您所在的位置: 上海有色 > 有色金属产品库 > 铝合金手机支架

铝合金手机支架

抱歉!您想要的信息未找到。

铝合金手机支架百科

更多

手机设计中铝合金材料的应用

2019-01-09 09:34:17

以前大部分手机机身材质都是塑料,造价低、加工难度小,但是却显得廉价,而金属机身都是在少数旗舰机上才能见到的。不过随着行业的发展,上至旗舰机下到千元机,金属机身突然开始普及起来了!金属机身在各知名品牌厂家的机型中属铝合金应用较为普遍。那铝合金在手机的设计上又是以哪些设计形态出现的呢,让我们来做一些初步的介绍:  靠前类:外观件中框代表机型iphone6/6S,iPhone5S、HTCM8、vivoXshot、Lumia925等  材质分类:  按照合金材料的不同可以将铝合金分为1系到9系,每种系列中的具体型号命名一般都为四位数字,比如6061、7075等,iPhone6S的机身材质就是采用的7系铝合金。7系铝合金以锌元素为主,也少量添加了镁、铜,铝合金硬度更接近钢材硬度——然而还是一磕一个坑啊!6系铝合金以镁和硅为主要合金元素,是目前应用较广泛的合金。  结构设计方式:  整体CNC+纳米注塑,外观装饰件CNC+点胶/贴背胶/锁螺丝,外观面CNC+内部铝合金压铸套啤+纳米注塑方式,锻压+CNC+纳米注塑方式,等等。工艺处理:阳极氧化   优点:和不锈钢的低调相比, 铝合金材料更容易加工出高档、美观、熠熠生辉的感觉。其次、铝合金材料非常轻,比重只有不锈钢的三分之一,也就是说同样体积的不锈钢手机,材料上差不多是铝合金的三倍重。这也是为什么iPhone5比iPhone4S轻了这么多的原因。第三、耐刮伤,铝合金材料在强度上算不上,但表面硬度却达到蓝宝石级别,因此采用铝合金材料的手机有可能会有磕碰很近,但很少有划痕。第四、铝合金材料染色性强,正因为换用了铝合金,Iphone等手机才能拥有我们所谓的“土豪金”、“高端灰”等颜色。  此外,铝合金材料和有耐高温、不留手印、抗静电、环保无毒等特点。  缺点:成本高  IPHONE6掉漆门事件:部分iPhone6S手机使用一段时间后发生“掉漆”,表面随机出现剥落斑点,整体看上去“锈迹斑斑”,像爬满了小虫,完全看不到iPhone手机“高颜值”的特点,反而给人毛骨悚然的感觉。主要原因分析:前期的iPhone6也曾使用牌号为6系列的铝合金作为手机外壳,该铝合金的主要合金元素是镁和硅,合金含量较低,阳极氧化成品率高,氧化膜致密附着力强,保护铝合金材料不受腐蚀,故没有上述“生锈”情况发生。