — 0.05 0.15 余量6053 A96053 — (r) 0.35 0.1 — 1.1-1.4 0.15-0.35 — 0.1 ——— — — — 0.05 0.15 余量6253 A96253 — (r) 0.5 0.1 — 1.0-1.5 0.04-0.35 — 1.6-2.4 — — — — 0.05 — 0.256060 A96060 AlMgSi 0.30-0.6 0.10-0.30 0.1 0.1 0.35-0.6 0.05 — 0.15 — — — 0.1 0.05 — 0.256061 A96061 AlMg1SiCu 0.40-0.8 0.7 0.15-0.40 0.15 0.8-1.2 0.04-0.35 — 0.25 — — — 0.15 0.05 0.15 余量6261 A96261 — 0.40-0.7 0.4 0.15-0.40 0.20-0.35 0.7-1.0 0.1             0.05 0.15 余量6162 A96162 — 0.40-0.8 0.5 0.2 0.1 0.7-1.1 0.1             0.05 0.15 余量6262 A96262 AlMg1SiPb 0.40-0.8 0.7 0.15-0.40 0.15 0.8-1.2 0.04-0.14             0.05 0.15 余量6063 A96063 AlMg0.5Si 0.20-0.6 0.35 0.1 0.1 0.45-0.9 0.1 — 0.1 —

