您所在的位置:
上海有色 >
有色金属产品库 >
硬质铝合金
硬质铝合金
国际铝合金硬质氧化膜的标准
2019-01-15 09:51:37
国际铝合金硬质氧化膜的标准
国际标准:ISO10074 工程用铝的硬质氧化膜规范
英国标准:BS5599 工程用铝的硬质氧化膜
英国军用规范:DEF STAN
美国军用规范:MIL-A-8625F
美国宇航规范:AMS 2469D
铝合金硬质氧化膜的标准号
2019-01-15 09:51:32
国际铝合金硬质氧化膜的标准 国际标准:ISO10074 工程用铝的硬质氧化膜规范 英国标准:BS5599 工程用铝的硬质氧化膜 英国军用规范:DEF STAN 美国军用规范:MIL-A-8625F 美国宇航规范:AMS 2469D
常见铝合金硬质阳极化成膜特征
2019-01-02 14:54:46
常见铝合金硬质阳极化成膜特征合金成膜性能*厚度最大值点型颜色2024差50um浅灰/灰5052 63um黑暗灰色6061好63um黑暗灰色6062好76um浅灰/灰6005好63um浅灰/灰7075极好50um橄榄树/灰色7A04极好50um橄榄树/灰色7A09极好50um橄榄树/灰色ADC12差45um灰/灰黑ADC6好60um灰/灰黑*厚度最大值指出现最高硬度时的厚度
什么叫铝及铝合金的硬质阳极氧化
2019-01-15 09:49:23
硬质阳极氧化处理是铝及铝合金电化学氧化处理方法中较新的一种方法。它是在冷却的稀硫酸氧化溶液条件下而获得硬度高、膜层厚的氧化膜,这种过程称为硬质阳极氧化处理法或称厚膜阳极氧化处理法,或简称“硬氧化”。
如何鉴别优质的硬质合金锯片?
2019-01-14 14:52:58
硬质合金锯片由锯板和硬质合金锯齿两部部组成。硬质合金锯齿目前基本上是进口的,我们公司采用卢森堡CERMETAL硬质合多。优质锯片所用的合金颗粒较厚、较大,因为这样的合金锯齿可经多次刃磨,使用寿命长,硬质合金的焊接质量也十分重要,焊缝要薄并且均匀,这样锯齿上能承受更大的切削力。锯片锯板的质量是十分重要的。因为锯片调整旋转,它既要传递切削力又要保持工作的稳定性。优良的锯片不仅具有静态几何尺寸和准确度,更重要的是它的动态特性。当锯片连续切削时,合金锯齿切削所产生的热会传导给锯板,使锯板的温度升高,优质的锯板在这种情况下还能保持表态的精度,而质差的锯片就会发生锯板翘曲,影响锯切精度。锯板的动态稳定性对于几片锯片成组使用的精况尤为重要。当多片锯设备使用一组不稳定的锯片又如何能保证纵向开料的质量。锯板和刀头是优质锯片不可分割的组成部分。
铝合金成分对硬质阳极氧化膜质量的影响
2018-12-27 11:13:39
在硬质阳极氧化过程中,当铝合金中有害成分浓度超过允许值时,对氧化膜的均匀性和完整性都会有一定的影响。尤其是铝一铜合金、铝一硅合金,硬质阳极氧化困难较大,质量较难保证。当铝-铜合金中铜含量大于5%,铝一硅合金中硅含量大于7.3%时,不适宜用直流电进行硬质阳极氧化,而需采用直流电和交流电叠加方法进行氧化处理。
怎样鉴别优质的硬质合金锯片
2019-01-11 10:51:55
通常情况下,硬质合金锯片由锯板和硬质合金锯齿两部部组成。硬质合金锯齿目前基本上是进口的。优质锯片所用的合金颗粒较厚、较大,因为这样的合金锯齿可经多次刃磨,使用寿命长,硬质合金的焊接质量也十分重要,焊缝要薄并且均匀,这样锯齿上能承受更大的切削力。 锯片锯板的质量是十分重要的。因为锯片调整旋转,它既要传递切削力又要保持工作的稳定性。优良的锯片不仅具有静态几何尺寸和准确度,更重要的是它的动态特性。 与金刚石锯片不同,当锯片连续切削时,合金锯齿切削所产生的热会传导给锯板,使锯板的温度升高,优质的锯板在这种情况下还能保持表态的精度,而质差的锯片就会发生锯板翘曲,影响锯切精度。锯板的动态稳定性对于几片锯片成组使用的精况尤为重要。
铝合金成分对硬质阳极氧化膜的质量有何影响?