但是6系列铝合金较大的缺点是强度低,因此出现手机很容易就被折弯、坐弯的情况,苹果公司不得不选用更高强度的7系列航空铝合金。iPhone6S使用的7系列航空铝合金是铝合金中室温强度较高,但也较容易发生腐蚀。该系列铝合金除铝以外还添加了锌、镁和铜元素。正是这些合金元素的加入产生各种强化相使强度大幅提高,可以达到普通低碳钢的2-3倍,彻底解决iPhone6容易弯曲问题;但是,也导致了该系列合金耐腐蚀性能差,容易发生应力腐蚀。  为了提高耐腐蚀性,手机的铝合金外壳表面会做人工阳极氧化,使外观更美观,并提高表面硬度。阳极氧化膜的质量和附着力直接影响手机的外观质量和耐腐蚀性。7系列铝合金由于合金成分较高,这些合金元素在常规熔铸铝棒的过程中难以避免会分布不均匀,产生偏聚,也称宏观偏析。部分偏析会在后续均匀化处理和挤压铝排过程中得到部分改善,但是无法完全消除。偏析的存在意味着材料各部分成分分布不均匀,这种成分的不均匀会造成阳极氧化膜质量和附着力不同,导致氧化后易出现色差等外观缺陷,并且使用性能不稳定,部分位置氧化膜附着力不够易脱落。一旦失去了氧化膜的保护,再加上手汗、潮湿空气和高温天气的加速腐蚀,iPhone6S采用的7系列航空铝手机壳就会呈现出上述“掉漆”现象。  7系列铝合金材料的偏析问题从铸造过程就开始产生,并一直存在于材料中难以根除,影响阳极氧化质量,较终导致iPhone6S“掉漆”严重,难以直视。因此,彻底解决该问题还应从源头出发,设法生产高均匀性、无偏析的高品质铝合金原料。  急速冷却工艺制备高品质铝合金原料:  (下图左--急速冷却7075铝合金显微组织,下图右铸造7075铝合金显微组织)常规铸造工艺,由于金属凝固时冷却速度较慢(一般<102℃/s),合金元素易发生偏析并持续生长,严重影响了材料的均匀性;而采用急速冷却工艺冷却速度极快(可达104-106℃/s),液相金属具有很大的过冷度,促进了形核;金属在极短时间完成凝固,使晶粒形核后来不及长大;并抑制了铸造中常见的树枝晶和柱状晶,形成近似球状的等轴晶,消除了常规材料的各向异性;由于细密的晶粒组织,金属产生了细晶强化效果,大幅提高了合金的强度、硬度和塑性;急速冷却工艺中合金的凝固在惰性气体保护中完成,无氧化、夹杂,硬质相细小弥散分布,均一致密组织有利于阳极氧化膜质量和均匀性,提高耐腐蚀性能。  上图是急速冷却7075和铸造7075的显微组织对比。从金相照片上可以看到铸造7075组织粗大,枝晶和偏析现象严重;急速冷却7075晶粒呈球状,无枝晶组织,晶粒细小。表1是急速冷却工艺与常规工艺生产的7系列铝合金性能对比。下图是急速冷却7系列铝合金实物图。

