您所在的位置: 上海有色 > 有色金属产品库 > 铝合金焊接加工 > 铝合金焊接加工百科

铝合金焊接加工百科

6063铝合金焊接

2017-06-06 17:50:11

6063铝合金焊接主要采用两种焊接方式:1.氩弧焊(交流)焊接;2.气保焊焊接。    焊接方法:几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)。    焊接特点:(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体 金属 内部,因而焊接铝及铝合金时,能量除消耗于熔化 金属 熔池外,还要有更多的热量无谓消耗于 金属 其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。(6)合金元素易蒸发、烧损,使焊缝性能下降。(7)母材基体 金属 如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。    了解跟多有关6063铝合金焊接的信息,请关注上海 有色 网。 

铝合金加工

2017-06-06 17:50:10

  铝合金的加工工艺,硅对硬质合金有腐蚀作用。虽然一般将超过12%Si的铝合金称为高硅铝合金,推荐使用金刚石刀具,但这不是绝对的,硅含量逐渐增多对刀具的破坏力也逐渐加大。因此有些厂商在硅含量超过8%时就推荐使用金刚石刀具。       硅含量在8%-12%之间的铝合金是一个过渡区间,既可以使用普通硬质合金,也可以使用金刚石刀具。但使用硬质合金应使用经PVD(物理镀层)方法、不含铝元素的、膜层厚度较小的刀具。因为PVD方法和小的膜层厚度使刀具保持较锋利的切削刃成为可能(否则为避免膜层在刃口处异常长大需要对刃口进行足够的钝化,切铝合金就会不够锋利),而膜层材料含铝可能使刀片膜层与工件材料发生亲合作用而破坏膜层与刀具基体的结合。因为目前的超硬镀层多为铝、氮、钛三者的化合物,可能会因硬质合金基体随膜层剥落时少量剥落造成崩刃。     铝合金是工业中应用最广泛的一类 有色金属 结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。    纯铝的密度小(ρ=2.7g/m3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。 添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。       更多有关铝合金加工请详见于上海 有色 网

铝合金该如何焊接

2019-03-11 11:09:41

铝合金焊接的标准    铝材焊接办法:简直各种焊接办法都能够用于焊接铝及铝合金,可是铝及铝合金对各种焊接办法的适应性不同,各种焊接办法有其各自的使用场合。气焊和焊条电弧焊办法,设备简略、操作便利。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体维护焊(TIG或MIG)办法是使用最广泛的铝及铝合金焊接办法。铝及铝合金薄板可选用钨极沟通氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可选用钨极氦弧焊、氩氦混合钨极气体维护焊、熔化极气体维护焊、脉冲熔化极气体维护焊。熔化极气体维护焊、脉冲熔化极气体维护焊使用越来越广泛(氩气或氩/氦混合气)。广东铝板批发    焊前预备    1、焊前整理:铝及铝合金焊接时,焊前应严厉铲除工件焊口及焊丝表面的氧化膜和油污。    1)化学清洗化学清洗效率高,质量安稳,适用于整理焊丝及尺度不大、成批出产的工件。可用浸洗法和擦洗法两种。可用、汽油、火油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH溶液碱洗3min~7min(纯铝时刻稍长但不超越20min),活动清水冲刷,接着用室温至60℃的30%HNO3溶液酸洗1min~3min,活动清水冲刷,风干或低温枯燥。    2)机械整理:在工件尺度较大、出产周期较长、多层焊或化学清洗后又沾污时,常选用机械整理。先用、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15mm~0.2mm的铜丝刷或不锈钢丝刷子刷,刷到显露金属光泽停止。一般不宜用砂轮或普通砂纸打磨,避免砂粒留在金属表面,焊接时进入熔池发生夹渣等缺点。别的也可用刮刀、锉刀等整理待焊表面。    整理后如寄存时刻过长(如超越24h)应当重新处理。    2、垫板:铝合金在高温时强度很低,液态铝的活动性能好,在焊接时焊缝金属简略发生下塌现象。为了确保焊透而又不致陷落,焊接经常选用垫板来托住熔池及邻近金属。垫板可选用石墨板、不锈钢板、碳素钢板、铜板或铜棒等。垫板表面开一个圆弧形槽,以确保焊缝不和成型。也能够不加垫板单面焊双面成型,但要求焊接操作娴熟或采纳对电弧施焊能量严厉主动反应操控等先进工艺办法。3、焊前预热:薄、小铝件一般不必预热,厚度10mm~15mm时可进行焊前预热,依据不同类型的铝合金预热温度可为100℃~200℃,可用氧一焰、电炉或喷灯等加热。预热可使焊件减小变形、削减气孔等缺点。焊后处理铝合金批发供应商    1)焊后整理焊后留在焊缝及邻近的残存焊剂和焊渣等会损坏铝表面的钝化膜,有时还会腐蚀铝件,应整理洁净。形状简略、要求一般的工件能够用热水冲刷或蒸气吹刷等简略办法整理。要求高而形状杂乱的铝件,在热水顶用硬毛刷冲洗后,再在60℃~80℃左右、浓度为2%~3%的铬酐水溶液或重溶液中浸洗5min~10min,并用硬毛冲洗刷,然后在热水中冲冲洗刷,用烘箱烘干,或用热空气吹干,也可天然枯燥。    2)焊后热处理铝容器一般焊后不要求热处理。

铝合金先进焊接工艺

2019-01-02 16:39:00

一、铝合金焊接的特点铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50%以上。   铝合金焊接有几大难点:   ①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍;②铝合金表面易产生难熔的氧化膜(Al2O3其熔点为2060℃) ,这就需要采用大功率密度的焊接工艺;③铝合金焊接容易产生气孔;④铝合金焊接易产生热裂纹;⑤线膨胀系数大,易产生焊接变形;⑥铝合金热导率大(约为钢的4倍) ,相同焊接速度下,热输入要比焊接钢材大2~4倍。   因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。   二、铝合金的先进焊接工艺针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。   1.铝合金的搅拌摩擦焊接搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al -Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结构件。   铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与普通摩擦焊相比,它可不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金要求对表面进行去除氧化膜,并在48h 内进行加工,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。并且搅拌摩擦焊比熔化焊节省能源、污染小。   搅拌摩擦焊铝合金也存在一定的缺点:   ①铝合金搅拌摩擦焊接时速度低于熔化焊;②焊件夹持要求高,焊接过程中对焊件要求加一定的压力,反面要求有垫板;③焊后端头形成一个搅拌头残留的孔洞,一般需要补焊上或机械切除;④搅拌头适应性差,不同厚度铝合金板材要求不同结构的搅拌头,且搅拌头磨损快;⑤工艺还不成熟,目前限于结构简单的构件,如平直的结构、圆形结构。搅拌摩擦焊工艺参数简单,主要有搅拌头的旋转速度、搅拌头的移动速度、对焊件的压力及搅拌头的尺寸等。   2.铝合金的激光焊接铝及铝合金激光焊接技术(Laser Welding) 是近十几年来发展起来的一项新技术,与传统焊接工艺相比,它具有功能强、可靠性高、无需真空条件及效率高等特点。其功率密度大、热输入总量低、同等热输入量熔深大、热影响区小、焊接变形小、速度高、易于工业自动化等优点,特别对热处理铝合金有较大的应用优势。可提高加工速度并极大地降低热输入,从而可提高生产效率,改善焊接质量。在焊接高强度大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现。   激光焊接铝合金有以下优点:   ①能量密度高,热输入低,热变形量小,熔化区和热影响区窄而熔深大;②冷却速度高而得到微细焊缝组织,接头性能良好;③与接触焊相比,激光焊不用电极,所以减少了工时和成本;④不需要电子束焊时的真空气氛,且保护气和压力可选择,被焊工件的形状不受电磁影响,不产生X射线;⑤可对密闭透明物体内部金属材料进行焊接;⑥激光可用光导纤维进行远距离的传输,从而使工艺适应性好,配合计算机和机械手,可实现焊接过程的自动化与精密控制。   现在应用的激光器主要是CO2和YAG激光器,CO2激光器功率大,对于要求大功率的厚板焊接比较适合。但铝合金表面对CO2激光束的吸收率比较小,在焊接过程中造成大量的能量损失。YAG激光一般功率比较小,铝合金表面对YAG激光束的吸收率相对CO2激光较大,可用光导纤维传导,适应性强,工艺安排简单等。   在焊接大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现 。   铝及铝合金的激光焊接难点在于铝及铝合金对辐射能的吸收很弱,对CO2 激光束(波长为10. 6μm) 表面初始吸收率1. 7 %;对YAG激光束(波长为1. 06 μm)吸收率接近5 %。

铝合金焊接注意事项

2019-03-01 14:09:46

铝合金被广泛的运用在工业产品上,由于它具有很好的物理功能,不过由于焊接办法及焊接工艺参数的选取不妥,形成铝合金零件焊接后因应力过于会集发生严峻变形,或由于焊缝气孔、夹渣、未焊透等缺点,导致焊缝金属裂纹或原料疏松,严峻影响了产品质量及功能。接下来小编为我们介绍铝合金焊接办法及铝合金焊接注意事项。    铝合金焊接办法    1、钨极氩弧焊    钨极氩弧焊法首要用于铝合金,是一种较好的焊接办法,不过钨极氩弧焊设备较杂乱,不合适在露天条件下操作。    2、电阻点焊、缝焊    这种焊接办法能够用来焊接厚度在5mm以下的铝合金薄板。但是在焊接时用的设备比较杂乱,焊接电流大、出产率较高,特别适用于大批量出产的零、部件。    3、脉冲氩弧焊    脉冲氩弧焊能够很好的改进在焊接过程中的安稳性能够调理参数来操控电弧功率和焊缝成形。焊件变形小、热影响区小,特别适用于薄板、全方位焊接等场合以及对热敏理性强的锻铝、硬铝、超硬铝等的焊接。    铝合金焊接注意事项    1、焊接铝合金前先要整理铝合金表面,不能有油污,尘土等存在,能够用清洗铝合金焊接处的表面,厚板铝合金要用钢丝刷整理,之后再加清洗。    2、在焊接铝合金的时分要先整理铝合金表面,不能有油烟,尘埃等,别的厚板铝合金要用钢丝刷整理,然后再加清洗。    3、假如板材比较后能够对板材预热,这样能够避免预热不行形成成焊不透,在收弧时要用小电流收弧填坑。    4、焊接时一定要规范,要根据板材的厚度来焊接    5、焊的电缆不要太长,要是太长会形成送丝安稳。

铝合金激光焊接的前景

2019-01-02 09:52:54

铝合金激光焊接最为引人关注的特点是其高效率,而要充分发挥这种高效率就要把它运用到大厚度深熔焊接中。因此,研究和使用大功率激光器进行大厚度深熔焊接将是未来发展的必然趋势。大厚度深熔焊更加突出了小孔现象及其对焊缝气孔的影响,因此小孔形成机理及其控制变得更加重要,它必将成为未来学术界及工业界共同关心和研究的热点问题。    改善激光焊接过程的稳定性和焊缝成形、提高焊接质量是人们追求的目标。因此,激光-电弧复合工艺、填丝激光焊接、预置粉末激光焊接、双焦点技术以及光束整形等新技术将会得到进一步的完善和发展。     另外,有人发现在CO2激光焊接熔池中存在几安培的固有电流,焊接区的外加磁场会影响熔池的流动状态以及光致等离子体的形态和稳定性。因此,采用某种形式的磁场有可能改善铝合金激光焊接过程的稳定性和焊缝质量。所以,采用辅助电流,通过其形成的电磁力控制熔池流动状态,从而改善焊接过程的稳定性,提高焊缝质量,也可能会受到更多研究者的关注。