锰矿石的浮选柱工艺

2019-01-25 15:49:32

浮选是以经过药剂处理的矿粒,在两相界面上的选择性附着为根据的选矿法。现今最适用的是泡沫浮选,它的特点就是由矿化的气泡所组成的集合体浮在矿浆的表面,加入矿浆中的药剂造成稳定的矿化泡沫,并与可浮矿物的表面发生作用,从而使可浮矿物选择地附着在气泡上。其过程一般是将矿粒磨得较细(粒度小于0.3mm)的矿浆在浮选机中搅拌,加入适当的浮选药剂,使某些矿粒的润湿性减少,而能附着于弥散在矿浆中的气泡上而上浮,这些附着于气泡上而上浮的矿物称为精矿,落在浮选机底部或飘悬在矿浆中不上浮的称为尾矿。    矿物可浮性能的好坏一般是用矿物的表面润湿性(亲水性和疏水性)来判断。在实践过程中,我们则可以用浮选药剂来改变其表面性质,扩大矿物可浮性的差别,从而提高浮选效率及应用范围。因此浮选法的适用范围很广,有色金属、黑色金属、化学工业及建筑工业用原料均可采用,而且特别适于贫矿和结晶细的矿石,其不足之处是要磨细矿石和添加药剂,增加成本费用。    锰矿石大部分是碳酸盐类和氧化矿物,其表面易被水润湿,可浮性能差,因此浮选法较少应用于工业生产上。国外仅有前苏联的恰拉图矿区的中央浮选厂和日本的大江浮选厂曾采用浮选法回收锰矿物,而且还是属于综合回收利用设施,生产规模不大,目前已不见有生产报导。    我国仅遵义铁合金厂建有浮选厂富集锰矿石。    遵义铜锣井锰矿系原生海相沉积矿床,锰矿物以菱锰矿、锰方解石为主,矿石中的铁主要以黄铁矿、白铁矿及菱铁矿形态存在,脉石矿物主要是碳质及粘土矿物等。    菱锰矿呈他形粒状,锰矿物晶粒一般为0.047~0.079mm,密度3.42~3.5g/cm3,比磁化系数85.7~87.1x10-6cm/g.锰方解石单体晶粒一般为0.032~0.099mm,密度约2.74g/cm3,黄铁矿单体晶粒一般为0.002~0.100mm密度4.6~5.2g/cm3,比磁化系数为7.5~47x10-6cm/g,碳质粘土及泵泥石的单晶一般为0.016~0.095mm根据矿物工艺研究可知各种主要矿物基本上呈单晶赋存于矿石中,而且晶粒一般偏粗,矿石磨至-0.074mm为80%左右时,均可基本解离。该矿从1959年开始进行试验,不同流程的选别指标见表1。1975年按全浮选流程建成并处理原矿60万t选矿厂(设计流程及工艺选别指标见图1,表2),但生产一直不正常,并进行国多次整改,调试。目前还在继续攻关。 [next]表1                     遵义铜锣井锰矿石不同流程选别指标试验时间流程试验规模产品名称产率/%品位/%m(Mn)锰回收率/%MnFeS/m(Fe)一九五九年重浮小型Ⅰ级锰11.1934.98   16.88Ⅱ级锰29.8428.48   36.66Ⅲ级锰29.3126.18   33.1综合70.3428.55   86.64原矿10023.189.555.07 100一九五九年浮重小型Ⅰ级锰12.4833.75   19Ⅱ级锰21.7928.59   28.11Ⅲ级锰21.8326.71   26.31综合56.129.01   73.42原矿10022.16 5.15 100一九六六年强磁扩大Ⅰ级锰27.2134.744.210.418.2544.03Ⅱ级锰5.5931.454.970.236.338.2Ⅲ级锰9.2428.536.950.44.1112.25Ⅳ级锰17.8722.199.491.892.3418.47综合59.9129.736.280.834.7382.98原矿10021.479.153.32.35100一九七零年浮选扩大(浮选柱)Ⅰ级锰9.5732.653.520.199.2817.13Ⅱ级锰13.2430.034.890.216.1421.8Ⅲ级锰28.6124.128.962.412.737.83综合51.4227.226.91.423.9476.76原矿10018.2410.744.04 100一九八零年强磁(细粒)浮选小型Ⅰ级锰10.332.693.950.158.2818.02Ⅱ级锰10.4831.065.30.215.8617.42Ⅲ级锰32.6425.777.540.33.4345综合53.4228.146.40.254.480.44原矿10018.6910.122.82 100表2                 遵义锰矿浮选厂设计选别工艺指标品名 指标 项目贫锰矿富锰矿产率/%锰品位/%锰回收率/%产率/%锰品位/%锰回收率/%Ⅰ级锰9.5732.6517.0428.6435.0246.61Ⅱ级锰13.2430.0321.681.99029.942.71Ⅲ级锰28.6124.1237.5728.7234.7933.08综合锰精矿51.4227.2176.2959.3529.982.4黄铁矿精矿7.746.182.817.4507.742.69综合尾矿37.849.3121.5033.209.6714.91原矿100.018.55 100.021.52      锰矿泥的浮选在国外应用较多,捕收剂多采用碳氢化合物、硫酸化皂、粗塔尔油及其乳液、含40%~50%脂肪酸皂、烷基磷酸盐、含C7~C12伯脂肪酸钠盐等。[next]    前苏联恰拉图矿泥采用混合浮选,硫酸化皂和塔尔油乳液作捕收剂,采用如图2所示的工艺流程图进行选别,获表3所列指标。前苏联的格鲁谢夫选矿厂尾泥则选用伯脂肪酸钠盐作捕收剂进行浮选,获表4所列指标。表3      恰拉图矿泥混合浮选工艺指标品名产率/%锰品位/%锰回收率/%精矿23.933.359.9中矿7.316.29.0尾矿42.92.718.6-10μ矿泥26.011.522.5原矿100.013.2100.0表4        格鲁谢夫选矿厂选别工艺指标品名产率/%锰品位/%锰回收率/%精矿56.241.584.4中矿16.31811.1尾矿27.54.54.5原矿10027.4100                   注:原矿用药量7kg/t.