7075型合金成手机机身材料新宠?

2019-01-09 16:22:12

手机已成为人们特别是工作人员离不开的通讯工具,几乎人手一台,有的人甚至有二三部或更多,可是它们的机身是用什么材料制成的,不是每个人都一清二楚。  在世界三大手机生产集团(美国苹果公司、韩国三星公司、中国华为公司)生产的智能手机中,有用铝制的,有用钛的,还有用镁的。钛机身亮丽,强度也大,但价格较高,密度也较高,比铝的大66.7%;镁的密度小,比铝的轻36%,有着银光熠熠的色调,但强度比铝的低,抗腐蚀性能也远不如铝,价格又比铝贵。  因此,铝是当前综合性能较好,性价比较佳的智能手机机身材料,同时它的可回收性与可循环性能也优于钛和镁。笔者在这里说的铝、镁、钛包含其各种合金。    我们知道,苹果手机尺寸——屏幕大小从iphone 5开始一再加大,给视觉带来空前的称心惬意,观看手机成了一种美好的享受,现在已加到140mm(5.5英寸)。可是初期大屏幕手机的机身用材并没有同步改进,同时机身厚度还在减薄,因而导致iphone手机机身一受到外力冲击就变形,甚至变得弯弯的,有时一不小心就将爱不释手的宝贝手机弄弯,在个别情况下,屏幕也可能摔打得粉身碎骨。这种情况一直到iphone 6 plus面世都未获得根本性的改变,苹果受到的市场压力越来越大,用户的怨声也日益增多。   7075型合金横空出世 化解iphone 6S困境  为了解决上一代iphone 6 plus手机机身抗弯性能不高问题,铝工业建议苹果公司采用航空航天工业用的超强度铝合金7075板材加工机身,全新的iphone 6S与iphone 6S plus都全部改用美国铝业公司生产的7075合金板材制造,取得了预期的良好效果,抗弯能力大大提高,摔一下就变弯的情况烟消云散了,变形的情况也没有发生了。   7075型合金简介  7075型合金是美国铝业公司为第二次世界大战飞机研制的,用于制造大型轰炸机与战斗机,1944年定型,1954年7月以前的牌号为75S,1954年7月在美国铝业协会注册,改为统一四位数字牌号7075。  在美国研究75S合金的同时,日本与苏联也同时在研究此类合金,于1945年及1946年分别研制成功有实用价值的此类铝合金,它们是Al-Zn-Mg-Cu系合金,由于它们的强度比Al-Cu-Mg系硬铝的还大,所以被称为超硬铝,直到当下它仍是强度性能较大的一类变形铝合金,并是用量较多的航空航天铝合金之一,与2024型合金并列为两大航空航天铝合金。   例如C919飞机的前机身长桁、旅客观察窗框、中机身长桁、龙骨梁缘条、龙骨梁腹板、地板转折梁、中后机身长桁与货舱门框、机头长桁和缘条、舱门框等都是用不同7075合金材料制造的,可以说没有7075型铝合金的支撑就造不出如此高颜值与更轻巧、更舒适、速度快的大型客机。  7075合金在手机行业应用  在世界手机机身用材中,新iphone 也不是采用这种超强材料的智能机型。韩国三星公司(Samsung)新推出的Note5及S6 edge+的超薄机身都得益于7075合金的采用。由于7075合金的一系列性能,使两款智能手机机身的稳定性达到了一个前所未有的新高度,自此以后,再也未出现变弯了的情况,更未发生损坏的情况了。  三星公司用于制造新型Note5及S6 edge+机身的7075合金有很强的抗弯能力,与以前用的机身材料相比提高了约3倍。  手机与电子产品 外壳铝材短板亟待全面补上  电子产品多种多样,用的铝材也是品种繁多,式样千差万别,单个产品的用量虽不多,但电子产品产量大,以百万、千万件计,有的甚至上亿件,而且换代极快,铝材在手机机身与电子产品外壳制造中得到广泛应用,现在几乎找不到不用铝材的电子产品。  近期生产的苹果、三星智能手机,华为公司的一部分国产手机机身都是铝厚板CNC加工的,特别是用7075合金的,同时三星公司用的是美国铝业公司的6013Alcoa power plateTM厚板,中国有几个厂的装备与技术力量在生产此合金厚板方面经过努力应该不成问题,不过也不可掉以轻心,对中国铝加工业来说,这还是一种新合金,没有生产经验,但有生产6061合金的经验,因为它们同属Al-Mg-Si-Cu-Mn系合金。  在当前及未来,手机轻薄化趋势是不可阻挡的潮流,需要更强更好的机身材料来支撑,在未来一定会有更多的国产手机采用7xxx系合金厚板作为机身材料,但是现在用的板材都是美国铝业公司生产的,进口价格高达7万元/t,约为3xxx系合金价格的3.9倍,除了7075合金的生产工艺比其他系合金的复杂得多外,国外公司也看到了中国目前还不能生产这类手机档次的铝合金厚板,奇货可居。  因此,中国必须尽快摆脱这种困境,补上这块短板,中国的铝加工装备完全具备了生产这种铝板的条件,实际上早在1957年哈尔滨铝加工(代号-0-厂,即现在的东北轻合金有限责任公司)在苏联专家帮助下就试制成功航空级B95(苏联牌号,相当于7075)合金材料,笔者也曾参与了此项工程。  当然,7xxx合金手机机身合金板材的加工工艺,包括CNC切削、阳极氧化着色,都比6xxx系合金板材困难得多,能否顺利解决这些问题,将成为该合金板材能否在国产手机中推广应用的关键。