铝合金材料的焊接优势

2019-03-01 10:04:59

铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀才干强,具有出色的物理特性和力学功用,因此广泛应用于工业产品的焊接结构上。长期以来,由于焊接方法及焊接技能参数的挑选不妥,构成铝合金零件焊接后因应力过于会合发作严峻变形,或由于焊缝气孔、夹渣、未焊透等缺陷,致使焊缝金属裂纹或质料疏松,严峻影响了产品质量及功用。     1.铝合金材料特色     铝是银白色的轻金属,具有出色的塑性、较高的导电性和导热性,一同还具有抗氧化和抗腐蚀的才干。铝很简略氧化发作三氧化二铝薄膜,在焊缝中简略发作夹杂物,然后损坏金属的连续性和均匀性,下降其机械功用和耐腐蚀功用。常见铝合金母材和焊丝的化学成分及机械功用。广毅荣铜铝批发.     2.铝合金材料的焊接难点     (1)很简略氧化。在空气中,铝简略同氧化合,生成细密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远逾越铝及铝合金的熔点(约600℃支配)。氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻挠底子金属的熔合,很简略构成气孔、夹渣、未熔合等缺陷,引起焊缝功用下降。     (2)易发作气孔。铝和铝合金焊接时发作气孔的首要原因是氢,由于液态铝可溶解许多的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝聚时,氢来不及逸出,简略在焊缝中调集构成气孔。孔现在难于完全避免,氢的来历许多,有电弧焊气氛中的氢,铝板、焊丝表面吸附空气中的水分等。实践证明,即使氩气按GB/T4842标准需求,纯度抵达99.99%以上,但当水分含量抵达20ppm时,也会出现许多的细密气孔,当空气相对湿度逾越80%时,焊缝就会明显出现气孔。     (3)焊缝变形和构成裂纹倾向大。铝的线胀大系数和结晶缩短率约比钢大两倍,易发作较大的焊接变形的内应力,对刚性较大的结构将促进热裂纹的发作。     (4)铝的导热系数大(纯铝0.538卡/Cm.s.℃)。约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。     (5)合金元素的蒸发的烧损。铝合金中含有低沸点的元素(如镁、锌、锰等),在高温电弧作用下,很简略蒸发烧损,然后改动焊缝金属的化学成分,使焊缝功用下降。     (6)高温强度和塑性低。高温时铝的强度和塑性很低,损坏了焊缝金属的成形,有时还简略构成焊缝金属塌落和焊穿表象。     (7)无颜色改动。铝及铝合金从固态转为液态时,无明显的颜色改动,使操作者难以掌握加热温度。     3.铝合金材料焊接的技能方法     (1)焊前准备     选用化学或机械方法,严峻收拾焊缝坡口两头的表面氧化膜。     化学清洁是运用碱或酸清洁工件表面,该法既可去掉氧化膜,还可除油污,详细技能进程如下:体积分数为6%~10%的溶液,在70℃支配浸泡0.5min→水洗→体积分数为15%的硝酸在常温下浸泡1min进行中和处置→水洗→温水洗→单调。洗好后的铝合金表面为无光泽的银白色。     机械收拾可选用风动或电动铣刀,还可选用刮刀、锉刀等东西,关于较薄的氧化膜也可用0.25mm的铜丝刷打磨铲除氧化膜。     收拾好后当即施焊,假设放置时刻逾越4h,应从头收拾。     (2)判定装置空地及定位焊间隔     施焊进程中,铝板受热胀大,致使焊缝坡口空地减少,焊前装置空地假设留得太小,焊接进程中就会引起两板的坡口堆叠,增加焊后板面不平度和变形量;相反,装置空地过大,则施焊困难,并有烧穿的可以。适合的定位焊间隔能确保所需的定位焊空地,因此,挑选适合的装置空地及定位焊间隔,是减少变形的一项有用方法。根据阅历,不同板厚对接缝较合理的装置技能参数如表2。     (3)挑选焊接设备     现在市场上焊接产品种类较多,一般情况下宜选用交流钨极氩弧焊(即TIG焊)。它是在氩气的保护下,运用钨电极与工件问发作的电弧热熔化母材和填充焊丝的一种焊接方法。该焊机作业时,由于交流电流的极性是在周期性的转换,在每个周期里半波为直流正接,半波为直流反接。正接的半波时刻钨极可以发射满意的电子而又不致于过热,有利于电弧的安稳。反接的半波时刻工件表面生成的氧化膜很简略被收拾掉而获得表面亮光漂亮、成形出色的焊缝。     (4)挑选焊丝     一般选用301纯铝焊丝及311铝硅焊丝。     (5)挑选焊接方法和参数     一般以左焊法进行,焊炬和工件成60°角。焊接厚度15mm以上时,以右焊法进行,焊炬和工件成90°角。     焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,空地不得大于1mm,以多层焊完结。壁厚在1.5mm以下时,不开坡口,不留空地,不加填充丝。焊固定管子对接接头时,当管径为200mm,壁厚为6mm时,应选用直径为3~4mm的钨极,以220~240A的焊接电流,直径为4mm的填充焊丝,以1~2层焊完。

铝合金激光焊接工艺分析

2019-01-09 11:26:44

近几年快速发展的铝合金激光焊接技术将铝合金应用推广的更加广泛,该技术能够将两种热源的优点同时结合起来,同时又能弥补各自的不足,是一种新型的焊接方法,越来越备受人们的欢迎。    1 铝合金及其焊接的概述    铝和铝合金都具有非常优良的性能,比如比强度高、耐腐蚀性强,在许多的产业中都具有非常广泛的应用,尤其在国防工业、机械等产业,并且铝合金属于有色金属,在应用的过程中需要进行焊接,所以随着科学技术的飞速发展,铝合金的焊接技术的研究也越来越深入。因此,激光焊接技术是科学技术的一大进步。    激光焊接技术的概述:激光焊接作为一种新型的焊接技术,焊接热源直接是激光,既可以避免能源的浪费,又可以大大地提高焊接的效率。同时,激光焊接把机器人或者是数控机床作为运动系统,减少人员的参与,可以减少劳动力的浪费,提高焊接的效率。激光热源除了具有可再生性和清洁无污染的优点之外,还可以高度的聚焦和良好性能的传输,因此可以将能量全部汇聚集中于一点,避免热量的散失和浪费。所以,激光焊接能够提高焊接的效率和速度以及焊接的质量。因为激光焊接的光束是通过脉冲或者连续的激光束来实现的,因此当激光束直接照射铝合金的表面时,能够把金属表面的热量迅速扩散到铝合金的内部,使铝合金快速的熔化形成一条焊缝,同时在融化后的金属上形成一种反作用力,较终将熔化的铝合金表面向下凹陷形成小孔。这个小孔具有强大的功效,可以全部吸收激光光束照射时产生的能量,并同时产生高温蒸汽,蒸汽压力与壁层表面的张力形成一种动态的平衡。    1.1 激光焊接的功率    激光焊接具有一定的功率,只有当焊接功率达到一定的高度时,才能让焊接得以稳定、持续的进行,否则焊接只能在铝合金的表面进行工作,使得铝合金表面发生熔化,从而焊接不能成功的进行。激光焊接的功率可以达到将铝合金表面以及内部全部焊接的高度,甚至比此还要高,所以激光焊接铝合金级可以提高效率和速度以及质量。    1.2 激光焊接的速度    因激光焊接功率高,所以焊接时速度也相应得到提高,焊接的速度不断提高能够使得熔深不断减小,相反,如果速度减慢,就会使铝合金被过度的焊接甚至被焊接穿透,因此,选择激光焊接可以降低焊接失败的比例从而大大降低焊接成本。    1.3 激光焊接的优势    提高能量密度、提高焊接质量、增加焊接的精度和密度、焊接的效率速度高、焊接成本较低、可以在特殊条件下进行焊接、焊接时对铝合金其他部位影响小。    2 激光焊接在各个领域中的应用    2.1 在石油管道中的应用    在石油管道中,应用铝合金管道可以增加管道的口径、增厚石油管道的管道壁,让管道能够在一定时间内运输更多的石油。石油的运输具有非常高的危险性,如石油发生泄漏,会造成难以估计的财产损失、人员伤亡以及环境的污染和地下水的污染,因此铝合金管道在焊接时一定要特别注意,提高焊接的质量,激光焊接在此时就可以发挥巨大作用,通过激光焊接,可以控制符合焊接的工艺,可以在不用开坡口的前提下进行焊接的操作,焊接时一次成型,焊缝的质量高,充分的避免了石油泄漏的风险,提高了石油运输的安全性。    2.2 在汽车制造业中的应用    随着时代的高速发展和人们生活水平的日益高速化,出门乘坐汽车已经习以为常了,并且人们对于汽车的质量要求也越来越高,因此汽车工业也在不断地寻找新型的材料和技术手段提高汽车的质量,激光焊接技术在汽车工业中的到了越来越广泛地应用。美国较早将激光焊接铝合金技术引入到汽车制造业当中来,经过一系列的实验,激光焊接的铝合金制造出来的汽车,将薄铝合金激光焊接之后制造成型,不仅大大减轻了车身的重量,而且减少了制造汽车的工序,提高了制作效率,得到了广大汽车制造业的欢迎与青睐。    2.3 在航空航天工业中的应用    众所周知,航空航天工业需要高度精准高度准确的材料进行制造飞机等一系列航天器,并且对于机器本身的重量要求也是非常的严苛,用激光焊接的铝合金制造飞机等机器,能够使得机身比平时可减轻20%左右,制造成本也得到了大大降低。比如,德国共管的部件生产厂运用激光焊接铝合金技术生产出的A350系列飞机的零件取得了巨大的成功。    3 激光焊接铝合金技术的难点    3.1 铝合金表面对激光具有反射性    因为铝合金是一种有色金属,对各种光线都具有很强烈的反射性,激光作为一种更加激烈的光束,在铝合金的表面更加容易造成反射,换句话说,铝合金这种有色金属对于激光具有高反射率和较小的吸收率。除此之外,金属都具有导热性,因此铝合金也具有很强的导热性,容易在用激光焊接的时候,反射激光或者是将激光的热量迅速导移出去,较终导致铝合金的焊接失败。因此,在激光焊接铝合金的时候,要严格注意并且迅速提高激光的功率密度,防止被反射或者被传导,争取在极端的时间用极高的密度对铝合金进行焊接,这样就可以避免反射性等问题的出现。    3.2 在激光焊接铝合金时要做好充分的准备    因为铝合金有活泼、易被氧化等特性,在其表面容易附着大量的灰尘水分等,因此在焊接的过程中,如果没有做好充足的准备,表面附着的东西容易随着激光的快速焊接留在铝合金表面,从而影响铝合金的质量和焊接的效果。因此,在对铝合金进行焊接之前,需要对铝合金表面进行清洁,将表面的油污等清理掉。同时防止在焊接时发生氧化作用造成爆炸等安全威胁,也需要对金属表面的氧化膜进行彻底的清洁,彻底除去氧化膜。    4 铝合金的激光焊接存在的缺陷    尽管激光焊接有高效率、高速度并且能够大量降低成本,激光焊接也存在着许多的缺点,只有将这些缺陷全部弄清楚并且解决了,才能够使得激光焊接铝合金技术得到更加广泛的应用。    4.1 气孔的缺陷    在上文中提出,适度的气孔能够保持铝合金的内外平衡,但是,过量的气泡就会存在大量的缺陷,避免出现大量气孔比较困难,出现大量气孔时气孔不稳定,在铝合金内部乱窜,容易使得焊接部位出现裂缝,所以清除气孔将是铝合金激光焊接技术需要突破的一大重要缺陷。    4.2 热裂纹缺陷    应用激光技术时,需要提高温度和密度以达到快速焊接的目的,这样容易在铝合金表面出现特裂纹,从而使得焊接失败,为了应对热裂纹,科学家们已经想出应对的办法,即在激光焊接时运用填充材料,但是这种方法容易导致资源的浪费和劳动力的大量耗费。采取更加简便的办法应对热裂纹也是该技术即将解决的一项重大问题。    5 结束语    铝合金的激光焊接速度存在大量的优点,在多种制造领域得到了广泛的应用,也提高了机器本身的质量和制造速度,但是激光焊接技术同样也存在许多的缺陷,导致焊接的失败,相信在科学家们的不断努力下,该焊接技术会越来越成熟,应用也越来越广泛。(浙江盾安禾田金属有限公司 俞德富 陈建军)

铝合金加工厂

2017-06-06 17:50:10

以下是经上海 有色 网提供铝合金加工厂:  铝合金是工业中应用最广泛的一类 有色金属 结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。     纯铝的密度小(ρ=2.7g/m3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态 σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。 添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值 σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。  铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。     铝合金分两大类:铸造铝合金,在铸态下使用;变形铝合金,能承受压力加工,。可加工成各种形态、规格的铝合金材。主要用于制造航空器材、建筑用门窗等。     铝合金按加工方法可以分为形变铝合金和铸造铝合金。形变铝合金又分为不可热处理强化型铝合金和可热处理强化型铝合金。不可热处理强化型不能通过热处理来提高机械性能,只能通过冷加工变形来实现强化,它主要包括高纯铝、工业高纯铝、工业纯铝以及防锈铝等。可热处理强化型铝合金可以通过淬火和时效等热处理手段来提高机械性能,它可分为硬铝、锻铝、超硬铝和特殊铝合金等。     一些铝合金可以采用热处理获得良好的机械性能,物理性能和抗腐蚀性能。     铸造铝合金按化学成分可分为铝硅合金,铝铜合金,铝镁合金,铝锌合金和铝稀士合金,其中铝硅合金又有简单铝硅合金(不能热处理强化,力学性能较低,铸造性能好),特殊铝硅合金(可热处理强化,力学性能较高,铸造性能良好)。  更多有关铝合金加工厂请详见于上海 有色 网