磁选柱精选铁精矿应用实例

2019-01-21 09:41:30

太钢矿业公司峨口铁矿选矿厂1978年建成投产,原采用二段阶段磨矿三段弱磁选原则流程,2000年-2002年改造成三段阶段磨矿四段弱磁选一段磁重选别原则流程,其中磁重选别设备采用重力磁团聚机。改造后选矿厂按球磨机配置方案分为“321”和“221”两种系统。“321”系统具体流程结构相对简单,处理量大,但精矿品位普遍低于65.5%;“221”系统具体流程结构相对复杂,精矿品位可达67%,但产量较低。2007年峨口铁矿将生产能力达到年产200万t铁精矿粉扩能改造工程列入日程,并且要求扩能改造后选矿厂总精矿品位达到67%以上。这样,在不允许考虑浮选工艺的前提下,如何使处理量大的“321”系统若仍采用原来的重力磁团聚机作为精矿品位的把关设备,将难以达到预期目标。为此,峨口铁矿选矿厂在“321”系统中引入新的磁重选别设备磁选柱进行了生产考虑,结果表明,磁选柱精选效果令人满意。一、重力磁团聚机存在问题 重力磁团聚机在选矿厂“321”系统中的位置如图1所示。        图1 重力磁团聚机在“321”系统中的位置        由图1可见,重力磁团聚机处于流程的末端,应起剔除夹杂于弱磁选精矿中的矿泥和贫连生体,保证最终获得高品位铁精矿的作用。但是实际生产表明,重力磁团聚机由于选别区域大、磁场强度弱且不可调等原因,磁场作用深度不够,限制了上升水对矿物的淘洗作用,精矿品位提高幅度有限。表现在两个方面:一是上升水速小时,大颗粒的脉石矿物和贫连生体会进入精矿中,而且无法清洗附着在磁性矿物颗粒表面的细粒级脉石矿物,因此不能选出口位高于67%的精矿;二是上升水速大时,选别区域矿浆呈紊流状态,难以形成稳定的分选作用,因而也不能选出高品位的精矿,同时较小的团聚体会被上升水冲入尾矿,造成尾矿品位过高。两种上升水速下“321”系统中重力磁团聚机产品的粒度分析结果如表1、表2所示。表1 小上升水速下重力磁团聚机产品的粒度分析结果产品粒级/mm产率/%品位/%精矿+0.0744.5035.80-0.074+0.0554.8048.80-0.055+0.04522.6060.50-0.04568.1066.30合计100.0062.78尾矿+0.0744.6014.90-0.074+0.0555.8016.40-0.055+0.04523.1022.90-0.04566.5027.90合计100.0025.48表2 大上升水速下重力磁团聚机产品的粒度分析结果产品粒级/mm产率/%品位/%精矿+0.0742.6029.40-0.074+0.0554.5047.80-0.055+0.04525.6061.00-0.04566.9066.90合计100.0063.54尾矿+0.0743.0016.90-0.074+0.0554.4022.70-0.055+0.04523.6035.30-0.04569.0051.20合计100.0045.16        表1、表2表明:小上升水速时,精矿品位和尾矿品位都低;精矿中矿泥、细粒贫连生体脱除得不彻底,在颗粒连生体则脱除得很少。大上升水速时,精矿品位有所提高,但同时尾矿品位增幅更大;-0.045mm粒级的精矿品位与小上升水速时相比没有明显变化,而-0.045mm粒级的行矿品位比大上升水速时升高23.30个百分点,达51.20%,表明有单体解离较高的细粒级富矿进入尾矿中。二、磁选柱的应用磁选柱和重力磁团聚机都属于磁重选设备,但磁选柱克服了重力磁团聚机的缺点,有足够的磁场力把磁性铁矿物聚在一起,加快了磁性矿物的下降速度,同时也有足够的上升水力使非磁性和弱磁性铁矿物漂浮起来,下部给水又有利于延长对矿物的淘洗时间,而且上升水在进入选别区域前形成稳定的上升水层,有利于在选别区域产生稳定的分选作用,消除紊流引起的脉石矿物在磁性矿物中的混杂。另外,磁选柱还具有将磁性颗粒团聚-分散-再团聚的多次循环往复作用,使上升水能够充分把夹杂在团聚体内的矿泥、脉石矿物和贫连生体分选出来;上部设计的固定磁场则可以把未及时形成团聚体的富连生体和已单体解离的细粒磁性矿物阻止在选别区内,保证金属回收率的提高。鉴于重力磁团聚机在“321”系统中难以使精矿品位达到67%以上,为适应200万t/a铁精矿粉扩能改造工程的需要,峨口铁矿选矿厂于2007年下斗年在“321”系统安装了1台磁选柱,进行了生产实用性考察。磁选柱与重力磁团聚机生产指标的对比列于表3,磁选柱产品的粒度分析结果列于表4。 表3磁选柱与重力磁团聚机生产指标对比 %磁重选设备给矿品位精矿品位尾矿品位磁选柱60.5667.4334.49重力磁团聚机60.5365.0036.74表4 磁选柱产品粒度分析结果产品粒级/mm产率/%品位/%精矿+0.0742.4034.90-0.074+0.0552.8052.20-0.055+0.04521.4064.40-0.04573.4069.90合计100.0067.39尾矿+0.0748.8014.80-0.074+0.0554.2017.80-0.055+0.04531.6031.60-0.04555.4045.40合计100.0037.19给矿+0.0744.2026.60-0.074+0.0552.4039.90-0.055+0.04523.0056.80-0.04570.4064.10合计100.0060.27       由于表3可见,在一致的给矿品位下,磁选柱的精矿品位达到67.43%,比重力磁团聚机高2.43个百分点,同时尾矿品位比重力磁团聚机低2.25个百分点。由表4可见,磁选柱尾矿中各粒级的品位普遍低于大上升水速下重力磁团聚机尾矿中相应粒级的品位,尤其是-0.045mm粒级的品位,低 5.80个百分点。表3和表4结果说明,磁选柱不仅可以充分把精矿中的矿泥、脉石矿物和贫连生体分选开来,而且可以很好地阻止富连生体和已单体解离的细粒磁性矿物进入尾矿中,实现高品位情况下的高回收率。鉴于磁选柱优良的精选效果,目前该设备已在峨口铁矿选矿厂“321”系统中全面取代重力磁团聚机,下一步将推广到“221”系统和即将扩建的新系统。 三、结语磁选柱在峨口铁矿选矿厂“321”系统中应用的成功,使峨口铁矿采用无化学污染工艺生产高品位铁精矿粉成为可能,并为简化“221”系统工艺流程,进一步提高生产能力,实现年产200万t铁精矿粉的目标奠定了良好的基础。但磁选柱还存在耗水量大、单机处理量低的缺陷,有待改进。