氧化锆陶瓷“联姻”手机机身

2019-01-03 10:44:25

氧化锆陶瓷机身 VS 传统手机机身 1、氧化锆陶瓷简介2、氧化锆陶瓷与传统材料相比为何倍受青睐 与PC、ABS、PC+ABS等壳体材料相比,氧化锆陶瓷机身具有更坚固耐磨,易上色,不易褪色;可防指纹油,表面质感强;强度高,整体轻盈等优点。 与蓝宝石等玻璃材料相比,氧化锆陶瓷总成本不到蓝宝石的1/4,其抗折率高于蓝宝石,介电常数在30-46之间,非导电,不会屏蔽信号。 与金属及塑料相比,氧化锆陶瓷具备耐磨、亲肤等特点,从而更适合用在可穿戴设备之上。再加上可穿戴设备的气密性和防水性决定它们大都采用无线充电方式,用陶瓷材料做后盖,信号屏蔽小,显然优于金属材质。 氧化锆陶瓷与传统材料的比较陶瓷作为消费电子的结构件具有强大的生命力。特别是对于氧化锆陶瓷,其在光通信、工业、医疗等多个领域已经被证明是极其优秀的结构件材料,进入消费电子领域,不过是其成本下降、脆性改善后水到渠成的结果。3、氧化锆陶瓷作为手机机身的不足及处理方式 陶瓷的清洗是一件很费时的工作,有的陶瓷件在生产加工过程中,在其孔洞或凹槽中粘有很多粉末和碎屑,如不及时清洗除掉,会影响到美观和实用性,而用人工的方法很难清理掉这些污物。目前利用超声波换能器发出强力的机械波,冲击陶瓷件表面和凹槽处,借助外力,这样污物就很容易清洗掉。 氧化锆陶瓷的密度达到6克/立方厘米,仍是所有材料里面最重的,但是氧化锆陶瓷可以通过厚度控制,把总重量控制在比玻璃更轻的程度;此外,由于陶瓷的耐磨性能优越,因此手机机身精细化加工所需要的工时长、成本高,随着技术的日益成熟和发展,这些问题逐渐能克服。 4、氧化锆陶瓷进入手机为代表的消费电子发展方向 一共有三个细分方向,最主要的应用领域是后盖,这里主要是对塑料、玻璃、金属材料的升级和补充。其次是用于指纹识别的贴片或可穿戴设备的外壳,主要受益于指纹识别器装机率的提升和对蓝宝石的替代。最后是用于锁屏和音量键等小型结构件,这是对功能机时代就有的陶瓷按键业务的延续。 小结 手机作为现代生活必不可少的用品,随着科技的发展及人们需求的不断提升,新型材料手机机身的发展成为必然趋势。氧化锆陶瓷作为新型材料中的黑马,近年来的发展势头不容小觑,尤其是在快速消费品手机方面的应用,促使其成为众多手机厂商的焦点。

报废手机中提取贵金属

2018-12-18 09:41:12

日本横滨金属公司把报废手机视为“宝贵的矿物资源”,积极从中获取多种贵重金属。    据日本有关团体的调查,日本目前已有6000多万手机用户,1999年一年间报废的手机多达4000万部。除40%被回收外,报废手机在日本大多被作为一般垃圾扔掉。因此,怎样处理这些废弃物,已成为一个不小的环保问题。    横滨金属公司是一家重金属冶炼企业。在对报废手机成分进行分析后,该公司发现,手机中的贵重金属含量相当丰富。于是,它应用自己拥有的熔炼、电解及化学提取等金属冶炼技术,7年来处理了大约900吨报废手机,从中回收了金、银、铜、钯等多种贵重金属,获得相当可观的经济效益。    这家公司说,平均每100克手机机身中,含有14克铜、0.19克银、0.03克金和0.01克钯。另外,从手机锂电池中还能回收锂。