浅析铝合金激光焊接工艺

2018-12-19 16:46:54

铝合金及其焊接的概述  铝和铝合金都具有非常优良的性能,比如比强度高、耐腐蚀性强,在许多的产业中都具有非常广泛的应用,尤其在国防工业、机械等产业,并且铝合金属于有色金属,在应用的过程中需要进行焊接,所以随着科学技术的飞速发展,铝合金的焊接技术的研究也越来越深入。因此,激光焊接技术是科学技术的一大进步。  激光焊接作为一种新型的焊接技术,焊接热源直接是激光,既可以避免能源的浪费,又可以大大地提高焊接的效率。同时,激光焊接把机器人或者是数控机床作为运动系统,减少人员的参与,可以减少劳动力的浪费,提高焊接的效率。激光热源除了具有可再生性和清洁无污染的优点之外,还可以高度的聚焦和良好性能的传输,因此可以将能量全部汇聚集中于一点,避免热量的散失和浪费。所以,激光焊接能够提高焊接的效率和速度以及焊接的质量。因为激光焊接的光束是通过脉冲或者连续的激光束来实现的,因此当激光束直接照射铝合金的表面时,能够把金属表面的热量迅速扩散到铝合金的内部,使铝合金快速的熔化形成一条焊缝,同时在融化后的金属上形成一种反作用力,最终将熔化的铝合金表面向下凹陷形成小孔。这个小孔具有强大的功效,可以全部吸收激光光束照射时产生的能量,并同时产生高温蒸汽,蒸汽压力与壁层表面的张力形成一种动态的平衡。  1、激光焊接的功率  激光焊接具有一定的功率,只有当焊接功率达到一定的高度时,才能让焊接得以稳定、持续的进行,否则焊接只能在铝合金的表面进行工作,使得铝合金表面发生熔化,从而焊接不能成功的进行。激光焊接的功率可以达到将铝合金表面以及内部全部焊接的高度,甚至比此还要高,所以激光焊接铝合金级可以提高效率和速度以及质量。  2、激光焊接的速度  因激光焊接功率高,所以焊接时速度也相应得到提高,焊接的速度不断提高能够使得熔深不断减小,相反,如果速度减慢,就会使铝合金被过度的焊接甚至被焊接穿透,因此,选择激光焊接可以降低焊接失败的比例从而大大降低焊接成本。  3、激光焊接的优势  提高能量密度、提高焊接质量、增加焊接的精度和密度、焊接的效率速度高、焊接成本较低、可以在特殊条件下进行焊接、焊接时对铝合金其他部位影响小。  激光焊接在各个领域中的应用  1、在石油管道中的应用  在石油管道中,应用铝合金管道可以增加管道的口径、增厚石油管道的管道壁,让管道能够在一定时间内运输更多的石油。石油的运输具有非常高的危险性,如石油发生泄漏,会造成难以估计的财产损失、人员伤亡以及环境的污染和地下水的污染,因此铝合金管道在焊接时一定要特别注意,提高焊接的质量,激光焊接在此时就可以发挥巨大作用,通过激光焊接,可以控制符合焊接的工艺,可以在不用开坡口的前提下进行焊接的操作,焊接时一次成型,焊缝的质量高,充分的避免了石油泄漏的风险,提高了石油运输的安全性。  2、在汽车制造业中的应用  随着时代的高速发展和人们生活水平的日益高速化,出门乘坐汽车已经习以为常了,并且人们对于汽车的质量要求也越来越高,因此汽车工业也在不断地寻找新型的材料和技术手段提高汽车的质量,激光焊接技术在汽车工业中的到了越来越广泛地应用。美国最先将激光焊接铝合金技术引入到汽车制造业当中来,经过一系列的实验,激光焊接的铝合金制造出来的汽车,将薄铝合金激光焊接之后制造成型,不仅大大减轻了车身的重量,而且减少了制造汽车的工序,提高了制作效率,得到了广大汽车制造业的欢迎与青睐。  3、在航空航天工业中的应用  众所周知,航空航天工业需要高度精准高度精确的材料进行制造飞机等一系列航天器,并且对于机器本身的重量要求也是非常的严苛,用激光焊接的铝合金制造飞机等机器,能够使得机身比平时可减轻20%左右,制造成本也得到了大大降低。比如,德国共管的部件生产厂运用激光焊接铝合金技术生产出的A350系列飞机的零件取得了巨大的成功。  激光焊接铝合金技术的难点  1、铝合金表面对激光具有反射性  因为铝合金是一种有色金属,对各种光线都具有很强烈的反射性,激光作为一种更加激烈的光束,在铝合金的表面更加容易造成反射,换句话说,铝合金这种有色金属对于激光具有高反射率和较小的吸收率。除此之外,金属都具有导热性,因此铝合金也具有很强的导热性,容易在用激光焊接的时候,反射激光或者是将激光的热量迅速导移出去,最终导致铝合金的焊接失败。因此,在激光焊接铝合金的时候,要严格注意并且迅速提高激光的功率密度,防止被反射或者被传导,争取在极端的时间用极高的密度对铝合金进行焊接,这样就可以避免反射性等问题的出现。  2、在激光焊接铝合金时要做好充分的准备  因为铝合金有活泼、易被氧化等特性,在其表面容易附着大量的灰尘水分等,因此在焊接的过程中,如果没有做好充足的准备,表面附着的东西容易随着激光的快速焊接留在铝合金表面,从而影响铝合金的质量和焊接的效果。因此,在对铝合金进行焊接之前,需要对铝合金表面进行清洁,将表面的油污等清理掉。同时防止在焊接时发生氧化作用造成爆炸等安全威胁,也需要对金属表面的氧化膜进行彻底的清洁,彻底除去氧化膜。  铝合金的激光焊接存在的缺陷  尽管激光焊接有高效率、高速度并且能够大量降低成本,激光焊接也存在着许多的缺点,只有将这些缺陷全部弄清楚并且解决了,才能够使得激光焊接铝合金技术得到更加广泛的应用。  1、气孔的缺陷  在上文中提出,适度的气孔能够保持铝合金的内外平衡,但是,过量的气泡就会存在大量的缺陷,避免出现大量气孔比较困难,出现大量气孔时气孔不稳定,在铝合金内部乱窜,容易使得焊接部位出现裂缝,所以清除气孔将是铝合金激光焊接技术需要突破的一大重要缺陷。  2、热裂纹缺陷  应用激光技术时,需要提高温度和密度以达到快速焊接的目的,这样容易在铝合金表面出现特裂纹,从而使得焊接失败,为了应对热裂纹,科学家们已经想出应对的办法,即在激光焊接时运用填充材料,但是这种方法容易导致资源的浪费和劳动力的大量耗费。采取更加简便的办法应对热裂纹也是该技术即将解决的一项重大问题。  铝合金的激光焊接速度存在大量的优点,在多种制造领域得到了广泛的应用,也提高了机器本身的质量和制造速度,但是激光焊接技术同样也存在许多的缺陷,导致焊接的失败,相信在科学家们的不断努力下,该焊接技术会越来越成熟,应用也越来越广泛。

铝及铝合金的焊接特点

2019-03-11 09:56:47

(1) 铝在空气中及焊接时极易氧化,天然生成的氧化铝(Al2O3)熔点高、十分安稳,不易往除。阻止母材的熔化和熔合,氧化膜的比严重,不易浮出表面,易天然生成夹渣、未熔合、未焊透等欠缺。铝材的表面氧化膜和吸附很多的水分,易使焊缝发生气孔。焊接前应选用化学或机械办法进行严厉表面整理,铲除其表面氧化膜。在焊接进程加强维护,避免其氧化。钨极氩弧焊时,选用沟通电源,经过“阴极整理”效果,往除氧化膜。气焊时,选用往除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,使用氦气或氩氦混合气体维护,或许选用大规范的熔化极气体维护焊,在直流正接情况下,可不需求“阴极整理”。   (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接进程中,很多的热量能被敏捷传导到基体金属内部,因而焊接铝及铝合金时,能量除耗费于熔化金属熔池外,还要有更多的热量无谓耗费于金属其他部位,这种无用能量的耗费要比钢的焊接更为显着,为了取得高质量的焊接接头,应当尽量选用能量会集、功率大的动力,有时也可选用预热等工艺办法。   (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝结时的体积缩短率较大,焊件的变形和应力较大,因而,需采纳防备焊接变形的办法。铝焊接熔池凝结时容易发生缩孔、缩松、热裂纹及较高的内应力。出产中可选用调整焊丝成分与焊接工艺的办法避免热裂纹的发生。在耐蚀性容许的情况下,可选用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,跟着硅含量添加,合金结晶温度规模变小,活动性显着前进,缩短率下降,热裂倾向也相应减小。依据出产经历,当含硅5%~6%时可不发生热裂,因而选用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。   (4)铝对光、热的反射才能较强,固、液转态时,没有显着的光荣改变,焊接操作时断定难。高温铝强度很低,支撑熔池困难,容易焊穿。   (5)铝及铝合金在液态能溶解很多的氢,固态简直不溶解氢。在焊接熔池凝结和快速冷却的进程中,氢来不及溢出,极易构成孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中的重要来历。因而,对氢的来历要严厉控制,以避免气孔的构成。   (6)合金元素易蒸腾、烧损,使焊缝功能下降。   (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。   (8)铝为面心立方晶格,没有同素异构体,加热与冷却进程中没有相变,焊缝晶粒易粗大,不能经过相变来细化晶粒。   2. 焊接办法 简直各种焊接办法都可以用于焊接铝及铝合金,可是铝及铝合金对各种焊接办法的适应性不同,各种焊接办法有其各自的使用场合。气焊和焊条电弧焊办法,设备简略、操作便利。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体维护焊(TIG或MIG)办法是使用最广泛的铝及铝合金焊接办法。铝及铝合金薄板可选用钨极沟通氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可选用钨极氦弧焊、氩氦混合钨极气体维护焊、熔化极气体维护焊、脉冲熔化极气体维护焊。熔化极气体维护焊、脉冲熔化极气体维护焊使用越来越广泛(氩气或氩/氦混合气)123后一页

铝合金的焊接新设备

2019-01-09 09:34:13

铝具有良好的塑性和加工性能;良好的导热性和导电性;良好的耐低温性能,对光热电波的反射率高、表面性能好;无磁性;基本无毒;有吸音性;耐酸性好;抗核辐射性能好;弹性系数小;良好的力学性能等特点,因此,铝材在航天、航海、航空、汽车、等行业中应用广泛。铝及铝合金在应用的过程中过较大的问题就是焊接。   铝合金焊接的难点:   铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。这些缺陷,都会降低焊接接头的性能。   铝合金激光焊接机的焊接优势:   铝合金属于典型的共晶合金,在激光焊接快速凝固下更容易产生热裂纹,焊缝金属结晶时在柱状晶边界形成AL-Si或Mg-Si等低熔点共晶是导致裂纹产生的原因。采用装有Wobble焊接头的多工位铝合金激光焊接机,通过双楔形振动焊接,扩大了焊缝宽度,降低了焊接部件的预制条件,同时也获得更好的焊缝成形。并且,铝合金激光焊接机还具有配有机械手操作平台,操作更灵活,可以配自动化线,提高工作效率。自动化焊缝跟踪系统,实时跟踪焊缝形状,根据焊道状况及时修正焊炬所处的位置,实现准确焊接,焊接面更美观。

铝合金车体部件的焊接性

2019-03-11 09:56:47

(1)铝与氧的亲和力很强     在空气中极易与氧结合生成细密而健壮的氧化铝薄膜,厚度约为0.1μm,熔点高达2050℃,远远超越铝及铝合金的熔点,并且密度很大,约为铝的1.4倍。在 焊接进程中,氧化铝薄膜会阻止金属之间的杰出结合,并易构成夹渣。氧化膜还会吸附水分,焊接时会促进焊缝构成气孔。这些缺点,都会下降焊接接头的功能。为了确保焊接质量,焊前有必要严厉整理焊件表面的氧化物,并避免在焊接进程中再次氧化,对熔化金属和处于高温下的金属进行有用地防护,这是铝及铝合金焊接的一个重要特色。详细的维护办法是:焊前运用机械打磨或化学办法D40铲除工件坡口及周围部分的氧化物;焊接进程中要选用合格的维护气体进行维护(例如99.99%Ar)。     (2) 铝的导热率和比热大     导热快虽然铝及铝合金的熔点远比钢低,可是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接进程中很多的热能被敏捷传导到团体金属内部,为了取得高质量的焊接接头,有必要选用能量会集、功率大的热源,8mm及以上厚板需选用预热等工艺办法,才能够完成熔焊进程。     (3)线膨胀系数大     铝及铝合金的线膨胀系数约为钢的2倍,凝结时体积缩短率达6.5%~6.6%,因而易发生焊接变形。避免变形的有用办法是除了挑选合理的工艺参数和焊接次序外,选用适合的焊接工装也是非常重要的,焊接薄板时特别如此。别的,某些铝及铝合金焊接时,在焊缝金属中构成结晶裂纹的倾向性和在热影响区构成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内发生热裂纹,这是铝合金,特别是高强度铝合金焊接时最常见的严峻缺点之一。在实践焊接现场中避免这类裂纹的办法主要是改善接头规划,挑选合理的焊接工艺参数和焊接次序,选用习惯母材特色的焊接填充材料等。     (4)简单构成气孔     焊接接头中的气孔是铝及铝合金焊接时极易发生的缺点,特别是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时发生气孔的主要原因,这现已为实践所证明。氢的来历,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其间焊丝及母材表面氧化膜的吸附水分,对焊缝气孔的发生,常常占有杰出的位置。铝及铝合金的液体熔池很简单吸收气孔,在高温下溶入的很多气体,在由液态凝结时,溶解度急剧下降,在焊后冷却凝结进程中气体来不及分出,而集合在焊缝中构成气孔。为了避免气孔的发生,以取得杰出的焊接接头,关于的来历要加以严厉控制,焊前有必要严厉约束所运用的焊接材料(包含焊丝、焊条、熔剂、维护气体)的含水量,运用前要严厉进行枯燥处理,整理后的母材及焊丝最好在2~3小时内焊接结束,最多不超越24小时。TIG焊时,选用大的焊接电流合作较高的焊接速度。MIG焊时,选用大的焊接电流慢的焊接速度,以进步熔池的存在时刻。     (5)铝在高温时的强度和塑性低铝在370℃时强度仅为10MPa,焊接时会由于不能支撑住液体金属而使焊缝成形不良,乃至构成陷落或烧穿。为了处理这个问题,焊接铝及铝合金时常常要选用垫板。     (6)无色泽改变,给焊接操作带来困难。     铝及铝合金焊接时由固态转变为液态时,没有显着的色彩改变,因而在焊接进程中给操作者带来不少困难。因而,要求焊工把握好焊接时的加热温度,尽量采 用平焊,在引(收)弧板上引(收)弧。

高硅铝合金焊接性现状

2019-01-10 09:44:15

在近年来,国内外研究者从制定、性能评定等方面对高硅铝合金做了大量研究,但对其焊接性的研究不多,很大程度上限制了硅铝合金的推广应用。随着科技的迅猛发展,研究解决高硅铝合金的焊接问题显得很有必要。高硅铝合金在航天、航空、汽车、空间技术等高科技领域具有广泛的应用,可以制造微电路封装壳体、基板及其盖板的热管器件、活塞、发动机气缸等耐磨部件。高硅铝合金具有广泛发展应用领域关键在于合金的优异特性,高硅铝具有热传导性能热膨胀系数低、机械性能良好、易于精密机加工等优点。但是由于铝和氧的亲和力非常强,易被氧化生成难熔物氧化膜。在材料的焊接中氧化膜严重影响焊缝的熔合形成。并且高硅铝中含有大量的硅,容易导致硅裂。因此高硅铝的高效、优质连接问题成为焊接领域的重点之一。    高硅铝的焊接性    在高硅铝的焊接过程中,容易出现夹杂、气孔、裂纹等缺陷,其中如何尽可能的避免氧化产生夹渣是重要研究方向。    氧化    高硅铝中的铝极易与氧亲和,生成致密的三氧化二铝薄膜,结实致密,其熔点高达2050℃,远远大于高硅铝合金的熔点,在焊接过程中,致密的氧化膜很难去除,严重影响着金属间的结合且容易造成夹渣。为了防止夹渣的出现可以采取一些措施,在焊接前清除表面的氧化膜,可以用机械清理法,也可采取化学清理法。机械清理法主要是用打磨机、锉刀、刮刀、钢丝刷打磨的方法清理氧化膜;化学清理法不仅可以清理氧化膜,还可以清理表面油污。    焊接气孔    产生气孔的气体有H2/CO/N2等。其中H是气孔的主要来源。致密的氧化膜容易吸附水分,焊接时,氢在液态铝中的溶解度为0.7ml/100g,而在660℃凝固状态时,氢的溶解度为0.04ml/100g,使原来溶于液态铝中的氢大量析出,形成气泡,又高硅铝合金本身的导热性能非常好,熔池结晶过程很快,因此冶金反应产生的气体来不及逸出熔池的表面,残留在焊缝中形成气孔。保护气体不纯及空气侵入焊接区等,也能使焊缝产生内部气体和表面气孔。而且对于粉末冶金制备的硅铝合金,在熔化焊温度下闭塞气体的含量很高,极易造成气孔缺陷。由于高硅铝焊接气孔的产生与该合金表面的氧化膜密切相关,因此要防止气孔的产生,首先焊接区域合金表面的氧化膜在焊接前必须彻底去除,另外焊接区域在焊接前容易被污染,因此焊接前注意防止污染,特别是焊接端面区域应保持洁净。要获得优质的焊接接头,还应采用合适的焊接方法、规范和保护措施进行焊接,并严格控制操作环境的湿度。    焊接裂纹    高硅铝焊接过程中,焊缝结晶凝固金属从液态金属到固态金属的过程中,熔池凝固收缩产生拉应力,在焊接凝固的初期,温度比较高,金属的流动性好,金属液体可以在已经凝固的晶粒之间自由的流动,可以填充拉应力造成的间隙,不会形成裂纹,在结晶的过程中,较先结晶的晶粒致使焊接热影响区开裂,但有研究表明,焊接熔池越小,产生裂纹的可能性越小。    另外高硅铝的合金中硅含量高,受热硅相变粗大,对合金的韧性和塑性产生不利影响,易产生应力变形和裂纹。