黄金选矿炭浆厂设备-解吸柱

2019-02-12 10:08:06

解吸柱用于炭浆法提金工艺中,将载金炭装入解吸柱,与通入的介质溶液相互作用,使金从载金炭中别离生成贵液。     国产解吸柱由中国有色院规划,主要由内机、诸矿和乳机出产,现在有3种规格,其技能功能列于表1,外形尺寸别离示于图1、2表和图2。     鑫海矿机出产的解吸柱技能参数见表3,表面见图3。     图1  图2  图3      表1、2、3

AA25级阳极氧化膜优点

2018-12-20 09:35:33

1、耐腐蚀性好  由于工业污染的影响,以及恶劣的气候环境影响,加剧了铝合金门窗、幕墙上的阳极氧化膜的腐蚀,缩短了铝合金门窗、幕墙的使用寿命。而AA25级阳极氧化膜由于膜厚高,耐腐蚀性好,适用于在恶劣的环境中使用。  2、耐酸性能优良  由于环境污染的原因,在许多地方都会出现下酸雨的现象,导致铝合金门窗、幕墙上的表面处理膜出现变色、失光等缺陷,从而缩短了铝合金门窗、幕墙的使用寿命。而AA25级阳极氧化膜具有良好的耐酸性能,可经受住酸雨的浸蚀,保证了铝合金门窗、幕墙的使用寿命。  3、氧化膜表面硬度高,耐磨性佳  AA25级阳极氧化膜在铝表面形成厚而致密的氧化膜层,提高了铝表面硬度,具有良好的耐磨性,可经受住长年累月的风沙的冲蚀,以及作为铝合金门窗、幕墙的定期维护时的洗刷。