焊管支架管的区别

2019-03-15 11:27:19

直缝焊管是一种笼统得叫法,方式用钢带生产,在高频焊接设备直缝焊接的管子都叫直缝焊管。(由于钢管的焊接处成一条直线故而得名)。 其中按照用途不同,又不同的后道生产工序.(大致可分为脚手架管,流体管,电线套管,支架管,护栏管等几种) 而低压流体焊管是直缝焊管的一种,一般用水,煤气的输送, 在焊接完毕后比普通焊管多加以一道水压测试,故而低压流体管比普通直缝焊管价格一般高出一点(按现在的市场价来说,大概高出80元左右) 例如:焊接钢管流体管1寸(DN25)(就是Φ33.5*3.25) 价格大概在3950每吨。 而普通直缝焊管在3880左右。

废弃手机究竟对环境产生哪些污染

2019-03-13 10:03:59

抛弃手机作为电子废物的一种,处理处置不妥,会直接或直接要挟环境和人类健康。  假如对抛弃手机进行简略选用传统的填埋或燃烧方法处理,对环境、土壤的损坏难以估计。单一手机或相似产品中的PBTs量十分小,可是进入废物流的数量在急剧添加。实际上,这些产品的小型化添加了其进入日子废物、并被送往燃烧炉和填埋场的可能性,其间环境污染可发生在燃烧或渗漏到土壤和地下水后。   环境研讨安排Inform最新指出,手机等手持设备的组件及电池,因含有不行分化的有毒物质,即便能过埋葬或焚化等方法处理,仍将在环境中堆积有害物质,进而将损害人体健康,导致癌症、神经系统失调等疾病。关于手机及其它电器中不能或难以手艺拆解的部件,如细微电线,电线头、印刷线路板,假如选用露天燃烧,简略的强酸浸泡等落后工艺和设备加工使用的话,将发生严峻污染。   手机中含有必定数量的铅,其印刷线路板中也含有很多的化阻燃剂,都对人体和环境构成了必定的损害性。到2005年,当美国堆积的5亿支手机进入废物流后,将向环境中开释312, 000磅铅。手机中化阻燃剂首要用在印刷线路板和塑料架中。   跟着社会和科学技术的开展,手机及其非这以后的损害也呈现出必定的特色   1.手机小型化对废物构成必定的负面影响。因为其很小,分量很轻,手机很简单被丢掉进入日子废物,当在燃烧炉中燃烧或在填埋场中处置后,终究对环境和人体健康构成损害。   2.手机含有很多有毒物质,包含一系列持久性和生物堆集性化学品,称为PBTs,当燃烧或在填埋场处置后,对人体健康和环境构成损害。PBTs在动物脂肪安排中长期存在,即便开释量很小,在食物链中也能堆集到有毒水平。有6种手机废物与癌症和一系列繁衍、神经和发育紊乱相联系,并对儿童构成特殊损伤,其发育器官和免疫系统对毒素进犯特别灵敏。手机中PBTs包含锑,砷,铍,镉,铜,铅,镍和锌,当在填埋场处置,在燃烧炉燃烧,或一些情况下,在收回设备中处理这些元素时,其会开释到土壤,地下水,空气和地表径流中。   3.因为塑料是高度可燃的,印刷线路板和手机外壳以及其它电子产品都含有含阻燃剂,会显着损坏人体健康和环境,引起癌症,损坏、引起神经和免疫系统问题,甲状腺功用紊乱和内分泌失调等。这些物质可从填埋场渗漏到土壤和地下水中,或在燃烧或收回过程中构成剧毒的二恶英和。研讨现已发现,在瑞典的一个电子废物再使用工厂工人血液中发现了化阻燃剂显着添加。.

铜管管道支架最大间距表

2019-03-06 11:05:28

铜管管道支架最大距离表铜管管道支架最大距离表公称直径(㎜) 1520253240506580100125150200支架最大距离(M)笔直管1.82.42.43333.53.53.53.544水平管1.21.81.82.42.42.43.03.03.03.03.53.5获取更多铜管知识,重视我厂官网:铜管 http://www.mqjjsh.com

涨知识丨7075型合金成手机机身材料新宠?