铝合金车体焊接技术特点及焊接注意事项

2019-03-01 10:04:59

(1)铝合金与氧的亲和力很强    在空气中极易与氧结合生成细密而健壮的氧化铝薄膜,厚度约为0.1μm,熔点高达2050℃,远远超越铝及铝合金的熔点,并且密度很大,约为铝的1.4倍。在焊接进程中,氧化铝薄膜会阻止金属之间的杰出结合,并易构成夹渣。氧化膜还会吸附水分,焊接时会促进焊缝构成气孔。这些缺点,都会下降焊接接头的功能。为了确保焊接质量,焊前有必要严厉整理焊件表面的氧化物,并避免在焊接进程中再次氧化,对熔化金属和处于高温下的金属进行有用地防护,这是铝及铝合金焊接的一个重要特色。详细的维护办法是:焊前运用机械打磨或化学办法D40铲除工件坡口及周围部分的氧化物;焊接进程中要选用合格的维护气体进行维护(例如99.99%Ar)。    (2)铝合金的导热率和比热大    铝及铝合金的导热系数、比热容都很大,在焊接进程中很多的热能被敏捷传导到团体金属内部,为了取得高质量的焊接接头,有必要选用能量会集、功率大的热源,8mm及以上厚板需选用预热等工艺办法,才干够完成熔焊进程。    (3)铝合金车体的线膨胀系数大    铝及铝合金的线膨胀系数约为钢的2倍,凝结时体积缩短率达6.5%~6.6%,因而易发生焊接变形。避免变形的有用办法是除了挑选合理的工艺参数和焊接次序外,选用适合的焊接工装也是非常重要的,焊接薄板时特别如此。别的,某些铝及铝合金焊接时,在焊缝金属中构成结晶裂纹的倾向性和在热影响区构成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内发生热裂纹,这是铝合金,特别是高强度铝合金焊接时较常见的严峻缺点之一。在实践焊接现场中避免这类裂纹的办法主要是改善接头规划,挑选合理的焊接工艺参数和焊接次序,选用习惯母材特色的焊接填充材料等。    (4)铝合金部件焊接时简单构成气孔    焊接接头中的气孔是铝及铝合金焊接时极易发生的缺点,特别是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时发生气孔的主要原因,这现已为实践所证明。氢的来历,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其间焊丝及母材表面氧化膜的吸附水分,对焊缝气孔的发生,常常占有杰出的位置。铝及铝合金的液体熔池很简单吸收气孔,在高温下溶入的很多气体,在由液态凝结时,溶解度急剧下降,在焊后冷却凝结进程中气体来不及分出,而集合在焊缝中构成气孔。为了避免气孔的发生,以取得杰出的焊接接头,关于的来历要加以严厉控制,焊前有必要严厉约束所运用的焊接材料(包含焊丝、焊条、熔剂、维护气体)的含水量,运用前要严厉进行枯燥处理,整理后的母材及焊丝较好在2~3小时内焊接结束,较多不超越24小时。TIG焊时,选用大的焊接电流合作较高的焊接速度。MIG焊时,选用大的焊接电流慢的焊接速度,以进步熔池的存在时刻。    (5)铝合金在高温时的强度和塑性低铝在370℃时强度仅为10MPa,焊接时会由于不能支撑住液体金属而使焊缝成形不良,乃至构成陷落或烧穿。为了处理这个问题,焊接铝及铝合金时常常要选用垫板。    (6)铝及铝合金焊接时无色泽改变,给焊接操作带来困难。    铝及铝合金焊接时由固态转变为液态时,没有显着的色彩改变,因而在焊接进程中给操作者带来不少困难。因而,要求焊工把握好焊接时的加热温度,尽量选用平焊,在引(收)弧板上引(收)弧。    1.焊接特性:铝及铝合金具有导热性强而热容量大,线胀系数大,熔点低和高温强度小等特色,焊接难度大,应采纳必定的办法,才干确保焊接质量。    2.管件及焊丝的整理,焊丝及破口两边50mm范围内表面用清洗洁净,用不锈钢丝刷刷去表面氧化膜,显露金属光泽,整理好的破口有必要在2小时内焊接,整理好的焊丝放入未用的筒内,有必要在8小时内用完,不然重新处理。    3.钨棒选用铈钨棒,氩气钝质不小于99.96%,且含水量不该大于50mg/m3。    4.环境温度不低于5℃,不然应预热至100~200℃方可施焊,相对湿度控。

铜合金焊接

2017-06-06 17:50:03

铜及铜合金的焊接特点有1铜及铜合金的导热性好,热容量大,易使填充金司与母材熔合不良,并造成焊不透,因此,焊接热输入宜大,必要时进行适当的预热,如焊紫铜时,预热400~500度,焊黄铜时,预热300度。2铜的线膨胀系数较大(比低碳钢大50%以上),热胀冷缩明显,焊后变形大,且在较大的残余应力下容易产生冷裂纹,因此,焊接时宜采用窄焊道,合理的焊接顺序,焊后锤打等措施,以减少变形和残余应力3铜在液态进能溶解大量的氢,但在凝固和冷却过程中,氢的溶解度大大降低,如过剩的氢气来不及逸出,就会形成氢气孔,同时氢还能与氧化亚铜反应,生成水汽(H2O),也会引起气孔。因此,焊前应彻底清理坡口及焊件表面,去除氧化物,油污,水汽等,选用脱氧及去氢能力较好的焊接材料,并按规定烘干,如焊接紫铜时,一般采用低氢焊条铜107,焊前经300度*(1~2)小时烘干。4铜在液态时容易氧化,生成氧化亚铜并溶解在铜液里,在结晶时,氧化亚铜与铜形成低熔点共晶体,存在铜晶粒的界面上,使其塑性降低,还有产生热裂纹,因此,焊接时需采用含有脱氧剂的铜及铜合金焊丝。5铜合金里的合金元素,一般比铜更易氧化和烧损,还有部分合金元素在高温易蒸发,因此,焊接黄铜时,可选用含硅的焊接材料,使熔池表面形成致密的氧化硅薄膜,以防止锌的氧化和蒸发,在工艺上设法降低焊接时的温度,提高焊接速度,尽量减少熔池处于高温下的时间,以减少锌的氧化和蒸发。  影响铜及铜合金焊接性的工艺难点主要有四项元素:一 是高导热率的影响。铜的热导热率比碳钢大7~11 倍,当采用的工艺参数与焊接同厚度碳钢差不多时,则铜材很难熔化,填充 金属 和母材也不能很好地熔合。二是焊接接头的热裂倾向大。焊接时,熔池内铜与其中的杂质形成低熔点共晶物,使铜及铜合金具有明显的热脆性,产生热裂纹。三是产生气孔的缺陷比碳钢严重得多,与要是氢气孔。四是焊接接头性能的变化。晶粒粗化,塑性下降,耐蚀性下降等。

铝合金车体焊接技术的革新

2019-03-11 13:46:31

铝合金车架现在现已在轿车中广泛地运用。铝合金原料比较曾经造车常用的钢铁,性质上有着很大的差异。这就使得出产商在对铝合金进行焊接的进程中遇到了不少的难点。因而工程师们针对铝合金焊接上的难点,活跃改造传统的焊接技能,为铝合金车架未来更广泛地运用到轿车中铺桥搭路。  铝合金在焊接中首要存在以下难点:  1.铝合金与氧的亲和力很强。在空气中极易与氧结合生成细密而健壮的氧化铝薄膜,厚度约为0.1μm,熔点高达2050℃,远远超越铝及铝合金的熔点,并且密度很大,约为铝的1.4倍。在焊接进程中,氧化铝薄膜会阻止金属之间的杰出结合,并易构成夹渣。氧化膜还会吸附水分,焊接时会促进焊缝构成气孔。这些缺点,都会下降焊接接头的功能。  为了确保焊接质量,焊前有必要严厉整理焊件表面的氧化物,并防止在焊接进程中再次氧化,对熔化金属和处于高温下的金属进行有用地防护,这是铝及铝合金焊接的一个重要特色。  详细的维护办法是:焊前运用机械打磨或化学办法D40铲除工件坡口及周围部分的氧化物;焊接进程中要选用合格的维护气体进行维护(例如99.99%Ar)。  2.铝合金的导热率和比热大。铝及铝合金的导热系数、比热容都很大,在焊接进程中许多的热能被敏捷传导到团体金属内部,为了取得高质量的焊接接头,有必要选用能量会集、功率大的热源,8mm及以上厚板需选用预热等工艺办法,才能够完成熔焊进程。  3.铝合金车体的线膨胀系数大。铝及铝合金的线膨胀系数约为钢的2倍,凝结时体积缩短率达6.5%~6.6%,因而易发生焊接变形。防止变形的有用办法是除了挑选合理的工艺参数和焊接次序外,选用适合的焊接工装也是非常重要的,焊接薄板时特别如此。  别的,某些铝及铝合金焊接时,在焊缝金属中构成结晶裂纹的倾向性和在热影响区构成液化裂纹的倾向性均较大,往往因为过大的内应力而在脆性温度区间内发生热裂纹,这是铝合金,特别是高强度铝合金焊接时最常见的严峻缺点之一。  在实践焊接现场中防止这类裂纹的办法首要是改善接头规划,挑选合理的焊接工艺参数和焊接次序,选用习惯母材特色的焊接填充材料等。  4.铝合金部件焊接时简略构成气孔。焊接接头中的气孔是铝及铝合金焊接时极易发生的缺点,特别是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时发生气孔的首要原因,这现已为实践所证明。氢的来历,首要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其间焊丝及母材表面氧化膜的吸附水分,对焊缝气孔的发生,常常占有杰出的位置。铝及铝合金的液体熔池很简略吸收气孔,在高温下溶入的许多气体,在由液态凝结时,溶解度急剧下降,在焊后冷却凝结进程中气体来不及分出,而集合在焊缝中构成气孔。  为了防止气孔的发生,以取得杰出的焊接接头,关于的来历要加以严厉控制,焊前有必要严厉约束所运用的焊接材料(包含焊丝、焊条、熔剂、维护气体)的含水量,运用前要严厉进行枯燥处理,整理后的母材及焊丝最好在2~3小时内焊接结束,最多不超越24小时。TIG焊时,选用大的焊接电流合作较高的焊接速度。MIG焊时,选用大的焊接电流慢的焊接速度,以进步熔池的存在时刻。  5.铝合金在高温时的强度和塑性低。铝在370℃时强度仅为10MPa,焊接时会因为不能支撑住液体金属而使焊缝成形不良,乃至构成陷落或烧穿。为了处理这个问题,焊接铝及铝合金时常常要选用垫板。  而近年来在欧美车厂开端广泛运用的激光焊接技能,针对铝合金这位“新成员”,也针对性地进行了一系列的改善。  跟着合金元素的添加,八组可锻合金呈现了,将铝的全体运用扩展到了一个广泛的制作业运用。可是,不论是合金仍是全体运用,仍是存在可焊性问题。  走运的是,大多数合金能够成功地进行熔焊,这取决于合金填充材料。运用激光器能够处理困扰传统技能如金属惰性气体电弧焊等的难题。和金属惰性气体电弧焊比较,激光加工的焊接速度更快,热量输入更少,热影响区域更小,歪曲变形更少,在许多情况下能够自焊接。  可是,铝和铝合金仍具有一些扎手的特点,假如不适当处理就会对焊接构成影响。合金蒸腾和凝结温度的广泛规模会导致锁孔不稳定、多孔性、气泡、损失机械功能以及在焊接冶金中呈现各种缺点,例如热裂纹。熔融铝的高氢解度会导致许多焊缝气孔和气泡。低粘度和高度流动性的熔融铝会构成焊道底的沉降和松垂。  最终,铝的高反射性加上高导热性会引起光能量耦合到材料上。虽然上述这些听起来让人很懊丧,但其实激光焊接铝的前史和成功事例恰恰相反。这些扎手的特性以及相关的焊接问题都有清晰和证明过的处理方案。  扼要了解一下最常见的五个问题,机制以及控制办法  热裂纹或许焊接凝结裂纹是凝结压力作用于微观结构的成果,铝的高热分散性和导热性会加重这些裂纹。一般运用适宜的填充焊丝或镶嵌填充箔材料来改动焊接功能和防止裂纹灵敏峰值就能够防止热裂纹灵敏性。  例如,要取得杰出可焊性,添加硅和镁的典型值分别为大于2-3%和大于3-4%。在2000系和6000系铝合金中这些合金的典型规模为0.4-1.6%,意味着在大多数情况下这些合金需求填料然后完成无裂纹焊接。  曩昔铝的高反射性关于激光焊接来说是一个问题。可是,跟着高功率、高光束质量的二氧化碳激光器的逐渐开展,以及高功率、高亮度固体光纤激光器的呈现,将能量耦合至铝上不再成其为问题。  这里有一个需求留意的错误观念:现在许多人以为因为固体激光器(如碟片激光器和光纤激光器)的波长较短,被铝吸收得更多,因而就是一切运用的最佳挑选。  现实并非这样,关于厚度约4或5mm的材料来说,波长最好是1μm。可是假如材料厚度是在6mm以上,二氧化碳激光器(10.6μm波长)更好。虽然切当的物理作用仍存在争议,可是简略的解说是吸收率更高意味着材料的上层部分吸收了更多来自1μm波长的能量。而运用二氧化碳激光器,10.6μm的波长能够反射到锁孔,然后更深地穿透材料。  激光焊接已运用于轿车业,用以衔接如车架、车顶、车门、后备箱、驾驭杆、轮毂和燃油过滤器等多种铝质零部件。一种值得留意的运用是运用激光端接(对接)焊技能焊接宝马7系豪华轿车的铝质车门。  铝成为宝马规划师们选中的材料,不只因为其质量轻,并且因为能为将来在更大排量轿车上运用激光焊接铝材取得重要经验。虽然被选中的合金(铝5083)是一种能够主动可焊接的材料,可是制作工程师挑选运用端接接头规划和激光焊接,并运用填充焊丝来坚持凸缘宽度挨近肯定最小值。这让工程师们能够将横截面最大化,然后运用最少的材料来添加断面系数和惯性力矩。  激光焊接车门的断面系数是电阻点焊车门的1.7倍,惯性力矩是2.3倍,在强度和硬度方面都有了很大的提高。每辆轿车的四扇铝质车门含有长度超越15米的激光焊接缝,比钢质车门要轻约30%。严密而更连接的激光焊接缝还有一个长处在于不需求粘合剂,然后进一步减轻了分量,下降了本钱。  制作商们将铝视作其出产运用的抱负金属,首要原因在于铝的质量强度比和耐腐蚀性。大多数铝合金是能够熔融焊接的(不论有无填料),存在的一些常见的焊接问题也现已过在出产中取得有用的办法得到战胜。从20世纪90年代开端,多个职业现已在出产中运用激光焊接许多铝和铝合金零部件。  宝马7系豪华轿车就是一个很好的比如,而未来的愿景是,激光加工、强度、轻质以及本钱等要素都集合起来,发明一个高雅的处理方案。跟着燃油经济性在轿车业的强制执行,轿车的轻量化趋向是无法防止的。铝必定会成为轻量化的重要组成部分,并且因为本身具有的优势和功能,激光焊接也会享有相同的位置。