FCSMC浮选柱提铁降硅新技术

2019-01-29 10:09:51

提铁降硅是我国选矿行业的一项重要研究内容。国外已经广泛利用浮选柱提纯铁精矿,而我国依然是浮选机占主导地位,在铁精矿浮选柱反浮选方面的研究尚处于起步阶段。鞍多集团弓长岭选矿厂作为国内首家应用阳离子反浮选法分选磁铁矿的大型选厂,经过两年多的运行实践,阳离子反浮选泡沫粘,浮选过程不畅,已成为制约生产指标和经济效益的难题,为获得高品质铁精矿,提高企业经济效益和选矿技术水平,鞍钢集团弓长岭矿业公司选择浮选柱作为磁铁精矿高效精选设备,在反浮选工业试验中获得铁精矿品位高于69%,SiO2含量低于4.5%的先进指标。       一、浮选柱结构及工作原理       FCSMC浮选柱主要由柱浮选、旋流分选、管流矿化构成,其分选原理如图1所示。整个设备为柱体,柱浮选位于柱体上部,它采用逆流碰撞矿化的浮选原理,在低紊流静态化分选环境中实现对微细物料的分选,在整个柱分选方法中起到粗选与精选作用;旋流分选与柱浮选呈上、下结构连接,构成柱分选的主体。旋流分选包括按密度的重力分离以及在旋流力场背景下的旋流浮选。旋流浮选不仅提供了一种高效矿化反应模式,而且使得浮选粒度下限大大降低,浮选速度大大提高。旋流分选以其强回收能力在柱分选过程中起到扫选柱浮选中矿的作用。管流矿化利用射流原理,通过引入气体及粉碎成泡,在管流中形成循环中矿的气固液三相体系并实现了高度紊流矿化。管流矿化沿切向与旋流分选相连,形成中矿的循环分选。图1  FCSMC浮选柱分选原理       二、矿石性质       工业试验矿样来自弓长岭选矿厂一选车间细筛筛下磁铁矿,TFe品位63.63%,SiO2含量10.51%,TFe3O4含量在90%以上。随着粒度变细,铁含量增加,-0.030mm粒级铁品位达到66.54%。矿样单体解离度为92.7%,+0.074mm粒级的单体解离度也达到了87.9%,矿样解离效果比较理想。试验从细度和单体解离度方面都能代表正常的生产样。矿样粒度与单体解离度测定结果见表1和表2。   表1  矿样粒度测定结果粒度/mm产率/%品位/%分布率/%+0.07411.2451.409.070.045~0.07415.5661.7415.070.030~0.04517.4964.4917.70-0.03055.7166.5458.16合计100.0063.73100.00   表2  矿样单体解离度测定结果样品品位/%单体/%连生体/%>3/4>1/2>1/4<1/4原矿63.7392.72.51.91.41.5+0.074mm粒级样51.4087.94.33.82.61.4       三、工艺流程       (一)浮选机选矿工艺流程       弓长岭矿区磁铁矿石属鞍山式沉积变质铁矿床,有用矿物主要是磁铁矿、假象赤铁矿;脉石矿物主要是石英,其次是阳起石、角闪石、绿泥石等。选矿厂磁铁矿浮选机浮选车间分选系统为五段粗选四段精选共九段反浮选、粗选中矿泡沫再选工艺流程,反浮选药剂为十二胺,实行分段多点加药。       现场浮选机选别流程如图2所示。磁选车间的筛下精矿经过浓缩后,经泵送至浮选给矿箱,加入捕收剂后给入搅拌桶,充分搅拌后给入3个系列27台BF-20粗选浮选机,经刮板刮出泡沫中矿后,含铁68%以上的精矿产品自流至精矿泵箱,泵送至过滤车间脱水。