2018-12-28 09:57:31
在硬质阳极氧化过程中,当铝合金中有害成分浓度超过允许值时,对氧化膜的均匀性和完整性都会有一定的影响。尤其是铝一铜合金、铝一硅合金,硬质阳极氧化困难较大,质量较难保证。当铝-铜合金中铜含量大于5%,铝一硅合金中硅含量大于7.3%时,不适宜用直流电进行硬质阳极氧化,而需采用直流电和交流电叠加方法进行氧化处理。
恒定电流密度下铝合金的硬质阳极氧化
2019-01-15 14:10:21
1 前言
在成都飞机工业公司与美国麦道公司合作生产MD90机头的过程中,采用铝合金硬质阳极氧化工艺。需满足美方麦道工艺规范DPS10。01的要求,即成膜的电流密度为18。9A/dm2,较低不能低于9。9A/dm2,膜厚为45~55μm。而我公司及国内采用的工艺的成膜电流密度为2~6A/dm2。在较高电流密度(9。9A/dm2以上)进行阳极化时,零件的烧毁率很高,生产成本较高。因此,为达到美方的要求,且不提高生产成本,必须进行技术改造。
在高电流密度下形成厚膜的硬质阳极氧化主要采用以下2种方法。
①通过往电解液中添加适量的有机酸或有机化合物,以改善膜层质量,降低零件烧毁率。
②通过在不同试样上施加不同波形的电流来改变膜的成长过程,以提高膜的质量,如交直流叠加、直流叠加方波脉冲等。
本文着重从改进阳极氧化电源入手,根据试样(零件)烧毁率和美军标MIL-A8625及美国麦道公司工艺标准DPS11。01评价膜层质量。
2 试验
2。1 电解液配方
配方1:
硫酸 180~200g/L
草酸 8~15g/L
添加剂 30g/L
温度 -7~-8℃
配方2:
硫酸 280~300g/L
温度 -7~-8℃
2。2 试样材料及尺寸
2024—T3(铝合金) 100mm×100mm ×6mm
7075—T6(铝合金) 100mm×100mm ×6mm
2。3 工艺流程
装挂→碱性清洗剂清洗→冲洗→碱腐蚀→冲洗→干燥→局部表面保护→硬质阳极化→冲洗→封闭→冲洗→干燥→拆卸→检验
2。4 电源
①直流电源
②直流叠加脉冲电源
该电源采用可控硅调压,在直流基础上加脉冲电流,通断比为2。5:1。为意大利ELCA公司生产。电流波形见图1:
图1 直流叠加脉冲电源波形示意图
③单相交直流叠加电源
此电源为可控硅调压,整流器整流,主要采用直流和交流叠加在一起,正向电流与反向电流比为10∶1到8∶1。电流波形见图2:
图2 单相交直流叠加电源电流波形示意图
2。5 膜层性能检测
2。5。1 耐磨性试验
采用24块100mm×100mm×6mm的试样,在Taber磨损机上负荷10N,转速70r/min,10000次循环测得数据的平均值。
2。5。2 膜厚的测量
采用显微镜金相法测定。
3 结果与讨论
直流电源以及直流叠加脉冲电源氧化试验的结果见表1、2,其烧毁率是以试样和零件氧化时烧毁的实际数据统计而出。由表1、2可见,在较高电流密度(9。9 A/dm2)下,在有添加剂的配方1中所得膜层比在无添加剂的配方2的烧毁率稍低,但烧毁率仍太高,无法直接应用于生产。
表1 直流电源下铝合金阳极化的烧毁率
────────────────────── 烧毁率 材料 ──────────────── 配方方1 配方2 ────────────────────── 2024—T3 45% 50% 7075—T6 28% 30% ──────────────────────
电流密度为9。9 A/dm2,电流上升时间为5 min。
表2 直流叠加脉冲电源下铝合金阳极化的烧毁率
────────────────────── 烧毁率 材料 ───────────────── 配方方1 配方2 ────────────────────── 2024—T3 40% 43% 7075—T6 25% 28% ──────────────────────