焊接铝合金注意事项有哪些?

2019-03-04 10:21:10

焊接铝合金注意事项有哪些?怎么焊接铝合金?   铝合金材料,强度高和质量轻量。首要焊接工艺为手艺MIG焊和主动MIG焊,其母材、焊丝、维护气体、焊接设备。   铝合金是以铝为基体元素和参加一种或多种合金元素组成的合金。因为钨极氩弧焊焊热能比较会集,电弧焚烧安稳,焊缝金属细密,焊接接头的强度和塑性较高,接头质量较优,所以是焊接铝合金较常用的办法。别的咱们在焊接铝合金时,还需要注意以下六个关键:   (一)热导率高   铝合金的热导率和比热容均为碳素钢和低合金钢的2倍多。铝的热导率是奥氏体不锈钢的十几倍。在焊焊接过程中,很多的热量被敏捷传导到基体金属内部,熔池构成困难。因而应当选用能量会集、功率大的动力,依据结构尺度、环境温度等条件,也可预热;   (二)无色泽改动   铝合金焊接熔池金属由固态变成液态时,没有显着的色泽改动,这和钢在临熔化前出现赤色不一样,会给焊操作带来不方便。不能精确判别坡口母材在什么时候开端熔化,熔融的铝表面张力小、强度低、流动性好,然后易构成焊缝金属的陷落或烧穿。因而,要求铝焊接操作者有更娴熟的操作技能,长于运用熔池表面的细小改动来判别铝的加热温度;   (三)氧化能力强   铝和氧的亲和力很强,铝在空气中极易与氧化合而生成细密健壮的薄膜,其熔点高达2050℃远远超越铝和铝合金的熔点。而且氧化铝薄膜的相对密度较大,约为铝的1.4倍。在运用焊进行焊接过程中,氧化铝薄膜会阻止金属之间的杰出结合,易构成夹渣。氧化铝薄膜还会吸附水分,焊接时会促进焊缝生成气孔。因而,焊前有必要严厉整理焊件表面的氧化物,并避免在焊接过程中再次氧化;   (四)热裂倾向大   铝合金的线膨胀系数约为碳素钢和低合金钢的2倍。铝凝结时的体积缩短率较大,达6.5%,而铁为3.5%。熔融铝合金高温时强度低,假如工艺办法不妥,焊缝及近缝区在冷却过程中还会发生很大的焊接应力、拘谨应力及热应力。因而,铝焊接熔池凝结时简单发生缩孑L、缩松、热裂纹及较高的内应力;   (五)易蒸发烧损   铝合金中含有低沸点的元素,如镁、锌、锰等,在高温电弧效果下,极易蒸发烧损,然后改动焊缝金属的化学成分,使焊缝功能下降;   (六)气孔敏感性高   铝合金液体熔池很简单吸收氢等气体,高温下溶入的很多气体在焊焊后冷却凝结过程中来不及分出,集合在焊缝中会构成气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中的重要来历。因而,焊接前对母材坡口与焊丝进行整理是很有必要的。   焊接铝合金后整理作业的要求   1、在热水顶用硬毛刷细心地洗刷焊接接头。   2、将焊件在温度为60~80℃、质量分数为2%~3%的铬酐水溶液或重溶液中浸洗约5~10min,并用硬毛刷细心洗刷。或许将焊件放于15~20℃质量分数为10%的硝酸溶液中浸洗10~20min。   3、在热水中冲刷洗刷焊件。   4、将焊件用热空气吹干或在100℃枯燥箱内烘干。

铝合金加工应力如何消除?

2019-01-09 09:34:23

铝合金是工业中应用较广泛的一类有色金属结构材料,铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中大量应用。 铝合金在工艺加工尤其机加工过程中容易产生较大的应力变形导致尺寸超差报废,一些没有在当时变形超差的也往往在装机后产生变形导致更大的系统问题。现行的几种铝合金去应力方法包括热时效去应力、振动时效去应力、机械拉伸、装模校正及深冷复合去应力等方法。 热时效去应力一般针对中小零件,是一种传统的去应力方法,由于很多铝合金材料对温度非常敏感,所以限制了时效温度不能太高,否则将降低材料的强度。所以通常热时效在不高于200℃温度进行,因此去应力效果只能去除大约10-35%。 振动时效去应力是利用一受控振动能量通过夹持在被加工产品表面的激振器作用于被加工产品,在某一特定频率下进行振动处理,从而达到释放、降低工件残余应力的目的。该种加工方法常见于大型结构件、焊接及铸造件的去应力处理,去除效果大约在50-60%。 机械拉伸法消除应力的原理是将淬火后的铝合金板材,沿轧制方向施加一定量的较久拉伸塑性变形,使拉伸应力与原来的淬火残余应力叠加后发生塑性变形,使残余应力得以缓和与释放。有关研究结果表明,机械拉伸法较高可消除90%以上的残余应力。但该种方法仅适合于形状简单的零件,且对拉伸前铝合金板材的组织均匀性要求较高,多用于铝加工工厂。 装模校正冷压法是在一个特制的精整模具中,通过严格控制的限量冷整形来消除复杂形状铝合金模锻件中的残余应力,该种方法是调整而不是消除零件的整体应力水平,它使铝合金产品上某些部位的残余应力得到释放的同时,有可能使其他部位的残余应力增大。另外,鉴于工件本来就己存在很大的残余应力,模压变形量过大将可能引起冷作硬化、裂纹和断裂;而变形过小则使应力消除效果不佳,而且通制作整形模具的成本也较高,整形操作的难度也较大,因此该种方法的局限性是在实际操作中难以应用。

城轨车辆铝合金车体焊接的特点

2019-03-01 10:04:59

1、焊接办法和速度的挑选    铝合金的焊接办法有多种,包含惰性气体的维护焊(MIG)、钨极惰性气体的维护焊(TIG)两种焊接办法。在焊接的时分,关于较厚夹板的焊接,为了可以保证焊接的质量要使焊缝从分均匀地交融,并且使焊缝中的气体顺利溢出,选用较慢的环节速度和较大的电流合作焊接;关于较薄板的焊接,为了防止焊缝太热,在焊接的过程中要选用较快的焊接速度和较小的电流合作,然后保证焊接的质量,尽量防止气孔的构成。    2、气孔的构成    铝合金表面氧化膜有很强的吸水性,当环境湿度很大时,吸收了许多水的氧化膜在电弧的效果下水分解出氢,而在熔池中没有时刻扫除就构成了气孔。

铝合金材料焊接的工艺方法

2019-03-01 10:04:59

铝型材焊合需注意以下几个关键:    (1)焊前预备    选用化学或机械办法,严厉整理焊缝坡口两边的表面氧化膜。    化学清洗是运用碱或酸清洗工件表面,该法既可去除氧化膜,还可除油污,详细工艺进程如下:体积分数为6%~10%的溶液,在70℃左右浸泡0.5min→水洗→体积分数为15%的硝酸在常温下浸泡1min进行中和处理→水洗→温水洗→枯燥。洗好后的铝合金表面为无光泽的银白色。    机械整理可选用风动或电动铣刀,还可选用刮刀、锉刀等东西,关于较薄的氧化膜也可用0.25mm的铜丝刷打磨铲除氧化膜。    整理好后当即施焊,假如放置时刻超越4h,应从头整理。    (2)断定安装空隙及定位焊距离    施焊进程中,铝板受热胀大,致使焊缝坡口空隙削减,焊前安装空隙假如留得太小,焊接进程中就会引起两板的坡口堆叠,添加焊后板面不平度和变形量;相反,安装空隙过大,则施焊困难,并有烧穿的或许。适宜的定位焊距离能确保所需的定位焊空隙,因而,挑选适宜的安装空隙及定位焊距离,是削减变形的一项有用办法。依据经历,不同板厚对接缝较合理的安装工艺参数如表2。    (3)挑选焊接设备    现在市场上焊接产品品种较多,一般情况下宜选用沟通钨极氩弧焊(即TIG焊)。它是在氩气的维护下,使用钨电极与工件问发生的电弧热熔化母材和填充焊丝的一种焊接办法。该焊机作业时,因为沟通电流的极性是在周期性的改换,在每个周期里半波为直流正接,半波为直流反接。正接的半波期间钨极能够发射满足的电子而又不致于过热,有利于电弧的安稳。反接的半波期间工件表面生成的氧化膜很简单被整理掉而取得表面亮光漂亮、成形杰出的焊缝。    (4)挑选焊丝    一般选用301纯铝焊丝及311铝硅焊丝。    (5)选取焊接办法和参数    一般以左焊法进行,焊炬和工件成60°角。焊接厚度15mm以上时,以右焊法进行,焊炬和工件成90°角。    焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,空隙不得大于1mm,以多层焊完结。壁厚在1.5mm以下时,不开坡口,不留空隙,不加填充丝。焊固定管子对接接头时,当管径为200mm,壁厚为6mm时,应选用直径为3~4mm的钨极,以220~240A的焊接电流,直径为4mm的填充焊丝,以1~2层焊完。

紫铜排焊接加工注意事项

2019-03-06 10:15:43

1.紫铜排要留意施焊中禁止“打钨”现象发作。焊接时“打钨”时会发作很多的金属烟尘,金属蒸气进入熔池,焊缝中就会发作很多的蜂窝状气孔或裂纹,如发作“打钨”现象,有必要中止焊接,处理打磨洁净后再焊接,并替换钨极或将钨极尖从头修整,到达无铜斑金属停止.2。搭接线触摸要可靠,避免擦伤管表面.3。操控层间温度,发现施焊熔化困难时,阐明温度已低,应从头预热至500℃以上,再焊接,不然易发作未熔合或熔合不良缺点0.5。在确保熔合杰出的情况下,焊接速度应稍快些,并把握送丝适合,留意母材与焊丝一起熔化而融为一体,避免发作未熔合或熔合不良等缺点.6。焊接熄弧时,焊不能当即抬起,应持续使用滞后停气维护功用维护熔池,以防发作气孔。         

钛铝合金制备加工技术

2018-12-29 11:29:12

钛铝合金的制备加工技术主要有如下几种:   (1)铸锭冶金技术;   (2)粉末冶金技术;   (3)快速冷凝技术;   (4)复合材料技术。   钛铝合金铸锭冶金技术存在铸锭成分偏析和组织不均匀等问题;快速冷凝技术制备的钛铝合金粉末,化学成分稳定,工艺性能良好,但随着热处理温度的变化,粉末的显微结构和显微硬度会发生相应变化复合材料技术制备的钛铝合金显示出良好的强化性能,但横向性能、环境抗力等问题仍有待解决;粉末冶金法可制备组织均匀、细小的制件,且可实现制件的近净成形,可有效解决T-i Al金属间化合物合金难于加工成形问题。目前主要制粉方法有两种:元素粉末法和钛铝预合金粉法。目前国内学者多采用元素粉末法制备钛铝合金。