2018-12-27 15:51:50

手机已成为人们特别是工作人员离不开的通讯工具,几乎人手一台,有的人甚至有二三部或更多,可是它们的机身是用什么材料制成的,不是每个人都一清二楚。        在世界三大手机生产集团(美国苹果公司、韩国三星公司、中国华为公司)生产的智能手机中,有用铝制的,有用钛的,还有用镁的。钛机身亮丽,强度也大,但价格较高,密度也较高,比铝的大66.7%;镁的密度小,比铝的轻36%,有着银光熠熠的色调,但强度比铝的低,抗腐蚀性能也远不如铝,价格又比铝贵。        因此,铝是当前综合性能最好,性价比最佳的智能手机机身材料,同时它的可回收性与可循环性能也优于钛和镁。笔者在这里说的铝、镁、钛包含其各种合金。        我们知道,苹果手机尺寸——屏幕大小从iphone 5开始一再加大,给视觉带来空前的称心惬意,观看手机成了一种美好的享受,现在已加到140mm(5.5英寸)。可是初期大屏幕手机的机身用材并没有同步改进,同时机身厚度还在减薄,因而导致iphone手机机身一受到外力冲击就变形,甚至变得弯弯的,有时一不小心就将爱不释手的宝贝手机弄弯,在个别情况下,屏幕也可能摔打得粉身碎骨。这种情况一直到iphone 6 plus面世都未获得根本性的改变,苹果受到的市场压力越来越大,用户的怨声也日益增多。        7075型合金横空出世 化解iphone 6S困境                                   为了解决上一代iphone 6 plus手机机身抗弯性能不高问题,铝工业建议苹果公司采用航空航天工业用的超强度铝合金7075板材加工机身,全新的iphone 6S与iphone 6S plus都全部改用美国铝业公司生产的7075合金板材制造,取得了预期的良好效果,抗弯能力大大提高,摔一下就变弯的情况烟消云散了,变形的情况也没有发生了。        7075型合金简介                                   7075型合金是美国铝业公司为第二次世界大战飞机研制的,用于制造大型轰炸机与战斗机,1944年定型,1954年7月以前的牌号为75S,1954年7月在美国铝业协会注册,改为统一四位数字牌号7075。        在美国研究75S合金的同时,日本与苏联也同时在研究此类合金,于1945年及1946年分别研制成功有实用价值的此类铝合金,它们是Al-Zn-Mg-Cu系合金,由于它们的强度比Al-Cu-Mg系硬铝的还大,所以被称为超硬铝,直到当下它仍是强度性能最大的一类变形铝合金,并是用量最多的航空航天铝合金之一,与2024型合金并列为两大航空航天铝合金。        例如C919飞机的前机身长桁、旅客观察窗框、中机身长桁、龙骨梁缘条、龙骨梁腹板、地板转折梁、中后机身长桁与货舱门框、机头长桁和缘条、舱门框等都是用不同7075合金材料制造的,可以说没有7075型铝合金的支撑就造不出如此高颜值与更轻巧、更舒适、速度快的大型客机。        7075合金在手机行业应用                                   在世界手机机身用材中,新iphone 也不是唯一采用这种超强材料的智能机型。韩国三星公司(Samsung)新推出的Note5及S6 edge+的超薄机身都得益于7075合金的采用。由于7075合金的一系列优秀性能,使两款智能手机机身的稳定性达到了一个前所未有的新高度,自此以后,再也未出现变弯了的情况,更未发生损坏的情况了。    三星公司用于制造新型Note5及S6 edge+机身的7075合金有很强的抗弯能力,与以前用的机身材料相比提高了约3倍。        手机与电子产品 外壳铝材短板亟待全面补上                                    电子产品多种多样,用的铝材也是品种繁多,式样千差万别,单个产品的用量虽不多,但电子产品产量大,以百万、千万件计,有的甚至上亿件,而且换代极快,铝材在手机机身与电子产品外壳制造中得到广泛应用,现在几乎找不到不用铝材的电子产品。        近期生产的苹果、三星智能手机,华为公司的一部分国产手机机身都是铝厚板CNC加工的,特别是用7075合金的,同时三星公司用的是美国铝业公司的6013Alcoa power plateTM厚板,中国有几个厂的装备与技术力量在生产此合金厚板方面经过努力应该不成问题,不过也不可掉以轻心,对中国铝加工业来说,这还是一种新合金,没有生产经验,但有生产6061合金的经验,因为它们同属Al-Mg-Si-Cu-Mn系合金。        在当前及未来,手机轻薄化趋势是不可阻挡的潮流,需要更强更好的机身材料来支撑,在未来一定会有更多的国产手机采用7xxx系合金厚板作为机身材料,但是现在用的板材都是美国铝业公司生产的,进口价格高达7万元/t,约为3xxx系合金价格的3.9倍,除了7075合金的生产工艺比其他系合金的复杂得多外,国外公司也看到了中国目前还不能生产这类手机档次的铝合金厚板,奇货可居。        因此,中国必须尽快摆脱这种困境,补上这块短板,中国的铝加工装备完全具备了生产这种铝板的条件,实际上早在1957年哈尔滨铝加工(代号-0-厂,即现在的东北轻合金有限责任公司)在苏联专家帮助下就试制成功航空级B95(苏联牌号,相当于7075)合金材料,笔者也曾参与了此项工程。        当然,7xxx合金手机机身合金板材的加工工艺,包括CNC切削、阳极氧化着色,都比6xxx系合金板材困难得多,能否顺利解决这些问题,将成为该合金板材能否在国产手机中推广应用的关键。