粗选刮出的泡沫中矿经泵送至一段精选磁选机,经一精一扫抛尾浓缩后,精矿自流给入球磨机进一步磨矿,磨矿产品经泵送至脱水槽,抛尾后精矿给入二段磁选机进一步抛尾,进一步抛尾后二段磁选机精矿经中矿泵返回浮选机给矿箱杂再选。精选刮出的中矿泡沫直接经精尾中矿泵返回浮选给矿箱进行再选。一段扫选磁选机、脱水槽、二段磁选机产生的尾矿自流给入盘式磁选机做进一步尾矿回收,精矿一部分经泵送至一段磁选机进一步磨矿,一部分自流给入球磨机再磨再选,尾矿自流给入浓缩机浓缩后废弃。图2  浮选机工艺流程       该选别系统存在的主要问题为:①选别段数多,设备占地面积大,磁选、磨矿、脱水槽等多段辅助作业,使得浮选工艺流程复杂,运行成本高;②由于采用阳离子十二胺作为反浮选捕收剂,泡沫粘、浮选过程不畅,影响流程顺行和分选效果。       (二)浮选柱工业试验流程选择       浮选柱工业试验流程的选择主要以半工业分流试验为依据。主体分选系统采用浮选柱一次粗选,两段扫选流程;扫选中矿经浓缩磁选后返回粗选前矿浆搅拌桶,构成分选中矿的内部循环,粗选精矿作为最终浮选精矿,二段扫选尾矿和磁选机尾矿合并作为最终尾矿,如图3所示。图3  浮选柱工艺流程       作为唯一的动力来源,每个浮选柱配套一台渣浆泵。泡沫转载与输运不再落地用泵池转载,采用泡沫吸浆输送模式,即在浮选过程中利用安装在后续浮选柱内部的泡沫吸浆输送装置将前段浮选柱的浮选泡沫自吸进后段浮选柱,并对后续浮选柱实行给料,不影响设备内部的矿浆流态,同时改善浮选作业环境,优化分选指标。       该柱分选系统具有几方面优势:①配置系统流程简化,配置简单,自带泡沫槽,采用底部承重支撑,安装方便。②处理能力大,电耗低。③分选选择性好,效率高。④设备操作简单运行稳定可靠,指标波动小。除泵事故外,设备维护工作量低。⑤浮选泡沫吸浆输送,流程顺行,布置简洁,解决了阳离子泡沫粘,中矿顺行和富集十分困难的难题。⑥底流排矿自动控制。采用压力传感器→数显仪→电控阀门闭路控制,可实现液面的稳定调控,同时留有远程控制接口,可实现集中控制。       (三)工业试验方法       工业试验在鞍钢集团弓长岭矿业公司选矿厂浮选车间进行,入料为一选车间的细筛筛下产品,该产品经浓缩机浓缩后由泵输送至1、3系列的分矿箱。工业试验浮选给料同现场浮选机一样,从分矿箱底部焊接管道经阀门控制后直接给入到浮选柱前的矿浆搅拌桶。因此,试验的入料性质变化与实际生产一致,铁品位一般在63%~65%之间变化,SiO2含量在10%~12%之间变化,个别最高铁品位为67%,最低61%;给矿细度-0.074mm含量一般为88%~90%。为了避免来料波动对浮选柱分选系统产生影响,浮选柱给料浓度、给矿量及加药方式均实行自动控制。选矿厂负责试验样品采集和化验工作,试样主要分析铁的品位。       四、工业试验结果及评述       (一)十二胺用量对浮选柱选别效果的影响       十二胺用量对浮选柱选别效果的影响见图4。由图4可见,随着十二胺用量的增加,回收率呈下降趋势,TFe品位开始上升幅度较大,当药剂用量达到180g/t后,精矿品位上升趋势渐缓。当用药量在160~180g/t之间变化时,分选优势较为明显,精矿品位和回收率均处于较高的水平。图4  十二胺用量对分选指标的影响       (二)循环矿浆压力对浮选柱选别效果的影响       循环矿浆压力是浮选柱提高分选效率,强化分选回收的重要工作参数,它间接反应了浮选柱底部旋流力场的强度和循环矿浆量的大小,同时也是浮选柱对矿物实现分选的唯一能量来源,其压力的大小直接关系到整个设备的运行状态和分选效果。