铝合金精馏塔的现场焊接技术

2019-03-12 09:00:00

一、概述  首钢制氧厂从西德林德公司购入的3万m。的制氧机组全套设备总重量约2200t,80多万件。仅铝合金管道就有11种之多,其空分设备冷箱内的铝合金管道原料等级为K级,规划温度为-195~150℃,管道从φ25mm到φ100mm共98条管线,长度累计3470多m,仅管道接头多达:3200多个。  1.物理功用  铝及其合金的导热性强而热容量大,线膨胀系数大,易发生较大的焊接变形和内应力。别的,铝及其合金由固态转变为液态时,并无色彩的改变,因而不易断定焊缝的坡口是否熔化,给在焊接操作上把握和操控温度带来了很大困难。一起高温时铝及其合金的强度小,常可损坏焊缝金属的成形,易构成焊缝金属塌落和烧穿。  2.化学性质  铝及铝合金表面,极易构成细密难熔的三氧化二铝氧化膜,这层氧化膜不只会阻止着根本金属的熔合,而且易构成焊缝金属的搀杂,引起焊缝功用的下降。别的,氧化膜还会吸附很多水分而促进焊缝发生气孔。  由此不难看出此次设备施工难度大,焊接质量要求高,所以咱们要求一切参与的焊工有必要进行岗前训练,经考试合格,德国专家认可,方可进行现场焊接操作。尽管现已预先完结了各项相关的工艺鉴定,可是现场的实践组焊作业要比试样什的工艺鉴定更杂乱、更困难。  二、精馏空气塔的现场焊接技能  制氧机组的心脏设备空分设备冷箱,按其功用区分为主热交换器、精馏空气塔和稀有气体三部分箱体。精镏空气塔塔体均为铝镁合金制作,分为压力塔(下塔)和低压塔(上塔),塔段之问的环缝需求现场组装后焊接。为确保焊接质量,施焊行进行了焊接性分析和各项相关的焊接工艺鉴定作业,拟定了相应的焊接参数。  1.焊接参数的挑选  依据焊接工艺实验的成果,咱们进行现场焊接时的工艺参数挑选规模汇总(见下表)。    在实践焊接时,咱们将运用的铈钨极磨成圆珠形根本上满足了要求,运用纯度>99.99%的氩气作为焊接时的维护气,并依据焊件厚度和实践焊接时的具体情况来断定焊接电流的巨细,通过试焊操作进行试板模仿,并调查电弧情况来判别电流是否适宜(如图1所示)。    焊接电流正常时钨极点部呈熔融状的半球形(见图1a),此刻电弧最安稳,焊缝成形杰出;焊接电流过小,钨极点部电弧单边(见图1b),此刻电弧易飘动;焊接电流过大时,易使钨极点部发热(见图1c),钨极的熔化部分易脱落到焊接熔池中构成夹钨等缺点,而且电弧不安稳,焊接质量差。只要调整好工艺参数,承认无表面缺点后,才干够进行正式的焊接操作。  2.精馏塔焊缝方位及方式  因为制氧设备归于大型超限设备,需求分节运抵现场进行设备和组焊。其间精馏塔低压塔(上塔)高18.68m,内径3.85m,壁厚8mm,与压力塔(下塔)接口端部以20mm,的加固构成过渡;压力塔(下塔)高7.9m,内径3.85m,壁厚14mm,其接口呈梯度差方式的接头,拼接接头需在冷箱内进行,焊缝标高21.84m,成形焊缝长 12.23m,焊缝总量为61.15m,关于精馏塔塔段之间的环缝咱们依照要求选用沟通氩弧焊双人双面对称焊技能,拼接焊缝的方位及方式见图2。    三、现场焊接技能办法及操作要害   1.焊前整理   咱们运用风动铣刀在焊缝两头(包含坡口、管道里)严厉铲除表面油污和氧化膜层,焊丝用不锈钢丝擦光。焊接坡口的加工选用风动砂轮按规范要求进行,因为下塔体壁厚14mm,上塔体壁厚8mm,所以下塔体接头端有必要先作削薄过渡,才干进行焊接。   2.施工条件   铝合金管道的焊接分成箱外预制、箱内设备两个阶段进行。预制不加衬环滚动焊,单面焊双面成形,要求里面焊肉高1~2mm,不能有焊瘤,不然影响管道的气体流量。固定口焊接时加复合衬环,对焊衬环要刺进管道内部,搭接处的角焊点不小于6个点。   固定口仰位焊接的技能要求高,确保一次到位,喷嘴与根部间隔坚持6~8mm。进行箱外预制口滚动焊时,每一道焊缝的起弧、收尾,都是确保焊接质量的要害。若起弧时工件温度低,就不易焊透,易发生未熔合;假如预热时间长,熔池就不简单调查,常会因温度过高而发生弧坑缩孔,所以引弧前5~10s要提早送气;预热时不断地用焊丝悄悄牵动熔池表面,调查温度改变和熔化情况,并及时将焊丝向前移动;收弧时选用短弧法,留意填满弧坑,熄弧后待熔池冷却变暗后,再中止送气;这样能够运用氩气延时维护,避免缺点发生。   3.采纳的办法   因为精馏空分塔上下塔衔接环焊缝的焊接质量要求适当严厉,焊缝有必要一次焊接成功,在严厉拟定焊接工艺、精心组织现场施工的一起,还采纳了如下办法:   (1)选用双人双面对称焊技能,每两人一组,里外面对应同步快速焊接,中间停留时间尽可能短。将8名焊工分4组,里外各4人,要求接连作业一次焊完一遍。   (2)挑选无缺的同型焊接设备,功用共同,电流调理活络,起弧快,有利于焊接到达同步(第1层焊接电流为160~170A,第2~5层为220~230A)。   (3)确保焊冷却水疏通,水质洁净(在进口截门处设置过滤网)确保焊水路不阻塞谨防烧。   (4)确保氩气质量(纯度不低于99.99%)和流量,将气带缩短,将气体流量按规范调至18L/min。   (5)一起还在上下塔的焊缝两头100mm处做符号,随时观测数据改变而敏捷做出相应的调整。   (6)在第一遍开端焊接前,运用氧焰进行100~150℃的预热,一起设备加固圈,作为暂时支撑。   (7) 上下塔成形组拼时,是要进行定位焊的。定位焊的工艺参数与正式焊接相同。每隔350~400mm一个固定焊点,焊点长60~80mm,焊肉高4~5mm,咱们从东开端焊,双人双面对称焊,天然冷却后,丈量塔的笔直度时却发现倾向了东北方。所以,咱们重上加固圈,将焊工分两组,第一组从东北方向起焊,第二组稍后从西南开端起焊(如图3所示)。在施焊中留意随时完全整理焊点,偏重新用砂轮加工坡口,再次调整空隙,直到焊接完结。焊缝冷却后,再一次丈量笔直度,误差根本合格。咱们这次就是运用了铝合金导热性强、线膨胀系数大,易变形的特点来调整笔直度误差的。    (8)第2~5遍的焊接各组焊工从不同的方向对称起焊,留意坚持焊的高度和视点,始终坚持气路疏通不受污染,直至焊接完结。   四、焊后质量查验   依据西德制作供应商的要求,在上、下塔成形对接焊缝完结今后,通过外观查验、经x射线探伤,悉数焊缝到达合格标准,获得了满足的焊接质量,确保了该制氧机组的准时投产运用。删去

铝、铝合金加工产品的种类、加工方式及产能

2019-01-02 14:54:42

我国2002年全国铝工业企业平均熔铸成品率92.53%,加工材成品率73.99%,铝加工材综合成品率69.87%,铝加工金属消耗1047.03kg/t,综合电耗1620.14kW?h/t,综合能耗1164.41kg/t。对于纯铝系列和软合金系列铝板带箔生产,国内较先进企业铝板带材加工成品率约80%,一般水平企业可达75%左右,落后水平企业在60%~70%。按品种分,热轧板:80%~85%,冷轧板:70%,蒙皮板:23%,箔材成品率:58%~59%(0.007mm),62%~63%(0.02mm)。     随着工农业产品的发展,铝及铝产品种类不断增多,品种日趋完善,铝产品分类见表1。 表1  铝产品分类品 种厚/mm宽/mm长/mm标 准 铝及铝合金热轧板50~1501000~25002000~10000GB193-82 铝及铝合金花纹板5~1501000~2500 GB3618-89 表盘装饰铝合金板0.3~0.61000~15002000~5000  铝及铝合金波纹板0.6~1.01115~100002000~10000GB8544-87 钎接用铝合金板0.8~4.01000~16002000~10000GB3198-82 普通带材0.2~1.560~2300 GB3616-91 工业纯铝箔0.006~0.03040~1000 GB10570-89 电力有机电容器箔0.06~0.011640~1000 GB3614-83 铝合金箔0.030~0.20040~1000 GB3614-83 精制铝箔 卷宽20~1300 GB10570-83 电解电容器铝箔0.030~0.20040~1000 GB3615-83     表1所列产品均采用轧制方法生产,其他产品生产方式见表2。 表2  铝其他产品生产方式品 种生产方式铝及铝合金挤压棒挤 压高强度铝合金挤压棒挤 压焊条用铝及铝合金线材拉 拔铆钉用铝及铝合金钱材拉 拔导电用铝线拉 拔铝及铝合金热挤压管热 挤旋压无缝铝管旋 压工业用铝及铝合金轧制管轧 制铝粉末粉末冶金铝锻件锻 压铝铸件熔 铸DI罐深 冲      以美国为例,其技术经济指标见表3: 表3  美国铝产品技术经济指标热轧板材产品率:75%~90%(从铸锭算起)冷轧板成品率:51%~72%(从铸锭算起)蒙皮板:50%箔材成品率:70%~75%(从0.75轧到0.007)板带材劳动生产率:(1979年)450t/(人·a) (1981年)650t/(人·a)挤压产品成品率:正挤压产品:90% 反挤压产品:93%~96%     我国2002年全国铝工业企业平均熔铸成品率92.53%,加工材成品率73.99%,铝加工材综合成品率69.87%,铝加工金属消耗1047.03kg/t,综合电耗1620.14kW?h/t,综合能耗1164.41kg/t。对于纯铝系列和软合金系列铝板带箔生产,国内较先进企业铝板带材加工成品率约80%,一般水平企业可达75%左右,落后水平企业在60%~70%。按品种分,热轧板:80%~85%,冷轧板:70%,蒙皮板:23%,箔材成品率:58%~59%(0.007mm),62%~63%(0.02mm)。     目前,发达国家的铝加工企业通过采用高效设备,组织专业化生产等,大幅度提高了劳动生产率。日本轻金属公司名古屋压延厂人均产能142.86t/a;日本东海铝箔厂人均劳动生产率为72t/a;美国古斯庞德铝板压延厂人均劳动生产率为250t/a。2000年国内部分大型铝加工企业劳动生产率情况见表4。  表4  国内部分大型铝加工企业劳动生产率项 目年末职工/人生产能力/t·a-1实际产量/t人均产能/ t·a-1劳动生产率/t·(人·a)-1华北铝业公司1927400003965420.7620.95东北轻合金公司1036982540467607.964.51西南铝业公司856721000011054524.5112.9西北铝加工厂4186537601400912.843.35

铝合金车体焊接技术特点与钢比较及焊接注意事项

2019-03-01 10:04:59

(1)铝合金与氧的亲和力很强    在空气中极易与氧结合生成细密而健壮的氧化铝薄膜,厚度约为0.1μm,熔点高达2050℃,远远超越铝及铝合金的熔点,并且密度很大,约为铝的1.4倍。在焊接进程中,氧化铝薄膜会阻止金属之间的杰出结合,并易构成夹渣。氧化膜还会吸附水分,焊接时会促进焊缝构成气孔。这些缺点,都会下降焊接接头的功能。为了确保焊接质量,焊前有必要严厉整理焊件表面的氧化物,并避免在焊接进程中再次氧化,对熔化金属和处于高温下的金属进行有用地防护,这是铝及铝合金焊接的一个重要特色。详细的维护办法是:焊前运用机械打磨或化学办法D40铲除工件坡口及周围部分的氧化物;焊接进程中要选用合格的维护气体进行维护(例如99.99%Ar)。    (2)铝合金的导热率和比热大    导热快虽然铝及铝合金的熔点远比钢低,可是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接进程中很多的热能被敏捷传导到团体金属内部,为了取得高质量的焊接接头,有必要选用能量会集、功率大的热源,8mm及以上厚板需选用预热等工艺办法,才干够完结熔焊进程。    (3)铝合金车体的线膨胀系数大    铝及铝合金的线膨胀系数约为钢的2倍,凝结时体积缩短率达6.5%~6.6%,因而易发生焊接变形。避免变形的有用办法是除了挑选合理的工艺参数和焊接次序外,选用合适的焊接工装也是非常重要的,焊接薄板时特别如此。别的,某些铝及铝合金焊接时,在焊缝金属中构成结晶裂纹的倾向性和在热影响区构成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内发生热裂纹,这是铝合金,特别是高强度铝合金焊接时较常见的严峻缺点之一。在实践焊接现场中避免这类裂纹的办法主要是改善接头规划,挑选合理的焊接工艺参数和焊接次序,选用习惯母材特色的焊接填充材料等。    (4)铝合金部件焊接时简单构成气孔    焊接接头中的气孔是铝及铝合金焊接时极易发生的缺点,特别是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时发生气孔的主要原因,这现已为实践所证明。氢的来历,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其间焊丝及母材表面氧化膜的吸附水分,对焊缝气孔的发生,常常占有杰出的位置。铝及铝合金的液体熔池很简单吸收气孔,在高温下溶入的很多气体,在由液态凝结时,溶解度急剧下降,在焊后冷却凝结进程中气体来不及分出,而集合在焊缝中构成气孔。为了避免气孔的发生,以取得杰出的焊接接头,关于的来历要加以严厉控制,焊前有必要严厉约束所运用的焊接材料(包含焊丝、焊条、熔剂、维护气体)的含水量,运用前要严厉进行枯燥处理,整理后的母材及焊丝较好在2~3小时内焊接结束,较多不超越24小时。TIG焊时,选用大的焊接电流合作较高的焊接速度。MIG焊时,选用大的焊接电流慢的焊接速度,以进步熔池的存在时刻。    (5)铝合金在高温时的强度和塑性低铝在370℃时强度仅为10MPa,焊接时会由于不能支撑住液体金属而使焊缝成形不良,乃至构成陷落或烧穿。为了处理这个问题,焊接铝及铝合金时常常要选用垫板。    (6)铝及铝合金焊接时无色泽改变,给焊接操作带来困难。    铝及铝合金焊接时由固态转变为液态时,没有显着的色彩改变,因而在焊接进程中给操作者带来不少困难。因而,要求焊工把握好焊接时的加热温度,尽量选用平焊,在引(收)弧板上引(收)弧。    1、焊接特性:铝及铝合金具有导热性强而热容量大,线胀系数大,熔点低和高温强度小等特色,焊接难度大,应采纳必定的办法,才干确保焊接质量。2、管件及焊丝的整理,焊丝及破口两边50mm范围内表面用清洗洁净,用不锈钢丝刷刷去表面氧化膜,显露金属光泽,整理好的破口有必要在2小时内焊接,整理好的焊丝放入未用的筒内,有必要在8小时内用完,不然重新处理。3、钨棒选用铈钨棒,氩气钝质不小于99.96%,且含水量不该大于50mg/m3。4、环境温度不低于5℃,不然应预热至100~200℃方可施焊,相对湿度控。    假如你要在家或许车间焊接铝材,那么首要咱们需求弄清下面一些被群众误解的东西:1.你至少需求具有一台价值4000美元的焊机和高明的焊接技巧来焊接铝材;2.不需求操练就可以完结作用很好的焊接作业;3.你需求购买合适铝材焊接的贵重焊。