小米MIX:手机与陶瓷完美结合的产物

2019-01-03 15:20:48

微晶是由几千或几万个晶胞并置而成的晶体。微晶锆是一种新型陶瓷材料,高达8.5莫氏硬度,仅次于金刚石和蓝宝石,比常见的玻璃要硬的多。与金属、塑料相比,微晶锆具备高硬度、低导热、无屏蔽、介电常数高、生物相容性好、观感如玉等优点,在智能手机、可穿戴设备上具有广阔的应用前景。从具体的产品形态上来看,微晶锆率先以指纹识别盖板、外观结构件、手机后盖为三大突破口,逐步切入移动终端产业链。 与其他材质相比,微晶锆陶瓷有以下优势: 质地高贵,与高贵的蓝宝石(单晶氧化铝)同为宝石级材料; 色泽圆润,具有较高的折光率和较强的色散,拥有良好的即视效果; 热导率低,有玉石的温润,与金属、塑料相比更亲肤; 绝缘材料,不会屏蔽信号,不会影响天线布局; 力学性能好,抗弯强度高,莫氏硬度与蓝宝石相仿,耐弯曲,耐磨; 介电常数高,用于指纹传感器可获得更为清晰锐利的图像。 那么问题来了,小米MIX机身如何制成? 锆英砂提纯 将上游原料锆英砂进行高温溶解并提纯,生产出高纯度的锆盐。 流延和冲压成型 首先将制备好的高纯度锆盐粉料与粘结剂、增塑剂、分散剂、溶剂混合制成具有一定黏度的料浆,料浆从料斗流下,被刮刀以一定厚度刮压涂敷在专用基带上,经干燥、固化后从上剥下成为生坯带的薄膜,然后根据机身设计的尺寸和形状对生坯带作冲切、层合等加工处理,制成待烧结的机身毛坯成品。>>>> 排胶烧结 高性能陶瓷材料要经过高温烧结才能形成致密瓷体。成型采用的浆料中通常加入了胶黏剂、增塑剂、分散剂和溶剂。在陶瓷的烧结过程中,需要在加热的炉子里排出这些碳氢化合物。排胶是为了避免陶瓷在高温烧结过程中出现气孔、裂纹,影响陶瓷的结构和性能。 >>>> 真空发黑 真空发黑工艺的目的是为了在高真空环境下短时升温至1500℃,对炉内物件熔融对接。>>>> 定型加工 通过该工艺得到了陶瓷机身的毛坯件。 >>>> 抛光 抛光是利用机械、化学或电化学的作用,使工件表面粗糙度降低,以获得光亮、平整表面的加工方法。>>>> 激光打孔 激光聚焦光斑可以会聚到波长量级,在很小的区域内集中很高的能量,特别适合于加工微细深孔,最小孔径只有几微米,孔深和孔径比可大于50。激光打孔用于陶瓷机身的部位主要是外壳听筒及天线打孔、耳机打孔等部位,具有效率高、成本低、变形小、适用范围广等优点。细心的读者应该注意到前边提到的技术方向是“微晶陶瓷技术”,而不只是“纳米微晶锆陶瓷” 纳米微晶锆陶瓷技术是很高端、产业化很难,但微晶陶瓷技术不止这一种。还有其他材质的微晶陶瓷、微晶玻璃陶瓷、微晶玻璃陶瓷复合板等等。这些都具有更低的技术难度、更好的可加工性,相似的强度,但在介电特性、导热特性、硬度等方面相差甚远,而在经过镀膜处理后,一般消费者无法分辨,容易形成误导。 这些技术为纳米微晶锆陶瓷技术提供了大量的次生品/衍生品产品空间,提高了相应的原料、生产设备利用率,适合用于其他低成本产品设计。