由于粗选浮选柱的运行状态直接关系到铁精矿质量,为此,试验中具体考察了粗选循环矿浆压力对分选指标的影响,结果见图5。从图5可以明显看出,随着压力的增加,TFe品位呈上升趋势,当压力超过0.30MPa时,精品位变化幅度不大。因此在操作过程中循环矿浆压力的大小应适可而止,以满足分选的旋流强度及适当的吸气量为原则。图5  循环矿浆压力对分选指标的影响       (三)矿浆浓度对浮选柱选别效果的影响       矿浆浓度对浮选柱分选效果的影响见图6。由图6可知,过低的矿浆浓度不利于铁的回收,但给矿浓度过高时,气泡通过回收区的阻力也相应增大,气泡上升困难,导致TFe品位下降。当浓度达到适宜程度时,再增加给矿浓度,回收率呈下降趋势。给矿浓度在40%~45%时,技术指标较好。图6  矿浆浓度对分选指标的影响       (四)给矿量对浮选柱选别效果的影响       给矿量对浮选柱分选效果的影响见图7。由图7可知,随着处理能力的增加,精矿品位逐渐降低,回收率呈递增趋势。当系统处理能力在70t/h左右时,综合分选指标相对较好。该指标完全达到了系统设计预期的65t/h的处理能力。图7  给矿处理量对分选指标的影响       五、浮选柱与浮选机分选指标对比       此次浮选柱工业试验系统采用Φ3.6m、Φ3.0m和Φ2.6m3台FCSMC浮选柱,构成一粗二扫中矿磁选浓缩的阳离子全流程反浮选工艺。与浮选机生产系统的一粗一精以及中矿再磨磁选、尾矿回收工艺相比,大大简化了流程。通过工业试验,在给矿处理量为70.61t/h、磨矿粒度为-0.074mm粒级占89.30%、铁品位63.59%情况下,获得了精矿铁品位69.15%,SiO2含量4.40%,尾矿铁品位22.37%,铁回收率95.81%的较好指标。与浮选柱生产指标相比,在精矿品位基本相同时,精矿产率提高1.27个百分点,回收率提高1.27个百分点,一级品位提高2.13个百分点,合格率提高2.28个百分点;尾矿比回收机给矿(浮选机尾矿)品位低11.78个百分点,比回收机最终尾矿低4个百分点。分选结果对比见表3。   表3  浮选柱与浮选机工业系统分选指标对比选矿 系统浮选铁精矿指标/%尾矿品位/%生产班次品位一级品率合格品率产率回收率回收机 给矿回收机 尾矿浮选机69.2380.7588.2686.8494.5434.1526.3739浮选柱69.1582.8890.5488.1195.8122.3740       六、结语       (一)利用浮选柱分选弓长岭磁铁矿,可以获得铁品位69.15%,SiO2含量4.40%,铁回收率95.81%的优质铁精矿,较理想的工业试验操作参数为:十二胺药剂用量160~180g/t,粗选循环矿浆压力为0.30MPa,矿浆浓度40%~45%,处理能力70t/h左右。       (二)采用浮选柱一粗二扫工艺流程,可以实现阳离子捕收剂对磁铁精矿提纯、中矿扫选,与现有浮选机五段粗选四段精选、粗选中矿泡沫再磨再选工艺流程相同时,浮选柱精矿产率提高1.27个百分点,铁金属回收率提高1.27个百分点,一级品率提高2.13个百分点,合格率提高2.28个百分点;尾矿品位比浮选机尾矿品位低11.78个百分点,比回收机尾矿品位低4个百分点。