铝合金填充材料在铍焊接中的应用

2019-03-11 09:56:47

1.引 言   铍与铍直接熔化焊,简单在冷却进程中发作凝结裂纹。 铍的这种开裂缺点往往导致焊接失利。别的,假如不加填充材料进行铍的焊接,即或是采纳合理的焊接办法及工艺参数,也仍是难以使铍的焊接取得成功。这说明铍焊接在工艺上完结的难度很大。  其首要原因是:铍直接熔化焊接,恰当于铸造冶炼进程,简单使熔化区构成粗大的柱状晶结构,加之铍材料的脆性和杂乱的热物理性质的一起作用,不能接受焊接热应力及热变形的作用。  在焊接进程中还因为铍在高温状况要与周围环境的气体介质发作冶金化学反响,使铍焊缝再次遭到污染。这些污染物通过焊接拌和进入熔池中,并以搀杂物的办法存在于焊缝之中,使原本就很难焊接的铍更是落井下石。早在20世纪50时代末,在铍焊接的草创时期,国外从前选用过不加填充材料进行铍的熔化焊接。  所运用的焊接办法是其时比较先进的真空电子束焊接和气体维护焊接,在焊接进程中还实行了预热办法。成果标明,选用不加填充材料进行铍的直接熔化焊接的办法,绝大多数焊接实验没有取得成功,虽然偶有单个焊接试样没有开裂,但其工艺的操控办法恰当杂乱。  在20世纪80时代,国外用激光束在打开铍的点焊实验时,也没有运用填充材料,其成果导致焊接成功的份额也没有显着添加。依据这种状况,人们设法运用填充材料焊接铍,只需添加适宜的焊接填充材料,在辅以合理的焊接办法及适宜的工艺,就能使焊接成功的几率大大添加。其成功之首要原因是填充材料按捺了铍焊缝的结晶微裂纹,避免铍焊缝开裂。  下面就铍焊接运用填充材料的根本挑选准则、品种以及填充材料与铍在焊接进程中的相互作用等问题打开分析和评论。  2.填充材料的挑选准则  选用什么金属或合金作铍的焊接填充材料是铍焊接成功的要害。早在20世纪60-70时代,从事铍焊接的工艺研讨人员就对铍焊接运用的填充材料进行了很多的研讨工作。并在其时运用了比较先进的EB(电子束)焊、TIG(氩弧)焊接技能进行实验验证。后来在激光技能发展趋于成熟后,又打开了铍的激光焊接研讨。激光焊接在运用填充材料方面,引用了电子束焊和TIG焊的研讨成果。通过对实验技能的总结和理论分析,构成了铍焊接填充材料的挑选准则,归纳起来有下面3条:  1)  填充材料在液态下能够很好地湿润铍母材。  2)  所运用的填充材料不能与铍在高温下构成脆性的金属间化合物。  3)  填充材料的熔点最好低于铍母材的熔点。  依据上述三条根本准则,在挑选铍焊接填充材料时,首要考虑到与铍能构成共晶合金的一些金属及合金,如纯铝、Al-Si合金等。  3 铝及Al-Si合金填充材料的功能分析  依据铍的二元合金相图理论和实验研讨都标明,比较好的填充材料应能与铍构成共晶型合金的一类金属材料。最好避免运用与铍构成金属间化合物的材料。到现在为止,铍的钎接焊运用过的填充材料只要纯铝、Al-Si合金、Al-12Si-1.5Mg合金、纯Ag、Ag-Cu合金等很少几种材料,但运用最多的是铝合金填充材料。  3.1 纯铝填充材料物理化学功能和核功能  纯铝是一种低密度材料,铝在地球上的储量恰当大,制作和冶炼铝的技能在现在研讨得比较深化。其实,铝材在20世纪中期就现已系列化,因而,用铝作铍的焊接填充材料,其报价很廉价。铝在元素周期表中坐落第三周期ⅢA族元素,原子序数为13,原子量为26.98154,铝原子的外围电子构型为3S23P1。铝的13个电子在各层轨道上散布为1S22S22P63S23P1。假如一起失掉2个3S电子和1个3P电子,则生成二价铝离子(Al2+)。假如失掉1个3P电子,则生成一价铝离子(Al+)。贱价铝离子在低温下一般是不安稳的。铝为面心立方晶格金属,其晶格参数为4.04956×10-10m;当体积为999.6mm3/mol原子时,其密度为2.6987g/ cm3;铝的比强度(抗拉强度和密度的比值-σb/γ)高。导热和导电功能杰出,其热导率大约是不锈钢的10倍。固体铝在室温下的热导率为2.35-2.237×10-2W/(m.K);在熔点邻近,热导率将削减到2.1×10-2W/(m.K);液体铝的热导率比固体铝要小得多,在熔点邻近只要0.9×10-2W/(m.K);在1250K时,增至1.0×10-2W/(m.K)。铝对光和热具有激烈的反射才能,可反射95%的热线。纯铝没有磁性,不会发作附加磁场。铝的延展性可达25%,可选用铸造、揉捏和辊轧的办法加工成焊丝或片状材料。铝有吸附环境水气之才能,其高温熔体具有激烈的吸氢才能。  铝的熔化热和熔化熵:在933K时,铝的熔化热为10.71±0.21KJ/mol原子(或396J/g);熔化熵为11.5J/(mol原子.K)。铝的蒸腾热为306KJ/mol原子(或113J/g;);蒸腾熵为112J/(mol原子.K)。  比热容:在298-933K区间,固体铝的热容随温度的改动而成线性联系                         Cp=a+bt                                  (1)式中,a=4.94,b=2.96×10-3。液态铝的热容大约为31.76J/(mol.K)。跟着温度的升高而增大。  从核功能考虑, 铝的热中子吸收截面为0.22靶。用纯铝作填充材料焊接铍时,纯铝与铍熔化凝结结晶,发作共晶反响,所构成的合金为二元共晶合金。但在实践焊接中,焊缝的安排存在许多偏析,这取决于铍和铝的熔化量。经分析,焊缝存在共晶成分或违背共晶点的过共晶成分一侧。在实验中还发现,用纯铝作填充材料,其高温熔化后的活动性不如Al-Si合金的好,填隙才能要比Al-Si合金差一些。  3.2 铝的氧化污染状况分析  在室温下,铝即存在显着的氧化趋势。铝表面的氧化反响,实践上在2h后就会显着削弱,这时的氧化膜厚度为2.5-5.0nm。在湿气存在的状况下,氧化膜厚度可达10nm。通过14天今后,氧化膜的厚度趋于安稳。铝中一般含有0.002-0.02(质量)%气体,表面存在的一薄层氧化物,在焊接前假如整理不洁净,这些氧化物可在焊缝中构成氧化物搀杂。在室温下,铝表面构成细密的Al2O3氧化物,其结构为非晶态。铝表面Al2O3氧化物的厚度为2-10nm,跟着温度的添加,氧化物的厚度要不断添加,当温度为500℃时,氧化膜的厚度增长到30nm;温度抵达或许挨近熔点时,氧化物的厚度可增至到200nm左右。Al2O3氧化物显示出与纯铝彻底不同的性质,跟着温度升高,Al2O3氧化物要发作α、β、γ和γ'相变,700-710℃改动为γ- Al2O3。当温度高于900℃时,开端改动为α-Al2O3结构。而纯铝从室温到熔点并不发作相变。不论Al2O3氧化物的化学成分和相发作何种改动,铝表面上总有一些或少数氧化物存在,了解了Al2O3氧化物的一些表面特性对铍的焊接是有意义的。铝与氧有很强的相互作用才能并阅历3个不同的作用进程:  (1)氧在新鲜洁净的铝表面磕碰触摸(物理吸附);  (2)通过化学作用生成一层离解的氧化膜(化学吸赞同化学反响);  (3)氧化膜随时刻的延伸而增厚。  Al2O3氧化物具有如下一些特性: (1)Al2O3氧化物的维护特性杰出,在必定的氧化阶段,可凭仗氧化物的这种特性避免铝与气体的进一步作用; (2)化学安稳性和高温安稳性好,在进行焊接时,从Al2O3氧化物复原铝简直不或许; (3)熔化温度高,在铝填充材料和铍材料早已熔化,Al2O3氧化物还处于固态; (4)Al2O3氧化物在液态铝和固态铝中的溶解度低,塑性比铝低,具有较高硬度和脆性; (5)线胀系数仅为铝的1/3,在焊接加热时,Al2O3氧化物有时会发作开裂; (6)Al2O3氧化物吸附水汽的才能比较强。铝在液态下对氢有很高的溶解度,有资料报导,铝合金中的氢含量可占85%以上。如在固态下为0.034ml/100g Al,在液态的溶解度为0.65ml/100g Al。二者相差了19.1倍。铝中氢的首要来源于铝液与水蒸汽的反响,液态铝中气体分压之比为:PH2/PH2O=7.3×1014,标明即便PH20很小,平衡的PH2也可到达很大。当铝液温度升到727℃时,在恰当于枯燥空气条件(PH2O=2.59×10-20Pa)铝液也能跟水汽发作反响。这说明,即或是恰当枯燥的环境或枯燥容器的器壁对铝液来说都是湿润的,也还会使其吸氢。   Al2O3氧化物在焊接拌和力的作用下,多以搀杂物的办法存在于焊缝中。研讨标明:铝液中的氧化物与气体氢之间存在共生联系。铝很简单被Al2O3氧化物和气体氢污染,因而,两者在铝液中很难去除。  液相铝表面上的氧化膜紧靠铝液的一层是细密的,对铝液具有维护作用。但靠外侧的氧化膜则是疏松的,氧化膜内存在Φ5-10 nm的小针孔,被氢、空气、水汽所占踞。因而,氧化铝膜中一般至少含有1%-2%的水汽。这样看来,Al2O3氧化物对焊接气孔的构成起着重要作用。氢依附于氧化物生核首要是从热力学方面考虑的,关于铝处于高温下的氧化物与气体之间的行为及相互作用机制,有必要从氧化物的特性和结构动身进行分析。按氧化物的形状可分为3大类:  1)呈现散布不均的大块氧化物(>20μm),此类氧化物的危害性极大,但简单去除;  2)发作尺度为10-20μm的氧化物;3)含有尺度 (2)在给定成分的合金,对不同过热度的氢含量曲线来说,跟着过热度增大,氢含量的曲线将上移。  加Al-Si合金进行铍的激光焊接或TIG焊接,其维护条件不是处在真空状况,而是气体维护状况。焊接后在焊缝中存在不同数量的气孔,一起还在焊缝的根部存在缩孔。有时还有搀杂物(特别是非金属搀杂物)存在。上述缺点的存在往往导致焊缝的力学功能变坏,使焊缝的气密性和抗腐蚀功能下降。  4.填充材料的厚度  填充材料厚度对铍焊接质量的影响很大。张友寿等人[20]从前选用0.2-1.0mm厚的Al-Si合金填充材料对铍进行过激光束焊接的实验研讨,并取得3点成果:  (1)按高能束的束斑直径考虑参加Al-Si合金片的厚度。激光束、电子束和微束等离子焊通过聚集后,束斑的直径都很小,一般只要零点几mm甚至更细,假如填充材料较厚,束斑只能照耀到填充材料上,只加热熔化填充材料,而铍母材自身熔化得很少,往往构成焊接衔接欠好或未衔接上。  (2)对激光焊接来说,激光对Al-Si合金和铍材料的反射率不一样,在焊接时,激光能的高斯峰值至少应有三分之二照耀到Al-Si合金填充材料片上,其他的激光能量照耀到铍母材上,这样才能在焊接时构成激光能量的合理分配,使焊接衔接的质量能够得到确保。  (3)依据铍焊缝中填充材料的成分操控和挑选填充材料的厚度。首要,有必要承认所加填充材料的厚度不致使铍的焊接开裂。在这个基础上断定填充材料的厚度。资料现已报导,当铍焊缝中Al-Si合金的均匀含量大于20%时,铍焊缝才不会开裂。由实验断定铍的电子束和激光束焊接铍运用的填充材料的最佳厚度应为0.3-0.4mm。当Al-Si合金片的厚度小于0.3mm时,将导致焊缝中填充材料的均匀铝含量下降,按捺焊缝开裂的倾向就很小。当填充材料厚度大于0.8mm时,高能束密度焊接的束斑只照耀到填充材料上,只能加热熔化填充材料部分,而铍母材则相对熔化得很少,难以构成杰出的衔接,或许构成未熔合甚至脱焊。选用气体维护钨极电弧焊接,因为焊缝的热输入大,焊缝的深宽比较小,焊缝的熔深比较浅,铍母材熔化的量较多,因而所加填充材料的厚度能够恰当添加一些。张友寿等人在铍的钨极电弧焊接中,运用0.4-1.0mm等不同厚度的Al-Si合金填充材料都能够使铍的焊接不发作开裂。  在Al-Si合金中,当硅的含量≤5%时,合金的活动性不太好。当硅含量在5%-15%的规模内,跟着硅含量的添加,活动性也添加。当硅含量到达15%的过共晶成分时,活动性最好。当硅的含量超越15%,其活动性反而削减。活动性削减的原因是:  (1)Si的熔化潜热比基体金属Al的熔化潜热大许多,使合金液体的活动性随Si含量的添加而变好。  (2)液体金属的活动功能够用某一特定条件下活动的长度来表明。长度的极大值不在共晶成分(含Si量为12%)规模,而是移向右边的过共晶成分(Si含量为15%)一边,这是因为Al-Si合金在急冷的非平衡条件下,共晶点偏移到过共晶一边的原因。  5.填充材料的参加办法  从铍的焊接进程来看,加填充材料的办遭到一些约束。象焊接界常运用的送丝组织或送粉式参加填充材料的办法则用的很少。别的,因为现在没有运用填充材料焊条焊接铍,所以,焊接时焊件不能开成V型坡口。  5.1 夹入式参加  将铍件加工止口时, 留出填充材料厚度的余量。在加工铍的焊接件时,相同用机加工的办法加工Al-Si合金片。在对加工时,能够将数片0.4mm厚的Al-Si合金堆叠在一起, 装在一个事前设计好的专用夹具内,这样一次能够加工多片填充材料,一起还可避免Al-Si合金变形。在焊接前,将加工好的填充材料作清洁处理和除气处理后,再进行安装和焊接。夹入式参加的填充材料,焊缝的成型质量好,焊缝熔池中Al-Si合金的含量相对均匀。  5.2 送入式参加   铍在焊接后经质量检测,对发作的气孔缺点需求进行补焊,补焊时能够用送粉组织将Al-Si合金粉体材料参加。填充材料直接送入气孔处,然后用激光束照耀粉体材料使之熔化,封住气孔。用粉体材料填充补焊,存在焊缝成型欠好、焊缝成分的均匀性差、粉体材料与原焊缝(铍铝硅熔化构成的焊缝)的湿润作用差和粉体材料比表面大易氧化等问题。但因为气孔是整个焊缝中的一个部分方位或细小的区域,补焊时存在部分方位的填充材料的堆垛,补焊后再用机械打磨的办法进行修正是答应的。别的,也能够选用腐蚀性较低的钎剂,以去除焊缝、铍及钎料表面的氧化膜,改进填充材料对铍的湿润性,进步钎接质量。  将Be直接与不锈钢进行分散焊接,会发作中间相,添加接头脆性,接头会发作沿晶界或结合界面开裂,导致焊接接头强度不高。铍与316L不锈钢分散焊的结合强度在50MPa以内。选用向铍和不锈钢之间加中间层材料能够避免构成脆性高且硬度大的中间相,改进铍和不锈钢的衔接功能。国外学者选用过Ti、Be-Cu合金、Cu和Ag等作中间层材料对Be与不锈钢进行分散焊接。研讨成果标明:Be-Cu合金和Ag合金是比较好的中间层。铍与316L不锈钢进行分散焊接,加Ag中间层,在788℃真空中2h能够完结分散焊接;Be-Cu合金是一种比较好的过渡材料,在800℃下2h能够完结分散焊接。除掉