同时,这些材料良好的可加工性——离子强化、切割、陶瓷焊接、镀色、提高电子特性等等,产生了电子陶瓷机身与电子元件结合的新工艺方向。 据IDC预测,到2019年全球智能手机出货量将达到19.6亿部,腕式可穿戴设备的出货量将达1.01亿部。以2015年全球14.5亿部智能手机出货量为前提假设,剔除苹果手机的份额,若渗透率为10%,每块后盖均价150元,则15年手机陶瓷后盖的市场空间将达165亿,2019年将达到294亿。智能穿戴均价70 元,渗透率60%,则2019 年市场空间将达42.42 亿。 另外,小米并未明确说明自家的纳米微晶锆陶瓷采用的是什么材料组成,不过以锆元素为基础组成的陶瓷只有二氧化锆,硅酸锆两种材料。 硅酸锆熔点高于3000℃,应用于航天发动机、金属熔炼用具,更常见于军工产品,是绿松石青金石基础元素,可以说是宝石级别材料。 而氧化锆的熔点为2715℃,相比前者,更容易制成纳米微晶陶瓷。 综合来看,小米的纳米微晶锆陶瓷采用的是二氧化锆材质做基质。 与金属及塑料相比,氧化锆陶瓷具备耐磨、亲肤、气密性好以及电磁屏蔽小等特点,从而更适合用在可穿戴设备之上。一般可穿戴设备都要求良好的气密性并能够防水,因此需要采取无线充电的方式。而类似AppleWatch 这样的接触式充电,用陶瓷材料做后盖,显然优于金属材质。可以这么说,随着可穿戴时代的到来,陶瓷后盖有望成为趋势。

铝合金

2017-12-27 11:04:39

铝合金通常使用铜、锌、锰、硅、镁等合金元素,20世纪初由德国人Alfred Wilm发明,对飞机发展帮助极大,一次大战后德国铝合金成分被列为 国家机密 。跟普通的碳钢相比有更轻及耐腐蚀的性能,但抗腐蚀性不如纯铝。在干净、干燥的环境下铝合金的表面会形成保护的氧化层。造成电偶腐蚀(Galvanic corrosion)加速的情况有:铝合金与不銹钢接触的情况、其他金属的腐蚀电位比铝合金低或是在潮湿的环境下。如果铝和不銹钢要一同使用必须在有water-containing systems或是户外安装两金属间电子或电解隔离。铝合金的成分需要向美国铝业协会(Aluminium Association,AA)注册。许多组织公布更具体制造铝合金的标准,包括美国汽车工程协会(Society of Automotive Engineers,SAE)特别是航空标准,还有美国材料试验协会(American Society for Testing and Materials,ASTM)。铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶  铝合金及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。   纯铝的密度小(ρ=2.7g/cm3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。