离子交换设备-希金斯(Higgins)离子交换柱

2019-01-24 11:10:32

第一套希金斯离子交换柱是由希金斯在美国橡树岭国立实验室发明的,如图1所示。图1  希金斯移动床离子变换柱 整个设备组成一个闭合回路。在吸附段,树脂向上移动,而浸出液与树脂呈逆流接触向下流动。同时淋洗液以逆流方向通过淋洗段。 操作时,浸出液与淋浸液间断进入塔内。每隔几分钟切换一次,此时淋洗后的树脂由脉冲进入吸附段下部。一个吸附周期约5~20min,这取决于吸附流速和浸出液铀浓度。吸附时,阀门A,B,C,D均关闭,可同时进行淋洗。吸附循环结束时,阀门A,B,C,D都打开,水在压力作用下通过阀门7进入脉冲段迫使树脂沿着回路向前移动,然后几个阀门又关闭,浸出液和淋洗液又可进液,吸附、淋洗循环又重新开始。树脂每次移动时间不到1min,因此,吸附淋洗时间比树脂移动时间大得多。 美国怀俄明矿物公司于1977年建造了两套直径为2.44m的这样的装置用于从铜矿浸出液中回收铀。两套装置处理能力为1727m3/h,浸出液铀浓度为6~7mg/L,流速可达到163m/h。由于流速很高,导致床层压力降很大,使凝胶型树脂破裂。为了克服这一缺点,将吸附段的长度从原来的2.44m减少为1.525m,吸附流速也从原来的163m/h减少到110m/h。同时将凝胶型树脂换成轫性更好的大孔树脂。饱和树脂用1.5mol/L硫酸淋洗,淋洗富液铀浓度为0.5~1.0gU3O8/L,进去萃取将铀富集到35gU3O8/L。由于树脂磨损严重和动力学减慢,据称每年更换的树脂为投入量的70%。尽管如此,希金斯移动床技术仍是离子交换技术的一个重大突破。

铝合金

2017-12-27 11:04:39

铝合金通常使用铜、锌、锰、硅、镁等合金元素,20世纪初由德国人Alfred Wilm发明,对飞机发展帮助极大,一次大战后德国铝合金成分被列为 国家机密 。跟普通的碳钢相比有更轻及耐腐蚀的性能,但抗腐蚀性不如纯铝。在干净、干燥的环境下铝合金的表面会形成保护的氧化层。造成电偶腐蚀(Galvanic corrosion)加速的情况有:铝合金与不銹钢接触的情况、其他金属的腐蚀电位比铝合金低或是在潮湿的环境下。如果铝和不銹钢要一同使用必须在有water-containing systems或是户外安装两金属间电子或电解隔离。铝合金的成分需要向美国铝业协会(Aluminium Association,AA)注册。许多组织公布更具体制造铝合金的标准,包括美国汽车工程协会(Society of Automotive Engineers,SAE)特别是航空标准,还有美国材料试验协会(American Society for Testing and Materials,ASTM)。铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶  铝合金及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。   纯铝的密度小(ρ=2.7g/cm3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。

铝合金知识

2018-12-27 11:13:36

铝合金化学成分: 硅 镁 铁 铜 锰 锌 铬 钛 其它   铝合金分两大类:一为铸造铝合金,有铝硅系、铝铜系、铝镁系、铝锌系合金。二为变形铝合金,其中又分为两类:热处理不强化型铝合金,有铝锰系、铝镁系合金;热处理强化型铝合金,有铝镁硅系、铝铜镁系、铝铜镁锌系等。