铝合金激光焊接的前景展望的前景展望

2019-01-15 09:49:27

铝合金激光焊接较为引人关注的特点是其高效率,而要充分发挥这种高效率就要把它运用到大厚度深熔焊接中。因此,研究和使用大功率激光器进行大厚度深熔焊接将是未来发展的必然趋势。大厚度深熔焊更加突出了小孔现象及其对焊缝气孔的影响,因此小孔形成机理及其控制变得更加重要,它必将成为未来学术界及工业界共同关心和研究的热点问题。  改善激光焊接过程的稳定性和焊缝成形、提高焊接质量是人们追求的目标。因此,激光-电弧复合工艺、填丝激光焊接、预置粉末激光焊接、双焦点技术以及光束整形等新技术将会得到进一步的完善和发展。   另外,有人发现在CO2激光焊接熔池中存在几安培的固有电流,焊接区的外加磁场会影响熔池的流动状态以及光致等离子体的形态和稳定性。因此,采用某种形式的磁场有可能改善铝合金激光焊接过程的稳定性和焊缝质量。所以,采用辅助电流,通过其形成的电磁力控制熔池流动状态,从而改善焊接过程的稳定性,提高焊缝质量,也可能会受到更多研究者的关注。

在加工铝合金时丝锥磨损分析

2019-01-14 14:52:46

1.螺旋丝攻:对不通孔被切削材之攻牙作业,螺旋丝攻将发挥其特有的切削效果,迅速,顺利的为您切削出高级螺纹,螺旋丝攻与一般手用丝攻不同的是,普通的手用丝攻之沟槽成直线型,而螺旋丝攻成螺旋型,螺旋丝攻在攻牙时,以其螺旋槽的上升旋转作用,能轻易的把铁屑排出孔外,以免铁屑残留或塞於沟槽内,而造成螺锥折断刃部崩裂,因此能增长丝攻的寿命与切削出较高精度之螺纹,螺旋丝攻适用于切削高韧度之材料,而不适合铸铁,等切屑成细碎状之材料(N--SP/HC-SP/N+SP,S-SP)  2.先端丝攻:对通孔被切削之攻牙作业,先端丝攻将发挥其特有的切削效果迅速顺利的为您切削出高级之螺纹,先端丝攻主要用于各种通孔材料之螺纹被切削作业,先端丝攻具有与一般手用丝攻相同的的直线沟槽,但在其切削部前端有经特殊设计的螺旋沟槽,借以旋转推送切削从孔的下方排出,由于先端丝攻具有此旋转排出切屑之功能,除可保持沟槽的清洁以减少切削时之抗力外,并能避免因切削堵塞而造成丝攻的损害,因此先端丝攻可采用比一般手用丝攻更快的速度来切削高精度之螺纹(N-PO/HC-PO/N+PO,S-PO)  3.无铁屑挤压丝攻:无沟丝攻是应用塑性成型方式,在下孔内压磨使被切削材隆起而形成螺纹,故不会产生切屑,也不会因切屑阻塞等问题而损害螺纹或丝攻,无沟丝攻较适合于具有可塑性之材料加工,如,铝,红铜,锌,黄酮于低碳钢,无沟丝攻分两种类型,标准型N-RS(M6以下)(尖头),N-RZ(M8以上)(平头),N-RS,N-RZ是根据ISO规格,其牙部较短,适用于浅孔的攻牙,无沟丝锥的切削部有四牙于两牙两种,使用无沟丝锥时,需配合其精度要求而选择下孔的尺寸,才能塑压出高精度,高品质的螺纹  4.管用特殊丝锥:铸铁用管用丝攻是经特别设计,专门郁郁铸铁之螺纹攻牙,其不仅在钢材的热处理,切削角的角度等,都有独特的设计外,并在表面施有IN处理,以增强其耐磨性,铸铁用管用丝攻有PF,PS与PT等三种系列  一。各螺丝攻特点:  1.螺纹部作作适合之设计,可减轻攻牙时丝攻之负担,增加丝攻之寿命  2.螺丝丝攻整体构形尺寸之高精度化,更适用于精密加工于高速加工  3.螺丝攻构型之变革(I2Type-I3Type)  二。整体性能分析  1.依据实际切削测试结果,性能提升型螺丝攻之寿命于一般标准品相比约有30%以上的提升。  2.性能提升型螺丝攻之各项要素改善,对丝攻之各项性能于精密性的提升是有效用的。  3.YAMAWA之N+系列螺丝攻,整体构型形状尺寸之高精度化,对内螺纹加工之精度有提升外,更符合现在的高速加工之潮流  可以用一些铝合金专用的攻牙油效果会更好  主要是铝或者铸铝合金材料产品具有很强的塑性,粘展性,在切削时容易产生粘刀现象,排削不畅。采用润滑效果好的乳化液,在定制丝锥的时候,调整丝锥的前角,一般选在16~20度,可以在不增加成本的情况下,提高丝锥的使用寿命。

铝合金的激光焊接工艺难点分析

2019-03-01 14:09:46

一、铝合金焊接技能    铝合金具有高比强度、高疲劳强度以及杰出的断裂韧性和较低的裂纹扩展率,一起还具有优秀的成形工艺性和杰出的抗腐蚀性,在航空、航天、轿车、机械制作、船只及化学工业中已被许多运用。铝合金的广泛运用促进了铝合金焊接技能的开展,一起焊接技能的开展又拓宽了铝合金的运用范畴。    不过,铝合金自身的特性使得其相关的焊接技能面临着一些亟待解决的问题:表面难熔的氧化膜、接头软化、易发作气孔、简单热变形以及热导率过大等。传统的铝合金焊接一般选用TIG焊或MIG焊工艺,尽管这两种焊接办法能量密度较大,焊接铝合金时能取得杰出的接头,但仍然存在熔透才能差、焊接变形大、出产功率低一级缺点,所以人们开端寻求新的焊接办法,20世纪中后期激光技能逐步开端运用于工业。欧洲空中客车公司出产的A340飞机机身,就选用激光焊接技能替代原有的铆接工艺,使机身的分量减轻18%左右,制作本钱下降了近25%。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技能的开发和运用。这些成功的案例大大促进对激光焊接铝合金的研讨,激光技能已经成为了未来铝合金焊接技能的首要开展方向。激光焊接具有功率密度高、焊接热输入低、焊接热影响区小和焊接变形小等长处,使其在铝合金焊接范畴遭到分外的注重。    二、铝合金激光焊接的问题和对策    1.铝合金表面的高反射性和高导热性    这一特色能够用铝合金的微观结构来解说。因为铝合金中存在密度很大的自由电子,自由电子遭到激光(激烈的电磁波)逼迫轰动而发作次级电磁波,构成激烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小的吸收率。一起,自由电子的布朗运动受激而变得更为剧烈,所以铝合金也具有很高的导热性。    针对铝合金对激光的高反射性,国内外已作了许多研讨,实验结果表明,进行恰当的表面预处理如喷砂处理、砂纸打磨、表面化学浸蚀、表面镀、石墨涂层、空气炉中氧化等均能够下降光束反射,有效地增大铝合金对光束能量的吸收。别的,从焊接结构规划方面考虑,在铝合金表面人工制孔或选用光收集器方式接头,开V形坡口或选用拼焊(拼接空隙相当于人工制孔)办法,都能够添加铝合金对激光的吸收,取得较大的熔深。别的,还能够运用合理规划焊接缝隙来添加铝合金表面对激光能量的吸收。    2.小孔效应及等离子体对铝合金激光焊接的影响    在铝合金激光焊接进程中,小孔的呈现能够大大进步材料对激光的吸收率,焊接能够取得更多的能量,而铝元素以及铝合金中的Mg、Zn、Li沸点低、易蒸腾且蒸汽压大,尽管这有助于小孔的构成,但等离子体的冷却作用(等离子体对能量的屏蔽和吸收,削减了激光对母材的能量输入)使得等离子体自身"过热",却阻止了小孔保持接连存在,简单发作气孔等焊接缺点,然后影响焊接成形和接头的力学性能,所以小孔的诱导和安稳成为确保激光焊接质量的一个要点。    因为铝合金的高反射性和高导热性,要诱导小孔的构成就需要激光有更高的能量密度。因为能量密度阈值的凹凸本质上受其合金成分的操控,因而能够经过操控工艺参数,挑选断定激光功率确保适宜的热输入量,来取得安稳的焊接进程。别的,能量密度阈值必定程度上还遭到维护气体品种的影响。例如,激光焊接铝合金时运用N2气时可较简单地诱导出小孔,而运用He气则不能诱导出小孔。这是因为N2和Al之间可发作放热反应,生成的Al-N-O三元化合物进步了对激光吸收率。    3.气孔问题    铝合金品种不同,发作的气孔类型也不同。一般以为,铝合金在焊接进程中发作以下几类气孔。    1)孔。铝合金在有氢的环境中熔化后,其内部的含氢量可到达0.69ml/100g以上。但凝结今后,其平衡状态下的溶氢才能较多只要0.036ml/100g,两者相差近20倍。因而,在由液态向固态改动的进程中,液态铝中剩余的必定要分出。假如分出的氢不能顺畅上浮逸出,就会聚集成气泡残留在固态铝合金成为气孔。    2)维护气体发作的气孔。在高能激光焊接铝合金的进程中,因为熔池底部小孔前沿金属的激烈蒸腾,使维护气体被卷进熔池构成气泡,当气泡来不及逸出而残留在固态铝合金中即成为气孔。    3)小孔陷落发作的气孔。在激光焊接进程中,当表面张力大于蒸气压力时,小孔将不能保持安稳而陷落,金属来不及填充就构成了孔洞。对削减或防止铝合金激光焊接中的气孔缺点也有许多实践办法,如调整激光功率波形,削减小孔不安稳陷落,改动光束焦点高度和歪斜照耀,在焊接进程时施加电磁经场作用以及在真空中进行焊接等。近几年来,又呈现了选用填丝或预置合金粉未、复合热源和双焦点技能来削减气孔发作的工艺,有不错的作用。    4.裂纹问题    铝合金归于典型的共晶合金,在激光焊接快速凝结下更简单发作热裂纹,焊缝金属结晶时在柱状晶鸿沟构成AL-Si或Mg-Si等低熔点共晶是导致裂纹发作的原因。为削减热裂纹,能够选用填丝或预置合金粉未等办法进行激光焊接。经过调整激光波形,操控热输入也能够削减结晶裂纹。    三、铝合金激光焊接的开展前景    铝合金激光焊接较为人引人重视的特色是其高功率,而要充分发挥这种高功率就是把它运用到大厚度深熔焊接中。因而,研讨和运用大功率激光器进行大厚度深熔焊接将是未来开展的必然趋势。大厚度深熔焊愈加突出了小孔现象及对焊缝气孔的影响,因而小孔构成机理及操控变得愈加,它必将成为业界一起关怀和研讨的热点问题。    改进激光焊接进程的安稳性和焊缝成形、进步焊接质量是人们寻求的方针。因而,激光-电弧复合工艺、填丝激光焊接、预置粉未激光焊接、双焦点技能以及光束整形等新技能将会得到进一步完善和开展。