电流密度为9。9 A/dm2,电流上升时间为5、10、15 min,加入脉冲为10%、20%、30%。
2 在交直流叠加电源氧化的情况下,烧毁率几乎为零。从4。4 A/dm2到9。9 A/dm2、18。9 A/dm2,不管是7075铝合金还是含有高铜的铝合金2024,膜层的耐磨性均达到DPS11。01和MIL-A-8625的要求。而且随着电流密度的增加,膜层的耐磨性能不断提高。在不同的电流密度下,含有添加剂的配方1中形成的膜层的耐磨性均比没有添加剂的配方2中形成的高。在膜厚基本相同的情况下,高电流密度下的成膜时间比低电流密度下的要短得多。
根据以上试验可以看出铝合金试样在不同波形电源产生的高电流密度下的烧毁率差异很大。这是因为在阳极化时试片表面通过较高电流,因氧化膜具有很在原电阻,而且阳极化过程中产生的热量大多集中在试样与电解液接角面之间不易散发,导致温度上升,即所谓的界面温度过高,可达上百度。因此在阳极化过程中,如果没有足够的散热时间,会使氧化膜溶解加快,很容易会烧毁试样。具体分析如下:
①在直流电源产生的高电流密度下,铝 合金试样在成膜过程中因为没有足够的散热时间,造成界面温度过高而烧毁试样。
②直流叠加脉冲电源产生的高电流密度下,铝合金试样在成膜过程中,由于电源波形峰值电流密度很大,能促进膜的生长;底部电流密度小,有利于散发焦耳热,降低界面温度,使得膜不易被烧毁,但在高电流成膜的情况下仍然不能使界面温度完全降低,故而试样被烧毁的机率较大。
③单相交直流叠加电源产生的高电流密度下,铝合金试样在成膜过程中,正向大电流时有利于氧化膜的生长,反向电流时膜层不溶解并且大大降低成膜过程中产生的焦耳热,降低了界面温度,保护膜不易被烧毁。另外,在反向电流时,试样处于阴极状态,电极反应有氢析出,初生的氢和氧在氧化膜孔隙中很快结成了水。由于减少了大量气态的氢和氧,电解液比较容易接触到铝基体。并且由于膜孔中生成的水增加了电解液的流动性,改善了冷却效果,降低了界面温度,因此,试样不会被烧毁。
另外从表3的试验数据可以看出,较高电流密度下形成的膜层的耐磨性优于较低电流密度下的,这是因为铝合金试样在恒定电流密度下氧化成膜时,可以通过增加氧化化时间的处长而降低,时间达长会产生疏松的膜层。因此,提高电流密度可以缩短成膜时间,从而提高膜层耐磨性。
4 应用
成飞公司根据以上试验结果在96年进行了技术改造,添置了一台大功率的1000A。0~55V交直流硬质阳极氧化设备并按照美国军标MIL-A-8625和美国麦道公司DPS11。01工艺规范评价了膜厚、膜重、耐磨和耐盐雾性能。结果完全满足MIL-A8625标准和DPS11。01工艺规范的要求,通过了美国麦道公司的工艺评审,已应用于转包生产中。此电源在高电流密度下大大提高了生产效率,既缩短了工时又降低了能耗、节约了成本,自97年投产以来累计节省费用60多万元。
超硬质合金高温回收钨钴法
2018-12-07 13:58:01
9月16日消息:高温处理回收钨钴法:超硬质合金是由钨、钴和炭粉混合成型烧结加工制成的。日本新金属公司开发的超硬质合金高温处理法可以回收钨钴再生粉末,年产可达80吨。 超硬质合金碎屑洗净后,在1800~2300℃高温下的惰性气体中进行热处理,超硬质合金中的钴呈易于粉末化的海绵状态。在热处理温度下,超硬质合金中钴在1800℃以下不呈海绵状态,而在2300℃以上合金中的碳化钨将分解并生成第三相,结果不好。
热处理后的块状碎屑,用颚式破碎机或滚筒破碎机进行粗碎到-850μm,其后再微粉碎成再生粉末。本法得到的再生粉末,因经过粗大粒子化过程,烧结时有易于粒子成长的倾向。其中的钴含量、碳含量处理后几乎没有变化,仅杂质铁、硅量增加,对制造硬质合金没有影响。再生粉末粒度据粉碎条件,可能微粉碎到1μm以下。
本法用比较容易的工序,不损害超硬质合金的原组成,任何品种的超硬质合金均可再生成一定粒度的粉末,不需特殊设备,为经济的回收方法。较以往加化学试剂精炼后回收利用的方法,有很大优越性。